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1. Introduction. The purpose of the present paper is to give a char-

acterization of contiguity of the sequences {Pn>θ} and {Pn,e+en} under a

circumstance where for each n PnQ is the distribution of independent identi-

cally distributed (iid) random variables (rv's).

Contiguity is a concept expressing nearness between the sequences of

probability measures. Some characterizations and important consequences of

this concept have been established by LeCam (1960), (1966), Roussas (1972)

and Philippou and Roussas (1973). Roussas (1972) showed that for stationary

Markov process the sequences {Pn,θ} and {Pntθ+Θn} with θn=hn/n1/2

y hn->h£:Rfc,

are contiguous. Result similar to the above one has been established by Philip-

pou and Roussas (1973) for the independent, but not necessarily identically

distributed case.

In Section 2, we introduce necessary but not always sufficient conditions

for contiguity already obtained by previous authors (see Roussas (1972) and

Suzuki (1974)). In the succeeding sections we study the sufficiency of these

conditions under several circumstances. In Section 3, we discuss this problem

in the case that Pnθ have a constant support under certain regularity conditions.

Furthermore, in this case, a simplest condition that \θn\ =0(n~1/2) is shown to

be equivalent to contiguity. In Sections 4—7, we deal with the problem of

location parameter. After a few preliminary results are established in Section

4, we consider two cases that

(1) f(x) = 0 if x<a, f(x)>0 if x>a and f(a+0) = 0,

(2) /(*) = 0 if x<a, f{x)>0 if x>a and f(a+0) > 0,

in Section 5 and Section 6, respectively, where f(x) stands for a underlying

probability density function (pdf). Furthermore, in Section 6, \θn\=o(n~1) is

shown to be equivalent to contiguity. Finally, in Section 7, we mention some

results which follow immediately from the previous results.
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2. Necessary conditions for contiguity. For the purpose of com-
pleteness of discussions, we present the concept of contiguity introduced by
LeCam (1960). Let {(3?, Jίn)} be a sequence of measurable spaces, and let
Pn and Qn be probability measures on Jln.

DEFINITION. {Pn} and {Qn} are said to be contiguous if for any sequence
{Tn} of ^-measurable rv's on 3C, Tn-*0 in PΛ-probability if and only if ΓΛ->0
in (^-probability.

In order to avoid unnecessary repetitions, all limits are taken as {n}y or
subsequences thereof, converges to infinity through the positive integers un-
less otherwise specified. Also, integrals without limits are understood to be
taken over the entire space. If X is a random variable, its probability distribu-
tion for a probability measure P is denoted by X(X\P). Furthermore, we write
Xn=^X if a sequence of probability measures {Xn} converges weakly to a
probability measure X.

For each n, let μn be a σ -finite measure dominating Pn and Qn on JHn and
write

(2.1) fn = dPn\dμny gn = dQn\dμn .

Define the set Bn by

(2.2) Bn = {ωe3f ;fn(co)gn(ω)>0}

and a rv ΛΛ by

(2.3) An = log (£„//„), if

= arbitrary, if

The asymptotic distributions of ΛΛ under both Pn and Qn are independent
on the value of Λ* over Bn

c. Because we consider only the case that lim Pn

(β/)=lim Qn(Bn

c)=0 (see Theorem 2.2).
Moreover, use the notation

(2.4) J:M = J :(A, |P W ) .

Theorem 2.1. (LeCam (I960)) If {Xn} converges weakly to a normal
distribution N(—\σ2, σ2), then {Pn} and {Qn} are contiguous.

REMARK. For σ 2 =0, iV(—|σ2, σ2) means the degenerate measure with
mass 1 at the origin.

Let ρ(Pn, Qn) be the inner product:

(2.5)
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Theorem 2.2 If {Pn} and {Qn} are contiguous, then

(1)

and

(2)

We shall omit the proof of theorem. Because the first assertion of the
theorem is just the same as Lemma 5.1, Chapter 1, in Roussas (1972) and the
second was proved for the case of independent observations in Suzuki (1974),
whose proof extends immediately to the general case.

The conditions (1) and (2) of Theorem 2.2 are not necessarily sufficient
for contiguity as seen in the following example.X)

EXAMPLE. Let (Ω, Jl, (Jtt), P; (Bt)) be a real Brownian motion with
B0=0. Define a stopping time T by τ(ω)=inf {*X0 Bt= — 1}. For any posi-
tive integer n, let Pn be the restriction of P to a sub σ-field Jlr/\n defined by
Jlτ/Kn={A^:Jl; A Π {τ(ω)^n} e Jln} and let a probability measure Qn be
defined as follows dQn=exp {BτAn—^τ/\n}dPn. Then, if i«={ω;τ(ω)\w},
we have Pn(An)->0 while Q»(An)-i±0. Thus {Pn} and {Qn} are not contiguous
by Theorem 6.1, Chapter 1, in Roussas (1972). However this example
obviously satisfies the conditions (1) and (2) of Theorem 2.2.

3. A characterization of contiguous probability measures with
constant support. Let Θ be an open neighborhood of the origin of the k~
dimensional Euclidean space JR* and for each 0 e Θ , let pΘ be a probability
measure on the Borel real line (R, <B). It is assumed that there is a σ-finite
measure μ on <B such that pθ<μ, 0 e θ , and we set/( , θ)=dpθ/dμ for a special
version of the Radon-Nikodym derivative. Set (3£,Jl)= Π j-i(-R/>-Sy)> where every
(Rjy <Bj)=(R, -3), and let Pθ be the product measure of pθ induced on Jl. Then,
let Xj9j^l9 be the coordinate rv's of ω=(xly x2, •••) defined on (3£, Jΐ)\ i.e.
Xj(ω)=Xj for ω. In other words, for each ί G θ these rv's X^ X2"' a r e inde-
pendent and the pdf of Xj isf( ,θ). Furthermore, let Jln be the σ-field induced
by the vector valued rv (X19 X2, •••, Xn) and let Pntθ be the restriction of the
probability measure Pθ to <Jln.

For (9eθ, set

(3.1) AΘ={χζΞR;f(x,θ)>0}.

We call Aθ the support of pθ. Next, for ί e θ we set

(3.2) φ(x, θ) =

1) This example was orally informed to the author by Mr. Takashi Komatsu. He got it
with a slight modification from the paper of Lipcer and Sirjaev (1972).
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= o , if

and

(3.3) Kn{ω,θ) = 2±ί\ogφ{Xjyθ).

Hereafter, we consider the sequences {Pn} and {£)«} on measurable spaces
{(X, <J.n)} as follows

(3-4) Pn = P Λ , 0 ,

Q« = P",en >

where ΘH belongs to Θ for all n. Then the pdf's of Pn and QH are given by

(3-5) /»H=Π

respectively. For simplicity, we write p instead of p0 and P instead of Po and
write

(3.6) φn = φ , θn) ,

(3.7) 6φn = \φ{x, θn)dP = \φ(Xjt θn)dP

and

(3.8) An = An(ω,θn).

Lemma 3.1. For any constant any 0^ίan^ll,

lim inf (ί-an)
n>0 if and only if an = %n~ι).

In particular,

lim (1—an)
n = 1 if and only if an = oty'1).

According to Lemma 3.1 the statements (1) and (2) of Theorem 2.2 are
equivalent to the following assumptions (A.I) and (A.2), respectively.

Assumption A.

(A.I) 1 - ί fix, 0)dμ = oin-1) and 1 - ( /(*, θn) dμ = o{n''),
JBnl JBnl

where Bnl=A0ΠAθn.
(A.2) 1-βφ^Oin-1).
Furthermore, we need a set of assumptions for our investigation.

Assumption B.
(B.I) The set {θn; w=l,2, •••} is bounded and its closure is contained

i n θ .
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(B.2) For every ίφO,

jl to 0 - Λ M ) I <*#*><>.
(B.3) For every θGθ,

\im[\f{xyθ)-f(xyt)\dμ, = Q.

(B.4) The set Aθ is independent of 9 G Θ .
(B.5) The function <p(x, θ) is differentiable in quadratic mean (qm) at

0=0 when p is employed. That is, there is a ^-dimensional function φ(x)
such that

Iλ"1! \<p(-,Λh)—1— Xh'φ(-)\ ^ O i n q m [p]> as λ ^ 0 ,

uniformly on every bounded sets of h^Rfc, where h' denotes the transpose of h.
(B.6) T=4β[φ(X)φ(X)/] is positive definite.
We use the assumptions (B.I) to (B.3) only to show that 0Λ-»O. If for

every 9 G Θ , φ is differentiable in qm (see Philippou and Roussas (1973),
assumption (A.2)), then (B.3) holds.

(B.4) to (B.6) are the assumptions under which Philippou and Roussas
(1973) obtained an asymptotic expansion for the log-likelihood function in the
independent, but not necessarily identically distributed case. We will make
use of their result restricted to the iid case.

Lemma 3.2. Under Assumptions (A.2) and B, we have | 0 J =0(τΓ1/2),
where the symbol | | stands for the Euclidean norm.

Proof. By Lemma 1 in Kraft (1955), (A.2) implies

so that |0J-»O by (B.I), (B.2) and (B.3). Since it is enough to consider the

case that 0ΛφO for all n9 we set hn=-^-. Then we get θn= \θn\hn and \hn\

10*1
= 1. By taking λ to be { |0J} and replacing h by {hn}, (B.5) implies

(3.9) 6 1 -(φn-l)-hn'φ 0,
\θn

where φ denotes an abbreviation of <p(x). Since £{hn'φfZiM{<i<χ>) for all n,
it follows from (3.9) and Schwarz inequality that

1(3 10)

By the fact that βφn

2=\ and (£.6), (3.10) implies

0.
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(3.H) ^ \

But (B.6) says that hnThn^δ(>0) for all n. Thus (A.2) and (3.11) imply the
desired result.

Theorem 3.1. Let Assumption B be satisfied. Then the following state-
ments are equivalent.

(a) The sequences {Pn} and {Qn} are contiguous.
(b) l iminfp(P Λ ,ρ Λ )>0.
(c) \θn\=0(n-^).

Proof. According to Theorem 2.2 and Lemma 3.2 it is enough to see that
the statement (a) follows from (c). Philippou and Roussas (1973) showed
that for θn=7nln1/2

y γ

Thus by Theorem 2.1 {Pn} and {Qn} are contiguous. This completes the
proof of Theorem 3.1.

4. A characterization of contiguous probability measures with
location parameter-preliminaries. Let θ be an open neighborhood of
the origin of the real line R, and let f(x) be a pdf with respect to the Lebesgue
measure μ on R. Furthermore, we set f(x> θ)=f(x—θ) in order to use the
same notations as the previous section.

The next two lemmas will be needed in the sequel.

Lemma 4.1. Suppose that the following conditions (1) to (4) are satisfied.
(1) limn(l-ε<pn)=σ2(>0).
(2) limn(l-εφn

2)=0.
(3) lim n p( | φn— 11 ̂ £ ) = 0 , for every £>0.

(4) lim sup n[ (φn-l)2dp=0.

Then

J?(ΛΛ |P)=^iV(-4σ2, 8σ2)

and consequently {Pn} and {Qn) are contiguous.

Proof. For any τ > 0 , we set

(4.1) a«(τ) = n\ (φn-\)dp
J\φH-l\<τ

and
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(4.2)

Then

= n{[ (φn-Vfdp-\\ <<pH-l)dp\}

an(r) = n[(φH-l)dp-n\ (φH-l)dp .

But, by the fact that βφn

2^\

(4.3) {4 (φn-l)dp}2^p(\φn-l\^τ)\(φn-iγdp

Therefore (1) gives

(4.4)

Next

-> 0 , by (1) and (3).

lim ajj) = - σ

2 .

But

n\(<pn-l)2dp =

2σ2, by (1) and (2).

For every M > τ , we have

J l ς p n -

= n{ (<Pn-l)2dp

by (3).

Therefore (4) gives

so that

(4.5)

Next we have

(4.6)

im n( {φn-l)2dp = 2σ2

J\φn-l\<r
lim

KJ\φn-l\<τ

= n[\(φn-\)dp-[ (φn-
U «Jl<PΛ-ll^τ
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-^ 0, by (1) and (4.3).

By (4.2) and (4.5), (4.6) implies

(4.7) lira σn\r) = 2σ2.

From (3), (4.4), (4.7) and Normal Convergence Criterion (see Loeve (1963),
page 316),

A% {<p{Xi, θu)-1) | P ) - * N(-σ>, 2σ2).

By this fact and LeCam's second lemma (see Hajek and Sidak (1967), page 205),
we have

N{-Aσ\ 8σ2).

The desired result then follows.

Lemma 4.2. 7/Ίim n(l—gφ»)=0, then we have

An -* 0 in P-probability.

Consequently {Pn} and {Qn} are contiguous.

Proof. For any 8>0, we have

P(IΣ {{φ&i, θn)-\)-β{φn-\)}

By the assumption, we have

Σ {φ{Xj, θn)-\) -> 0 in P-probability.

It follows from LeCam's second lemma that

ΛΛ -*• 0 in P-probability,

as was to be established.
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5. Contiguous probability measures with location parameter-
case 1. In this section, we shall assume the following conditions.

Assumption C.
(C.I) There exists a real number a such that A0=(a, oo).
(C.2) The pdf / is continuous on (a, oo).
(C.3) There exist positive numbers d and k such that

lim fW =d.2>
x*a (x—a)k

(C.4) lim lim sup sup f(x+h)~f(x) = 0 .

Theorem 5.1. Under Assumptions A and C, {Pn} and {Qn) are contiguous.

Proof. From (A.2), there exist a subsequence {m} c {n} and σ 2 ^0 such
that lim m(l—<£φm)=σ2. If σ2—0, then the theorem immediately follows from
Lemma 4.2. Thus, assume that σ 2 >0. Since (A.I) implies (2) in Lemma
4.1, it is enough to show that the conditions (3) and (4) in Lemma 4.1 are
satisfied. From (A.I) and (C.3), we have

(5.1) θn = o(n-^+1).

In order to show the validity of (3), we first show that for any given £>0
there exists a positive number u such that

(5.2) {x; \φn— l | ^ ε } c ( β , a+u\θn\]\jBm

c, for all sufficiently large n.

Let g(t, h) be defined by

Then we get

(5.3) \g(t,k)U±\t\, if \tU±,
k L

where the constant c depends only on k. Let η be a positive number such

that ?7<min (2, cβk) and

{x;x>0, \x-l\^e}(z{x; |*2-l|^} Π {*; l ^ -

Also, let 7 = . From (C.3) there exists a positive number 81 such that
4c—kη

2) This form of assumption was inspired by a lecture by Professor Kei Takeuchi on esti-
mation of location parameter.
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(x-a)"
for all x, a<x<a+3δ x.

Furthermore, from (C.4) there exist a constant L and a positive number δ2

such that

(5.4) susup
f(x+h)-f(x) <η, for all h, \h\<82.

Define the sets Sm, Sn2 and Sn3 by

m = (a,a+281)ΠBnl,

n2 = [a+281,L]ΠBnl,

Then we have

(5.5) {x; [φn-l^ i} (jBnl

c

u {(u[( I ψn2-11 ^v) n sni]} u Bnl

c

Suppose that θn> 0. If « e Sni, then

k d—y
(by (5.3))

and

Hence, if Λie5Λ1 and φn

2/k-l^-v, then ^

we similary obtain x^

^ 0 Λ . In case -δ 1 <(9 M <0,

\θn\ if * e {|^>Λ

2//f-11 i ^ } Π 5 m . Hence, for

ί ? we have
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(5.6) {\φn

2/k-l\^v}nSnι(Z(aJa+u\θn\l for all sufficiently large n.

Since f(x) is uniformly continuous on [a+28ιy L] by (C.2) and inf {f(x);
[α+2δ1,L]}>0, we have

S U p f\Aχ—θ*)—Ax) ; XEΞSΔ <η for all sufficiently large n.
II f(x) )f(x)

Therefore

(5.7) {I ψn— 11 ̂ v} ΓΊ Sn2 = φ, for all sufficiently large n.

Furthermore (5.4) implies

(5.8) {I ψn— 11 ̂ v} Π Sm = φ, for all sufficiently large n.

Therefore (5.2) follows from (5.5), (5.6), (5.7) and (5.8). By (5.1), (5.2) and
(A.I), we get

n p( I φn- \\^S)^n p{{a, a+u \ θn | ])+n p(Bm

c)

^ n(d+y)\ (x-aydμ+np(Bni

c)

n+l

-> 0,

from which (3) follows.
We next show the validity of (4). From (5.2), we have

lim n[ f(x-θn)dμ = 0 .

This implies

(5.9) lim sup n[ f(x—θn)dμ = 0 .

Since under (3), (5.9) is equivalent to (4), the proof is completed.

From Lemma 4.1 and Theorem 5.1, we immediately have the following

Corollary 5.1. Suppose that Assumptions (A.I) and C are satisfied. Sup-
pose in addition that lim n(ί—Sφn)=σ2(>0). Then we have

6. Contiguous probability measures with location parameter-case
2. In this section, we consider the other case. We assume the following
conditions.
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Assumption D.
(D.I) There exists a real number a such that Aocz[a, oo) and 0</(α+0)

(D.2) The pdf/is differentiable in x on (a> oo).
Let/7 denote the first derivative of/.

(D.3) ( \f'(x)\dμ<oo.

Lemma 6.1. Under Assumptions (A.I) tfnrf D, we have \θn\ =o(n~1).

Proof. Since

f(x)dμ^ inf {/(*);a<x^a+\θn\)-\θn\,
(a,a+\θn\l

it follows from (A.I) and (D.I) that \θn\ =o(fΓ1).

Theorem 6.1. Let Assumption D be satisfied. Then the following state-
ments are equivalent.

(a) {Pn} and {Qn} are contiguous.
(b) \θn\=o(n->).
(c) ΛΛ-*0 in P-probability.

Proof. According to Theorem 2.1, Theorem 2.2 and Lemma 6.1 it is
enough to see that the statement (c) follows from (b). Let dn be defined by-

Then

dn=\\f{x)-f(x~\θn\)\dμ

= [ f(x)dμ+ \ I / ( * ) - / ( * - \θn\)\dμ

But

^ ί dμ(x)\ \f'{z)\dμ{z)

Λ \f'{z)\dμ(z)\ dμ(x)

= \θn\\ \f'{z)\dμ.

It follows from (b), (D.I) and (D.3) that dn=o(n~1). Hence by Lemma 1 in
Kraft (1955), 1— Gφn=o(n~1). The desired conclusion then follows from
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Lemma 4.2.

REMARK. The argument given above shows that Theorem 6.1 remains
valid even if the assumption (D.2) is replaced by the following assumption
(D.2')

(D.2') The pdf / is continuous on (a, oo) and the derivative/' exists ex-
cept for finite points on (a, oo).

7. Remarks. In this section, we mention results without proving
which follow immediately from Section 5 and Section 6.

Assumption E.
(E.I) There exist real numbers a and b such that a<b and A0=(a, b).
(E.2) The pdf/ is continuous on (a, b).
(E.3) There exist positive numbers dly d2, kx and k2 such that

lim -fl*) = dx and lim -Δ&— = d2.
* i a (x— α)*i x/b {b— x)kz

Theorem 7.1. Under Assumptions A and E, {Pn} and {Qn} are contiguous.

Assumption F.
(F.I) There exist real numbers a and b with α<£ such that Aoa[a, b],

0</(tf+0)<oo and/(έ—0)=lim/(x)<oo (or else/(«+0)<oo and 0</(ό—0)

(F.2) The pdf/is continuous on (a} b) and/' exists except for finite points
on (α, b).

(F.3) ( \f'(x)\dμ<oo.

Theorem 7.2. Let Assumption F be satisfied. Then the following state-
ments are equivalent.

(a) {Pn} and {Qn} are contiguous.
(b) \θn\=o{n-%
(c) ΛM->0 in P-probability.
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