NOTE ON QUATERNION ALGEBRAS OVER A COMMUTATIVE RING

Dedicated to Professor Mutsuo Takahashi on his 60th birthday

Teruo KANZAKI

(Received September 10, 1975)

Let R be a commutative ring. In [3] we defined a generalization $D(B, V, \varphi)$ of quaternion algebra over R. In this note we use a notation $\left(\frac{B, \varphi}{R}\right)$ instead of $D(B, V, \varphi)$, where $\varphi=(V, \varphi)$. The first object in this paper is to show the following generalizations of the well known classical formulas;

$$
\begin{aligned}
& \left(\frac{B, \varphi}{R}\right) \otimes_{R}\left(\frac{B, \varphi^{\prime}}{R}\right) \sim\left(\frac{B, \varphi \otimes \varphi^{\prime}}{R}\right), \\
& \left(\frac{B, i_{B^{\circ}} \varphi_{0}}{R}\right) \otimes_{R}\left(\frac{B^{\prime}, i_{B^{\prime}} \circ \varphi_{0}}{R}\right) \sim\left(\frac{B^{*} B^{\prime}, i_{B * B^{\prime} \circ} \varphi_{0}}{R}\right) \text { for a symmetric bilinear }
\end{aligned}
$$

R-module $\varphi_{0}=\left(U, \varphi_{0}\right)$. From the formulas, it is deduced that every element in Quat (R), the subgroup of Brauer group generated by quaternion algebras, is expressed as $\left[\frac{B_{1}, \varphi_{1}}{R}\right]\left[\frac{B_{2}, \varphi_{2}}{R}\right] \ldots\left[\frac{B_{n}, \varphi_{n}}{R}\right]$ for $n<\left|Q_{s}(R)\right|$, where $Q_{s}(R)$ is the quadratic extension group. The second object is to investigate on a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ such that $\left(\frac{B, \varphi}{R}\right) \sim R$. We shall show that if $\left(\frac{B, \varphi}{R}\right) \sim R$ then φ is R-free i.e. $\varphi=\langle a\rangle$ for some unit a in R, furthermore, if 2 is invertible in R then $\left(\frac{B, \varphi}{R}\right) \sim R$ implies $\left(\frac{B, \varphi}{R}\right) \cong\left(\frac{a, b}{R}\right)$ for some unite a and b in R, i.e. R-free quaternion algebra. Finally, we give a condition for $\left(\frac{B, \varphi}{R}\right)$ to be $\left(\frac{B, \varphi}{R}\right) \cong R_{2} ;\left(\frac{B, \varphi}{R}\right)$ is isomorphic to a matrix ring R_{2} if and only if there is a quadratic extension B^{\prime} of R such that [$\left.B^{\prime}\right]$ is identity element in $Q_{s}(R)$ and $\left\{\frac{B, \varphi}{R}\right) \supset B^{\prime} \supset R$. Particularly, if 2 is invertible in R, we have some equivalent conditions for $\left(\frac{B, \varphi}{R}\right) \cong R_{2}$, and as a corollary we have $\operatorname{Hom}_{R}(B, B) \cong R_{2}$ for every $[B]$ in $Q_{s}(R)$. Throughout this paper, we assume that R is a commutative ring, every ring has identity element, and every subring and extension ring of a ring have a common identity element.

1. Definitions and preliminary

Let B be an extension ring of R. If the residue R-bimodule B / R is invertible, then B is called a quadratic extension of R. As well known, if B is an R-algebra and quadratic extension of R then B is commutative (cf. [8]). And, if B is a separable commutative quadratic extension, then $B \supset R$ is a Galois extension with Galois group $G=\{I, \tau\}$, where τ is characterized as the unique R-algebra automorphism of B such that $B^{\tau}(=\{b \in B ; \tau(b)=b\})=R$ (cf. [8]). Then every R-algebra automorphism of B is expressed as $e \tau+(1-e) I$ for some idempotent e in R and identity map I on B, and is an involution (cf. [4]). Therefore, we shall call the automorphism τ the main involution of B, and denote it by $\tau(b)=\bar{b}$ for $b \in B$. For a separable commutative quadratic extension $B \supset R$, we consider a hermitian left B-module $\varphi=(V, \varphi)$ defined by a finitely generated projective left B-module V and a hermitian form $\varphi: V \times V \rightarrow B$, satisfied $\varphi\left(v, v^{\prime}\right)=\overline{\varphi\left(v^{\prime}, v\right)}$ and $\varphi\left(a u+b v, v^{\prime}\right)=a \varphi\left(u, v^{\prime}\right)+b \varphi\left(v, v^{\prime}\right)$ for $u, v, v^{\prime} \in V$ and $a, b \in B$. When V is an invertible left B-module, we shall call $\varphi=(V, \varphi)$ a rank one hermitian left B-module. If $\varphi_{i}=\left(V_{i}, \varphi_{i}\right), i=1,2$ are hermitian left B-modules, then the tensor product $\varphi_{1} \otimes \varphi_{2}=\left(V_{1} \otimes_{B} V_{2}, \varphi_{1} \otimes \varphi_{2}\right)$ is a hermitian left B-module defined by $\varphi_{1} \otimes \varphi_{2}: V_{1} \otimes_{B} V_{2} \times V_{1} \otimes_{B} V_{2} \rightarrow B ;\left(b_{1} \otimes b_{2}, b_{1}{ }^{\prime} \otimes b_{2}{ }^{\prime}\right) \mathcal{M} \rightarrow$ $\varphi_{1}\left(b_{1}, b_{1}{ }^{\prime}\right) \varphi_{2}\left(b_{2}, b_{2}{ }^{\prime}\right)$. If $\varphi_{0}=\left(U, \varphi_{0}\right)$ is a symmetric bilinear left R-module, then $i_{B} \circ \varphi_{0}=\left(B \otimes_{R} U, i_{B}^{\circ} \varphi_{0}\right)$ is a hermitian left B-module defined by $i_{B} \varphi_{0}\left(b \otimes u, b^{\prime} \otimes u^{\prime}\right)$ $=b \varphi_{0}\left(u, u^{\prime}\right) \bar{b}^{\prime}$ for $b \otimes u, b^{\prime} \otimes u^{\prime}$ in $B \otimes_{R} U$. A ring D is called a quaternion R algebra if D satisfies the following conditions;

1) D is an Azumaya R-algebra,
2) there is a subring B of D such that $D \supset B$ is a quadratic extension and $B \supset R$ is a separable quadratic extension.
If D is a quaternion R-algebra and B is such a subring of D as above definition, then B is a maximal commutative subring of D and there is a rank one non degenerate hermitian left B-module $\varphi=(V, \varphi)$ such that $D=B \oplus V$ and the multiplication in D is characterized by $(b+v)\left(b^{\prime}+v^{\prime}\right)=b b^{\prime}+b v^{\prime}+\bar{b}^{\prime} v+\varphi\left(v, v^{\prime}\right)$ for $b+v, b^{\prime}+v^{\prime} \in B \oplus V$, (cf. [3]) Then D is denoted by $\left(\frac{B, \varphi}{R}\right)$. In the Brauer group $B(R)$ of R, we denote by n Quat (R) the subgroup of $B(R)$ generated by classes of quaternion R-algebras. We define an integer $L_{Q}(R)$ as follows; for any integer $n, L_{Q}(R) \leqq n$ if and only if every element of Quat (R) is expressed as a class of a tensor product of m quaternion R-algebras for some integer $m \leqq n$.

The set $Q_{s}(R)$ of isomorphism classes [B]'s of separable commutative quadratic extensions B 's of R is an abelian group under the product $\left[B_{1}\right]\left[B_{2}\right]=$ [$B_{1} * B_{2}$], where $B_{1} * B_{2}=\left(B_{1} \otimes_{R} B_{2}\right)^{\tau_{1} \times \tau_{2}}$ for the main involution τ_{i} of $B_{i}, i=1,2$. The identity element of $Q_{s}(R)$ is $[R \times R]$, (cf. [8]).

2. Tensor product of quaternion \boldsymbol{R}-algebras

In [3] we showed that a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ is a generalized crossed product of B and $G=G(B / R)=\{I, \tau\}$. Using an idea of Hattori [2], we have

Theorem 1. We have Brauer equivalence

$$
\left(\frac{B, \varphi_{1}}{R}\right) \otimes_{R}\left(\frac{B, \varphi_{2}}{R}\right) \sim\left(\frac{B, \varphi_{1} \otimes \varphi_{2}}{R}\right) .
$$

Proof. Let $G=\left\{I, \tau\left\{\right.\right.$ be the Galois group of $B \supset R$, and $x_{1}, \cdots x_{n}, y_{1}, \cdots y_{n}$ a G-Galois system of B, i.e. it satisfies $\sum_{i} x_{i} y_{i}=1, \sum_{i} x_{i} \tau\left(y_{i}\right)=0$ in B. Then $e_{1}=\sum_{i} x_{i} \otimes y_{i}$ and $e_{2}=\sum_{i} x_{i} \otimes \tau\left(y_{i}\right)=\sum_{i} \tau\left(x_{i}\right) \otimes y_{i}=1 \otimes 1-e_{1}$ are orthgonal idempotents in $\left(\frac{B, \varphi_{1}}{R}\right) \otimes_{R}\left(\frac{B, \varphi_{2}}{R}\right)$. It is known that

$$
\left(\frac{B, \varphi_{1}}{R}\right) \otimes_{R}\left(\frac{B, \varphi_{2}}{R}\right) \sim e_{1}\left(\left(\frac{B, \varphi_{1}}{R}\right) \otimes_{R}\left(\frac{B, \varphi_{2}}{R}\right)\right) e_{1}=e_{1}\left(\left(B \oplus V_{1}\right) \otimes_{R}\left(B \oplus V_{2}\right)\right) e_{1}
$$ $=e_{1}\left(B \otimes_{R} B\right) e_{1} \oplus e_{1}\left(B \otimes_{R} V_{2}\right) e_{1} \oplus e_{1}\left(V_{1} \otimes_{R} B\right) e_{1} \oplus e_{1}\left(V_{1} \otimes_{R} V_{2}\right) e_{1}=e_{1}\left(B \otimes_{R} B\right) \oplus e_{1}$ $\left(V_{1} \otimes_{R} V_{2}\right) \cong B \oplus V_{1} \otimes_{B} V_{2}=\left(\frac{B, \varphi_{1} \otimes \varphi_{2}}{R}\right)$, where $\varphi_{i}=\left(V_{i}, \varphi_{i}\right) \quad i=1,2$.

Theorem 2. Let $\varphi_{0}=\left(U, \varphi_{0}\right)$ be a rank one non degenerate symmetric bilinear R-module. Then we have

$$
\left(\frac{B_{1}, i_{B_{1}} \circ \varphi_{0}}{R}\right) \otimes_{R}\left(\frac{B_{2}, i_{B_{2}} \circ \varphi_{0}}{R}\right) \cong\left(\frac{B_{1} * B_{2}, i_{B_{1} * B_{2}} \circ \varphi_{0}}{R}\right) \otimes_{R}\left(\frac{B_{1}, i_{B_{1}} \circ \varphi_{0} \otimes \varphi_{0}}{R}\right),
$$

and

$$
\left(\frac{B_{1}, i_{B_{1}} \circ \varphi_{0} \otimes \varphi_{0}}{R}\right) \cong\left(\frac{B_{1},\left(i_{B_{1}} \circ \varphi_{0}\right) \otimes\left(i_{B_{1} \circ} \varphi_{0}\right)}{R}\right) \cong \operatorname{Hom}_{R}\left(B_{1}, B_{1}\right) \sim R .
$$

Proof. From the definition of $\left(\frac{B, i_{B} \circ \varphi_{0}}{R}\right)$, we can put $\left(\frac{B_{1}, i_{B_{1}} \circ \varphi_{0}}{R}\right)=B_{1} \oplus$ $B_{1} \otimes_{R} U,\left(\frac{B_{2}, i_{B_{2}} \circ \varphi_{0}}{R}\right)=B_{2} \oplus B_{2} \otimes_{R} U$, and the tensor product $D=\left(\frac{B_{1}, i_{B_{1}} \circ \varphi_{0}}{R}\right)$ $\otimes_{R}\left(\frac{B_{2}, i_{B_{2}} \circ \varphi_{0}}{R}\right)=B_{1} \otimes_{R} B_{2} \oplus B_{1} \otimes_{R} B_{2} \otimes_{R} U \oplus B_{1} \otimes_{R} U \otimes_{R} B_{2} \oplus B_{1} \otimes_{R} U \otimes_{R} B_{2} \otimes_{R}$ U. Since $B_{1} * B_{2}$ is a subring of $B_{1} \otimes_{R} B_{2}, D=\left(\frac{B_{1}, i_{B_{1}} \circ \varphi_{0}}{R}\right) \otimes_{R}\left(\frac{B_{2}, i_{B_{2}} \circ \varphi_{0}}{R}\right)$ contains $D_{1}=B_{1} * B_{2} \oplus\left(B_{1} * B_{2}\right) \otimes_{R} U=\left(\frac{B_{1} * B_{2}, i_{B_{1} * B_{2}} \circ \varphi_{0}}{R}\right) \quad$ and $\quad D_{2}=B_{1} \otimes_{R} R \oplus$ $B_{1} \otimes_{R} U \otimes_{R} R \otimes_{R} U \cong\left(\frac{B_{1}, i_{B_{1}} \circ \varphi_{0} \otimes \varphi_{0}}{R}\right)$ as subrings. Every element of $B_{1} * B_{2}=$ $\left(B_{1} \otimes_{R} B_{2}\right)^{\tau_{1} \times \tau_{2}}$ commutes with every element of $B_{1} \otimes_{R} U \otimes_{R} B_{2} \otimes_{R} U$, therefore $\left(B_{1} * B_{2}\right) \otimes_{R} U$ and $B_{1} \otimes_{R} U \otimes_{R} R \otimes_{R} U$ commute elementwise, and so are $B_{1} \otimes_{R} R$
and $\left(B_{1} * B_{2}\right) \otimes_{R} U$. Accordingly, subrings D_{1} and D_{2} of D commute elementwise, and so a ring homomorphism $D_{1} \otimes_{R} D_{2} \rightarrow D$ is defined by the contraction. Using the following lemma and the fact that $D_{1} \otimes_{R} D_{2}$ and D are Azumaya R-algebras, we can check that $D_{1} \otimes_{R} D_{2} \rightarrow D$ is an isomorphism. Namely, since $\left(B_{1} \otimes_{R} R\right)$ $\left(B_{1} * B_{2}\right)=\left(B_{1} \otimes_{R} B_{2}\right)^{I \times \tau_{2}}\left(B_{1} \otimes_{R} B_{2}\right)^{\tau_{1} \times \tau_{2}}=B_{1} \otimes_{R} B_{2}$, we have $D_{1} D_{2}=D$. From the definition of hermitian module, we have $i_{B_{1}} \circ\left(\varphi_{0} \otimes \varphi_{0}\right) \cong\left(i_{B_{1}} \circ \varphi_{0}\right) \otimes\left(i_{B_{1}} \circ \varphi_{0}\right)$, therefore by [3], (2.10), we have $\left(\frac{B_{1}, i_{B_{1}} \circ\left(\varphi_{0} \otimes \varphi_{0}\right)}{R}\right) \cong \operatorname{Hom}_{R}\left(B \otimes_{R} U, B \otimes_{R} U\right) \cong$ $\operatorname{Hom}_{R}(B, B) \sim R$.

Lemma 1. Let $A \supset B$ be a G-Galois extension of commutative rings. If G is a direct product of normal subgroups G_{1} and G_{2}, then we have

$$
A=A^{G_{1}} A^{G_{2}} \cong A^{G_{1}} \otimes_{B} A^{G_{2}} .
$$

Proof. This is obtained immediately from Theorem 3.4 in [1] applying to the contract ring homomorphism $A^{G_{1}} \otimes_{B} A^{G_{2}} \rightarrow$.

Lemma 2. Let B_{1} and B_{2} be separable commutative quadratic extensions such that $\left[B_{1}\right]=\left[B_{2}\right]$ in $Q_{s}(R)$, and $\sigma: B_{1} \rightarrow B_{2}$ an R-algebra isomorphism. If $\varphi_{1}=$ $\left(V_{1}, \varphi_{1}\right)$ and $\varphi_{2}=\left(V_{2}, \varphi_{2}\right)$ are rank one non degenerate hermitian left B_{1} - and $B_{2}-$ modules, respectively, such that there is a σ-semi-linear isomorphism $h: V_{1} \rightarrow V_{2}$ making the following diagram commut;

then there is an R-algebra isomorphism $f:\left(\frac{B_{1}, \varphi_{1}}{R}\right) \rightarrow\left(\frac{B_{2}, \varphi_{2}}{R}\right)$, and f induces σ and h on B_{1} and V_{1} respectively.

Proof. From the definitions of $\left(\frac{B_{i}, \varphi_{i}}{R}\right) i=1,2, f$ is immediately defined by σ and h, (cf. [5], Prop. 3).

Propsotion 1. Let $\left(\frac{B_{1}, \varphi_{1}}{R}\right)$ and $\left(\frac{B_{2}, \varphi_{2}}{R}\right)$ be quaternion algebras such that $\left[B_{1}\right]=\left[B_{2}\right]$ in $Q_{s}(R)$. Then there is a quaternion R-algebra $\left(\frac{B_{1}, \varphi_{2}{ }^{\prime}}{R}\right)$ such that $\left(\frac{B_{1}, \varphi_{2}{ }^{\prime}}{R}\right) \cong\left(\frac{B_{2}, \varphi_{2}}{R}\right)$. Therefore, we have

$$
\left(\frac{B_{1}, \varphi_{1}}{R}\right) \otimes_{R}\left(\frac{B_{2}, \varphi_{2}}{R}\right) \sim\left(\frac{B_{1}, \varphi_{1} \otimes \varphi_{2}{ }^{\prime}}{R}\right), \text { provided }\left[B_{1}\right]=\left[B_{2}\right] \text { in } Q_{s}(R) .
$$

Proof. Suppose $\left[B_{1}\right]=\left[B_{2}\right]$ in $Q_{s}(R)$. There is an R-algebra isomorphism $\sigma: B_{2} \rightarrow B_{1}$. Then, by change of ring, there is a rank one non degenerate hermitian B_{1}-module $\varphi_{2}^{\prime}=\left(B_{1} \otimes_{B_{2}} V_{2}, \sigma \varphi_{2}\right)$ for $\varphi_{2}=\left(V_{2}, \varphi_{2}\right)$. From σ and a σ-semilinear isomorphism $h: V_{2} \rightarrow B_{1} \otimes_{B_{2}} V_{2} ; v \mathcal{M} \rightarrow 1 \otimes v$, one can construct an R algebra isomorphism $f:\left(\frac{B_{2}, \varphi_{2}}{R}\right) \rightarrow\left(\frac{B_{1}, \varphi_{2}{ }^{\prime}}{R}\right)$ by Lemma 2. Accordingly, by Theorem 1 we have $\left(\frac{B_{1}, \varphi_{1}}{R}\right) \otimes_{R}\left(\frac{B_{2}, \varphi_{2}}{R}\right) \cong\left(\frac{B_{1}, \varphi_{1}}{R}\right) \otimes_{R}\left(\frac{B_{1}, \varphi_{2}{ }^{\prime}}{R}\right) \sim\left(\frac{B_{1}, \varphi_{1} \otimes \varphi_{2}{ }^{\prime}}{R}\right)$.

Let us denote by $\left|Q_{s}(R)\right|$ the cardinal number of the set $Q_{s}(R)$.
Theorem 3. We have

$$
L_{Q}(R) \leqq\left|Q_{s}(R)\right|-1
$$

Proof. Suppose $\left|Q_{s}(R)\right|=n<\infty$, and $Q_{s}(R)=\left\{\left[B_{0}\right]=1,\left[B_{1}\right], \cdots\left[B_{n-1}\right]\right\}$. By Proposition 1, every element [A] in Quat (R) is expressed as $A \sim\left(\frac{B_{1}, \varphi_{1}}{R}\right) \otimes_{R}$ $\left(\frac{B_{2}, \varphi_{2}}{R}\right) \otimes \cdots \otimes_{R}\left(\frac{B_{n-1}, \varphi_{n-1}}{R}\right)$ for suitable $\varphi_{1}, \varphi_{2}, \cdots \varphi_{n-1}$.

3. Quaternion algebra of split type

Theorem 4. For any quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, if $\left(\frac{B, \varphi}{R}\right) \sim R$ then $\varphi=$ (V, φ) is R-free, i.e. there is a iunit a in R such that $\varphi=\langle a\rangle$. Then $\left(\frac{B, \varphi}{R}\right)$ is denoted by $\left(\frac{B, a}{R}\right)$.

Proof. Put $\left(\frac{B, \varphi}{R}\right)=B \oplus V, \varphi=(V, \varphi)$. Then $V V=B$ in $\left(\frac{B, \varphi}{R}\right)$, (cf. [3], (2.1)). Suppose $\left(\frac{B, \varphi}{R}\right) \cong \operatorname{Hom}_{R}(P, P)$ for a finitely generated projective and faithful R-module P. Then, P may be regarded as a faithful left $\left(\frac{B, \varphi}{R}\right)$-module and also a faithful B-module. Since B is a maximal commutative subring of $\left(\frac{B, \varphi}{R}\right)=\operatorname{Hom}_{R}(P, P), P$ becomes an invertible left B-module. From $V V$ $=B$, we have $P=V P \cong V \otimes_{B} P$. Since P is invertible as B-module, it means that V is B-free.

From Theorem 1 and 2, we have $\left(\frac{B, a}{R}\right) \otimes_{R}\left(\frac{B, b}{R}\right) \sim\left(\frac{B, a b}{R}\right)$, and $\left(\frac{B_{1}, a}{R}\right) \otimes_{R}$ $\left(\frac{B_{2}, a}{R}\right) \cong\left(\frac{B_{1} * B_{2}, a}{R}\right) \otimes_{R}\left(\frac{B_{1}, a^{2}}{R}\right) \sim\left(\frac{B_{1} * B_{2}, a}{R}\right)$.

A quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)=B \oplus V$ has an involution $\left(\frac{B, \varphi}{R}\right) \rightarrow\left(\frac{B, \varphi}{R}\right)$;
$d \mathcal{M} \rightarrow \bar{d}$ defined by $\overline{(b+v)}=\bar{b}-v$ for $b \in B, v \in V$. Then, the norm $N:\left(\frac{B, \varphi}{R}\right)$ $\rightarrow R ; d \rightsquigarrow \rightarrow d \bar{d}$ defines a non degenerate quadratic R-module $\left(\left(\frac{B, \varphi}{R}\right), N\right)=$ $(B, N \mid B) \perp(V, N \mid V),(c f .[3],(2.7))$.

Corollary 1. For a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, the following conditions are equivalent:

1) There is a unit a contained in $N(B)=\{b \bar{b} ; b \in B\}$ such that $\left(\frac{B, \varphi}{R}\right) \cong\left(\frac{B, a}{R}\right)$.
2) $\left(\frac{B, \varphi}{R}\right) \cong \operatorname{Hom}_{R}(B, B)$.

Proof. 1) $\Rightarrow 2$): \quad Since $\left(\frac{B, a}{R}\right)$ is a crossed product of a cylic group $G=$ $G(B / R)$ and B with the trivial factor set $a \in N(B)$, we have $\left(\frac{B, a}{R}\right)=\Delta(G, B) \cong$ $\operatorname{Hom}_{R}(B, B)$, where $\Delta(G, B)$ means a twisted group ring of G and $\left.B .2\right) \Rightarrow 1$): By theorem $4,\left(\frac{B, \varphi}{R}\right) \cong \operatorname{Hom}_{R}(B, B) \sim R$ implies $\varphi=\langle a\rangle$ for some unit a in R. Then, $\left(\frac{B, a}{R}\right)$ is a crossed product of $G=G(B / R)$ and B with the factor set a, and $\left(\frac{B, a}{R}\right) \cong \operatorname{Hom}_{R}(B, B) \cong \Delta(G, B)$. Therefore, a is in $N(B)$.

Lemma 3. ([3], (2.13)). Let $\left(\frac{B, \varphi}{R}\right)=B \oplus V$ be a quaternion R-algebra and put $q=-N \mid V$, i.e. $q(v)=-N(v)$ for $v \in V$. Then (V, q) is hyperbolic if and only if $[B]=1$ in $Q_{s}(R)$. If $[B]=1$ in $Q_{s}(R)$ then $\left(\frac{B, \varphi}{R}\right) \sim R$.

Proof. Suppose (V, q) is hyperbolic. Then there are totally isotropic R submodules V_{1} and V_{2} such that $V=V_{1} \oplus V_{2}$ and V_{i} is invertible, $i=1,2$. Since $0=q(v)=-N(v)=-v v=v^{2}$ for every $v \in V$, we have $V_{i} V_{i}=0, i=1,2$, and so $B=V V=V_{1} V_{2}+V_{2} V_{1}$. Put $\mathfrak{a}_{1}=V_{1} V_{2}$ and $\mathfrak{a}_{2}=V_{2} V_{1}$. Then we have $B=\mathfrak{a}_{1}+\mathfrak{a}_{2}$. Therefore, there are $e_{1} \in \mathfrak{a}_{1}$ and $e_{2} \in \mathfrak{a}_{2}$ such that $e_{1}+e_{2}=1$. Since $\mathfrak{a}_{1} \mathfrak{a}_{2}=\mathfrak{a}_{2} \mathfrak{a}_{1}=0$, e_{1} and e_{2} are orthogonal idempotents and $\mathfrak{a}_{i}=e_{i} B, i=1,2$. Applying the main involution τ of B, we have $\tau\left(e_{1} B\right)=\tau\left(V_{1} V_{2}\right)=\tau\left(\varphi\left(V_{1}, V_{2}\right)\right)=\varphi\left(V_{2}, V_{1}\right)=V_{2} V_{1}=$ $e_{2} B$ and $B=e_{1} B \oplus e_{2} B$, therefore $[B]=1$ in $Q_{s}(R)$. Conversely, if $[B]=1$ in $Q_{s}(R)$, there are orthogonal idempotents e_{1} and e_{2} such that $B=e_{1} B \oplus e_{2} B$ and $\bar{e}_{1}=e_{2}$. Then we have $V=e_{1} V \oplus e_{2} V$ and $e_{1} V, e_{2} V$ are totally isotropic R-submodule of (V, q), because of $q\left(e_{1} v\right)=e_{1} v e_{1} v=e_{1} \bar{e}_{1} v^{2}=0$ for every $e_{1} v \in e_{1} V$. If $[B]=1$ in $Q_{s}(R)$, then the Clifford algebra $C(V, q)$ of (V, q) is similar to R and isomorphic to $\left(\frac{V, \varphi}{R}\right),(\mathrm{cf} .[3],(2.8))$, and so $\left(\frac{B, \varphi}{R}\right) \sim R$.

Proposition 2. If a quaternion R-algebra $\left(\frac{R, \varphi}{R}\right)$ contains a separable quadratic extension B^{\prime} of R, then there is a rank one non degenerate hermitian B^{\prime}-module φ^{\prime} such that $\left(\frac{B, \varphi}{R}\right)=\left(\frac{B^{\prime}, \varphi^{\prime}}{R}\right)$.

Proof. Firstly we shall show that B^{\prime} is a maximal commutative subring of $\left(\frac{B, \varphi}{R}\right)$. Since B^{\prime} is a separable subalgebra of the Azumaya R-algebra $\left(\frac{B, \varphi}{R}\right)$, the commutor ring $B^{\prime \prime}=\left\{b \in\left(\frac{B, \varphi}{R}\right) ; b b^{\prime}=b^{\prime} b\right.$ for all $\left.b^{\prime} \in B^{\prime}\right\}$ is also separable over R, (cf. [6], Theorem 2). Then we have that $\left(\frac{B, \varphi}{R}\right) \supset B^{\prime \prime} \supset B^{\prime} \supset R, B^{\prime \prime}$ is a direct summand of $\left(\frac{B, \varphi}{R}\right)$ as left $B^{\prime \prime}$-module, and so is B^{\prime} as left B^{\prime}-module. When we consider $\left(\frac{B, \varphi}{R}\right) \otimes_{R} R / \mathfrak{m}$ for a maximal ideal \mathfrak{m} of R, we have $\left(\frac{B, \varphi}{R}\right)$ $\otimes_{R} R / \mathfrak{m} \supset B^{\prime \prime} \otimes_{R} R / \mathfrak{m} \supset B^{\prime} \otimes_{R} R / \mathfrak{m} \supset R / \mathfrak{m}$, therefore we may assume that R is a field. If $B^{\prime \prime} \neq B^{\prime}$, then $B^{\prime \prime}$ becomes a commutative subring of $\left(\frac{B, \varphi}{R}\right)$ having $\left[B^{\prime \prime}: R\right]=3$. This is imposible for the simple $\operatorname{ring}\left(\frac{B, \varphi}{R}\right)$ with $\left[\left(\frac{B, \varphi}{R}\right): R\right]=4$. Accordingly, B^{\prime} is a maximal commutative subring of $\left(\frac{B, \varphi}{R}\right)$. By [7], Proposition 3 and [3], (2,.1) and (2.2), we have $\left(\frac{B, \varphi}{R}\right)=\left(\frac{B^{\prime}, \varphi^{\prime}}{R}\right)$ for some rank one non degenerate hermitian left B^{\prime}-module $\varphi^{\prime}=\left(V^{\prime}, \varphi^{\prime}\right)$.

Theorem 5. A quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ is isomorphic to a matrix ring R_{2} of degree two if and only if there is a quadratic extension B^{\prime} of R such that $\left(\frac{B, \varphi}{R}\right) \supset B^{\prime} \supset R$ and $\left[B^{\prime}\right]=1$ in $Q_{s}(R)$.

Proof. Suppose that there is a quadratic extension B^{\prime} such that $\left[B^{\prime}\right]=1$ in $Q_{s}(R)$ and $\left(\frac{B, \varphi}{R}\right) \supset B^{\prime} \supset R$. By Proposition 2, we may assume $[B]=1$ in $Q_{s}(R)$ for $\left(\frac{B, \varphi}{R}\right)$, i.e. $B=R e_{1} \oplus R e_{2}$, where e_{1} and e_{2} are orthogonal idempotents. Then by Lemma 3 we have $\left(\frac{B, \varphi}{R}\right) \sim R$ and by Theorem $4\left(\frac{B, \varphi}{R}\right)=\left(\frac{B, a}{R}\right)=B \oplus B v$, where $v^{2}=\varphi(v, v)=a$ is unit in R. We have also an R-algebra isomorphism from the matrix R_{2} to $\left(\frac{B, a}{R}\right)=B \oplus B v=R e_{1} \oplus R e_{2} \oplus R e_{1} v \oplus R e_{2} v$ defined by
$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) W \rightarrow e_{1},\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) W \rightarrow e_{2},\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) W \rightarrow a^{-1} e_{1} v$ and $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) W \rightarrow e_{2} v$. The converse is easily obtained from that $B^{\prime}=\left(\begin{array}{ll}R & 0 \\ 0 & R\end{array}\right) \subset R_{2}$ is a quadratic extension such that $\left[B^{\prime}\right]=1$ in $Q_{s}(R)$.

Corollary 2. For any quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, we have

$$
\left(\frac{B, \varphi}{R}\right) \otimes_{R} B \cong B_{2}
$$

Proof. This is clear from $\left(\frac{B, \varphi}{R}\right) \otimes_{R} B \cong\left(\frac{B \otimes_{R} B, i_{B \otimes_{R} B^{\circ} \varphi}}{B}\right)$ and $\left[B \otimes_{R} B\right]$ $=1$ in $Q_{s}(B)$.

Corollary 3. If a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ satisfies either $[B]=1$ in $Q_{s}(R)$ or $\varphi=\langle a\rangle$ for some unit a in R contained in $N(B)$, then the quadratic R module $\left(\left(\frac{B, \varphi}{R}\right), N\right)$ is hyperbolic.

Proof. If $[B]=1$ in $Q_{s}(R),(V, N \mid V)$ and $(B, N \mid B)$ are hyperbolic by
Lemma 3, therefore $\left(\left(\frac{B, \varphi}{R}\right), N\right)=(V, N \mid V) \perp(B, N \mid B)$ is so. If $\left(\frac{B, \varphi}{R}\right)$ $=\left(\frac{B, a}{R}\right)$ and $a \in N(B)$ then a can be replaced by 1 and so $\left(\frac{B, 1}{R}\right)=B \oplus B v$ for $v^{2}=1$. Then, we have $\left(\left(\frac{B, \varphi}{R}\right), N\right)=(B, N \mid B) \perp(B v, N \mid B v) \simeq(B, N \mid B) \perp$ $(B,-N \mid B)$, therefore this is hyperbolic.

4. In case 2 is invertible

In this section we assume that 2 is invertible in R.
Proposition 3. If $\left(\frac{B, \varphi}{R}\right) \sim R$ then $\left(\frac{B, \varphi}{R}\right)$ is R-free, i.e. there are units a and b in R such that $\left(\frac{B, \varphi}{R}\right)=\left(\frac{a, b}{R}\right)=R \oplus R i \oplus R j \oplus R i j, i^{2}=a, j^{2}=b$ and $i j=-i j$.

Proof. If $\left(\frac{B, \varphi}{R}\right) \sim R$, by Theorem 4φ is B-free, i.e. there is a unit a in R satisying $\varphi=\langle a\rangle$, and $\left(\frac{B, \varphi}{R}\right)=B \oplus B i, i^{2}=a$. Since 2 is invertible, $B^{\prime}=R[i]$ $\cong R[X] /\left(X^{2}-a\right)$ is a separable quadratic extension of R. By Proposition 2, we have $\left(\frac{B, \varphi}{R}\right)=\left(\frac{B^{\prime}, \varphi^{\prime}}{R}\right)$ for some φ^{\prime}, and φ^{\prime} is also B^{\prime}-free, i.e. $\varphi^{\prime}=\langle b\rangle=\left(B^{\prime} j, \varphi^{\prime}\right)$
for some unit b in R. This means $\left(\frac{B, \varphi}{R}\right)=\left(\frac{B^{\prime}, \varphi^{\prime}}{R}\right)=B^{\prime} \oplus B^{\prime} j=R \oplus R i \oplus R j$ $\oplus R i j$, and $i^{2}=a, j^{2}=b, j i=i j=-i j$.

Theorem 6. For a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, the following conditions are equivalent;

1) $\left(\frac{B, \varphi}{R}\right) \cong R_{2}$,
2) there is an element u in $\left(\frac{B, \varphi}{R}\right)$ such that $u^{2}=1$ and $R[u]=R+R u$ is a maximal commutative subring of $\left(\frac{B, \phi}{R}\right)$,
3) there is a quadratic extension B^{\prime} of R such that $\left(\frac{B, \varphi}{R}\right) \cong\left(\frac{B^{\prime}, \varphi^{\prime}}{R}\right)$ and $\left[B^{\prime}\right]=1$ in $Q_{s}(R)$,
4) there is a unit a in R such that $\left(\frac{B, \varphi}{R}\right) \cong\left(\frac{B^{\prime}, a}{R}\right)$ for a separable quadratic extension B^{\prime} and $a \in N\left(B^{\prime}\right)$,
5) $\left(\frac{B, \varphi}{R}\right) \cong\left(\frac{b, 1}{R}\right)$ for some unit b in R.

Proof. 1) $\Rightarrow 2$): The element $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=u$ in R_{2} satisfies the condition 2). $2) \Rightarrow 3$): For a u satisfying the condition 2), $B^{\prime}=R[u]$ is a quadratic extension of R. Because, $D=\left(\frac{B, \varphi}{R}\right)$ is a finitely generated projective left $R[u] \otimes_{R} D^{\circ}$ module, defined by $\left(a \otimes d^{\circ}\right) y=$ ayd for $y \in D, a \otimes d^{\circ} \in R[u] \otimes_{R} D^{\circ}$, since $R[u]$ $\otimes_{R} D^{\circ}$ is a separable R-algebra. And a maximal commutaive subring of D is $R[u]=\operatorname{Hom}_{R[u] \otimes_{R} D^{\circ}}(D, D)$. Therefore, every maximal ideal \mathfrak{p} of $R, R[u]_{\mathfrak{p}}$ is a maximal commutative subring of $D_{\mathfrak{p}}$. Hence $\left[R[u]_{\mathfrak{p}}: R_{\mathfrak{p}}\right]=2 . \quad B^{\prime} R[u]$ is a separable qaudratic extension of R such that $\left[B^{\prime}\right]=1$ in $Q_{s}(R)$. By Proposition 2, we have $\left(\frac{B, \varphi}{R}\right)=\left(\frac{B^{\prime}, \varphi^{\prime}}{R}\right)$ for some $\left.\varphi^{\prime} .3\right) \Rightarrow 1$) and 2) $\Rightarrow 5$) are easily obtained from Theorem 5 and Proposition 3. 5) $\Rightarrow 4$) is clear. 4) $\Rightarrow 2$): Put $\left(\frac{B^{\prime} a}{R}\right)$ $=B^{\prime} \oplus B^{\prime} v, v^{2}=a$. Since $a \in N\left(B^{\prime}\right)$, there is a b in B^{\prime} such that $a=N(b)=b \bar{b}$. Put $u=b^{-1} v$, then $u^{2}=1$ and $R[u]$ is a maximal commutative subring of $\left(\frac{B^{\prime}, a}{R}\right)$.

Corollary 4. If $[B]$ is any element of $Q_{s}(R)$, the twisted group ring $\Delta(G, B)$ of B and the Galois group $G=G(B / R)$ is isomorphic to a matrix ring R_{2}. Therefore we have $\operatorname{Hom}_{R}(B, B) \cong R_{2}$.

Proof. Since $\Delta(G, B)=B \oplus B \tau \cong\left(\frac{B, 1}{R}\right),(\tau$ is the main involution of $B)$, by Theorem 6 we conclude $\operatorname{Hom}_{R}(B, B) \cong \Delta(G, B) \cong\left(\frac{B, 1}{R}\right) \cong R_{2}$.

Osaka Women's University

References

[1] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33.
[2] A. Hattori: Certain cohomology associated with Galois extensions of commutative rings, Sci. Papers College Gen. Ed. Univ. Tokyo 24 (1974), 79-91.
[3] T. Kanzaki: On non commutative quadratic extensions of a commutative ring, Osaka J. Math. 10 (1973), 597-604.
[4] —: A note on the orthogonal group of a quadratic module of rank two over a commutative ring, Osaka J. Math. 10 (1973), 607-609.
[5] -: On the quadratic extension and the extended Witt ring of a commutative ring, Nagoya Math. J. 49 (1973), 127-141.
[6] -: On commutor ring and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
[7] -: On generalized crossed product and Brauer group, Osaka J. Math. 5 (1968), 175-188.
[8] C. Small: The group of quadratic extensions, J. Pure Appl. Algebra 2 (1972), 83105.

