K-GROUPS OF SYMMETRIC SPACES II

Haruo MINAMI

(Received May 19, 1975)

1. Introduction

Let $M=G / K$ be a symmetric homogeneous space such that G is a simply connected compact Lie group. In [I] the author showed that the unitary K-group of M is isomorphic to the tensor product of $R(K) \underset{R(G)}{\otimes} Z$ and an exterior algebra E over Z, where $R(G)$ and $R(K)$ are the complex representation rigns of G and K respectively, and in particular described the generators of E as an exterior algebra explicitly.

The purpose of this paper is to present a structure of $R(K) \underset{R(G)}{\otimes} Z$ as a group in the following nine cases:

Type of $M=A I I I, B D I(a)(S p i n(2 p+2 q+2) / \operatorname{Spin}(2 p+1) \cdot \operatorname{Spin}(2 q+1))$,
$\operatorname{BDII}(b)(S p i n(2 n+1) / S p i n(2 n))$, DIII, CII, EI, FI, FII or G.
Now let us denote by $n(L)$ the order of the Weyl group of a compact connected Lie group L. We know that if U is a closed connected subgroup of G of maximal rank then $R(U) \underset{R(G)}{\otimes} Z$ is a free module of $\operatorname{rank} n(G) / n(U)$ and is isomorphic to $K^{*}(G / U)[12]$. Throughout this paper we shall identify $R(U) \underset{R(G)}{\otimes} Z$ with the K-group of G / U in the above situation and denote by the same letter ρ the element of $K^{*}(G / U)$ defined by an element ρ of $R(U)$ in the natural way. Furthermore we shall denote by $Z(g)$ the free module generated by an element g.

2. Representation rings

In this section we recall the structure of the complex representation rings of classical groups.

Write ρ_{n} for the canonical representations $S U(n) \rightarrow U(n), U(n) \rightarrow U(n)$, $S p(n) \rightarrow U(2 n)$ and $S p i n(n) \rightarrow S O(n) \rightarrow U(n)$ for each n, and write $\lambda^{i} \rho_{n}$ for the i-th exterior product of ρ_{n}. According to [10] we have

$$
\begin{align*}
& R(S U(n))=Z\left[\lambda^{1} \rho_{n}, \cdots, \lambda^{n-1} \rho_{n}\right], \\
& R(U(n))=Z\left[\lambda^{1} \rho_{n}, \cdots, \lambda^{n} \rho_{n},\left(\lambda^{n} \rho_{n}\right)^{-1}\right], \\
& R(S p(n))=Z\left[\lambda^{1} \rho_{n}, \cdots, \lambda^{n} \rho_{n}\right]=Z\left[\sigma_{1}, \cdots, \sigma_{n}\right], \tag{2.1}\\
& R(\operatorname{Spin}(2 n+1))=Z\left[\lambda^{1} \rho_{2 n+1}, \cdots, \lambda^{n-1} \rho_{2 n+1}, \Delta_{2 n+1}\right], \\
& R(\operatorname{Spin}(2 n))=Z\left[\lambda^{1} \rho_{2 n}, \cdots, \lambda^{n-2} \rho_{2 n}, \Delta_{2 n}^{+}, \Delta_{2 n}^{-}\right] .
\end{align*}
$$

Here we denote by $\sigma_{1}, \cdots, \sigma_{n}$ the elementary symmetric functions in the n variables $t_{1}+t_{1}^{-1}, \cdots, t_{n}+t_{n}^{-1}$ when we set $R(T)=Z\left[t_{1}, t_{1}^{-1}, \cdots, t_{n}, t_{n}^{-1}\right]$ for a maximal torus T of $S p(n)$, and denote by $\Delta_{2 n}^{+}, \Delta_{2 n}^{-}$and $\Delta_{2 n+1}$ the half-spin representations of $\operatorname{SPin}(2 n)$ and the spin representation of $\operatorname{Spin}(2 n+1)$, respectively.

Proposition 2.1 (See [17], p. 120). If G is a compact Lie group, N is a finite normal subgroup of G and $\pi: G \rightarrow G / N$ is the canonical map, then there is a homomorphism of $R(G / N)$-modules $\pi_{*}: R(G) \rightarrow R(G / N)$ such that $\pi_{*}(1)=1$.

Proof. It is easy to see that the correspondence $V \rightarrow V^{N}$, where V is a G-module and V^{N} the N-invariant submodule of V, defines the homomorphism π_{*}, as desired. q.e.d.

Using Proposition 2.1 we can calculate the representation rings of some quotient groups. For example,

$$
\begin{equation*}
R(P S p(4))=Z\left[\lambda^{2} \rho_{4}, \lambda^{4} \rho_{4},\left(\rho_{4}\right)^{2},\left(\lambda^{3} \rho_{4}\right)^{2}, \rho_{4} \lambda^{3} \rho_{4}\right] \tag{2.2}
\end{equation*}
$$

as a subring of $R(S p(4))$ and

$$
R\left(S p(3) \times \underset{z_{2}}{ } S U(2)\right)=Z\left[\lambda^{2} \rho_{3},\left(\rho_{3}\right)^{2},\left(\lambda^{3} \rho_{3}\right)^{2}, \rho_{3} \lambda^{3} \rho_{3},\left(\rho_{2}\right)^{2}, \rho_{2} \rho_{3}, \rho_{2} \lambda^{3} \rho_{3}\right]
$$

as a subring of $R(S p(3) \times S U(2))$ where Z_{2} is the intersection of the centers of $S p(3)$ and $S U(2)$.

Using the relations of [10], §13, Theorem 10.3 we get

$$
\begin{align*}
& R\left(\operatorname{Spin}(2 m+1) \times \underset{Z_{2}}{ } \operatorname{Spin}(2 n+1)\right) \tag{2.3}\\
= & Z\left[\lambda^{1} \rho_{2 m+1}, \cdots, \lambda^{m} \rho_{2 m+1}, \lambda^{1} \rho_{2 n+1}, \cdots, \lambda^{n} \rho_{2 n+1}, \Delta_{2 m+1} \Delta_{2 n+1}\right] / I
\end{align*}
$$

as a subalgebra of $R(\operatorname{Spin}(2 m+1) \times \operatorname{Spin}(2 n+1))$, where Z_{2} is the intersection of the centers of $\operatorname{Spin}(2 m+1)$ and $\operatorname{Spin}(2 n+1)$, and I is the ideal generated by the element

$$
\left(\Delta_{2 m+1} \Delta_{2 n+1}\right)^{2}-\left(\lambda^{m} \rho_{2 m+1}+\cdots+\lambda^{1} \rho_{2 m+1}+1\right)\left(\lambda^{n} \rho_{2 n+1}+\cdots+\lambda^{1} \rho_{2 n+1}+1\right) .
$$

3. AIII, $\operatorname{BDI}(\mathbf{a}), \operatorname{BDII}(b)$ and CII

Type $A I I I(U(m+n) / U(m) \times U(n))$. Let $T=S_{1}^{1} \times \cdots \times S_{n}^{1}$ be the canonical
maximal torus of $U(n)$ where $S_{i}^{1}, 1 \leqq i \leqq n$, are the circle groups, and set $R\left(S_{i}^{1}\right)$ $=Z\left[t_{i}, t_{i}^{-1}\right]$ for each i where t_{i} is a standard 1-dimensional non-trivial representation of S_{i}^{1}. Moreover let us define F_{k} to be the free module generated by $1, t_{k}, \cdots, t_{k}^{m+k-1}$ for $k=1, \cdots, n$.

Lemma 3.1. $R(U(m) \times T)$ is a free $R(U(m+n))$-module (by restriction)

$$
R(U(m) \times T) \cong R(U(m+n)) \otimes F_{1} \otimes \cdots \otimes F_{n}
$$

with the above notation.
Proof. $R(U(m) \times U(1))$ is freely generated as an $R(U(m+1))$-module by $1, t, \cdots, t^{m}$, when we put $R(U(1))=Z\left[t, t^{-1}\right]$ ([9], Lemma 7.3). Let

$$
U_{k}=U(m+k) \times S_{k+1}^{1} \times \cdots \times S_{n}^{1} \quad \text { for } k=0, \cdots, n-1
$$

and

$$
U_{n}=U(m+n)
$$

Then we have

$$
R\left(U_{k}\right) \cong R\left(U_{k+1}\right) \otimes F_{k+1}
$$

for $k=0, \cdots, n-1$ and this implies Lemma 3.1.

Theorem 3.2.

$$
K^{*}(U(m+n) / U(m) \times U(n)) \cong \underset{\substack{p_{1} \geq 0, \cdots, p_{n} \geq 0 \\ p_{1} \cdots+p_{n} \leq m}}{ } Z\left(\left(\lambda^{1} \rho_{n}\right)^{p_{1} \cdots} \cdots\left(\lambda^{n} \rho_{n}\right)^{p_{n}}\right)
$$

for $m, n \geqq 1$.
Proof. Put

$$
\begin{aligned}
& G_{k}=U(m+n) / U(m) \times U(k) \times S_{k+1}^{1} \times \cdots \times S_{n}^{1} \quad \text { for } k=1, \cdots, n-1 \\
& G_{n}=U(m+n) / U(m) \times U(n)
\end{aligned}
$$

and

$$
W_{k}=\prod_{\substack{p_{1} \geq 0, \cdots, p_{k} \geq 0 \\ p_{1}+\cdots+p_{k} \leq m}} Z\left(\left(\lambda^{1} \rho_{k}\right)^{\left.p_{1} \cdots\left(\lambda^{k} \rho_{k}\right)^{p_{k}}\right)}\right.
$$

for $k=1, \cdots, n$.
$K^{*}\left(G_{k}\right)$ is a free module of $\operatorname{rank}(m+n)!/ m!k!$ and identified with $R(U(m)$ $\left.\times U(k) \times S_{k+1}^{1} \times \cdots \times S_{n}^{1}\right) \underset{R(U(m+n))}{\otimes} Z$ for each k. In particular, from Lemma 3.1 we have

$$
K^{*}\left(G_{1}\right)=F_{1} \otimes \cdots \otimes F_{n}
$$

Therefore we see that $K^{*}\left(G_{k}\right)$ contains $W_{k} \otimes F_{k+1} \otimes \cdots \otimes F_{n}$ as a free subgroup by considering the injective homomorphism $K^{*}\left(G_{k}\right) \rightarrow K^{*}\left(G_{1}\right)$ for each k ([I], Proposition 7.1).

We have

$$
\operatorname{rank} \quad \begin{aligned}
W_{k} \otimes F_{k+1} \otimes \cdots \otimes F_{n} & =\left(\sum_{s=0}^{m} H_{s}\right)(m+k+1) \cdots(m+n) \\
& =\left(\begin{array}{c}
m_{+} k
\end{array}\right)(m+k+1) \cdots(m+n) \\
& =(m+n)!/ m!k!
\end{aligned}
$$

where ${ }_{k} H_{s}=\binom{k+8-1}{k-1}$ is the number of the repeated combination. This proves

$$
\begin{align*}
& K^{*}\left(G_{k}\right) \otimes Q=W_{k} \otimes F_{k+1} \otimes \cdots \otimes F_{n} \otimes Q \quad \text { for } \quad k=1, \cdots, n-1, \tag{a}\\
& K^{*}\left(G_{n}\right) \otimes Q=W_{n} \otimes Q .
\end{align*}
$$

Next we shall prove by induction on k

$$
\begin{align*}
& K^{*}\left(G_{k}\right)=W_{k} \otimes F_{k+1} \otimes \cdots \otimes F_{n} \quad \text { for } k=1, \cdots, n-1, \tag{b}\\
& K^{*}\left(G_{n}\right)=W_{n} .
\end{align*}
$$

Since $W_{1}=F_{1}$, (b) in case of $k=1$ follows by Lemma 3.1. Suppose that (b) is true when $k=l$. For any element $x \in K^{*}\left(G_{l+1}\right)$ there is an integer $N>0$ such that

$$
N x=\sum_{\substack{p_{1} \geq 0, \cdots, p_{l+1} \geq 0 \\ p_{1}+\cdots+p_{l+1} \leq m}} a_{p_{1} \cdots p_{l+1}}\left(\lambda^{1} \rho_{l+1}\right)^{p_{1} \ldots\left(\lambda^{l+1} \rho_{l+1}\right)^{p_{l+1}}}
$$

where $a_{p_{1} \cdots p_{l+1}} \in F_{l+2} \otimes \cdots \otimes F_{n}$ by (a). Let

$$
i^{*}: K^{*}\left(G_{l+1}\right) \rightarrow K^{*}\left(G_{l}\right)
$$

be the natural injective homomorphism. Since

$$
i^{*}\left(\lambda^{i} \rho_{l+1}\right)=\lambda^{i} \rho_{l}+\left(\lambda^{i-1} \rho_{l}\right) t_{l+1} \quad \text { for } i=1, \cdots, l
$$

$$
i^{*}\left(\lambda^{l+1} \rho_{l+1}\right)=\left(\lambda^{l} \rho_{l}\right) t_{l+1}
$$

we have

$$
\begin{aligned}
& i^{*}\left(\left(\lambda^{1} \rho_{l+1}\right)^{p_{1}} \cdots\left(\lambda^{l+1} \rho_{l+1}\right)^{p_{l+1}}\right) \\
= & \left(\lambda^{1} \rho_{l}\right)^{p_{2} \ldots}\left(\lambda^{l} \rho_{l}\right)^{p_{l+1} t_{l+1}^{p_{1}+\cdots+p_{l+1}}+\text { lower monomials }}
\end{aligned}
$$

where the lower monomial implies a monomial whose degree with respect to the variable t_{l+1} is lower than $p_{1}+\cdots+p_{l+1}$. Observe the image of $N x$ by i^{*} then we see by the inductive hypothesis that $a_{p_{1} \ldots p_{l+1}}$ is divisible by N. Thus we have $x \in W_{l+1} \otimes F_{l+2} \otimes \cdots \otimes F_{n}$. This completes the induction. q.e.d.

Type $\operatorname{CII}(S p(m+n) / S p(m) \times S p(n))$. Let $S p_{1}(1) \times \cdots \times S p_{n}(n)$, where $S p_{i}(1)$ $=S p(1)(1 \leqq i \leqq n)$, be the subgroup of $S p(n)$ embedded diagonally, and put $R\left(S p_{i}(1)\right)=Z\left[\theta_{i}\right]$ for each i where $\theta_{i}=t_{i}+t_{i}^{-1}$ and t_{i} is the standard 1-dimensional non-trivial representation of a maximal torus of $S p_{i}(1)$.

By replacing S_{k}^{1} and t_{k} in case of Type AIII by $S p_{k}(1)$ and θ_{k} for
$k=1, \cdots, n$ respectively, we obtain analogously the following results.
Lemma 3.3. Let E_{k} be the free module generated by $1, \theta_{k}, \cdots, \theta_{k}^{m+k-1}$ for $k=1, \cdots, n$. Then we have an isomorphism

$$
R\left(S p(m) \times S p_{1}(1) \times \cdots \times S p_{n}(1)\right) \cong R(S p(m+n)) \otimes E_{1} \otimes \cdots \otimes E_{n}
$$

with the above notation.

Theroem 3.4.

$$
\begin{aligned}
K^{*}(S p(m+n) / S p(m) \times S p(n)) & \cong \\
& \xlongequal[\substack{p_{1} \geq 0, \ldots, p_{n} \geq 0 \\
p_{1}+\cdots+p_{n} \leq m}]{\oplus} Z\left(\sigma_{1}^{\left.p_{1} \cdots \sigma_{n}^{p_{n}}\right)}\right. \\
& =\overbrace{\substack{p_{1} \geq 0, \ldots, p_{n} \geq 0 \\
p_{1}+\ldots+p_{n} \leq m}} Z\left(\left(\lambda^{1} \rho_{n}\right)^{\left.p_{1} \cdots\left(\lambda^{n} \rho_{n}\right)^{p_{n}}\right)}\right.
\end{aligned}
$$

for $m, n \geqq 1$.
The equality in Theorem 3.4 is obtained immediately by the formula

$$
\lambda^{k} \rho_{n}=\sigma_{k}+\sum_{l<k} a_{l} \sigma_{l}
$$

for $a_{l} \in Z$ and $k=1, \cdots, n$ ([10], 13, Proposition 5.4).
Type $\operatorname{BDI}(a)(\operatorname{Spin}(2 m+2 n+2) / \operatorname{Spin}(2 m+1) \cdot \operatorname{Spin}(2 n+1))$. From the relations of [10], §13, Theorem 10.3 and (2.3) we see that

$$
\begin{aligned}
& R(S \operatorname{Spin}(2 m+1) \cdot \operatorname{Spin}(2 n+1))_{R(S p i n(2 m+2 n+2))} Z \\
= & Z\left[\lambda^{1} \rho_{2 m+1}, \cdots, \lambda^{m} \rho_{2 m+1}, \lambda^{1} \rho_{2 n+1}, \cdots, \lambda^{n} \rho_{2 n+1}\right] / I
\end{aligned}
$$

where I is the ideal generated by the elements

$$
\sum_{i+j=l}\left(\lambda^{i} \rho_{2 m+1}\right)\left(\lambda^{j} \rho_{2 n+1}\right)-\left({ }^{2 m+2 n+2}\right)
$$

for all l.
On the other hand, when we put $\lambda_{i}{ }^{\prime}=\lambda^{i} \rho_{m}+\lambda^{i-1} \rho_{m}(1 \leqq i \leqq m)$ and $\lambda_{j}=\lambda^{j} \rho_{n}+\lambda^{j-1} \rho_{n}(1 \leqq j \leqq n)$

$$
R(S p(m) \times S p(n)) \underset{R(S p(m+n))}{\otimes} Z=Z\left[\lambda_{1}^{\prime}, \cdots, \lambda_{m}^{\prime}, \lambda_{1}, \cdots, \lambda_{n}\right] / J
$$

where J is the ideal generated by the elements

$$
\sum_{i+j=l} \lambda_{i}^{\prime} \lambda_{j}-\left({ }^{2 m+2 n+2}\right)
$$

for all l.
Hence we see that the correspondences $\lambda_{i}{ }^{\prime} \rightarrow \lambda^{i} \rho_{2 m+1}$ and $\lambda_{j} \rightarrow \lambda^{j} \rho_{2 n+1}$ $(1 \leqq i \leqq m, 1 \leqq j \leqq n)$ induce an isomorphism of algebras $R(S p(m) \times S p(n)) \underset{R(S p(m+n))}{\otimes} Z$ and $R(S \operatorname{Pin}(2 m+1) \cdot \operatorname{Spin}(2 n+1)) \underset{R(\operatorname{Spin}(2 m+2 n+2))}{\otimes} Z$. Thus we have by Theorem 3.4

This and [I], Proposition 7.1 prove the following

Theorem 3.5.

$$
\begin{aligned}
& K^{*}(\operatorname{Spin}(2 m+2 n+2) / \operatorname{Spin}(2 m+1) \times \operatorname{Spin}(2 n+1)) \\
= & \left\{\begin{array}{c}
z_{2}\left(1 \geq 0, \cdots, p_{n} \geq 0\right. \\
p_{1}+\cdots+p_{n} \leq m
\end{array}\right. \\
\bigoplus & \left.Z\left(\left(\lambda^{1} \rho_{2 n+1}\right)^{p_{1} \cdots}\left(\lambda^{n} \rho_{2 n+1}\right)^{p_{n}}\right)\right\} \otimes \wedge\left(\beta\left(\Delta_{2 m+2 n+2}^{+}-\Delta_{2 m+2 n+2}^{-}\right)\right) .
\end{aligned}
$$

for $m, n \geqq 0$.
Type $\operatorname{BDII}(b)(\operatorname{Spin}(2 n+1) / \operatorname{Spin}(2 n))$. The following is an immediate result of [10], $\S 13$, Theorem 10.3.

Theorem 3.6. $K^{*}(\operatorname{Spin}(2 n+1) / \operatorname{Spin}(2 n)) \cong \wedge\left(\bar{\Delta}_{2 n}^{+}\right)$for $n \geqq 1$ where $\Xi_{2 n}^{+}=$ $\Delta_{2 n}^{+}-2^{n-1}$.

4. DIII

We regard $U(n)$ as a subgroup of $S O(2 n)$ by the map

$$
A=\left(\left(a_{i j}\right)\right) \rightarrow A^{\prime}=\left(\left(\begin{array}{ll}
x_{2 i-1,2 j-1} & -x_{2 i, 2 j} \\
x_{2 i, 2 j} & x_{2 i-1,2 j-1}
\end{array}\right)\right)
$$

where $a_{i j}=x_{2 i-1,2 j-1}+\sqrt{-1} x_{2 i, 2 j} \quad(1 \leqq i, j \leqq n)$.
We see that the canonical inclusion map of $S O(2 n-1)$ to $S O(2 n)$ induces a homeomorphism

$$
\begin{equation*}
S O(2 n-1) / U(n-1) \approx S O(2 n) / U(n) \tag{4.1}
\end{equation*}
$$

bacause of $S O(2 n-1) \cap U(n)=U(n-1)$ and $S O(2 n)=U(n) \cdot S O(2 n-1)$. Let $\pi: \operatorname{Spin}(2 n) \rightarrow S O(2 n)$ denote the two fold covering map of $S O(2 n)$ and define $\widetilde{U}(n)$ (resp. $\widetilde{U}(n-1))$ to be the inverse image of $U(n)$ (resp. $U(n-1)$) by π. By (4.1) we have homeomorphisms
and

$$
\begin{align*}
& \operatorname{Spin}(2 n-1) / \widetilde{U}(n-1) \approx \operatorname{Spin}(2 n) / \widetilde{U}(n) \tag{4.2}\\
& S O(2 n) / U(n) \approx S \operatorname{pin}(2 n) / \widetilde{U}(n)
\end{align*}
$$

Next we shall consider the complex representation ring of $\widetilde{U}(n)$. Let T be the standard maximal torus of $U(n)$ and put $\tilde{T}=\pi^{-1}(T)$, which becomes a maximal torus of $\widetilde{U}(n)$. Here, using the notation of [10], §13 we define the

$$
\begin{aligned}
& R(S \operatorname{Pin}(2 m+1) \cdot S \operatorname{pin}(2 n+1)){\underset{R(S \operatorname{Sin}(2 m+2 n+2))}{ } Z}_{\otimes} \\
& \cong \underset{\substack{p_{1} \geq 0, \cdots, p_{n} \geq 0 \\
p_{1}+\cdots+p_{n} \leq m}}{ } Z\left(\lambda_{1}^{p_{1}} \cdots \lambda_{n}^{p_{n}}\right) \\
& \cong \underset{\substack{p_{1} \geq 0, \cdots, p_{n} \geq 0 \\
p_{1}+\cdots+p_{n} \leq m}}{ } Z\left(\left(\lambda^{1} \rho_{2 n+1}\right)^{p_{1} \cdots}\left(\lambda^{n} \rho_{2 n+1}\right)^{p_{n}}\right) .
\end{aligned}
$$

homomorphism

$$
f: R(T)\left[u_{n}\right] /\left(u_{n}^{2}-\left(\alpha_{1} \cdots \alpha_{n}\right)^{-1}\right) \rightarrow R(\tilde{T})
$$

by $f\left(x+y u_{n}\right)=\pi^{*}(x)+\pi^{*}(y)\left(\alpha_{1} \cdots \alpha_{n}\right)^{-1 / 2} x, y \in R(T)$. Then we can easily check that f is isomorphic and compatible with the actions of the Weyl groups of $U(n)$ and $\widetilde{U}(n)$, and so we have
(4.3) $\quad R(\widetilde{U}(n))$ is isomorphic to the algebra

$$
Z\left[\lambda^{1} \rho_{n}, \cdots, \lambda^{n} \rho_{n},\left(\lambda^{n} \rho_{n}\right)^{-1}, u_{n}\right] / I
$$

where I is the ideal generated by the elements

$$
\left(\lambda^{n} \rho_{n}\right)\left(\lambda^{n} \rho_{n}\right)^{-1}-1 \text { and } u_{n}^{2}-\left(\lambda^{n} \rho_{n}\right)^{-1}
$$

Theorem 4.1. With the above notation

$$
K^{*}(S p i n(2 n) / \widetilde{U}(n)) \cong \underset{\substack{\varepsilon_{k}=0,1 \\ 0 \leqq k \leqq n-2}}{\oplus} Z\left(u_{n}^{\left.\varepsilon_{0} g_{1}^{\varepsilon_{1}} \cdots g_{n-2}^{\varepsilon_{n}-2}\right)}\right.
$$

for $n \geqq 2$ where

$$
\left.g_{k}=u_{n}\left\{\sum_{s_{1} \geq 1, \cdots, s_{k} \geq 1} \sum_{t=0}^{k}(-1)^{i}{ }_{\left({ }_{k}^{k}\right)}^{k}\right) g\left(n, 2 s_{1}+\cdots+2 s_{k}-k+i+1\right)\right\}
$$

for $k=1, \cdots, n-2$ and

$$
g(n, i)=\lambda^{n-i} \rho_{n}+\lambda^{n-i-2} \rho_{n}+\cdots
$$

for $i=0, \cdots, n$.
Proof. Denote by $i_{n}: \operatorname{Spin}(2 n-1) / \widetilde{U}(n-1) \rightarrow \operatorname{Spin}(2 n) / \widetilde{U}(n)$ the homeomorphism of (4.2) and put

$$
R(\widetilde{T})=Z\left[\alpha_{1}, \alpha_{1}^{-1}, \cdots, \alpha_{n}, \alpha_{n}^{-1},\left(\alpha_{1} \cdots \alpha_{n}\right)^{-1 / 2}\right]
$$

using the notation of [10], $\S 13$, Proposition 8.3. We proceed by induction on n.
The homomorphism $i_{2}^{*}: K^{*}(\operatorname{Spin}(4) / \widetilde{U}(2)) \rightarrow K^{*}(\operatorname{Spin}(3) / \widetilde{U}(1))$ is isomorphic, and we have

$$
\begin{aligned}
& R(U(1)) \underset{R(\text { Ppin(3) }}{\otimes} Z=Z\left[\alpha^{-1 / 2}\right] /\left(\left(\alpha^{-1 / 2}-1\right)^{2}\right) \\
& i_{2}^{*}\left(u_{2}\right)=\alpha^{-1 / 2}
\end{aligned}
$$

when we put $R(U(1))=Z\left[\alpha^{1 / 2}, \alpha^{-1 / 2}\right]$. Therefore we get the statement when $n=2$.

Put $E=\operatorname{Spin}(2 n+1) / \widetilde{U}(n), F=\operatorname{Spin}(2 n) / \widetilde{U}(n)$ and denote the inclusions $(F, \phi) \rightarrow(E, \phi) \rightarrow(E, F)$ by i and j respectively. Then there is a short exact sequence

$$
0 \rightarrow K^{*}(E, F) \xrightarrow{j^{*}} K^{*}(E) \xrightarrow{i^{*}} K^{*}(F) \rightarrow 0 .
$$

Moreover we denote the projection $E \rightarrow \operatorname{Spin}(2 n+1) / \operatorname{Spin}(2 n)$ by p. Then we have an isomorphism

$$
\varphi: K^{*}(F) \otimes \widetilde{K}^{*}(\operatorname{Spin}(2 n+1) / \operatorname{Spin}(2 n)) \rightarrow K^{*}(E, F)
$$

defined by $j^{*} \varphi\left(x \otimes Z_{2 n}^{+}\right)=y p^{*}\left(\Xi_{2 n}^{+}\right) x \in K(F)$ where y is an element of $K^{*}(E)$ such that $i^{*}(y)=x$.

Here suppose that the assertion for $K^{*}(\operatorname{Spin}(2 n) / \widetilde{U}(n))$ is true. By Theorem 3.6 we may assume that $K^{*}(\operatorname{SPin}(2 n+1) / \operatorname{SPin}(2 n))=\wedge\left(\Delta_{2 n}^{-}-2^{n-1}\right)$. Consider the element $i_{n+1}^{*-1} p^{*}\left(\Delta_{2 n}^{-}-2^{n-1}\right)$ of $K^{*}(\operatorname{Spin}(2 n+2) / \widetilde{U}(n+1))$. By the definition of $\Delta_{2 n}^{-}$

$$
p^{*}\left(\Delta_{2 n}^{-}-2^{n-1}\right)=u_{n}\left(\lambda^{n-1} \rho_{n}+\lambda^{n-3} \rho_{n}+\cdots\right)-2^{n-1}
$$

Hence

$$
i_{n+1}^{*-1} p^{*}\left(\Delta_{2 n}^{-}-2^{n-1}\right)=u_{n+1}\left\{\sum_{s \geqq 1}(g(n+1,2 s)-g(n+1,2 s+1))\right\}-2^{n-1}
$$

because of $i_{n+1}^{*}(g(n+1, i)-g(n+1, i+1))=\lambda^{n-i+1} \rho_{n}$.
For the completion of the induction it is sufficient to prove that
for $k=2, \cdots, n-1$. This follows from the following equalities:

$$
\begin{aligned}
& u_{n+1}\left(s_{s_{1} \geq 1, \cdots, s_{k+1} \geq 1} \sum_{i=0}^{k+1}(-1)^{i}\left({ }^{k+1}\right) g\left(n+1,2 s_{1}+\cdots+2 s_{k+1}-k+i\right)\right) \\
& =u_{n+1}\left\{\left\{_ { s _ { 1 } \geq 1 , \cdots , s _ { k + 1 } \geq 1 } (g (n + 1 , 2 s _ { 1 } + \cdots + 2 s _ { k + 1 } - k) + \sum _ { k = 1 } ^ { k } (- 1) ^ { i } ({ } _ { ({ } _ { k } ^ { k }) } ^ { k }) + ({ } _ { i - 1 } ^ { k })) g \left(n+1,2 s_{1}\right.\right.\right. \\
& \left.\left.\left.+\cdots+2 s_{k+1}-k+i\right)+(-1)^{k+1} g\left(n+1,2 s_{1}+\cdots+2 s_{k+1}+1\right)\right)\right\} \\
& =u_{n+1}\left\{\sum_{s_{1} \geq 1, \cdots, s_{k} \geq 1} \sum_{i=0}^{k}(-1)^{i}{ }^{i}{ }_{i}^{k}\right)\left(\sum _ { s _ { k + 1 } \geq 1 } \left(g\left(n+1,2 s_{1}+\cdots+2 s_{k}+2 s_{k+1}-k+i\right)\right.\right. \\
& \left.\left.\left.-g\left(n+1,2 s_{1}+\cdots+2 s_{k}+2 s_{k+1}-k+i+1\right)\right)\right)\right\}
\end{aligned}
$$

and $g(n, j)=\left(i_{n+1} i\right)^{*}\left(\sum_{k \geqq 1}(g(n+1, j+2 k-1)-g(n+1, j+2 k))\right)$ for $j \geqq 0$.

5. EI and FI (1)

In this section we discuss the symmetric spaces $E_{6} / P S p(4)$ and $F_{4} / S p(3)$ $\underset{z_{2}}{\times} S U(2)\left(=F_{4} / S p(3) \cdot S U(2)\right)([11]$, p. 131).

We reproduce the Dynkin diagram of F_{4} in [I] added the maximal root $\tilde{\alpha}$ and the simple roots $\alpha_{1}, \cdots, \alpha_{4}$ corresponding to the vertexes.

$$
\begin{array}{ccccc}
\alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{1} & -\tilde{\alpha} \tag{5.1}\\
\circ & \circ & \circ & \circ & \circ \\
\rho^{\prime} & \overline{\lambda^{2} \rho^{\prime}} & \frac{0}{\lambda^{3} \rho^{\prime}} & A d_{F_{4}} & \\
26 & 273 & 1274 & 52
\end{array}
$$

Then the Dynkin diagram of $S p(3) \times \underset{z_{2}}{\times} S U(2)$ is obtained by omitting the vertex with the symbol α_{1}.

β_{1}	β_{2}	β_{3}	β
\circ	$0 \Longleftarrow$	\circ	\circ
ρ_{3}	$\frac{\lambda^{2} \rho_{3}}{}$	$\stackrel{\lambda^{3} \rho_{3}}{ }$	ρ_{2}
6	14	14	2

where the explanation of the symbols and the numbers is quite similar to that of the above diagram.

According to [16], Tables I, III and VIII, the fundamental weights of F_{4} and $S p(3) \cdot S U(2)$ determined by the above fundamental root systems are as follows:

$$
\begin{align*}
& w_{1}=2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}=\tilde{\alpha}, \\
& w_{2}=3 \alpha_{1}+6 \alpha_{2}+8 \alpha_{3}+4 \alpha_{4}, \\
& w_{3}=2 \alpha_{1}+4 \alpha_{2}+6 \alpha_{3}+3 \alpha_{4}, \\
& w_{4}=\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}, \\
& \bar{w}_{1}=\beta_{1}+\beta_{2}+\frac{1}{2} \beta_{3}, \tag{5.3}\\
& \bar{w}_{2}=\beta_{1}+2 \beta_{2}+\beta_{3}, \\
& \bar{w}_{3}=\beta_{1}+2 \beta_{2}+\frac{3}{2} \beta_{3}, \\
& \bar{w}=\frac{1}{2} \beta .
\end{align*}
$$

Hereafter, for simplicity we denote the weights $m_{1} \alpha_{1}+\cdots+m_{4} \alpha_{4}, n_{1} \beta_{1}+\cdots$ $+n_{3} \beta_{3}, n_{1} \beta_{1}+\cdots+n_{3} \beta_{3}+n \beta$ by $\left(m_{1} \cdots m_{4}\right),\left(n_{1} \cdots n_{3}\right)$ and $\left(n_{1} \cdots n_{3}, n\right)$ respectively.

Since ρ_{3} is the irreducible representation of $S p(3)$ with $\left(11 \frac{1}{2}\right)$ as the highest weight, by acting the elements of the Weyl group on it we get the all weights of ρ_{3} :

$$
\begin{equation*}
\left(11 \frac{1}{2}\right)\left(01 \frac{1}{2}\right)\left(00 \frac{1}{2}\right)\left(00-\frac{1}{2}\right)\left(0-1-\frac{1}{2}\right)\left(-1-1-\frac{1}{2}\right) . \tag{5.4}
\end{equation*}
$$

Let $i: S p(3) \cdot S U(2) \rightarrow F_{4}$ be the inclusion of $S p(3) \cdot S U(2)$ and $i^{*}(w)$ denote the reduction of a weight w of F_{4} to $S p(3) \cdot S U(2)$. Then we have

$$
i^{*}(-\tilde{\alpha})=\beta, i^{*}\left(\alpha_{2}\right)=\beta_{3}, i^{*}\left(\alpha_{3}\right)=\beta_{2} \text { and } i^{*}\left(\alpha_{4}\right)=\beta_{1}
$$

and so using the first formula of (5.3)

$$
\begin{align*}
& i^{*}(1000)=\left(-1-2-\frac{3}{2},-\frac{1}{2}\right) \\
& i^{*}(0100)=(001,0) \\
& i^{*}(0010)=(010,0) \tag{5.5}\\
& i^{*}(0001)=(100,0)
\end{align*}
$$

Proposition 5.1. With the notations of (5.1) and (5.2) we have in $R(S p(3) \cdot$ $S U(2))$
(i) $i^{*}\left(\rho^{\prime}\right)=\lambda^{2} \rho_{3}+\rho_{2} \rho_{3}-1$,
(ii) $i^{*}\left(A d_{F_{4}}\right)=\rho_{2} \lambda^{3} \rho_{3}-\lambda^{2} \rho_{3}+\rho_{2}^{2}+\rho_{3}^{2}-\rho_{2} \rho_{3}-1$.

Proof. By restricting all the weights of the adjoint representation of E_{6} to F_{4} we obtain those of ρ^{\prime}, which are listed at the end of this section, since we know all the roots of F_{4} ([16], Table VIII). It follows obviously that the weights of ρ_{2} are $\frac{1}{2} \beta$ and $-\frac{1}{2} \beta$.
(i) When we observe the restrictions of the weights of ρ^{\prime} to $S p(3) \cdot S U(2)$ making use of (5.5) we get (i).
(ii) Considering that

$$
A d_{S p(3)}=\rho_{3}^{2}-\lambda^{2} \rho_{3} \text { and } A d_{S U(2)}=\rho_{2}^{2}-1
$$

we get (ii) similarly. q.e.d.
Lemma 5.2. In $R(S p(3) \cdot S U(2)) \underset{R\left(F_{4}\right)}{\otimes} Z$ we have
(i) $\lambda^{2} \rho_{3}=-\rho_{2} \rho_{3}+27$,
(ii) $\rho_{2} \lambda^{3} \rho_{3}=-\rho_{2}^{2}-\rho_{3}^{2}+80$,
(iii) $\rho_{3} \lambda^{3} \rho_{3}=\rho_{2}^{2} \rho_{3}^{2}+\rho_{2}^{3} \rho_{3}-\rho_{3}^{2}-27 \rho_{2}^{2}-30 \rho_{2} \rho_{3}+432$,
(iv) $\left(\lambda^{3} \rho_{3}\right)^{2}=\rho_{2}^{4}+\rho_{3}^{4}-\rho_{2}^{4} \rho_{3}^{2}+54 \rho_{2}^{3} \rho_{3}+2 \rho_{2} \rho_{3}^{3}+6 \rho_{2}^{2} \rho_{3}^{2}$
$-216 \rho_{2} \rho_{3}-136 \rho_{3}^{2}-812 \rho_{2}^{2}+6080$.
Proof. (i) and (ii) These are immediate results of Proposition 5.1.
(iii) From (i) of Proposition 5.1 we get

$$
i^{*}\left(\lambda^{2} \rho^{\prime}+\rho^{\prime}\right)=\lambda^{2}\left(\rho_{2} \rho_{3}\right)+\left(\rho_{2} \rho_{3}\right) \lambda^{2} \rho_{3}+\lambda^{2}\left(\lambda^{2} \rho_{3}\right)
$$

and by the direct calculation we have

$$
\left\{\begin{array}{l}
\lambda^{2}\left(\rho_{2} \rho_{3}\right)=\left(\rho_{2}^{2}-2\right) \lambda^{2} \rho_{3}+\rho_{3}^{2} \\
\lambda^{2}\left(\lambda^{2} \rho_{3}\right)=\rho_{3} \lambda^{3} \rho_{3}-\lambda^{2} \rho_{3}
\end{array}\right.
$$

Therefore,

$$
i^{*}\left(\lambda^{2} \rho^{\prime}\right)=\rho_{3} \lambda^{3} \rho_{3}+\left(\rho_{2}^{2}+\rho_{2} \rho_{3}-4\right) \lambda^{2} \rho_{3}+\left(\rho_{3}^{2}-\rho_{2} \rho_{3}+1\right)
$$

and so from (i), (iii) follows.
(iv) By the direct caluculation we get

$$
\left\{\begin{array}{l}
\lambda^{2}\left(\rho_{2}^{2}\right)=2 \rho_{2}^{2}-2 \\
\lambda^{2}\left(\rho_{3}^{2}\right)=-2\left(\lambda^{2} \rho_{3}\right)^{2}+2 \rho_{3}^{2} \lambda^{2} \rho_{3} \\
\lambda^{2}\left(\lambda^{3} \rho_{3}\right)=\left(\lambda^{2} \rho_{3}\right)^{2}-\rho_{3}^{2}+1
\end{array}\right.
$$

and from (ii) we have

$$
\begin{aligned}
\left(\lambda^{3} \rho_{3}\right)^{2} & +\left(\rho_{2}^{2}-2\right) \lambda^{2}\left(\lambda^{3} \rho_{3}\right)+\lambda^{2}\left(\rho_{2}^{2}\right)+\lambda^{2}\left(\rho_{3}^{2}\right) \\
& +\rho_{2}^{3} \lambda^{3} \rho_{3}+\rho_{2} \rho_{3}^{2} \lambda^{3} \rho_{3}+\rho_{2}^{2} \rho_{3}^{2}=3160 .
\end{aligned}
$$

Therefore, making use of the above formulas, (i) and (ii) we have (iv). q.e.d.
Theorem 5.3. With the notation of [I], Proposition 7.3

$$
K^{*}\left(E_{6} / P S p(4)\right) \cong \wedge\left(\beta\left(\rho_{1}-\rho_{2}\right), \beta\left(\lambda^{2} \rho_{1}-\lambda^{2} \rho_{2}\right)\right) \otimes Z\left[\rho_{4}^{2}\right] /\left(\left(\rho_{4}^{2}-64\right)^{3}\right) .
$$

Proof. Let $j: S p(3) \cdot S U(2) \rightarrow P S p(4)$ be the inclusion map of $S p(3)$. $S U(2)$. Then we have

$$
\left\{\begin{array}{l}
j^{*}\left(\lambda^{2} \rho_{4}\right)=\lambda^{2} \rho_{3}+\rho_{2} \rho_{3}+1 \\
j^{*}\left(\lambda^{4} \rho_{4}\right)=\rho_{2} \lambda^{3} \rho_{3}+2 \lambda^{2} \rho_{3} \\
j^{*}\left(\rho_{4}^{2}\right)=\left(\rho_{2}+\rho_{3}\right)^{2} \\
j^{*}\left(\left(\lambda^{3} \rho_{4}\right)^{2}\right)=\left(\lambda^{3} \rho_{3}+\rho_{2} \lambda^{2} \rho_{3}+\rho_{3}\right)^{2} \\
j^{*}\left(\rho_{4}\left(\lambda^{3} \rho_{4}\right)\right)=\left(\rho_{2}+\rho_{3}\right)\left(\lambda^{3} \rho_{3}+\rho_{2} \lambda^{2} \rho_{3}+\rho_{3}\right)
\end{array}\right.
$$

and from Lemma 5.2 we have in $R(P S p(4)) \underset{R\left(H_{6}\right)}{\otimes} Z$

$$
\left\{\begin{array}{l}
\lambda^{2} \rho_{4}=28 \\
\lambda^{4} \rho_{4}=-\rho_{4}^{2}+134 \\
\rho_{4} \lambda^{3} \rho_{4}=-\rho_{4}^{2}+512 \\
\left(\lambda^{3} \rho_{4}\right)^{2}=\rho_{4}^{4}-191 \rho_{4}^{2}+11264
\end{array}\right.
$$

This and (2.2) show that

$$
R(P S p(4)){\left.\underset{R\left(H_{6}\right)}{ } Z=Z\left[\rho_{4}^{2}\right] /\left(\left(\rho_{4}^{2}-64\right)^{3}\right)\right), ~}_{\otimes}
$$

and so Theorem 5.3 follows from [I], Proposition 7.3. q.e.d.
(5.6) The weights of ρ^{\prime} and the positive roots of F_{4} are as follows respectively:

1232		2342		
1231		1342		
1221		1242		
1121		1232		
1111	0121	1231	1222	
1110	0111	1221	1122	
0110	0011	1220	0122	1121
0010	0001	1120	0121	1111
0000	0000	1110	0120	0111

$00-10$	$000-1$	1100	0110	0011	
0-1-1 0	0 0-1-1	1000	0100	0010	0001
-1-1-1 0	0-1-1-1				
-1-1-1-1	0-1-2-1				
-1-1-2-1					
-1-2-2-1					
-1-2-3-1					
-1-2-3-2					

where the sequence of integers $m_{1} \cdots m_{4}$ indicates a weight $m_{1} \alpha_{1}+\cdots+m_{4} \alpha_{4}$.

6. EI and FI (2)

This section is a continuation of the section 5 .
Put

$$
\begin{equation*}
x=\rho_{2}^{2}, y=\left(\rho_{2}+\rho_{3}\right)^{2} \text { and } w=\rho_{2} \rho_{3}+x . \tag{6.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
w^{2}=x y \tag{6.2}
\end{equation*}
$$

obviously. We obtain from Lemma 5.2
(i) $\rho_{3}^{2}=x+y-2 w$,
(ii) $\lambda^{2} \rho_{3}=x-w+27$,
(iii) $\rho_{2} \lambda^{3} \rho_{3}=-2 x+(2 w-y+80)$,
(iv) $\rho_{3} \lambda^{3} \rho_{3}=(2-w) x+\left(w^{2}-28 w-y+432\right)$,
(v) $\quad\left(\lambda^{3} \rho_{3}\right)^{2}=-x^{3}+(2 w-48) x^{2}+\left(-w^{2}+44 w-732\right) x$

$$
+\left(6 w^{2}+56 w-2 y w+y^{2}-136 y+6080\right)
$$

and from Theorem 5.3

$$
\begin{equation*}
(y-64)^{3}=0 \tag{6.4}
\end{equation*}
$$

From (6.2), (iii) and (iv) of (6.3) we have
(i) $w x^{2}+\left(-w^{2}+24 w-512\right) x+\left(4 w^{2}-y w+80 w\right)=0$,
(ii) $-w x^{2}+\left(2 w^{2}-24 w+512\right) x+\left(-w^{3}+20 w^{2}+5 y w-592 w-y^{2}\right.$ $+80 y)=0$.

From (6.2) and (6.5) we have

$$
\begin{equation*}
-w^{2} x+w^{3}-24 w^{2}-4 y w+512 w+y^{2}-80 y=0 . \tag{6.6}
\end{equation*}
$$

From (6.2), (6.4) and (6.6) we have

$$
\begin{equation*}
w^{4}-y w^{3}+24 y w^{2}+4 y^{2} w-512 y w-112 y^{2}+12288 y-262144=0 . \tag{6.7}
\end{equation*}
$$

From (6.2), (iii) and (v) of (6.3) we have

$$
\begin{align*}
x^{4} & +(48-2 w) x^{3}+\left(w^{2}-44 w+736\right) x^{2}+\left(-6 w^{2}-64 w-6400\right) x \tag{6.8}\\
& +\left(2 w^{3}+144 w^{2}+320 w-y w^{2}-4 y w+y^{2}-160 y+6400\right)=0 .
\end{align*}
$$

(2.2), (6.1) and (6.3) show that $R(S p(3) \cdot S U(2)) \otimes_{R\left(F_{4}\right)} Z$ is generated by the elements x, y and w as an algebra and moreover (6.4), (6.7) and (6.8) imply

Lemma 6.1. $R(S p(3) \cdot S U(2)) \underset{R\left(F_{4}\right)}{\otimes} Z$ is generated by the elements $x^{a} y^{b} w^{c}$ for $a, c=0,1,2,3$ and $b=0,1,2$, as a module.

Let M denote the submodule of $R(S p(3) \cdot S U(2)) \underset{R\left(P_{4}\right)}{\otimes} Z$ generated by the elements:

$$
\begin{aligned}
& 1, x, x^{2}, x^{3}, y, y^{2}, w, w^{2}, w^{3}, x w, \\
& y w, y^{2} w, y w^{2}, y^{2} w^{2}, y w^{3}, y^{2} w^{3} .
\end{aligned}
$$

From (6.4) and (6.7) we have

$$
\begin{equation*}
y^{i} w^{j} \in M \quad \text { for } \quad i, j \geqq 0 . \tag{6.9}
\end{equation*}
$$

Hence, from (6.6) we have

$$
\begin{equation*}
x w^{j+2} \in M \quad \text { for } j \geqq 0 \tag{6.10}
\end{equation*}
$$

From (i) of (6.5), (6.9) and (6.10) we have

$$
\begin{equation*}
x^{2} w^{j} \in M \quad \text { for } j \geqq 0 . \tag{6.11}
\end{equation*}
$$

From (i) of (6.5) and (6.6) we get

$$
\begin{equation*}
x^{2} w=w^{3}-28 w^{2}+432 w-3 y w-24 x w+512 x+y^{2}-80 y \tag{6.12}
\end{equation*}
$$

and so we see that $x^{2} w, x^{3} w, x^{3} w^{2}$ and $x^{3} w^{3}$ are contained in M from (6.9), (6.10) and (6.11). Thus we obtain

Lemma 6.2. With the above notation

$$
R(S p(3) \cdot S U(2)){\underset{R\left(F_{4}\right)}{ }} Z=M
$$

Theorem 6.3. With the notation of (6.1) $K^{*}\left(F_{4} / S p(3) \cdot S U(2)\right)$ is a free module generated by the elements

$$
1, x, x^{2}, x^{3}, y, y^{2}, w, w^{2}, w^{3}, x w, y w, y w^{2} .
$$

Proof. Let N be the submodule of $K^{*}\left(F_{4} / S p(3) \cdot S U(2)\right)$ generated by the elements mentioned in the theorem.

From (iii), (iv) and (v) of (6.3) we have

$$
\begin{aligned}
& -x^{4}+(3 w-48) x^{3}+\left(-3 w^{2}+94 w-736\right) x^{2} \\
& +\left(w^{3}-42 w^{2}+768 w+5376\right) x+\left(-5 w^{3}-168 w^{2}-7456 w+2 y w^{2}\right. \\
& \left.-y^{2} w+162 y w+y^{2}-512 y+34560\right)=0 .
\end{aligned}
$$

From this equality and (6.8) we have

$$
\begin{aligned}
& w x^{3}+\left(-2 w^{2}+50 w\right) x^{2}+\left(w^{3}-48 w^{2}+704 w-1024\right) x \\
& +\left(-3 w^{3}-24 w^{2}-7136 w+y w^{2}-y^{2} w+158 y w+2 y^{2}-672 y+40960\right)=0 .
\end{aligned}
$$

Moreover, from this equality, (6.5) and (6.6) we have

$$
\begin{equation*}
y^{2} w=512 x^{2}-512 x w+12288 x-10240 w+192 y w-512 y+40960 . \tag{6.13}
\end{equation*}
$$

This shows

$$
\begin{equation*}
y^{2} w \in N . \tag{6.14}
\end{equation*}
$$

From (6.4) we have

$$
\begin{equation*}
y^{2} w^{2}=192 y w^{2}-12288 w^{2}+262144 x \tag{6.15}
\end{equation*}
$$

using (6.2) and so

$$
\begin{equation*}
y^{2} w^{2} \in N . \tag{6.16}
\end{equation*}
$$

From (6.2) and (6.13)

$$
\begin{aligned}
y w^{3} & =x\left(y^{2} w\right) \\
& =512 x^{3}-512 x^{2} w+12288 x^{2}-10240 x w+192 w^{3}-512 w^{2}+40960 x .
\end{aligned}
$$

and so we have

$$
\begin{equation*}
y w^{3} \in N \tag{6.17}
\end{equation*}
$$

since $x^{2} w \in N$ by (6.12). From (6.15) and (6.17) we have

$$
\begin{equation*}
y^{2} w^{3} \in N . \tag{6.18}
\end{equation*}
$$

(6.14), (6.16), (6.17) and (6.18) imply Theorem 6.3 since $K^{*}\left(F_{4} / S p(3)\right.$. $S U(2)$) is a free module of rank 12 . q.e.d.

7. FII and G

Type $\operatorname{FII}\left(F_{4} / \operatorname{Spin}(9)\right)$. According to [15], Theorem 15.1 we have in $R(S \operatorname{Pin}(9)) \underset{R\left(F_{4}\right)}{\otimes} Z$

$$
\left\{\begin{array}{l}
\lambda^{1} \rho_{9}=-\Delta_{9}+25 \\
\lambda^{2} \rho_{9}=-\Delta_{9}+52 \\
\lambda^{3} \rho_{9}=\Delta_{9}^{2}-23 \Delta_{9}+196 \\
\left(\Delta_{9}-16\right)^{3}=0 .
\end{array}\right.
$$

This proves
Theorem 7.1. $\quad K^{*}\left(F_{4} / \operatorname{Spin}(9)\right) \cong Z\left[\Delta_{9}\right] /\left(\left(\Delta_{9}-16\right)^{3}\right)$.
Type $G\left(G_{2} / S U(2) \cdot S U(2)\right)$. We observe the extended Dynkin diagram of G_{2} with the irreducible representations corresponding to the vertices and their dimensions written next to vertices ([16], Table 30):

where α_{1}, α_{2} are the simple roots and $\tilde{\alpha}$ is the maximal root.
Let us denote by σ the involutive automorphism of G_{2} for the symmetric space of type G ([11], Theorem 3.1). Then we see that the subgroup consisting of fixed points of σ is $S U(2) \times S U(2)(=S U(2) \cdot S U(2))$ where Z_{2} is the intersection of the centers of the two groups $S U(2)$, and its Dynkin diagram is obtained by omitting the vertex with the symbol α_{2}.

$$
\begin{array}{cc}
\beta_{1} & \beta_{2} \\
\circ & \circ \\
\rho_{2} & \rho_{2}^{\prime} \tag{7.2}\\
2 & 2
\end{array}
$$

in which the explanation of the symbols and the numbers are as in the diagram of G_{2}.

If we denote the fundamental weights of G_{2} and $S U(2) \cdot S U(2)$ by w_{k} and \bar{w}_{k} for $k=1,2$ respectively, then we have from [16], Tables I and IX

$$
\begin{align*}
& w_{1}=2 \alpha_{1}+\alpha_{2}, \\
& w_{2}=3 \alpha_{1}+2 \alpha_{2}=\tilde{\alpha}, \\
& \bar{w}_{1}=\frac{1}{2} \beta_{1}, \tag{7.3}\\
& \bar{w}_{2}=\frac{1}{2} \beta_{2} .
\end{align*}
$$

Let $i: S U(2) \cdot S U(2) \rightarrow G_{2}$ be the inclusion of $S U(2) \cdot S U(2)$ and $i^{*}(w)$ be the reduction of a weight w of G_{2} to $S U(2) \cdot S U(2)$. Since

$$
i^{*}\left(\alpha_{1}\right)=\beta_{1} \text { and } i^{*}(-\widetilde{\alpha})=\beta_{2},
$$

we have by (7.3)

$$
\begin{align*}
& i^{*}\left(\alpha_{1}\right)=\beta_{1} \\
& i^{*}\left(\alpha_{2}\right)=-\frac{3}{2} \beta_{1}-\frac{1}{2} \beta_{2} \tag{7.4}
\end{align*}
$$

Proposition 7.2. With the notation of (7.1)
(i) $i^{*}(\rho)=\rho_{2}^{2}+\rho_{2} \rho_{2}{ }^{\prime}-1$,
(ii) $i^{*}\left(A d_{G_{2}}\right)=\rho_{2}^{2}+\rho_{2}{ }^{2}+\rho_{2}^{3} \rho_{2}{ }^{\prime}-2 \rho_{2} \rho_{2}{ }^{\prime}-2$
where $i^{*}: R\left(G_{2}\right) \rightarrow R(S U(2) \cdot S U(2))$ is the restriction.
Proof. Denote the weights $m_{1} \alpha_{1}+m_{2} \alpha_{2}$ and $n_{1} \beta_{1}+n_{2} \beta_{2}$ by ($m_{1} m_{2}$) and (n_{1}, n_{2}) respectively.
(i) Since ρ is the irreducible representation of G_{2} with (21) as the highest weight, by operating the elements of the Weyl group on it we see that the weights of ρ is as follows:

$$
\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0
\end{array}\right)(-10)(-1-1)(-2-1) .
$$

Consider the restrictions of the weights of ρ to $S U(2) \cdot S U(2)$ using (7.4) then (i) follows because the weights of ρ_{2} and ρ_{2}^{\prime} are

$$
\left(\frac{1}{2}, 0\right)\left(-\frac{1}{2}, 0\right) \text { and }\left(0, \frac{1}{2}\right)\left(0,-\frac{1}{2}\right)
$$

respectively.
(ii) From [16], Table IX the weights of $A d_{G_{2}}$ are as follows:

$$
\begin{aligned}
& \left(\begin{array}{ll}
3 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0
\end{array}\right)(01)(00)(-3-2) \\
& (-3-1)(-2-1)(-1-1)(-10)(0-1)(00) \text {. }
\end{aligned}
$$

By observing the reduction of these weights to $S U(2) \cdot S U(2)$ we obtain (ii) analogously. q.e.d.

Theorem 7.3. $K^{*}\left(G_{2} / S U(2) \times \underset{Z_{2}}{\times} S U(2)\right) \cong Z\left[\rho_{2}^{2}\right] /\left(\left(\rho_{2}^{2}-4\right)^{3}\right)$
with the notation of (7.2).
Proof. By Proposition 7.2 we get in $R(S U(2) \cdot S U(2)) \otimes_{R\left(\epsilon_{2}\right)} Z$

$$
\rho_{2}^{2}+\rho_{2} \rho_{2}^{\prime}=8 \text { and } \rho_{2}^{2}+\rho_{2}^{\prime 2}+\rho_{2}^{3} \rho_{2}^{\prime}-2 \rho_{2} \rho_{2}^{\prime}=16 .
$$

From these equalities we have

$$
\left\{\begin{array}{l}
\rho_{2} \rho_{2}^{\prime}=8-\rho_{2}^{2} \\
\rho_{2}^{\prime 2}=\rho_{2}^{4}-11 \rho_{2}^{2}+32 \\
\left(\rho_{2}^{2}-4\right)^{3}=0
\end{array}\right.
$$

Therefore the theorem is proved because $R(S U(2) \cdot S U(2))$ equals the ring $Z\left[\rho_{2}^{2}, \rho_{2} \rho_{2}{ }^{\prime}, \rho_{2}{ }^{\prime 2}\right]$. q.e.d.

Osaka City University

References

[1]-[15] are listed at the end of Part I.
[16] N. Bourbaki: Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
[17] G. Segal: The representation ring of a compact Lie group, Inst. Hautes Études Sci. Puble. Math. (Paris) 34 (1968), 113-128.
[I] H. Minami: K-groups of symmetric spaces I, Osaka J. Math. 12 (1975), 623634.

