Minami, H. Osaka J. Math. 13 (1976), 271-287

K-GROUPS OF SYMMETRIC SPACES II

HARUO MINAMI

(Received May 19, 1975)

1. Introduction

Let M=G/K be a symmetric homogeneous space such that G is a simply connected compact Lie group. In [I] the author showed that the unitary K-group of M is isomorphic to the tensor product of $R(K) \bigotimes_{R(G)} Z$ and an exterior algebra E over Z, where R(G) and R(K) are the complex representation rights of G and K respectively, and in particular described the generators of E as an exterior algebra explicitly.

The purpose of this paper is to present a structure of $R(K) \underset{R(G)}{\otimes} Z$ as a group in the following nine cases:

Type of M = AIII, $BDI(a)(Spin(2p+2q+2)/Spin(2p+1) \cdot Spin(2q+1))$, BDII(b)(Spin(2n+1)/Spin(2n)), DIII, CII, EI, FI, FII or G.

Now let us denote by n(L) the order of the Weyl group of a compact connected Lie group L. We know that if U is a closed connected subgroup of G of maximal rank then $R(U) \underset{R(G)}{\otimes} Z$ is a free module of rank n(G)/n(U) and is isomorphic to $K^*(G/U)$ [12]. Throughout this paper we shall identify $R(U) \underset{R(G)}{\otimes} Z$ with the K-group of G/U in the above situation and denote by the same letter ρ the element of $K^*(G/U)$ defined by an element ρ of R(U) in the natural way. Furthermore we shall denote by Z(g) the free module generated by an element g.

2. Representation rings

In this section we recall the structure of the complex representation rings of classical groups.

Write ρ_n for the canonical representations $SU(n) \rightarrow U(n)$, $U(n) \rightarrow U(n)$, $Sp(n) \rightarrow U(2n)$ and $Spin(n) \rightarrow SO(n) \rightarrow U(n)$ for each *n*, and write $\lambda^i \rho_n$ for the *i*-th exterior product of ρ_n . According to [10] we have

$$R(SU(n)) = Z[\lambda^{1}\rho_{n}, \dots, \lambda^{n-1}\rho_{n}],$$

$$R(U(n)) = Z[\lambda^{1}\rho_{n}, \dots, \lambda^{n}\rho_{n}, (\lambda^{n}\rho_{n})^{-1}],$$

$$R(Sp(n)) = Z[\lambda^{1}\rho_{n}, \dots, \lambda^{n}\rho_{n}] = Z[\sigma_{1}, \dots, \sigma_{n}],$$

$$R(Spin(2n+1)) = Z[\lambda^{1}\rho_{2n+1}, \dots, \lambda^{n-1}\rho_{2n+1}, \Delta_{2n+1}],$$

$$R(Spin(2n)) = Z[\lambda^{1}\rho_{2n}, \dots, \lambda^{n-2}\rho_{2n}, \Delta_{2n}^{+}, \Delta_{2n}^{-}].$$

Here we denote by $\sigma_1, \dots, \sigma_n$ the elementary symmetric functions in the *n* variables $t_1+t_1^{-1}, \dots, t_n+t_n^{-1}$ when we set $R(T)=Z[t_1, t_1^{-1}, \dots, t_n, t_n^{-1}]$ for a maximal torus *T* of Sp(n), and denote by $\Delta_{2n}^+, \Delta_{2n}^-$ and Δ_{2n+1} the half-spin representations of Spin(2n) and the spin representation of Spin(2n+1), respectively.

Proposition 2.1 (See [17], p. 120). If G is a compact Lie group, N is a finite normal subgroup of G and $\pi: G \rightarrow G/N$ is the canonical map, then there is a homomorphism of R(G/N)-modules $\pi_*: R(G) \rightarrow R(G/N)$ such that $\pi_*(1)=1$.

Proof. It is easy to see that the correspondence $V \rightarrow V^N$, where V is a G-module and V^N the N-invariant submodule of V, defines the homomorphism π_* , as desired. q.e.d.

Using Proposition 2.1 we can calculate the representation rings of some quotient groups. For example,

(2.2)
$$R(PSp(4)) = Z[\lambda^{2}\rho_{4}, \lambda^{4}\rho_{4}, (\rho_{4})^{2}, (\lambda^{3}\rho_{4})^{2}, \rho_{4}\lambda^{3}\rho_{4}]$$

as a subring of R(Sp(4)) and

$$R(Sp(3) \underset{\pi}{\times} SU(2)) = Z[\lambda^2 \rho_3, (\rho_3)^2, (\lambda^3 \rho_3)^2, \rho_3 \lambda^3 \rho_3, (\rho_2)^2, \rho_2 \rho_3, \rho_2 \lambda^3 \rho_3]$$

as a subring of $R(Sp(3) \times SU(2))$ where Z_2 is the intersection of the centers of Sp(3) and SU(2).

Using the relations of [10], §13, Theorem 10.3 we get

(2.3)
$$R(Spin(2m+1) \times Spin(2n+1)) = Z[\lambda^{1}\rho_{2m+1}, \dots, \lambda^{m}\rho_{2m+1}, \lambda^{1}\rho_{2n+1}, \dots, \lambda^{n}\rho_{2n+1}, \Delta_{2m+1}\Delta_{2n+1}]/I$$

as a subalgebra of $R(Spin(2m+1) \times Spin(2n+1))$, where Z_2 is the intersection of the centers of Spin(2m+1) and Spin(2n+1), and I is the ideal generated by the element

$$(\Delta_{2m+1}\Delta_{2n+1})^2 - (\lambda^m \rho_{2m+1} + \dots + \lambda^1 \rho_{2m+1} + 1)(\lambda^n \rho_{2n+1} + \dots + \lambda^1 \rho_{2n+1} + 1).$$

3. AIII, BDI(a), BDII(b) and CII

Type $AIII(U(m+n)/U(m) \times U(n))$. Let $T = S_1^1 \times \cdots \times S_n^1$ be the canonical

maximal torus of U(n) where S_i^1 , $1 \le i \le n$, are the circle groups, and set $R(S_i^1)$ $=Z[t_i, t_i^{-1}]$ for each *i* where t_i is a standard 1-dimensional non-trivial representation of S_i^1 . Moreover let us define F_k to be the free module generated by 1, t_k, \dots, t_k^{m+k-1} for $k=1, \dots, n$.

Lemma 3.1. $R(U(m) \times T)$ is a free R(U(m+n))-module (by restriction) generated by $t_1^{a_1} \cdots t_n^{a_n}$ $(0 \leq a_k \leq m+k-1)$. Namely,

$$R(U(m) \times T) \cong R(U(m+n)) \otimes F_1 \otimes \cdots \otimes F_n$$

with the above notation.

Proof. $R(U(m) \times U(1))$ is freely generated as an R(U(m+1))-module by 1, t, ..., t^{m} , when we put $R(U(1)) = Z[t, t^{-1}]$ ([9], Lemma 7.3). Let

$$U_{k} = U(m+k) \times S_{k+1}^{1} \times \cdots \times S_{n}^{1} \quad \text{for } k = 0, \cdots, n-1$$
$$U_{n} = U(m+n).$$

and

Then we have

$$R(U_k) \cong R(U_{k+1}) \otimes F_{k+1}$$

for $k=0, \dots, n-1$ and this implies Lemma 3.1.

Theorem 3.2.

$$K^*(U(m+n)/U(m)\times U(n)) \cong \bigoplus_{\substack{p_1\geq 0,\cdots,p_n\geq 0\\p_1+\cdots+p_n\leq m}} Z((\lambda^1\rho_n)^{p_1}\cdots(\lambda^n\rho_n)^{p_n})$$

for $m, n \ge 1$.

Proof. Put

$$G_{k} = U(m+n)/U(m) \times U(k) \times S_{k+1}^{1} \times \cdots \times S_{n}^{1} \quad \text{for } k = 1, \dots, n-1,$$

$$G_{n} = U(m+n)/U(m) \times U(n),$$

$$W_{k} = \bigoplus_{\substack{p_{1} \ge 0, \dots, p_{k} \ge 0\\ p_{1} + \cdots + p_{k} \le m}} Z((\lambda^{1}\rho_{k})^{p_{1}} \cdots (\lambda^{k}\rho_{k})^{p_{k}})$$

and

for $k=1, \dots, n$.

 $K^*(G_k)$ is a free module of rank (m+n)!/m!k! and identified with R(U(m)) $\times U(k) \times S_{k+1}^1 \times \cdots \times S_n^1 \bigotimes_{R(U(m+n))} Z$ for each k. In particular, from Lemma 3.1 we have

$$K^*(G_1) = F_1 \otimes \cdots \otimes F_n$$

Therefore we see that $K^*(G_k)$ contains $W_k \otimes F_{k+1} \otimes \cdots \otimes F_n$ as a free subgroup by considering the injective homomorphism $K^*(G_k) \rightarrow K^*(G_1)$ for each k ([I], Proposition 7.1).

We have

rank
$$W_k \otimes F_{k+1} \otimes \cdots \otimes F_n = (\sum_{s=0k}^m H_s)(m+k+1)\cdots(m+n)$$

= $\binom{m+k}{k}(m+k+1)\cdots(m+n)$
= $(m+n)!/m!k!$

where $_{k}H_{s}=\binom{k+s-1}{k-1}$ is the number of the repeated combination. This proves

(a)
$$K^*(G_k) \otimes Q = W_k \otimes F_{k+1} \otimes \cdots \otimes F_n \otimes Q$$
 for $k = 1, \dots, n-1$,
 $K^*(G_n) \otimes Q = W_n \otimes Q$.

Next we shall prove by induction on k

(b)
$$K^*(G_k) = W_k \otimes F_{k+1} \otimes \cdots \otimes F_n$$
 for $k = 1, \dots, n-1$,
 $K^*(G_n) = W_n$.

Since $W_1 = F_1$, (b) in case of k=1 follows by Lemma 3.1. Suppose that (b) is true when k=l. For any element $x \in K^*(G_{l+1})$ there is an integer N > 0 such that

$$Nx = \sum_{\substack{p_1 \ge 0, \cdots, p_{l+1} \ge 0\\ p_1 + \cdots + p_{l+1} \le m}} a_{p_1 \cdots p_{l+1}} (\lambda^1 \rho_{l+1})^{p_1} \cdots (\lambda^{l+1} \rho_{l+1})^{p_{l+1}}$$

where $a_{p_1 \dots p_{l+1}} \in F_{l+2} \otimes \dots \otimes F_n$ by (a). Let

$$i^* \colon K^*(G_{i+1}) \to K^*(G_i)$$

be the natural injective homomorphism. Since

$$i^{*}(\lambda^{i}\rho_{l+1}) = \lambda^{i}\rho_{l} + (\lambda^{i-1}\rho_{l})t_{l+1} \quad \text{for } i = 1, \dots, l$$

$$i^{*}(\lambda^{l+1}\rho_{l+1}) = (\lambda^{l}\rho_{l})t_{l+1},$$

and

we have

$$i^{*}((\lambda^{1}\rho_{l+1})^{p_{1}}\cdots(\lambda^{l+1}\rho_{l+1})^{p_{l+1}})$$

= $(\lambda^{1}\rho_{l})^{p_{2}}\cdots(\lambda^{l}\rho_{l})^{p_{l+1}}t_{l+1}^{p_{1}+\cdots+p_{l+1}}+$ lower monomials

where the lower monomial implies a monomial whose degree with respect to the variable t_{l+1} is lower than $p_1 + \cdots + p_{l+1}$. Observe the image of Nx by i^* then we see by the inductive hypothesis that $a_{p_1 \cdots p_{l+1}}$ is divisible by N. Thus we have $x \in W_{l+1} \otimes F_{l+2} \otimes \cdots \otimes F_n$. This completes the induction. q.e.d.

Type $CII(Sp(m+n)/Sp(m) \times Sp(n))$. Let $Sp_1(1) \times \cdots \times Sp_n(n)$, where $Sp_i(1) = Sp(1) (1 \le i \le n)$, be the subgroup of Sp(n) embedded diagonally, and put $R(Sp_i(1)) = Z[\theta_i]$ for each *i* where $\theta_i = t_i + t_i^{-1}$ and t_i is the standard 1-dimensional non-trivial representation of a maximal torus of $Sp_i(1)$.

By replacing S_k^1 and t_k in case of Type AIII by $Sp_k(1)$ and θ_k for

 $k=1, \dots, n$ respectively, we obtain analogously the following results.

Lemma 3.3. Let E_k be the free module generated by $1, \theta_k, \dots, \theta_k^{m+k-1}$ for $k=1, \dots, n$. Then we have an isomorphism

 $R(Sp(m) \times Sp_1(1) \times \cdots \times Sp_n(1)) \cong R(Sp(m+n)) \otimes E_1 \otimes \cdots \otimes E_n$

with the above notation.

Theroem 3.4.

$$K^*(Sp(m+n)/Sp(m)\times Sp(n)) \cong \bigoplus_{\substack{p_1 \ge 0, \cdots, p_n \ge 0\\p_1 + \cdots + p_n \le m}} Z(\sigma_1^{p_1} \cdots \sigma_n^{p_n})$$
$$= \bigoplus_{\substack{p_1 \ge 0, \cdots, p_n \ge 0\\p_1 + \cdots + p_n \le m}} Z((\lambda^1 \rho_n)^{p_1} \cdots (\lambda^n \rho_n)^{p_n})$$

for $m, n \ge 1$.

The equality in Theorem 3.4 is obtained immediately by the formula

$$\lambda^{k} \rho_{n} = \sigma_{k} + \sum_{l < k} a_{l} \sigma_{l}$$

for $a_i \in \mathbb{Z}$ and $k=1, \dots, n$ ([10], 13, Proposition 5.4).

Type $BDI(a)(Spin(2m+2n+2)/Spin(2m+1) \cdot Spin(2n+1))$. From the relations of [10], §13, Theorem 10.3 and (2.3) we see that

$$R(Spin(2m+1) \cdot Spin(2n+1)) \bigotimes_{R(Spin(2m+2n+2))} Z$$

= $Z[\lambda^1 \rho_{2m+1}, \dots, \lambda^m \rho_{2m+1}, \lambda^1 \rho_{2n+1}, \dots, \lambda^n \rho_{2n+1}]/I$

where I is the ideal generated by the elements

$$\sum_{i+j=l} (\lambda^{i} \rho_{2m+1}) (\lambda^{j} \rho_{2n+1}) - ({}^{2m+2n+2}_{l})$$

for all *l*.

On the other hand, when we put $\lambda_i' = \lambda^i \rho_m + \lambda^{i-1} \rho_m (1 \le i \le m)$ and $\lambda_j = \lambda^j \rho_n + \lambda^{j-1} \rho_n (1 \le j \le n)$

$$R(Sp(m) \times Sp(n)) \bigotimes_{R(Sp(m+n))} Z = Z[\lambda_1', \dots, \lambda_m', \lambda_1, \dots, \lambda_n]/J$$

where J is the ideal generated by the elements

$$\sum_{i+j=l} \lambda_i' \lambda_j - \binom{2m+2n+2}{l}$$

for all *l*.

Hence we see that the correspondences $\lambda_i' \to \lambda^i \rho_{2m+1}$ and $\lambda_j \to \lambda^j \rho_{2n+1}$ $(1 \leq i \leq m, 1 \leq j \leq n)$ induce an isomorphism of algebras $R(Sp(m) \times Sp(n)) \bigotimes_{R(Sp(m+n))} Z$ and $R(Spin(2m+1) \cdot Spin(2n+1)) \bigotimes_{R(Spin(2m+2n+2))} Z$. Thus we have by Theorem 3.4

$$R(Spin(2m+1) \cdot Spin(2n+1)) \underset{R(Spin(2m+2n+2n))}{\otimes} Z$$

$$\approx \bigoplus_{\substack{p_1 \ge 0, \cdots, p_n \ge 0\\ p_1 + \cdots + p_n \le m}} Z(\lambda_1^{p_1} \cdots \lambda_n^{p_n})$$

$$\approx \bigoplus_{\substack{p_1 \ge 0, \cdots, p_n \ge 0\\ p_1 + \cdots + p_n \le m}} Z((\lambda^1 \rho_{2n+1})^{p_1} \cdots (\lambda^n \rho_{2n+1})^{p_n}).$$

This and [I], Proposition 7.1 prove the following

Theorem 3.5.

$$K^{*}(Spin(2m+2n+2)/Spin(2m+1) \times Spin(2n+1)) = \{ \bigoplus_{\substack{p_{1} \geq 0, \dots, p_{n} \geq 0 \\ p_{1}+\dots+p_{n} \leq m}} Z((\lambda^{1}\rho_{2n+1})^{p_{1}} \cdots (\lambda^{n}\rho_{2n+1})^{p_{n}}) \} \otimes \wedge (\beta(\Delta_{2m+2n+2}^{+} - \Delta_{2m+2n+2}^{-})).$$

for $m, n \ge 0$.

Type BDII(b) (Spin(2n+1)/Spin(2n)). The following is an immediate result of [10], §13, Theorem 10.3.

Theorem 3.6. $K^*(Spin(2n+1)/Spin(2n)) \cong \wedge (\tilde{\Delta}_{2n}^+)$ for $n \ge 1$ where $\tilde{\Delta}_{2n}^+ = \Delta_{2n}^+ - 2^{n-1}$.

4. DIII

We regard U(n) as a subgroup of SO(2n) by the map

$$A = ((a_{ij})) \to A' = \begin{pmatrix} x_{2i-1,2j-1} & -x_{2i,2j} \\ x_{2i,2j} & x_{2i-1,2j-1} \end{pmatrix}$$

where $a_{ij} = x_{2i-1,2j-1} + \sqrt{-1} x_{2i,2j}$ $(1 \leq i, j \leq n)$.

We see that the canonical inclusion map of SO(2n-1) to SO(2n) induces a homeomorphism

$$(4.1) \qquad \qquad SO(2n-1)/U(n-1) \approx SO(2n)/U(n)$$

bacause of $SO(2n-1) \cap U(n) = U(n-1)$ and $SO(2n) = U(n) \cdot SO(2n-1)$. Let $\pi: Spin(2n) \rightarrow SO(2n)$ denote the two fold covering map of SO(2n) and define $\tilde{U}(n)$ (resp. $\tilde{U}(n-1)$) to be the inverse image of U(n) (resp. U(n-1)) by π . By (4.1) we have homeomorphisms

(4.2)
$$Spin(2n-1)/\tilde{U}(n-1) \approx Spin(2n)/\tilde{U}(n)$$

and
$$SO(2n)/U(n) \approx Spin(2n)/\tilde{U}(n)$$
.

Next we shall consider the complex representation ring of $\tilde{U}(n)$. Let T be the standard maximal torus of U(n) and put $\tilde{T}=\pi^{-1}(T)$, which becomes a maximal torus of $\tilde{U}(n)$. Here, using the notation of [10], §13 we define the

homomorphism

$$f: R(T)[u_n]/(u_n^2 - (\alpha_1 \cdots \alpha_n)^{-1}) \to R(\tilde{T})$$

by $f(x+yu_n)=\pi^*(x)+\pi^*(y)(\alpha_1\cdots\alpha_n)^{-1/2}$ $x, y\in R(T)$. Then we can easily check that f is isomorphic and compatible with the actions of the Weyl groups of U(n) and $\tilde{U}(n)$, and so we have

(4.3) $R(\tilde{U}(n))$ is isomorphic to the algebra

$$Z[\lambda^{1}\rho_{n}, \cdots, \lambda^{n}\rho_{n}, (\lambda^{n}\rho_{n})^{-1}, u_{n}]/I$$

where I is the ideal generated by the elements

$$(\lambda^{n}\rho_{n})(\lambda^{n}\rho_{n})^{-1}-1 \text{ and } u_{n}^{2}-(\lambda^{n}\rho_{n})^{-1}.$$

Theorem 4.1. With the above notation

$$K^*(Spin(2n)/\widetilde{U}(n)) \cong \bigoplus_{\substack{\mathfrak{e}_k=0,1\\0\leq k\leq n-2}} Z(\boldsymbol{u}_n^{\mathfrak{e}_0} g_1^{\mathfrak{e}_1} \cdots g_{n-2}^{\mathfrak{e}_{n-2}})$$

for $n \ge 2$ where

$$g_{k} = u_{n} \{ \sum_{s_{1} \ge 1, \cdots, s_{k} \ge 1} \sum_{i=0}^{k} (-1)^{i} {k \choose i} g(n, 2s_{1} + \cdots + 2s_{k} - k + i + 1) \}$$

for $k=1, \dots, n-2$ and

$$g(n,i) = \lambda^{n-i}\rho_n + \lambda^{n-i-2}\rho_n + \cdots$$

for $i=0, \dots, n$.

Proof. Denote by i_n : $Spin(2n-1)/\tilde{U}(n-1) \rightarrow Spin(2n)/\tilde{U}(n)$ the homeomorphism of (4.2) and put

$$R(\tilde{T}) = Z[\alpha_1, \alpha_1^{-1}, \cdots, \alpha_n, \alpha_n^{-1}, (\alpha_1 \cdots \alpha_n)^{-1/2}]$$

using the notation of [10], \$13, Proposition 8.3. We proceed by induction on n.

The homomorphism i_2^* : $K^*(Spin(4)/\tilde{U}(2)) \rightarrow K^*(Spin(3)/\tilde{U}(1))$ is isomorphic, and we have

$$R(U(1)) \bigotimes_{R(Spin(3))} Z = Z[\alpha^{-1/2}]/((\alpha^{-1/2}-1)^2),$$

$$i_2^*(u_2) = \alpha^{-1/2}$$

when we put $R(U(1))=Z[\alpha^{1/2}, \alpha^{-1/2}]$. Therefore we get the statement when n=2.

Put $E = Spin(2n+1)/\widetilde{U}(n)$, $F = Spin(2n)/\widetilde{U}(n)$ and denote the inclusions $(F, \phi) \rightarrow (E, \phi) \rightarrow (E, F)$ by *i* and *j* respectively. Then there is a short exact sequence

$$0 \to K^*(E, F) \xrightarrow{j^*} K^*(E) \xrightarrow{i^*} K^*(F) \to 0 .$$

Moreover we denote the projection $E \rightarrow Spin(2n+1)/Spin(2n)$ by p. Then we have an isomorphism

$$\varphi: K^*(F) \otimes \overline{K}^*(Spin(2n+1)/Spin(2n)) \to K^*(E, F)$$

defined by $j^*\varphi(x\otimes \tilde{\Delta}_{2n}^+)=yp^*(\tilde{\Delta}_{2n}^+) x\in K(F)$ where y is an element of $K^*(E)$ such that $i^*(y)=x$.

Here suppose that the assertion for $K^*(Spin(2n)/\tilde{U}(n))$ is true. By Theorem 3.6 we may assume that $K^*(Spin(2n+1)/Spin(2n)) = \wedge (\Delta_{2n}^- - 2^{n-1})$. Consider the element $i_{n+1}^{*-1}p^*(\Delta_{2n}^- - 2^{n-1})$ of $K^*(Spin(2n+2)/\tilde{U}(n+1))$. By the definition of Δ_{2n}^-

$$p^{*}(\Delta_{2n}^{-}-2^{n-1}) = u_{n}(\lambda^{n-1}\rho_{n}+\lambda^{n-3}\rho_{n}+\cdots)-2^{n-1}.$$

Hence

$$u_{n+1}^{*^{-1}}p^{*}(\Delta_{2n}^{-}-2^{n-1}) = u_{n+1}\{\sum_{s\geq 1}(g(n+1,2s)-g(n+1,2s+1))\}-2^{n-1}$$

because of $i_{n+1}^*(g(n+1,i)-g(n+1,i+1)) = \lambda^{n-i+1}\rho_n$.

For the completion of the induction it is sufficient to prove that

$$(i_{n+1}i)^*(u_{n+1}\{\sum_{s_1\geq 1,\dots,s_{k+1}\geq 1}\sum_{i=0}^{k+1}(-1)^{i\binom{k+1}{i}}g(n+1,2s_1+\dots+2s_{k+1}-k+i)\}) = g_k$$

for $k=2, \dots, n-1$. This follows from the following equalities:

$$u_{n+1} (\sum_{s_1 \ge 1, \dots, s_{k+1} \ge 1} \sum_{i=0}^{k+1} (-1)^{i} {k+1 \choose i} g(n+1, 2s_1 + \dots + 2s_{k+1} - k + i))$$

$$= u_{n+1} \{\sum_{s_1 \ge 1, \dots, s_{k+1} \ge 1} (g(n+1, 2s_1 + \dots + 2s_{k+1} - k) + \sum_{i=1}^{k} (-1)^{i} ({k \choose i} + {k \choose i-1}) g(n+1, 2s_1 + \dots + 2s_{k+1} - k + i))\}$$

$$= u_{n+1} \{\sum_{s_1 \ge 1, \dots, s_k \ge 1} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (\sum_{s_{k+1} \ge 1} (g(n+1, 2s_1 + \dots + 2s_k + 2s_{k+1} - k + i) - g(n+1, 2s_1 + \dots + 2s_k + 2s_{k+1} - k + i + 1)))\}$$

and $g(n,j) = (i_{n+1}i)^* (\sum_{k \ge 1} (g(n+1,j+2k-1) - g(n+1,j+2k)))$ for $j \ge 0$.

5. EI and FI (1)

In this section we discuss the symmetric spaces $E_6/PSp(4)$ and $F_4/Sp(3) \times SU(2)(=F_4/Sp(3) \cdot SU(2))([11], p. 131)$.

We reproduce the Dynkin diagram of F_4 in [I] added the maximal root $\hat{\alpha}$ and the simple roots $\alpha_1, \dots, \alpha_4$ corresponding to the vertexes.

Then the Dynkin diagram of $Sp(3) \underset{z_2}{\times} SU(2)$ is obtained by omitting the vertex with the symbol α_1 .

(5.2)
$$\begin{array}{c} \beta_1 \quad \beta_2 \quad \beta_3 \qquad \beta\\ \circ & & \circ \\ \rho_3 \quad \overline{\lambda^2 \rho_3} \quad \overline{\lambda^3 \rho_3} \qquad \rho_2\\ 6 \quad 14 \quad 14 \qquad 2 \end{array}$$

where the explanation of the symbols and the numbers is quite similar to that of the above diagram.

According to [16], Tables I, III and VIII, the fundamental weights of F_4 and $Sp(3) \cdot SU(2)$ determined by the above fundamental root systems are as follows:

(5.3)

$$w_{1} = 2\alpha_{1} + 3\alpha_{2} + 4\alpha_{3} + 2\alpha_{4} = \tilde{\alpha},$$

$$w_{2} = 3\alpha_{1} + 6\alpha_{2} + 8\alpha_{3} + 4\alpha_{4},$$

$$w_{3} = 2\alpha_{1} + 4\alpha_{2} + 6\alpha_{3} + 3\alpha_{4},$$

$$w_{4} = \alpha_{1} + 2\alpha_{2} + 3\alpha_{3} + 2\alpha_{4},$$

$$\overline{w}_{1} = \beta_{1} + \beta_{2} + \frac{1}{2}\beta_{3},$$

$$\overline{w}_{2} = \beta_{1} + 2\beta_{2} + \beta_{3},$$

$$\overline{w}_{3} = \beta_{1} + 2\beta_{2} + \beta_{3},$$

$$\overline{w}_{3} = \beta_{1} + 2\beta_{2} + \frac{3}{2}\beta_{3},$$

$$\overline{w} = \frac{1}{2}\beta.$$

Hereafter, for simplicity we denote the weights $m_1\alpha_1 + \cdots + m_4\alpha_4$, $n_1\beta_1 + \cdots + n_3\beta_3$, $n_1\beta_1 + \cdots + n_3\beta_3 + n\beta$ by $(m_1 \cdots m_4)$, $(n_1 \cdots n_3)$ and $(n_1 \cdots n_3, n)$ respectively.

Since ρ_3 is the irreducible representation of Sp(3) with $\left(11\frac{1}{2}\right)$ as the highest weight, by acting the elements of the Weyl group on it we get the all weights of ρ_3 :

(5.4)
$$\left(11\frac{1}{2}\right)\left(01\frac{1}{2}\right)\left(00\frac{1}{2}\right)\left(00-\frac{1}{2}\right)\left(0-1-\frac{1}{2}\right)\left(-1-1-\frac{1}{2}\right).$$

Let $i: Sp(3) \cdot SU(2) \rightarrow F_4$ be the inclusion of $Sp(3) \cdot SU(2)$ and $i^*(w)$ denote the reduction of a weight w of F_4 to $Sp(3) \cdot SU(2)$. Then we have

$$i^*(-\tilde{lpha}) = eta, i^*(lpha_2) = eta_3, i^*(lpha_3) = eta_2$$
 and $i^*(lpha_4) = eta_1$

and so using the first formula of (5.3)

(5.5)
$$i^{*}(1000) = \left(-1-2-\frac{3}{2}, -\frac{1}{2}\right),$$
$$i^{*}(0100) = (001, 0),$$
$$i^{*}(0010) = (010, 0),$$
$$i^{*}(0001) = (100, 0).$$

Proposition 5.1. With the notations of (5.1) and (5.2) we have in $R(Sp(3) \cdot SU(2))$

- (i) $i^*(\rho') = \lambda^2 \rho_3 + \rho_2 \rho_3 1$,
- (ii) $i^*(Ad_{F_4}) = \rho_2 \lambda^3 \rho_3 \lambda^2 \rho_3 + \rho_2^2 + \rho_3^2 \rho_2 \rho_3 1$.

Proof. By restricting all the weights of the adjoint representation of E_6 to F_4 we obtain those of ρ' , which are listed at the end of this section, since we know all the roots of F_4 ([16], Table VIII). It follows obviously that the weights of ρ_2 are $\frac{1}{2}\beta$ and $-\frac{1}{2}\beta$.

(i) When we observe the restrictions of the weights of ρ' to $Sp(3) \cdot SU(2)$ making use of (5.5) we get (i).

(ii) Considering that

$$Ad_{Sp_{(3)}} = \rho_3^2 - \lambda^2 \rho_3$$
 and $Ad_{SU^{(2)}} = \rho_2^2 - 1$

we get (ii) similarly. q.e.d.

Lemma 5.2. In $R(Sp(3) \cdot SU(2)) \underset{R(F_{*})}{\otimes} Z$ we have

- (i) $\lambda^2 \rho_3 = -\rho_2 \rho_3 + 27$,
- (ii) $\rho_2 \lambda^3 \rho_3 = -\rho_2^2 \rho_3^2 + 80$,
- (iii) $\rho_3 \lambda^3 \rho_3 = \rho_2^2 \rho_3^2 + \rho_2^3 \rho_3 \rho_3^2 27 \rho_2^2 30 \rho_2 \rho_3 + 432$,
- (iv) $(\lambda^3 \rho_3)^2 = \rho_2^4 + \rho_3^4 \rho_2^4 \rho_3^2 + 54 \rho_2^3 \rho_3 + 2\rho_2 \rho_3^3 + 6\rho_2^2 \rho_3^2 216 \rho_2 \rho_3 136 \rho_3^2 812 \rho_2^2 + 6080$.

Proof. (i) and (ii) These are immediate results of Proposition 5.1. (iii) From (i) of Proposition 5.1 we get

$$i^*(\lambda^2
ho'+
ho')=\lambda^2(
ho_2
ho_3)+(
ho_2
ho_3)\lambda^2
ho_3+\lambda^2(\lambda^2
ho_3)$$

and by the direct calculation we have

$$\begin{cases} \lambda^2(\rho_2\rho_3) = (\rho_2^2 - 2)\lambda^2\rho_3 + \rho_3^2 \\ \lambda^2(\lambda^2\rho_3) = \rho_3\lambda^3\rho_3 - \lambda^2\rho_3 \ . \end{cases}$$

Therefore,

$$i^{*}(\lambda^{2}
ho')=
ho_{3}\lambda^{3}
ho_{3}+(
ho_{2}^{2}+
ho_{2}
ho_{3}-4)\lambda^{2}
ho_{3}+(
ho_{3}^{2}-
ho_{2}
ho_{3}+1)$$

and so from (i), (iii) follows.

(iv) By the direct caluculation we get

$$\begin{cases} \lambda^{2}(\rho_{2}^{2}) = 2\rho_{2}^{2} - 2\\ \lambda^{2}(\rho_{3}^{2}) = -2(\lambda^{2}\rho_{3})^{2} + 2\rho_{3}^{2}\lambda^{2}\rho_{3}\\ \lambda^{2}(\lambda^{3}\rho_{3}) = (\lambda^{2}\rho_{3})^{2} - \rho_{3}^{2} + 1 \end{cases}$$

and from (ii) we have

$$\begin{aligned} &(\lambda^3 \rho_3)^2 + (\rho_2^2 - 2) \lambda^2 (\lambda^3 \rho_3) + \lambda^2 (\rho_2^2) + \lambda^2 (\rho_3^2) \\ &+ \rho_3^3 \lambda^3 \rho_3 + \rho_2 \rho_3^2 \lambda^3 \rho_3 + \rho_2^2 \rho_3^2 = 3160 \,. \end{aligned}$$

Therefore, making use of the above formulas, (i) and (ii) we have (iv). q.e.d.

Theorem 5.3. With the notation of [I], Proposition 7.3

$$K^*(E_6/PSp(4)) \cong \wedge (\beta(\rho_1 - \rho_2), \beta(\lambda^2 \rho_1 - \lambda^2 \rho_2)) \otimes Z[\rho_4^2]/((\rho_4^2 - 64)^3).$$

Proof. Let $j: Sp(3) \cdot SU(2) \rightarrow PSp(4)$ be the inclusion map of $Sp(3) \cdot SU(2)$. Then we have

$$\begin{cases} j^{*}(\lambda^{2}\rho_{4}) = \lambda^{2}\rho_{3} + \rho_{2}\rho_{3} + 1\\ j^{*}(\lambda^{4}\rho_{4}) = \rho_{2}\lambda^{3}\rho_{3} + 2\lambda^{2}\rho_{3}\\ j^{*}(\rho_{4}^{2}) = (\rho_{2} + \rho_{3})^{2}\\ j^{*}((\lambda^{3}\rho_{4})^{2}) = (\lambda^{3}\rho_{3} + \rho_{2}\lambda^{2}\rho_{3} + \rho_{3})^{2}\\ j^{*}(\rho_{4}(\lambda^{3}\rho_{4})) = (\rho_{2} + \rho_{3})(\lambda^{3}\rho_{3} + \rho_{2}\lambda^{2}\rho_{3} + \rho_{3}) \end{cases}$$

and from Lemma 5.2 we have in $R(PSp(4)) \underset{R(B_{6})}{\otimes} Z$

$$egin{aligned} & \lambda^2
ho_4 = 28 \ & \lambda^4
ho_4 = -
ho_4^2 + 134 \ &
ho_4 \lambda^3
ho_4 = -
ho_4^2 + 512 \ & (\lambda^3
ho_4)^2 =
ho_4^4 - 191
ho_4^2 + 11264 \,. \end{aligned}$$

This and (2.2) show that

$$R(PSp(4)) \bigotimes_{R(H_{2})} Z = Z[\rho_{4}^{2}]/((\rho_{4}^{2}-64)^{3})$$

and so Theorem 5.3 follows from [I], Proposition 7.3. q.e.d.

(5.6) The weights of ρ' and the positive roots of F_4 are as follows respectively:

1 2 3 2		2342		
1 2 3 1		1 3 4 2		
1 2 2 1		1242		
1 1 2 1		1 2 3 2		
1111	0 1 2 1	1 2 3 1	1 2 2 2	
$1 \ 1 \ 1 \ 0$	0111	1221	1 1 2 2	
0 1 1 0	0011	1 2 2 0	0122	1 1 2 1
$0 \ 0 \ 1 \ 0$	0001	1 1 2 0	0 1 2 1	1 1 1 1
0000	0000	1110	0 1 2 0	0 1 1 1

0 0-1 0 0 0 0-1 1 1 0 0 0 1 1 0 0011 0-1-1 0 0 0-1-1 1000 0 1 0 0 0010 0001 -1-1-1 0 0-1-1-1 0-1-2-1 -1-1-1-1 -1-1-2-1 -1-2-2-1 -1-2-3-1 -1-2-3-2

where the sequence of integers $m_1 \cdots m_4$ indicates a weight $m_1 \alpha_1 + \cdots + m_4 \alpha_4$.

6. EI and FI (2)

This section is a continuation of the section 5. Put

(6.1)
$$x = \rho_2^2, y = (\rho_2 + \rho_3)^2 \text{ and } w = \rho_2 \rho_3 + x.$$

Then

obviously. We obtain from Lemma 5.2

(i)
$$\rho_3^2 = x + y - 2w$$
,
(ii) $\lambda^2 \rho_3 = x - w + 27$,
(6.3) (iii) $\rho_2 \lambda^3 \rho_3 = -2x + (2w - y + 80)$,
(iv) $\rho_3 \lambda^3 \rho_3 = (2 - w)x + (w^2 - 28w - y + 432)$,
(v) $(\lambda^3 \rho_3)^2 = -x^3 + (2w - 48)x^2 + (-w^2 + 44w - 732)x + (6w^2 + 56w - 2yw + y^2 - 136y + 6080)$

and from Theorem 5.3

$$(6.4) (y-64)^3 = 0.$$

From (6.2), (iii) and (iv) of (6.3) we have

(6.5) (i)
$$wx^{2} + (-w^{2} + 24w - 512)x + (4w^{2} - yw + 80w) = 0$$
,
(ii) $-wx^{2} + (2w^{2} - 24w + 512)x + (-w^{3} + 20w^{2} + 5yw - 592w - y^{2} + 80y) = 0$.

From (6.2) and (6.5) we have

$$(6.6) \qquad -w^2x + w^3 - 24w^2 - 4yw + 512w + y^2 - 80y = 0.$$

From (6.2), (6.4) and (6.6) we have

$$(6.7) \qquad w^{4} - yw^{3} + 24yw^{2} + 4y^{2}w - 512yw - 112y^{2} + 12288y - 262144 = 0.$$

From (6.2), (iii) and (v) of (6.3) we have

(6.8)
$$x^{4} + (48 - 2w)x^{3} + (w^{2} - 44w + 736)x^{2} + (-6w^{2} - 64w - 6400)x + (2w^{3} + 144w^{2} + 320w - yw^{2} - 4yw + y^{2} - 160y + 6400) = 0.$$

(2.2), (6.1) and (6.3) show that $R(Sp(3) \cdot SU(2)) \underset{R(F_4)}{\otimes} Z$ is generated by the elements x, y and w as an algebra and moreover (6.4), (6.7) and (6.8) imply

Lemma 6.1. $R(Sp(3) \cdot SU(2)) \underset{R(F_4)}{\otimes} Z$ is generated by the elements $x^a y^b w^c$ for a, c=0, 1, 2, 3 and b=0, 1, 2, as a module.

Let *M* denote the submodule of $R(Sp(3) \cdot SU(2)) \underset{R(F_4)}{\otimes} Z$ generated by the elements:

1, x,
$$x^2$$
, x^3 , y, y^2 , w, w^2 , w^3 , xw,
yw, y^2w , yw², y^2w^2 , yw³, y²w³.

From (6.4) and (6.7) we have

(6.9) $y^i w^j \in M \quad \text{for } i, j \ge 0$.

Hence, from (6.6) we have

 $(6.10) \qquad xw^{j+2} \in M \quad for \ j \ge 0.$

From (i) of (6.5), (6.9) and (6.10) we have

(6.11) $x^2 w^j \in M \quad \text{for } j \ge 0.$

From (i) of (6.5) and (6.6) we get

(6.12) x²w = w³ - 28w² + 432w - 3yw - 24xw + 512x + y² - 80y

and so we see that x^2w , x^3w , x^3w^2 and x^3w^3 are contained in M from (6.9), (6.10) and (6.11). Thus we obtain

Lemma 6.2. With the above notation

$$R(Sp(3) \cdot SU(2)) \underset{R(F_4)}{\otimes} Z = M.$$

Theorem 6.3. With the notation of (6.1) $K^*(F_4/Sp(3) \cdot SU(2))$ is a free module generated by the elements

$$1, x, x^2, x^3, y, y^2, w, w^2, w^3, xw, yw, yw^2$$
.

Proof. Let N be the submodule of $K^*(F_4/Sp(3) \cdot SU(2))$ generated by the elements mentioned in the theorem.

From (iii), (iv) and (v) of (6.3) we have

$$\begin{aligned} &-x^{4} + (3w - 48)x^{3} + (-3w^{2} + 94w - 736)x^{2} \\ &+ (w^{3} - 42w^{2} + 768w + 5376)x + (-5w^{3} - 168w^{2} - 7456w + 2yw^{2} \\ &- y^{2}w + 162yw + y^{2} - 512y + 34560) = 0. \end{aligned}$$

From this equality and (6.8) we have

$$wx^{3} + (-2w^{2} + 50w)x^{2} + (w^{3} - 48w^{2} + 704w - 1024)x + (-3w^{3} - 24w^{2} - 7136w + yw^{2} - y^{2}w + 158yw + 2y^{2} - 672y + 40960) = 0.$$

Moreover, from this equality, (6.5) and (6.6) we have

$$(6.13) y^2 w = 512x^2 - 512xw + 12288x - 10240w + 192yw - 512y + 40960.$$

This shows

$$(6.14) y^2 w \in N.$$

From (6.4) we have

$$(6.15) y^2 w^2 = 192 y w^2 - 12288 w^2 + 262144 x$$

using (6.2) and so

$$(6.16) y^2 w^2 \in N$$

From (6.2) and (6.13)

 $yw^3 = x(y^2w)$

$$= 512x^3 - 512x^2w + 12288x^2 - 10240xw + 192w^3 - 512w^2 + 40960x$$

and so we have

$$(6.17) yw^3 \in N$$

since $x^2 w \in N$ by (6.12). From (6.15) and (6.17) we have

$$(6.18) y^2 w^3 \in N.$$

(6.14), (6.16), (6.17) and (6.18) imply Theorem 6.3 since $K^*(F_4/Sp(3) \cdot SU(2))$ is a free module of rank 12. q.e.d.

7. FII and G

Type $FII(F_4/Spin(9))$. According to [15], Theorem 15.1 we have in $R(Spin(9)) \underset{R(F_4)}{\otimes} Z$

K-GROUPS OF SYMMETRIC SPACES II

$$\begin{cases} \lambda^{1} \rho_{9} = -\Delta_{9} + 25 \\ \lambda^{2} \rho_{9} = -\Delta_{9} + 52 \\ \lambda^{3} \rho_{9} = \Delta_{9}^{2} - 23\Delta_{9} + 196 \\ (\Delta_{9} - 16)^{3} = 0 . \end{cases}$$

This proves

Theorem 7.1.
$$K^*(F_4/Spin(9)) \simeq Z[\Delta_9]/((\Delta_9 - 16)^3).$$

Type $G(G_2/SU(2) \cdot SU(2))$. We observe the extended Dynkin diagram of G_2 with the irreducible representations corresponding to the vertices and their dimensions written next to vertices ([16], Table 30):

$$(7.1) \qquad \begin{array}{c} \alpha_1 \quad \alpha_2 \quad -\tilde{\alpha} \\ \circ \overleftarrow{\longleftarrow} \circ & - \circ \circ \\ \rho \quad Ad_{G_2} \\ 7 \quad 14 \end{array}$$

where α_1, α_2 are the simple roots and $\tilde{\alpha}$ is the maximal root.

Let us denote by σ the involutive automorphism of G_2 for the symmetric space of type G([11], Theorem 3.1). Then we see that the subgroup consisting of fixed points of σ is $SU(2) \underset{Z_2}{\times} SU(2)(=SU(2) \cdot SU(2))$ where Z_2 is the intersection of the centers of the two groups SU(2), and its Dynkin diagram is obtained by omitting the vertex with the symbol α_2 .

$$(7.2) \qquad \begin{array}{c} \beta_1 & \beta_2 \\ \circ & \circ \\ \rho_2 & \rho_2' \\ 2 & 2 \end{array}$$

in which the explanation of the symbols and the numbers are as in the diagram of G_2 .

If we denote the fundamental weights of G_2 and $SU(2) \cdot SU(2)$ by w_k and \overline{w}_k for k=1, 2 respectively, then we have from [16], Tables I and IX

(7.3)

$$w_{1} = 2\alpha_{1} + \alpha_{2},$$

$$w_{2} = 3\alpha_{1} + 2\alpha_{2} = \tilde{\alpha},$$

$$\overline{w}_{1} = \frac{1}{2}\beta_{1},$$

$$\overline{w}_{2} = \frac{1}{2}\beta_{2}.$$

Let $i: SU(2) \cdot SU(2) \rightarrow G_2$ be the inclusion of $SU(2) \cdot SU(2)$ and $i^*(w)$ be the reduction of a weight w of G_2 to $SU(2) \cdot SU(2)$. Since

$$i^*(\alpha_1) = \beta_1$$
 and $i^*(-\tilde{\alpha}) = \beta_2$,

we have by (7.3)

(7.4)
$$i^*(\alpha_1) = \beta_1,$$

 $i^*(\alpha_2) = -\frac{3}{2}\beta_1 - \frac{1}{2}\beta_2.$

Proposition 7.2. With the notation of (7.1)

- (i) $i^*(\rho) = \rho_2^2 + \rho_2 \rho_2' 1$,
- (ii) $i^*(Ad_{G_2}) = \rho_2^2 + {\rho_2'}^2 + {\rho_2^3}{\rho_2'} 2\rho_2 \rho_2' 2$

where i^* : $R(G_2) \rightarrow R(SU(2) \cdot SU(2))$ is the restriction.

Proof. Denote the weights $m_1\alpha_1+m_2\alpha_2$ and $n_1\beta_1+n_2\beta_2$ by $(m_1 m_2)$ and (n_1, n_2) respectively.

(i) Since ρ is the irreducible representation of G_2 with (2 1) as the highest weight, by operating the elements of the Weyl group on it we see that the weights of ρ is as follows:

$$(2 \ 1) \ (1 \ 1) \ (1 \ 0) \ (0 \ 0) \ (-1 \ 0) \ (-1 \ -1) \ (-2 \ -1)$$

Consider the restrictions of the weights of ρ to $SU(2) \cdot SU(2)$ using (7.4) then (i) follows because the weights of ρ_2 and ρ_2' are

$$\left(\frac{1}{2}, 0\right)\left(-\frac{1}{2}, 0\right)$$
 and $\left(0, \frac{1}{2}\right)\left(0, -\frac{1}{2}\right)$

respectively.

(ii) From [16], Table IX the weights of Ad_{G_2} are as follows:

$$\begin{array}{l} (3 \ 2) \ (3 \ 1) \ (2 \ 1) \ (1 \ 1) \ (1 \ 0) \ (0 \ 1) \ (0 \ 0) \ (-3 \ -2) \\ (-3 \ -1) \ (-2 \ -1) \ (-1 \ -1) \ (-1 \ 0) \ (0 \ -1) \ (0 \ 0) \ . \end{array}$$

By observing the reduction of these weights to $SU(2) \cdot SU(2)$ we obtain (ii) analogously. q.e.d.

Theorem 7.3. $K^*(G_2/SU(2) \underset{Z_2}{\times} SU(2)) \cong Z[\rho_2^2]/((\rho_2^2-4)^3)$ with the notation of (7.2).

Proof. By Proposition 7.2 we get in $R(SU(2) \cdot SU(2)) \bigotimes_{R(G_2)} Z$

$$\rho_2^2 + \rho_2 \rho_2' = 8$$
 and $\rho_2^2 + \rho_2'^2 + \rho_2^3 \rho_2' - 2\rho_2 \rho_2' = 16$.

From these equalities we have

K-GROUPS OF SYMMETRIC SPACES II

$$(
ho_2
ho_2' = 8 -
ho_2^2 \
ho_2'^2 =
ho_2^4 - 11
ho_2^2 + 32 \ ((
ho_2^2 - 4)^3 = 0 \ .$$

Therefore the theorem is proved because $R(SU(2) \cdot SU(2))$ equals the ring $Z[\rho_2^2, \rho_2 \rho_2', \rho_2'^2]$. q.e.d.

OSAKA CITY UNIVERSITY

References

[1]-[15] are listed at the end of Part I.

- [16] N. Bourbaki: Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Hermann, Paris, 1968.
- [17] G. Segal: The representation ring of a compact Lie group, Inst. Hautes Études Sci. Puble. Math. (Paris) 34 (1968), 113-128.
- H. Minami: K-groups of symmetric spaces I, Osaka J. Math. 12 (1975), 623-634.