NOTE ON QUATERNION ALGEBRAS OVER A COMMUTATIVE RING

Dedicated to Professor Mutsuo Takahashi on his 60th birthday

TERUO KANZAKI

(Received September 10, 1975)

Let R be a commutative ring. In [3] we defined a generalization $D(B, V, \varphi)$ of quaternion algebra over R. In this note we use a notation $\left(\frac{B, \varphi}{R}\right)$ instead of $D(B, V, \varphi)$, where $\varphi = (V, \varphi)$. The first object in this paper is to show the following generalizations of the well known classical formulas;

$$\left(\frac{B, \varphi}{R}\right) \otimes_{R} \left(\frac{B, \varphi'}{R}\right) \sim \left(\frac{B, \varphi \otimes \varphi'}{R}\right)$$
,

 $\left(\frac{B, i_{B^{\circ}}\varphi_{_{0}}}{B}\right) \otimes_{R} \left(\frac{B', i_{B'^{\circ}}\varphi_{_{0}}}{B}\right) \sim \left(\frac{B*B', i_{B*B'^{\circ}}\varphi_{_{0}}}{B}\right)$ for a symmetric bilinear R-module $\varphi_0 = (U, \varphi_0)$. From the formulas, it is deduced that every element in Quat (R), the subgroup of Brauer group generated by quaternion algebras, is expressed as $\left[\frac{B_1, \varphi_1}{R}\right] \left[\frac{B_2, \varphi_2}{R}\right] \cdots \left[\frac{B_n, \varphi_n}{R}\right]$ for $n < |Q_s(R)|$, where $Q_s(R)$ is the quadratic extension group. The second object is to investigate on a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ such that $\left(\frac{B, \varphi}{R}\right) \sim R$. We shall show that if $\left(\frac{B, \varphi}{R}\right) \sim R$ then φ is R-free i.e. $\varphi = \langle a \rangle$ for some unit a in R, furthermore, if 2 is invertible in R then $\left(\frac{B, \varphi}{R}\right) \sim R$ implies $\left(\frac{B, \varphi}{R}\right) \cong \left(\frac{a, b}{R}\right)$ for some unite a and b in R, i.e. R-free quaternion algebra. Finally, we give a condition for $\left(\frac{B, \varphi}{P}\right)$ to be $\left(\frac{B,\,\varphi}{R}\right) \cong R_2; \left(\frac{B,\,\varphi}{R}\right)$ is isomorphic to a matrix ring R_2 if and only if there is a quadratic extension B' of R such that [B'] is identity element in $Q_s(R)$ and $\left\{\frac{B, \varphi}{R}\right\} \supset B' \supset R$. Particularly, if 2 is invertible in R, we have some equivalent conditions for $\left(\frac{B, \varphi}{R}\right) \cong R_2$, and as a corollary we have $\operatorname{Hom}_R(B, B) \cong R_2$ for every [B] in $Q_s(R)$. Throughout this paper, we assume that R is a commutative ring, every ring has identity element, and every subring and extension ring of a ring have a common identity element.

1. Definitions and preliminary

Let B be an extension ring of R. If the residue R-bimodule B/R is invertible, then B is called a quadratic extension of R. As well known, if B is an R-algebra and quadratic extension of R then B is commutative (cf. [8]). And, if B is a separable commutative quadratic extension, then $B \supset R$ is a Galois extension with Galois group $G = \{I, \tau\}$, where τ is characterized as the unique R-algebra automorphism of B such that $B^{\tau}(=\{b\in B; \tau(b)=b\})=R$ (cf. [8]). Then every R-algebra automorphism of B is expressed as $e^{\tau}+(1-e)I$ for some idempotent e in R and identity map I on B, and is an involution (cf. [4]). Therefore, we shall call the automorphism τ the main involution of B, and denote it by $\tau(b) = \bar{b}$ for $b \in B$. For a separable commutative quadratic extension $B \supset R$, we consider a hermitian left B-module $\varphi = (V, \varphi)$ defined by a finitely generated projective left B-module V and a hermitian form $\varphi: V \times V \rightarrow B$, satisfied $\varphi(v,v') = \overline{\varphi(v',v)}$ and $\varphi(au+bv,v') = a \varphi(u,v') + b \varphi(v,v')$ for $u,v,v' \in V$ and $a, b \in B$. When V is an invertible left B-module, we shall call $\varphi = (V, \varphi)$ a rank one hermitian left B-module. If $\varphi_i = (V_i, \varphi_i)$, i = 1,2 are hermitian left B-modules, then the tensor product $\varphi_1 \otimes \varphi_2 = (V_1 \otimes_B V_2, \varphi_1 \otimes \varphi_2)$ is a hermitian left *B*-module defined by $\varphi_1 \otimes \varphi_2$: $V_1 \otimes_B V_2 \times V_1 \otimes_B V_2 \rightarrow B$; $(b_1 \otimes b_2, b_1' \otimes b_2') \bowtie A$ $\varphi_1(b_1, b_1')\varphi_2(b_2, b_2')$. If $\varphi_0 = (U, \varphi_0)$ is a symmetric bilinear left R-module, then $i_B \circ \varphi_0 = (B \otimes_R U, i_B \circ \varphi_0)$ is a hermitian left B-module defined by $i_B \varphi_0(b \otimes u, b' \otimes u')$ $=b \varphi_0(u, u')\bar{b}'$ for $b\otimes u, b'\otimes u'$ in $B\otimes_R U$. A ring D is called a quaternion Ralgebra if D satisfies the following conditions;

- 1) D is an Azumaya R-algebra,
- 2) there is a subring B of D such that $D \supset B$ is a quadratic extension and $B \supset R$ is a separable quadratic extension.

If D is a quaternion R-algebra and B is such a subring of D as above definition, then B is a maximal commutative subring of D and there is a rank one non degenerate hermitian left B-module $\varphi=(V,\varphi)$ such that $D=B\oplus V$ and the multiplication in D is characterized by (b+v) $(b'+v')=bb'+bv'+\bar{b}'v+\varphi(v,v')$ for b+v, $b'+v'\in B\oplus V$, (cf. [3]) Then D is denoted by $\left(\frac{B,\varphi}{R}\right)$. In the Brauer group B(R) of R, we denote by n Quat(R) the subgroup of B(R) generated by classes of quaternion R-algebras. We define an integer $L_Q(R)$ as follows; for any integer n, $L_Q(R) \leq n$ if and only if every element of Quat (R) is expressed as a class of a tensor product of m quaternion R-algebras for some integer $m \leq n$.

The set $Q_s(R)$ of isomorphism classes [B]'s of separable commutative quadratic extensions B's of R is an abelian group under the product $[B_1][B_2] = [B_1*B_2]$, where $B_1*B_2 = (B_1 \otimes_R B_2)^{\tau_1 \times \tau_2}$ for the main involution τ_i of B_i , i=1, 2. The identity element of $Q_s(R)$ is $[R \times R]$, (cf. [8]).

2. Tensor product of quaternion R-algebras

In [3] we showed that a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ is a generalized crossed product of B and $G = G(B/R) = \{I, \tau\}$. Using an idea of Hattori [2], we have

Theorem 1. We have Brauer equivalence

$$\left(\frac{B, \varphi_1}{R}\right) \otimes_R \left(\frac{B, \varphi_2}{R}\right) \sim \left(\frac{B, \varphi_1 \otimes \varphi_2}{R}\right).$$

Proof. Let $G = \{I, \tau \}$ be the Galois group of $B \supset R$, and $x_1, \dots x_n, y_1, \dots y_n$ a G-Galois system of B, i.e. it satisfies $\sum_i x_i y_i = 1$, $\sum_i x_i \tau(y_i) = 0$ in B. Then $e_1 = \sum_i x_i \otimes y_i$ and $e_2 = \sum_i x_i \otimes \tau(y_i) = \sum_i \tau(x_i) \otimes y_i = 1 \otimes 1 - e_1$ are orthogonal idempotents in $\left(\frac{B, \varphi_1}{R}\right) \otimes_R \left(\frac{B, \varphi_2}{R}\right)$. It is known that

$$\begin{split} &\left(\frac{B,\,\varphi_{1}}{R}\right)\otimes_{R}\left(\frac{B,\,\varphi_{2}}{R}\right) \sim e_{1}\left(\left(\frac{B,\,\varphi_{1}}{R}\right)\otimes_{R}\left(\frac{B,\,\varphi_{2}}{R}\right)\right)e_{1} = e_{1}((B \oplus V_{1})\otimes_{R}(B \oplus V_{2}))e_{1} \\ &= e_{1}(B \otimes_{R}B)e_{1} \oplus e_{1}(B \otimes_{R}V_{2})e_{1} \oplus e_{1}(V_{1} \otimes_{R}B)e_{1} \oplus e_{1}(V_{1} \otimes_{R}V_{2})e_{1} = e_{1}(B \otimes_{R}B) \oplus e_{1} \\ &(V_{1} \otimes_{R}V_{2}) \cong B \oplus V_{1} \otimes_{B}V_{2} = \left(\frac{B,\,\varphi_{1} \otimes \varphi_{2}}{R}\right), \text{ where } \varphi_{i} = (V_{i},\,\varphi_{i}) \quad i = 1,\,2. \end{split}$$

Theorem 2. Let $\varphi_0 = (U, \varphi_0)$ be a rank one non degenerate symmetric bilinear R-module. Then we have

$$\left(\frac{B_{\scriptscriptstyle 1},i_{B_{\scriptscriptstyle 1}}\circ\varphi_{\scriptscriptstyle 0}}{R}\right)\otimes_R\left(\frac{B_{\scriptscriptstyle 2},i_{B_{\scriptscriptstyle 2}}\circ\varphi_{\scriptscriptstyle 0}}{R}\right)\cong\left(\frac{B_{\scriptscriptstyle 1}*B_{\scriptscriptstyle 2},i_{B_{\scriptscriptstyle 1}*B_{\scriptscriptstyle 2}}\circ\varphi_{\scriptscriptstyle 0}}{R}\right)\otimes_R\left(\frac{B_{\scriptscriptstyle 1},i_{B_{\scriptscriptstyle 1}}\circ\varphi_{\scriptscriptstyle 0}\otimes\varphi_{\scriptscriptstyle 0}}{R}\right),$$

and

$$\left(\frac{B_1, i_{B_1} \circ \varphi_0 \otimes \varphi_0}{R}\right) \simeq \left(\frac{B_1, (i_{B_1} \circ \varphi_0) \otimes (i_{B_1} \circ \varphi_0)}{R}\right) \simeq \operatorname{Hom}_{R}(B_1, B_1) \sim R.$$

and $(B_1*B_2)\otimes_R U$. Accordingly, subrings D_1 and D_2 of D commute elementwise, and so a ring homomorphism $D_1\otimes_R D_2\to D$ is defined by the contraction. Using the following lemma and the fact that $D_1\otimes_R D_2$ and D are Azumaya R-algebras, we can check that $D_1\otimes_R D_2\to D$ is an isomorphism. Namely, since $(B_1\otimes_R R)$ $(B_1*B_2)=(B_1\otimes_R B_2)^{I\times\tau_2}(B_1\otimes_R B_2)^{\tau_1\times\tau_2}=B_1\otimes_R B_2$, we have $D_1D_2=D$. From the definition of hermitian module, we have $i_{B_1}\circ(\varphi_0\otimes\varphi_0)\cong(i_{B_1}\circ\varphi_0)\otimes(i_{B_1}\circ\varphi_0)$, therefore by [3], (2.10), we have $\left(\frac{B_1,i_{B_1}\circ(\varphi_0\otimes\varphi_0)}{R}\right)\cong \operatorname{Hom}_R(B\otimes_R U,B\otimes_R U)\cong \operatorname{Hom}_R(B,B)\sim R$.

Lemma 1. Let $A \supset B$ be a G-Galois extension of commutative rings. If G is a direct product of normal subgroups G_1 and G_2 , then we have

$$A = A^{G_1}A^{G_2} \cong A^{G_1} \otimes_B A^{G_2}$$
.

Proof. This is obtained immediately from Theorem 3.4 in [1] applying to the contract ring homomorphism $A^{G_1} \otimes_B A^{G_2} \rightarrow A$.

Lemma 2. Let B_1 and B_2 be separable commutative quadratic extensions such that $[B_1]=[B_2]$ in $Q_s(R)$, and $\sigma\colon B_1\to B_2$ an R-algebra isomorphism. If $\varphi_1=(V_1,\,\varphi_1)$ and $\varphi_2=(V_2,\,\varphi_2)$ are rank one non degenerate hermitian left B_1 - and B_2 -modules, respectively, such that there is a σ -semi-linear isomorphism $h\colon V_1\to V_2$ making the following diagram commut;

$$V_{1} \times V_{1} \xrightarrow{h \times h} V_{2} \times V_{2}$$

$$\downarrow \varphi_{1} \qquad \qquad \downarrow \varphi_{2}$$

$$B_{1} \xrightarrow{\sigma} B_{2}$$

then there is an R-algebra isomorphism $f: \left(\frac{B_1, \varphi_1}{R}\right) \rightarrow \left(\frac{B_2, \varphi_2}{R}\right)$, and f induces σ and h on B_1 and V_1 respectively.

Proof. From the definitions of $\left(\frac{B_i, \varphi_i}{R}\right) i=1, 2, f$ is immediately defined by σ and h, (cf. [5], Prop. 3).

Propsotion 1. Let $\left(\frac{B_1, \varphi_1}{R}\right)$ and $\left(\frac{B_2, \varphi_2}{R}\right)$ be quaternion algebras such that $[B_1] = [B_2]$ in $Q_s(R)$. Then there is a quaternion R-algebra $\left(\frac{B_1, \varphi_2'}{R}\right)$ such that $\left(\frac{B_1, \varphi_2'}{R}\right) \cong \left(\frac{B_2, \varphi_2}{R}\right)$. Therefore, we have

$$\left(\frac{B_1, \varphi_1}{R}\right) \otimes_R \left(\frac{B_2, \varphi_2}{R}\right) \sim \left(\frac{B_1, \varphi_1 \otimes \varphi_2'}{R}\right)$$
, provided $[B_1] = [B_2]$ in $Q_s(R)$.

Theorem 3. We have

$$L_{\mathcal{O}}(R) \leq |Q_{\mathfrak{s}}(R)| - 1$$
.

Proof. Suppose $|Q_s(R)| = n < \infty$, and $Q_s(R) = \{[B_0] = 1, [B_1], \dots [B_{n-1}]\}$. By Proposition 1, every element [A] in Quat(R) is expressed as $A \sim \left(\frac{B_1, \varphi_1}{R}\right) \otimes_R \left(\frac{B_2, \varphi_2}{R}\right) \otimes \dots \otimes_R \left(\frac{B_{n-1}, \varphi_{n-1}}{R}\right)$ for suitable $\varphi_1, \varphi_2, \dots \varphi_{n-1}$.

3. Quaternion algebra of split type

Theorem 4. For any quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, if $\left(\frac{B, \varphi}{R}\right) \sim R$ then $\varphi = (V, \varphi)$ is R-free, i.e. there is a unit a in R such that $\varphi = \langle a \rangle$. Then $\left(\frac{B, \varphi}{R}\right)$ is denoted by $\left(\frac{B, a}{R}\right)$.

Proof. Put $\left(\frac{B,\varphi}{R}\right) = B \oplus V$, $\varphi = (V,\varphi)$. Then VV = B in $\left(\frac{B,\varphi}{R}\right)$, (cf. [3], (2.1)). Suppose $\left(\frac{B,\varphi}{R}\right) \cong \operatorname{Hom}_R(P,P)$ for a finitely generated projective and faithful R-module P. Then, P may be regarded as a faithful left $\left(\frac{B,\varphi}{R}\right)$ -module and also a faithful B-module. Since B is a maximal commutative subring of $\left(\frac{B,\varphi}{R}\right) = \operatorname{Hom}_R(P,P)$, P becomes an invertible left B-module. From VV = B, we have $P = VP \cong V \otimes_B P$. Since P is invertible as B-module, it means that V is B-free.

From Theorem 1 and 2, we have $\left(\frac{B, a}{R}\right) \otimes_R \left(\frac{B, b}{R}\right) \sim \left(\frac{B, ab}{R}\right)$, and $\left(\frac{B_1, a}{R}\right) \otimes_R \left(\frac{B_2, a}{R}\right) \simeq \left(\frac{B_1 * B_2, a}{R}\right) \otimes_R \left(\frac{B_1, a^2}{R}\right) \sim \left(\frac{B_1 * B_2, a}{R}\right)$.

A quaternion R-algebra $\left(\frac{B,\varphi}{R}\right) = B \oplus V$ has an involution $\left(\frac{B,\varphi}{R}\right) \rightarrow \left(\frac{B,\varphi}{R}\right)$;

 $d \rightsquigarrow \to \bar{d}$ defined by $(\bar{b}+\bar{v})=\bar{b}-v$ for $b\in B$, $v\in V$. Then, the norm $N:\left(\frac{B,\varphi}{R}\right)\to R$; $d \rightsquigarrow \to d\bar{d}$ defines a non degenerate quadratic R-module $\left(\left(\frac{B,\varphi}{R}\right),N\right)=(B,N|B)\perp(V,N|V)$, (cf. [3], (2.7)).

Corollary 1. For a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, the following conditions are equivalent:

1) There is a unit a contained in $N(B) = \{b\bar{b}; b \in B\}$ such that $\left(\frac{B,\varphi}{R}\right) \cong \left(\frac{B,a}{R}\right)$.

2)
$$\left(\frac{B, \varphi}{R}\right) \cong \operatorname{Hom}_{R}(B, B)$$
.

Proof. 1) \Rightarrow 2): Since $\left(\frac{B,a}{R}\right)$ is a crossed product of a cylic group G=G(B/R) and B with the trivial factor set $a\in N(B)$, we have $\left(\frac{B,a}{R}\right)=\Delta(G,B)\cong \operatorname{Hom}_R(B,B)$, where $\Delta(G,B)$ means a twisted group ring of G and G. 2) \Rightarrow 1): By theorem 4, $\left(\frac{B,\varphi}{R}\right)\cong \operatorname{Hom}_R(B,B)\sim R$ implies $\varphi=\langle a\rangle$ for some unit G in G. Then, $\left(\frac{B,a}{R}\right)\cong \operatorname{Hom}_R(B,B)\cong \Delta(G,B)$. Therefore, G is in G.

Lemma 3. ([3], (2.13)). Let $\left(\frac{B, \varphi}{R}\right) = B \oplus V$ be a quaternion R-algebra and put $q = -N \mid V$, i.e. q(v) = -N(v) for $v \in V$. Then (V, q) is hyperbolic if and only if [B] = 1 in $Q_s(R)$. If [B] = 1 in $Q_s(R)$ then $\left(\frac{B, \varphi}{R}\right) \sim R$.

Proof. Suppose (V, q) is hyperbolic. Then there are totally isotropic R-submodules V_1 and V_2 such that $V = V_1 \oplus V_2$ and V_i is invertible, i = 1, 2. Since $0 = q(v) = -N(v) = -vv = v^2$ for every $v \in V$, we have $V_i V_i = 0$, i = 1, 2, and so $B = VV = V_1 V_2 + V_2 V_1$. Put $\alpha_1 = V_1 V_2$ and $\alpha_2 = V_2 V_1$. Then we have $B = \alpha_1 + \alpha_2$. Therefore, there are $e_1 \in \alpha_1$ and $e_2 \in \alpha_2$ such that $e_1 + e_2 = 1$. Since $\alpha_1 \alpha_2 = \alpha_2 \alpha_1 = 0$, e_1 and e_2 are orthogonal idempotents and $\alpha_i = e_i B$, i = 1, 2. Applying the main involution τ of B, we have $\tau(e_1 B) = \tau(V_1 V_2) = \tau(\varphi(V_1, V_2)) = \varphi(V_2, V_1) = V_2 V_1 = e_2 B$ and $B = e_1 B \oplus e_2 B$, therefore [B] = 1 in $Q_s(R)$. Conversely, if [B] = 1 in $Q_s(R)$, there are orthogonal idempotents e_1 and e_2 such that $B = e_1 B \oplus e_2 B$ and $\bar{e}_1 = e_2$. Then we have $V = e_1 V \oplus e_2 V$ and $e_1 V$, $e_2 V$ are totally isotropic R-submodule of (V, q), because of $q(e_1 v) = e_1 v e_1 v = e_1 \bar{e}_1 v^2 = 0$ for every $e_1 v \in e_1 V$. If [B] = 1 in $Q_s(R)$, then the Clifford algebra C(V, q) of (V, q) is similar to R and isomorphic to (V, φ) , (cf. [3], (2.8)), and so $(B, \varphi) \sim R$.

Proposition 2. If a quaternion R-algebra $\left(\frac{R, \varphi}{R}\right)$ contains a separable quadratic extension B' of R, then there is a rank one non degenerate hermitian B'-module φ' such that $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B', \varphi'}{R}\right)$.

Proof. Firstly we shall show that B' is a maximal commutative subring of $\left(\frac{B,\varphi}{R}\right)$. Since B' is a separable subalgebra of the Azumaya R-algebra $\left(\frac{B,\varphi}{R}\right)$, the commutor ring $B''=\left\{b\in\left(\frac{B,\varphi}{R}\right);\ bb'=b'b\ \text{ for all }\ b'\in B'\right\}$ is also separable over R, (cf. [6], Theorem 2). Then we have that $\left(\frac{B,\varphi}{R}\right)\supset B''\supset R', B''$ is a direct summand of $\left(\frac{B,\varphi}{R}\right)$ as left B''-module, and so is B' as left B'-module. When we consider $\left(\frac{B,\varphi}{R}\right)\otimes_R R/m$ for a maximal ideal m of R, we have $\left(\frac{B,\varphi}{R}\right)\otimes_R R/m\supset B''\otimes_R R/m\supset R/m$, therefore we may assume that R is a field. If $B''\neq B'$, then B'' becomes a commutative subring of $\left(\frac{B,\varphi}{R}\right)$ having $[B''\colon R]=3$. This is imposible for the simple ring $\left(\frac{B,\varphi}{R}\right)$ with $\left[\left(\frac{B,\varphi}{R}\right)\colon R\right]=4$. Accordingly, B' is a maximal commutative subring of $\left(\frac{B,\varphi}{R}\right)$. By [7], Proposition 3 and [3], (2,.1) and (2.2), we have $\left(\frac{B,\varphi}{R}\right)=\left(\frac{B',\varphi}{R}\right)$ for some rank one non degenerate hermitian left B'-module $\varphi'=(V',\varphi')$.

Theorem 5. A quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ is isomorphic to a matrix ring R_z of degree two if and only if there is a quadratic extension B' of R such that $\left(\frac{B, \varphi}{R}\right) \supset B' \supset R$ and [B'] = 1 in $Q_s(R)$.

Proof. Suppose that there is a quadratic extension B' such that [B']=1 in $Q_s(R)$ and $\left(\frac{B,\,\varphi}{R}\right)\supset B'\supset R$. By Proposition 2, we may assume [B]=1 in $Q_s(R)$ for $\left(\frac{B,\,\varphi}{R}\right)$, i.e. $B=Re_1\oplus Re_2$, where e_1 and e_2 are orthogonal idempotents. Then by Lemma 3 we have $\left(\frac{B,\,\varphi}{R}\right)\sim R$ and by Theorem 4 $\left(\frac{B,\,\varphi}{R}\right)=\left(\frac{B,\,a}{R}\right)=B\oplus Bv$, where $v^2=\varphi(v,\,v)=a$ is unit in R. We have also an R-algebra isomorphism from the matrix R_2 to $\left(\frac{B,\,a}{R}\right)=B\oplus Bv=Re_1\oplus Re_2\oplus Re_1v\oplus Re_2v$ defined by

 $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\wedge \wedge \rightarrow e_1$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ $\wedge \wedge \rightarrow e_2$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $\wedge \wedge \rightarrow a^{-1}e_1v$ and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\wedge \wedge \rightarrow e_2v$. The converse is easily obtained from that $B' = \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix} \subset R_2$ is a quadratic extension such that [B'] = 1 in $Q_s(R)$.

Corollary 2. For any quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, we have

$$\left(\frac{B,\varphi}{R}\right)\otimes_{R}B\cong B_{2}.$$

Proof. This is clear from $\left(\frac{B,\varphi}{R}\right) \otimes_R B \cong \left(\frac{B \otimes_R B, i_{B \otimes_R B} \circ \varphi}{B}\right)$ and $[B \otimes_R B] = 1$ in $Q_s(B)$.

Corollary 3. If a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$ satisfies either [B]=1 in $Q_s(R)$ or $\varphi=\langle a \rangle$ for some unit a in R contained in N(B), then the quadratic R-module $\left(\left(\frac{B, \varphi}{R}\right), N\right)$ is hyperbolic.

Proof. If [B]=1 in $Q_s(R)$, (V, N|V) and (B, N|B) are hyperbolic by Lemma 3, therefore $\left(\left(\frac{B, \varphi}{R}\right), N\right) = (V, N|V) \perp (B, N|B)$ is so. If $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B, a}{R}\right)$ and $a \in N(B)$ then a can be replaced by 1 and so $\left(\frac{B, 1}{R}\right) = B \oplus Bv$ for $v^2 = 1$. Then, we have $\left(\left(\frac{B, \varphi}{R}\right), N\right) = (B, N|B) \perp (Bv, N|Bv) \cong (B, N|B) \perp (B, -N|B)$, therefore this is hyperbolic.

4. In case 2 is invertible

In this section we assume that 2 is invertible in R.

Proposition 3. If $\left(\frac{B, \varphi}{R}\right) \sim R$ then $\left(\frac{B, \varphi}{R}\right)$ is R-free, i.e. there are units a and b in R such that $\left(\frac{B, \varphi}{R}\right) = \left(\frac{a, b}{R}\right) = R \oplus Ri \oplus Rj \oplus Rij$, $i^2 = a, j^2 = b$ and ij = -ij.

Proof. If $\left(\frac{B,\varphi}{R}\right) \sim R$, by Theorem 4 φ is B-free, i.e. there is a unit a in R satisfying $\varphi = \langle a \rangle$, and $\left(\frac{B,\varphi}{R}\right) = B \oplus Bi$, $i^2 = a$. Since 2 is invertible, B' = R[i] $\cong R[X]/(X^2 - a)$ is a separable quadratic extension of R. By Proposition 2, we have $\left(\frac{B,\varphi}{R}\right) = \left(\frac{B',\varphi'}{R}\right)$ for some φ' , and φ' is also B'-free, i.e. $\varphi' = \langle b \rangle = (B'j,\varphi')$

for some unit b in R. This means $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B', \varphi'}{R}\right) = B' \oplus B'j = R \oplus Ri \oplus Rj$ $\oplus Rij$, and $i^2 = a, j^2 = b, ji = ij = -ij$.

Theorem 6. For a quaternion R-algebra $\left(\frac{B, \varphi}{R}\right)$, the following conditions are equivalent;

- 1) $\left(\frac{B, \varphi}{R}\right) \simeq R_2$,
- 2) there is an element u in $\left(\frac{B, \varphi}{R}\right)$ such that $u^2=1$ and R[u]=R+Ru is a maximal commutative subring of $\left(\frac{B, \varphi}{R}\right)$,
- 3) there is a quadratic extension B' of R such that $\left(\frac{B, \varphi}{R}\right) \cong \left(\frac{B', \varphi'}{R}\right)$ and [B']=1 in $Q_s(R)$,
- 4) there is a unit a in R such that $\left(\frac{B, \varphi}{R}\right) \cong \left(\frac{B', a}{R}\right)$ for a separable quadratic extension B' and $a \in N(B')$,
 - 5) $\left(\frac{B, \varphi}{R}\right) \cong \left(\frac{b, 1}{R}\right)$ for some unit b in R.

Proof. 1) \Rightarrow 2): The element $\binom{0}{1} = u$ in R_2 satisfies the condition 2). 2) \Rightarrow 3): For a u satisfying the condition 2), B' = R[u] is a quadratic extension of R. Because, $D = \left(\frac{B, \varphi}{R}\right)$ is a finitely generated projective left $R[u] \otimes_R D^\circ$ -module, defined by $(a \otimes d^\circ)y = ayd$ for $y \in D$, $a \otimes d^\circ \in R[u] \otimes_R D^\circ$, since $R[u] \otimes_R D^\circ$ is a separable R-algebra. And a maximal commutative subring of D is $R[u] = \operatorname{Hom}_{R[u] \otimes_R D^\circ}(D, D)$. Therefore, every maximal ideal $\mathfrak p$ of R, $R[u]_{\mathfrak p}$ is a maximal commutative subring of $D_{\mathfrak p}$. Hence $[R[u]_{\mathfrak p}: R_{\mathfrak p}] = 2$. B'R[u] is a separable qaudratic extension of R such that [B'] = 1 in $Q_s(R)$. By Proposition 2, we have $\left(\frac{B, \varphi}{R}\right) = \left(\frac{B', \varphi'}{R}\right)$ for some φ' . 3) \Rightarrow 1) and 2) \Rightarrow 5) are easily obtained from Theorem 5 and Proposition 3. 5) \Rightarrow 4) is clear. 4) \Rightarrow 2): Put $\left(\frac{B'a}{R}\right) = B' \oplus B'v$, $v^2 = a$. Since $a \in N(B')$, there is a b in B' such that $a = N(b) = b\bar{b}$. Put $u = b^{-1}v$, then $u^2 = 1$ and R[u] is a maximal commutative subring of $\left(\frac{B', a}{R}\right)$.

Corollary 4. If [B] is any element of $Q_s(R)$, the twisted group ring $\Delta(G, B)$ of B and the Galois group G=G(B|R) is isomorphic to a matrix ring R_2 . Therefore we have $Hom_R(B, B) \cong R_2$.

Proof. Since $\Delta(G, B) = B \oplus B\tau \simeq \left(\frac{B, 1}{R}\right)$, $(\tau \text{ is the main involution of } B)$, by Theorem 6 we conclude $\operatorname{Hom}_{\mathbb{R}}(B, B) \simeq \Delta(G, B) \simeq \left(\frac{B, 1}{R}\right) \simeq R_2$.

OSAKA WOMEN'S UNIVERSITY

References

- [1] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33.
- [2] A. Hattori: Certain cohomology associated with Galois extensions of commutative rings, Sci. Papers College Gen. Ed. Univ. Tokyo 24 (1974), 79-91.
- [3] T. Kanzaki: On non commutative quadratic extensions of a commutative ring, Osaka J. Math. 10 (1973), 597-604.
- [4] —: A note on the orthogonal group of a quadratic module of rank two over a commutative ring, Osaka J. Math. 10 (1973), 607-609.
- [5] ———: On the quadratic extension and the extended Witt ring of a commutative ring, Nagoya Math. J. 49 (1973), 127-141.
- [6] ——: On commutor ring and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
- [7] ——: On generalized crossed product and Brauer group, Osaka J. Math. 5 (1968), 175-188.
- [8] C. Small: The group of quadratic extensions, J. Pure Appl. Algebra 2 (1972), 83-105.