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1. Introduction

Let M=G/K be a symmetric homogeneous space such that G is a simply

connected compact Lie group. In [I] the author showed that the unitary

.K-group of M is isomorphic to the tensor product of R(K) ® Z and an exterior

algebra E over Z, where R(G) and R(K) are the complex representation rigns of

G and K respectively, and in particular described the generators of E as an

exterior algebra explicitly.

The purpose of this paper is to present a structure of R(K) (g) Z as a group
Λceo

in the following nine cases:

Type ofM= AIII, BDI(a)(Spin(2p+2q+2)ISpin(2p+l) Spin(2q+l)),

BDΠ(b)(Spin(2n+ί)ISpin(2n))y Dili, CΠ> El, ¥1, FΠ or G .

Now let us denote by n(L) the order of the Weyl group of a compact con-

nected Lie group L. We know that if U is a closed connected subgroup of G

of maximal rank then R(U) ® Z is a free module of rank n(G)ln(U) and is iso-

morphic to K*(G/U) [12]. Throughout this paper we shall identify R(U) ® Z

with the X-group of GfU in the above situation and denote by the same letter

p the element of K*(G/U) defined by an element p of R(U) in the natural

way. Furthermore we shall denote by Z(g) the free module generated by an

element g.

2. Representation rings

In this section we recall the structure of the complex representation rings

of classical groups.

Write pn for the canonical representations SU(n)->U(ri), U(ri)-+U(ri),

Sp(n)-+U(2n) and Spin(n)->SO(n)->U{n) for each n, and write λ'pΛ for the ί-th

exterior product of ρn. According to [10] we have
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R{U(n)) =

(2.1) Λ(Sjp(»)) = ^[λ^n, - , λ-pj = Z[σ lf - , σ j ,

i?(5/>m(2n+l)) = Z[λWi> - , λ-VWi, Δ 2 Λ + 1 ],

R(Spin(2n)) = Z[\*p2ni..., λ*-2p2Λ, Δ2

+

w, Δ~] .

Here we denote by σ19 ---, σn the elementary symmetric functions in the n
variables *1+*Γ1> "> k + G 1 when we set R(T)=Z[t1> t~\ •-, tny t'1] for a
maximal torus T of Sp(n), and denote by ΔJ,, Δ̂ n and Δ2Λ+i the half-spin
representations of Spin{2n) and the spin representation of Spin(2n-\-\)>
respectively.

Proposition 2.1 (See [17], p. 120). If G is a compact Lie group, N is a
finite normal subgroup of G and π: G->G/N is the canonical map, then there is a
homomorphism of R{GjNymodules π*: R(G)-^R(G/N) such that

Proof. It is easy to see that the correspondence V->VN, where V is a
G-module and VN the iV-invariant submodule of V, defines the homomorphism
7Γ*, as desired. q.e.d.

Using Proposition 2.1 we can calculate the representation rings of some
quotient groups. For example,

(2.2) R(PSp(4)) = Z[\2p4, λ 4p 4, (p4)
2, (λ 3p 4) 2, P<λ3P<]

as a subring of R(Sp(4)) and

R(Sp(3) x SU(2)) = Z[x2p3y (p3)
2, (λ 3p 3) 2, P3λ

3p3, ( P 2 ) 2 , P2P^ P 2 λ 3 pJ
Z

as a subring of R(Sp(3) X SU(2)) where Z2 is the intersection of the centers of Sp(3)
and 517(2).

Using the relations of [10], §13, Theorem 10.3 we get

(2.3) R(Spin(2m+1) X Spin(2n+1))
Z2

= Z\\ιp2tn+U •••, λ w p 2 m + 1 , λ ^ n + i , ••*> λ / V W i , Δ 2 m + 1 Δ 2 n + 1 ] / /

as a subalgebra of R(Spin(2m+l)xSpin(2n+l)), where Z2 is the intersection of
the centers of Spin(2m-\-l) and Spin(2n-\-l)> and I is the ideal generated by the
element

(Δ 2 w + 1 Δ 2 M + 0Mλ"p 2 W + 1 +-- + λ ^

3. AIΠ, BDI(a), BDII(b) and CII

Type AIII( U(m+n)lU(m) x U(n)). Let T= S\ X X S\ be the canonical
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maximal torus of U(n) where S], \<Li<Ln, are the circle groups, and set R(S})
=Z[tiy tj1] for each i where t{ is a standard 1-dimensional non-trivial represen-
tation of S\. Moreover let us define Fk to be the free module generated by
l,/A, ,<r+*-1forA=l,...,n.

Lemma 3.1. R(U(m)xT) is a free R(U(m+ή))-module (by restriction)
generated by t*ι-- t%» (0^ak^m+k— 1). Namely,

R{U(m)x T)s*R(U(m+n))®Fι®-®Fn

with the above notation.

Proof. R(U(m)xU(\)) is freely generated as an R(U(m+l))-module by
1, t, ~3 t

m, when we put R(U(ί))=Z[ty Γ1] ([9], Lemma 7.3). Let

Uk= [/(w+Λ)xSϊ+iX- x5J for k = 0, .- ,w-

and Un = U(m+ή).

Then we have

for &=0, •••, n— 1 and this implies Lemma 3.1.

Theorem 3.2.

K*(U(m+n)IU(m)x U(n))^ Θ
P{£Q'"P£0

for m,n^t\.

Proof. Put

Gk= U{m+n)IU{m)xU{k)xS\^x-xSl for Λ = 1,

GΛ = U(m+n)IU(m)x U(n),

and W ^ = θ

for k=l, •••, w.
K*(Gk) is a free module of rank (m-j-w)!/m!&! and identified with R(U(m)

X U(k)X S\+1 X~ xSl) ® Z for each A. In particular, from Lemma 3.1 we

have

Therefore we see that K*(G^) contains Wk®Fk+1® ~®Fn as a free subgroup
by considering the injective homomorphism K*(Gk)-^K'¥(G1) for each k
([I], Proposition 7.1).
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We have

rank Wk®Fk+1®-®Fn = (Σ3Γ-

= (m+ή)\lm\k\

where kHs=(ktlϊ1) is the number of the repeated combination. This proves

(a) K*(GM)®Q = Wk®Fk+1® -®Fn®Q for k = 1, •••, n— 1,

Next we shall prove by induction on k

(b) K*(Gk)=Wk®Fk+1®-®Fn for A = 1, - , n - l ,

Since 1 ^ = ^ , (b) in case of k=l follows by Lemma 3.1. Suppose that (b) is

true when k=L For any element x^K*(Gί+1) there is an integer N>0 such

that

Nx = Σ ^ , . . ^ λ V / + 1 ) ^ (λ'+1p,+1)*<+1

Pi+ ' +Pi+i^**

where apv..pι+1^Fι+2® " ®Fn by (a). Let

be the natural injective homomorphism. Since

i*(λ'/ι/+1) = λ'p/+(λ'-V/)^/+i for ί = 1, .- ,

and ί*(λ/+1p/+1) = (λ/p

we have

= C^1pι)p2"Ό^iPι)Pl+1tί+i"'+Pl+1+ lower monomials

where the lower monomial implies a monomial whose degree with respect to the

variable tι+1 is lower than/^-] hp/+i Observe the image of Nx by /* then

we see by the inductive hypothesis that apv..pι+1 is divisible by N. Thus we have

xE Wι+1®Fι+2® ••• ®F Λ . This completes the induction, q.e.d.

Γj#e CII(Sp(m+ή)ISp(m)xSp(n)). Let % ( l ) x — X5/>Λ(Λ), where Sp{(])

= Sp(l)(ί^i^ή)i be the subgroup of Sp{n) embedded diagonally, and put

R{Spi{\))=Z[θi] for each / where θi=U+tJι and t{ is the standard 1-dimen-

sional non-trivial representation of a maximal torus of Spi(l).

By replacing S\ and tk in case of Type AIII by Spk(\) and ^Λ for
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k=l, •••, n respectively, we obtain analogously the following results.

Lemma 3.3. Let Ek be the free module generated by \, θky •••, θ™*k~ι for
k=\, -- ,n. Then we have an isomorphism

R(Sp(m)xSp1(l)x ~xSpn(l))^R(Sp(m+n))®E1® ®En

with the above notation.

Theroem 3.4.

K*(Sp(m+ή)/Sp(m) X Sp(n))a* θ Z(σ?i -σ»»)

Pi + '- + Pn^m

P^O^. Pn^O
P^-' + Pn^m

for m, n 2^1.

The equality in Theorem 3.4 is obtained immediately by the formula

for a^Z and k=l, •••, n ([10], 13, Proposition 5.4).

Type BDI(a)(Spin(2m+2n+2)ISpin(2m+l)-Spin(2n+l)). From the re-
lations of [10], §13, Theorem 10.3 and (2.3) we see that

R(Spin(2m+l)-Spin(2n+l))

= Z[\ P2m+1> •"> λ, P2#»+l) ^ P2Λ+1J '

where / is the ideal generated by the elements

for all /.
On the other hand, when we put Xi'=\ipm+\i~1ρm(l^i^m) and

R(Sp(m)xSp(ή)) <g> Z = Z[λ/, - , \J, Xu -, Xn]/J
R(Sp(m+n))

where / is the ideal generated by the elements

for all /.
Hence we see that the correspondences λ/-»λx'p2m+1 and Xj

(1 <; i ̂  m, 1 ̂  j ^ ft) induce an isomorphism of algebras R(Sp(m) X Sp(n)) ® Z

and R(Spίn(2m+ί) Spin(2n+1)) ® Z. Thus we have by Theorem 3.4
R(Spin(2m+2n+2))
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R(Sρin(2m+l)-Sptn(2n+l)) ® Z
R(Spin(2m+2n+2))

« θ

This and [I], Proposition 7.1 prove the following

Theorem 3.5.

K*(Spin(2m+2n+2)ISpin(2m+1) X Spin{2n+\))

= { θ

for tn, n}>0.

Type BDΠ(b)(Spin(2n+l)ISpin(2n)). The following is an immediate
result of [10], §13, Theorem 10.3.

Theorem 3.6. K*(Spin(2n+l)lSρin{2n))^Λ(&2«) for n^ί where &ϊn=

4. DIΠ

We regard U(n) as a subgroup of SO(2ή) by the map

w h e r e a i J = x 2 i ^ 1 ^ j ^ + V — 1 Λ? 2 ί f 2 y ( l ^
We see that the canonical inclusion map of SO(2n— 1) to SO{2n) induces

a homeomorphism

(4.1) SO(2n-l)IU(n-l)^SO(2n)IU(n)

bacause of SO(2n-l)f]U(n)=U(n-ί) and SO(2w)=C/(rc) SO(2rc-l). Let
π: Sptn(2n)->SO(2ή) denote the two fold covering map of SO(2ή) and define
U(n) (resp. U(n— 1)) to be the inverse image of U(ή) (resp. U(n—l)) by zr. By
(4.1) we have homeomorphisms

(4.2) Spin(2n-l)IU(n-l)~Spin(2ή)IU(n)

and SO(2n)IU(n)^Spin(2n)IU(n).

Next we shall consider the complex representation ring of U(ή). Let T
be the standard maximal torus of U(ή) and put T=π~\T)y which becomes a
maximal torus of U(n). Here, using the notation of [10], §13 we define the
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homomorphism

by f(x+yun)=π:¥(x)+π*(y)(a1'" an)~1/2 x,y*ΞR(T). Then we can easily
check that / is isomorphic and compatible with the actions of the Weyl groups
of U(n) and U(n)> and so we have

(4.3) R(O(ή)) is isomorphic to the algebra

where I is the ideal generated by the elements

(VpnWPn)-1-! and u

Theorem 4.1. With the above notation

K*(Spin(2n)lO(n))^ θ
ε o i

for n^2 where

for k=l, •• ,n—2 and

for ί=0, •••, n.

Proof. Denote by in: Sρin(2n—l)IU(n—l)->Spin(2n)IU(n) the homeo-
morphism of (4.2) and put

R(T) = Z[al9 aT\ - , am cZ\ (αx α . Π

using the notation of [10], §13, Proposition 8.3. We proceed by induction on n.
The homomorphism it: K*{Spin{4)lU(2))^K*{Spin(Z)lU{\)) is isomor-

phic, and we have

i*(u2) = α-1 '2

when we put R(U(l))=Z[ai/2, a~iμ~\. Therefore we get the statement when
n=2.

Put E=Spin(2n+ί)lO(n), F=Spin(2ή)jΌ{n) and denote the inclusions
(F, φ) -> (E, φ) -»• (E, F) by i and j respectively. Then there is a short exact
sequence

0 -* K*(E, F) L K*(E) ̂ > K*(F) — 0.



278 H. MiNAMi

Moreover we denote the projection E-+ Spin(2w+l)/Spin(2ή) by p. Then we
have an isomorphism

φ: K*(F)®g*(Spin(2n+l)ISpin(2n)) -> K*(Ey F)

defined by j*φ{x®&tn)=yp*{&in) XSΞK{F) where y is an element of K*(E)
such that i*(y)=x.

Here suppose that the assertion for K*(Spin{2n)IU(n)) is true. By Theo-
rem 3.6 we may assume that K*(Sρin(2n+\)ISpin(2n))= /\(Δϊn—2*"1). Con-
sider the element ^ ; i >*(Δ^-2 Λ - 1 ) of K*(Spin(2n+2)IU(n+l)). By the
definition of Δ£"n

^•(Δi-2""1) = un(XM-1

Pn+X"-3

Pn+-)-2-1.

Hence

because of ί*+ 1(^(n+l, ι")-|<«+l, * + l ) ) = λ - ' + 1 p . .
For the completion of the induction it is sufficient to prove that

(W)*K+ 1{ Σ Έk

t

+-l(
iSi. . *+1ai

for k=2, - ,n—ί. This follows from the following equalities:

Σ Σ«U-l)'(ί)(Σ.»+1iite(«+l,2*1+ +2»*H-2»*+1-A+»)

-g(n+l,2s1+-+2sk+2sk+i-k+i+\)))}

and^(»,Λ=(i.+ι0*(Σβ,fe(«+l,;+2A-l)-^(»+l,y+2A)))

5. EΙandFI(l)

In this section we discuss the symmetric spaces EJPSp(4) and FJSp(3)

xSU(2)(=FJSp(3).SU(2))(lU], p. 131).

We reproduce the Dynkin diagram of F4 in [I] added the maximal root

όt and the simple roots aiy •••, αr4 corresponding to the vertexes.

a* a3 do a, —ot
2

O o φ = a a O O O

( 5 e l ) ?f X2

9

f ^Y ΛdF4

26 273 1274 52
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Then the Dynkin diagram of Sp(3) X SU(2) is obtained by omitting the vertex
zz

with the symbol ax.

A A A β
o

Pa λ 2

P a λ 3 p 3 P 2

6 14 14 2

where the explanation of the symbols and the numbers is quite similar to that
of the above diagram.

According to [16], Tables I, III and VIII, the fundamental weights of FA

and Sp(3) SU(2) determined by the above fundamental root systems are as
follows:

wi = 2α 1 +3α 2 +4α 3 +2α 4 = a ,

( 5 ' 3 ) H^A+A+y
W2= β1+2β2+β3,

Hereafter, for simplicity we denote the weights m^a^Λ
+n3βZ9 nxβx-\ \-nβz+nβ by {m^'-m,), (Wj Wg) and (n^'-n^ n) respectively.

Since p3 is the irreducible representation of Sp(3) with ί 11-yj as the

highest weight, by acting the elements of the Weyl group on it we get the all
weights of p3:

Let i: Sp(3)-SU(2)-+F4 be the inclusion of Sp(3)-SU(2) and i*(w) denote
the reduction of a weight w of F4 to Sp(3)-SU(2). Then we have

; * ( _ Λ ) = βf i*(a2) = β3y i*(a3) = β2 and ί*(α4) = A

and so using the first formula of (5.3)

f * ( 1 0 0 0 ) = ( - l - 2 — | , - 1 ) ,

ί*(0100) = (001,0),

i*(0010) = (010,0),

t*(0001) = (100, 0).
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Proposition 5.1. With the notations of (5.1) and (5.2) we have in R(Sp(3)
SU(2))

(i) /*(p/) =

(ii) i*(AdFA) =

Proof. By restricting all the weights of the adjoint representation of E6 to

F4 we obtain those of p\ which are listed at the end of this section, since we

know all the roots of F4 ([16], Table VIII). It follows obviously that the we-

ights of p2 are -jβ and ~γβ.

(i) When we observe the restrictions of the weights of p' to Sp(3)'SU(2)
making use of (5.5) we get (i).

(ii) Considering that

Adspω = p\—λ2p3 and Adsuc» = p\—\

we get (ii) similarly. q.e.d.

Lemma 5.2. In R(Sρ(3)-SU(2)) ® Z we have

(i) λ2p, = - p 2 p 3 + 2 7 ,

(ii)

(iii)

(iv) (λ'p3)
2 =

-216p2p,-136p2-812p2

2+6080.

Proof, (i) and (ii) These are immediate results of Proposition 5.1.
(iii) From (i) of Proposition 5.1 we get

ί (λ f p'+Pθ = λ2(

and by the direct calculation we have

fλ2(p2p3) = ( p 2 -

Iλ 2 (λ 2 p 3 )=p 3 λ 3 p3-λ 2 p 3 .

Therefore,

and so from (i), (iii) follows.
(iv) By the direct caluculation we get

=-2(λ 2 p 3 ) 2 +2p 2 λ 2 p 3
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and from (ii) we have

(λ3P3)2+(p2

2-2)λ2(λ3p3)+λ2(p2)+λ2(p2)

+P>3p3+PiPpSp*+plpl = 3160.

Therefore, making use of the above formulas, (i) and (ii) we have (iv). q.e.d.

Theorem 5.3. With the notation of [I], Proposition 7.3

K*(EJPSp(4))^Λ(β(Pl-p2),

Proof. Let : Sp(3) SU(2)->PSp(4) be the inclusion map of Sp(3)
SU(2). Then we have

j*(X<Pi) = p2λ
3p3+2λ2p3

j*((\3

PiY) = (λ3p3+P2λ
2p3+p3)

2

and from Lemma 5.2 we have in R(PSp(4)) ® Z

λ2p4 = 28

Pt = - p 2 + 5 1 2

This and (2.2) show that

R(PSp(4)) ® Z

and so Theorem 5.3 follows from [I], Proposition 7.3. q.e.d.

(5.6) The weights of p' and the positive roots of F4 are as follows respectively:

1

1

1

1

1

1

0

0

0
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2

2

1

1

1

1

0

0
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3

2

2

1

1

1

1

0

2

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

2

1

1

0

0

1

1

1

1

0

2

1

1

1

1

1

1

1

1

3

3

2

2

2

2

2

1

1

4
4

4

3

3

2

2

2

1

2

2

2

2

1

1

0

0

0

1

1

0

0

0

2

1

1

1

1

2

2

2

2

2

2

2

2

1

0

1

1

0

1

1

1

2

1

1

1

1

1



»2

0 0-10

0-1-1 0

-1-1-1 0

-1-1-1-1

-1-1-2-1

-1-2-2-1

-1-2-3-1

-1-2-3-2

0 0 0-1

0 0-1-1

0-1-1-1

0-1-2-1

1 1

1 0

H.

0

0

MlNAMI

0 0 1

0 0 1

1 0

0 0

0 0 1 1

0 0 1 0 0 0 0 1

where the sequence of integers indicates a weight tn1a1-
sr - -\-tniai.

6. El and FI (2)

This section is a continuation of the section 5.
Put

(6.1) * = pi, y = (p2+p3)
2 and w = ρ2ρs+x .

Then

(6.2) w2 = xy

obviously. We obtain from Lemma 5.2

(i) Pl = χ+y-2w,

(ii) \2p3 = x-w+27,

(6.3) (iii) p2\
3p3 = -2x+(2w-y+80),

(iv) p3X
3p3 = ( 2 - W ) * + ( K ; 2 - 2 8 W - J + 4 3 2 ) ,

(v) (λ3p3)
2 = -x3+(2w-4-8)x2+(-w2+Hw-732)x

+(6w2+56w-2yw+y2- 136y+6080)

and from Theorem 5.3

(6.4) Cy-64)3 = 0 .

From (6.2), (iii) and (iv) of (6.3) we have

(i) wx2+(-w2+24w—512)x+(4w2—yw+SOw) = 0 ,

(ii) —wx2+(2w:ί—2^zo+5ί2)x+(—w3+20w2+5ytΰ-592w-y2

+80j>) = 0.

From (6.2) and (6.5) we have

(6.6) —w2x+vf-24w2—4yw+5l2w+y2-80y = 0.

(6.5)
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From (6.2), (6.4) and (6.6) we have

(6.7) w4-yw3+24yw2+4y2w-512yw-U2y2+12288y-262l44 = 0 .

From (6.2), (iii) and (v) of (6.3) we have

(6.8) x4+(W-2w)x3+(w2-44w+736)x2+(-6w2-64w-(A00)x

+(2w3+144w2+320w-yw2-4yw+y2-l60y+(A00) = 0.

(2.2), (6.1) and (6.3) show that R(Sp(3)-SU(2)) ® Z is generated by the

elements xfy and w as an algebra and moreover (6.4), (6.7) and (6.8) imply

Lemma 6.1. R(Sρ(3) SU(2)) ® Z is generated by the elements xaybwc

for a, f=0, 1, 2, 3 and b=0,1, 2, as a module.

Let M denote the submodule of R(Sp(3) SU{2)) ® Z generated by the

elements:

1, x, x2, x\ y, y2, w, w2, w\ xw ,

yw, y2w, yw2, y2w2, yw3, y2wz.

From (6.4) and (6.7) we have

(6.9) J V G I for ij^O.

Hence, from (6.6) we have

(6.10) XW''+2EΞM for j^O.

From (i) of (6.5), (6.9) and (6.10) we have

(6.11) ΛVGM forj^O.

From (i) of (6.5) and (6.6) we get

(6.12) x2w = w3-28w2+432w-3yw-24xw+5l2x+y2-80y

and so we see that x2w9 x3w, x3w2 and x3w3 are contained in M from (6.9), (6.10)
and (6.11). Thus we obtain

Lemma 6.2. With the above notation

R(Sp(3).SU(2)) ® Z=M.
RCF)

Theorem 6.3. With the notation of (6.1) K*(F4/Sp(3).SU(2)) is a free
module generated by the elements

\, x3 x
2

y x
3

y y, y2

y w, w2, w3

} xw, yw, yw2.
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Proof. Let N be the submodule of K*(FAISp(3)*SU(2)) generated by the
elements mentioned in the theorem.

From (iii), (iv) and (v) of (6.3) we have

-xA+(3w-48)x3+(-3w2+94w-736)x2

+(w3-^2w2+768w+5376)x+(-5w3-168w2-~7i56w+2yw2

-y2w+l62yw+y2-5l2y+34560) = 0.

From this equality and (6.8) we have

wx3+(-2w2+5Ow)x2+(w3-48w2+7O4w-W24)x

+(-3w3-24w2-7l36w+yw2--y2w+158yw+2y2-672y+40960) = 0.

Moreover, from this equality, (6.5) and (6.6) we have

(6.13) y2w =

This shows

(6.14)

From (6.4) we have

(6.15) yW = \92yw2-\2288w2+262\44x

using (6.2) and so

(6.16)

From (6.2) and (6.13)

yw3 = x(y2w)

and so we have

(6.17) yw3(=N

since x2w^N by (6.12). From (6.15) and (6.17) we have

(6.18) y2w3(=N.

(6.14), (6.16), (6.17) and (6.18) imply Theorem 6.3 since K*(FJSρ(3)-
SU(2)) is a free module of rank 12. q.e.d.

7. FIIandG

Type FII(FJSpin(9)). According to [15], Theorem 15.1 we have in
R(Spin{9)) ® Z
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X1p9= - Δ 9 + 2 5

λ2p9 = - Δ 9 + 5 2

l(Δ 9-16) 3 = 0 .

This proves

Theorem 7.1. ^*(F4/5/>m(9))^Z[Δ9]/((Δ9-16)3).

Type G(G2ISU(2)-SU(2)). We observe the extended Dynkin diagram of
G2 with the irreducible representations corresponding to the vertices and their
dimensions written next to vertices ([16], Table 30):

where ax> a2 are the simple roots and ct is the maximal root.
Let us denote by σ the involutive automorphism of G2 for the symmetric

space of type G ([11], Theorem 3.1). Then we see that the subgroup consisting
of fixed points of σ is SU(2)X SU(2)(=SU(2)-SU(2)) where Z2 is the inter-

Z2

section of the centers of the two groups SU(2), and its Dynkin diagram is ob-
tained by omitting the vertex with the symbol a2.

βx A
o o

(7-2) p 2 p ,

2 2

in which the explanation of the symbols and the numbers are as in the diagram
of G2.

If we denote the fundamental weights of G2 and SU(2) SU(2) by wk and
Wk for k=\, 2 respectively, then we have from [16], Tables I and IX

= & ,

Let t: SU(2) SU(2)^G2 be the inclusion of SU(2)-SU(2) and i*(w) be
the reduction of a weight w of G2 to SU(2) SU(2). Since
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i*{a^) = β1 and **(—ot) = β2,

we have by (7.3)

*'•(«.) = A ,
(7-4) 3 j

**(#2) = —jβt—jβf

Proposition 7.2 PFίίA fλ* notation of (7.1)

(i) z'*(p) = P2+P2P2'— 1 >

(ii) ί*(i4<fcj = P2

2+P2

/ 2+P2V2

/-2p2p2

/-2

cofer* ί*: R(G2)->R(SU(2).SU(2)) is the restriction.

Proof. Denote the weights mxax-\-m2a2 and nxβx-\-n2β2 by {m1 m2) and
(wn n2) respectively.

(i) Since p is the irreducible representation of G2 with (2 1) as the highest
weight, by operating the elements of the Weyl group on it we see that the
weights of p is as follows:

(2 1) (1 1) (1 0) (0 0) ( - 1 0) ( - 1 - 1 ) ( - 2 - 1 ) .

Consider the restrictions of the weights of p to SU(2) SU(2) using (7.4) then
(i) follows because the weights of p2 and p2 are

(|, 0) (4,0) - (0, i) (0, 4 )

respectively.
(ii) From [16], Table IX the weights of AdGΐ are as follows:

(3 2) (3 1) (2 1) (1 1) (1 0) (0 1) (0 0) ( - 3 - 2 )

( - 3 - 1 ) ( - 2 - 1 ) ( - 1 - 1 ) ( - 1 0) (0-1) (0 0).

By observing the reduction of these weights to SU(2) SU(2) we obtain (ii)
analogously. q.e.d.

Theorem 7.3. K*(G2ISU(2) X 5C/(2))^Z[p2

2]/((p2

2-4)3)

with the notation of (7.2).

Proof. By Proposition 7.2 we get in R(SU(2)-SU(2)) ® Z

P2

2+P2p/=8 and rf+p1

/f+AV-2pIp/ = 16 .

From these equalities we have
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Therefore the theorem is proved because R(SU(2) SU(2)) equals the ring

lp*ρ*',p/*\ q e.d.
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