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Introduction

Let M be a connected differentiable manifold with a locally flat linear
connection D (A linear connection is locally flat, if its torsion and curvature
tensors vanish identically). Then, for each point p^My there exists a local

coordinate system {x1, •••,*:*} in a neighbourhood of p such that Z > J L 0

which we call an affine local coordinate system. A Riemannian metric g on M
is said to be locally Hessian with respect to D> if for, each point p^M9 there
exists a real-valued function φ of class C°° on a neighbourhood of p such that

that is,

where {Λ:1, ••-,#*} is an affine local coordinate system around p. If this con-
dition is verified with a function φ defined over M, the metric g is called a
Hessian metric on M. A locally flat manifold with a (locally) Hessian metric
is called a (locally) Hessian manifold.

The following proposition is essentially due to S. Murakami and will be
proved in §1.

Proposition. Let M be a connected differentiable manifold with a locally
flat linear connection D and a Riemannian metric g. Let γ be the cotangent bun-
dle-valued ί-form on M defined by

for vector fields X, Y on M. The cotangent bundle being locally flat, we may
consider the exterior differentiation ί for cotangent bundle-valued forms on M.
Then the following conditions (1)^(4) are equivalent:

(1) g is locally Hessian with respect to D.
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(2) For each affine local coordinate system {Λ;1, •••,#*}, the components gfj

of g satsify the relations

(3) (Dzg) (X9 Y)=(Dγg) (X, Z) for all differentiable vector fields X, Y3 Z
on M.

(4) dΎ=O.
In addition to these equivalent conditions, assume further £P(M, R)= {0} and

that D is flat. Then g is a Hessian metric.

EXAMPLE 1. Let M be a locally flat Riemannian manifold, that is, the
Riemannian connection V determined by the Riemannian metric g on M is
locally flat. By Vg=0 and by Proposition (3), g is locally Hessian with respect
to V.

EXAMPLE 2. Let M be a domain in the n-dimensional real affine space
with an affine coordinate system {a?1, •••, xn) and let φ be a real valued function

on M of class C°° such that the Hessian g=\ 2— of φ is positive definite on
L dxidxj J

M. Then g defines a Hessian metric on M with respect to the natural flat

linear connection D on M given by Z ) θ — = 0 .

EXAMPLE 3. Let M be an affine homogeneous convex domain in the
n-dimensional real affine space which does not contain any full straight line and
let φ denote the characteristic function on M. Then it is well known the the

Hessian g=\ —^S_2 of log φ is positive definite on M (cf. [3] [7]), and so g
L ox'dx* J

is a Hessian metric on M.
Now let M be a homogeneous manifold of a connected Lie group G. As-

sume that M admits a locally flat linear connection D and a volume element ω
which are invariant under G. If ω has an expression

ω = Kdx1 /\ "Άdxn

in an affine local coordinate system {x1, •••,#*}, then the forms

are called the Koszul form and the canonical bilinear form respectively [3].
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Koszul proved the following fundamental theorem concerning the form Da [3]:
Let M be a homogeneous manifold with an invariant flat linear connection and an

invariant volume element. Then the canonical bilinear form Da is positive de-

finite if and only if M is an affine homogeneous convex domain not containing any

full straight line.

Several authors have pointed out an intimate connection and an analogy
between affine homogeneous convex domains and homogeneous bounded
domains (cf. [3] [7]). Now recall that a hermitian metric £ on a complex mani-
fold is said to be Kahlerian if its local components g{j with respect to a holomor-
phic local coordinate system {z1, •••, zn} satisfy one of the following conditions

where ψ is a real valued function in the coordinate neighbourhood. It seems
to the author that homogeneous locally Hessian manifolds have, in a way,
analogous properties as homogeneous Kahler manifolds. The aim of this paper
is to establish the following theorem analogous to that in [5].

Theorem. Let G be a connected solvable Lie group and M an orientable

differentiable manifold on which G acts simply transitively. Suppose that M

admits a locally flat linear connection D and a locally Hessian metric g with re-

spect to D, which are invariant under G. Let ω be the volume element defined by

g. If the canonical bilinear form Da determined by ω is non-degenerate, then Da

is positive definite.

Combined with the KoszuΓs theorem recalled above, we get immediately.

Corollary. Under the same assumptions as in Theorem, assume further

that D is flat. Then, M is an affine homogeneous convex domain not containing

any full straight line.

1. Preliminaries

We shall first prove Proposition in the introduction. It is trivial that (1)

implies (2) and that (2) is equivalent to (3). The form γ defined in Proposition

can be locally expressed as rί=yΣι(Σιgijdxj)dx\ where {#*, •••,#*} an affine
i 3

local coordinate system and ggj. the components of g. We have then
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It follows immediately that the conditions (2) and (4) are equivalent. It re-
mains to show that (2) implies (1).

We shall first prove the last part of Proposition. Suppose that D is flat.
Then there exist 1-forms ω1, •••, ω* such that Dω'=0 and that, for each point
p in M the values of these forms at p form a basis of the cotangent space at p.
Thus the cotangent bundle Γ(M)* is a trivial bundle and the Γ(M)*-valued de
Rham cohomology group of M is isomorphic to the Revalued de Rham coho-
mology group of M. If H\M, R)= {0} and if the condition (2) is satisfied,
there exists a cross section β of Γ(M)* such that

If the 1-form β on M has a local expression β=^ιβidx\ then it follows

dβi=
yΣigijdxj and -J±L=giJ. Since gij=gji, we have

dβ = 0.

Again by H\M, R)= {0}, there exists a function φ on M of class C°° such that

β = dφ.

Thus we have gi.=—^-= β-τ and hence g=D2φ, which completes the

dx* dx'dx*
proof for the last part of Proposition. Now, by a same argument and applying
the Poincare's lemma, we see that (2) implies (1). Thus the proof of Propo-
sition is completed.

We retain the notation and assumptions settled in Theorem in the in-
troduction.

Let g be the Lie algebra of the Lie group G. For l e g we denote by
X* the vector field on M induced by the 1-parameter group of transformations
exp (—tX). We put AX*=LX*—DX* where Lx*, Dx* are the Lie derivative and
the covariant derivative for D by X* respectively. Then Ax* is a derivation of
the algebra of tensor fields on M, which maps every function into zero. Since
D is locally flat, we have for X9 Y<Ξg (cf. [2])

(1.1) AX*Y* = -DY*X* ,

(1.2) AX.Y*-AY*X* = [X*, F*],

(1.3) [Ax*, Aγ*] = Aίx*tγ*2.

We fix a point o^M. Let V be the tangent space of M at o and let f(X), q(X)
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denote the values of Ax*, X* at o respectively. From (1.2) (1.3), it follows
immediately

Lemma 1.1, For X, Y&qwe have

( i ) f([x,Y]) = U(X)J(Y)],

( 2 ) q{[X, Y]) = f(X)q(Y)-f(Y)q(X).

Lemma 1.2. Let a0, Da0 denote the values of a, Da at o respectively.
Then, for X, Y^Qwehave

( 1 )

( 2 ) (Dao)(q(X), q(Y)) = ao(f(X)q(Y)).

Proof. Let {#*, •••,#*} be an affine local coordinate system in a neigh-

borhood of o. We write ^ * = Σ £ ' V 7 a n <^ ω=Kdx1 Λ ••• Λ dxn. Then we seeΣ
Lx*ω = {Lx*K)dxx Λ ••• Λ d x n + ^ K d x 1 Λ ••• ΛL x*dx j Λ Λ ώ M

Λ -. Λdx" .
i QX'J

Since the volume element ω is invariant by G, we have

(1.4) χ . l o g

(jlξk—V= — Σ - ^ - — . On the other hand, since Z) is locally flat and
V k dxfcJ k dx<dx> dxk J

since X* is an infinitesimal affine transformation with respect to Z), we know

^ O (cf. [2]). Hence we get 9 ^ \ = 0 . From this and (1.4) it follows

Lx*a=Lx*D log K=D Lx* log ^ = - # ( Σ | | ^ ) = — Σ £ ^ . dx< = 0. Thus

we have

(1.5) Lx»a = 0, for all l e g .

By (1.4) we see a(X*)=(D log £ ) (Z*)=Z)J:. log K= - Σ | ζ . By (1.1) we get

, which implies (1). Using (1.5) and the fact that Aγ* is
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a derivation of the algebra of tensor fields which maps every function into

zero, we obtain (Da)(X*> Y*)=(Dγ*a)(X*)=-(Aγ*a)(X*)=-Aγ*(a(X*))

+a(Aγ*X*)=a(Aγ*X*). This means Dao(q(X)y q{Y))=ao{f{Y)q{X)). Q.E.D.

Lemma 1.3. Let < , > denote the value of g at o. Then, for Xy

we have

(C)

= <f(Y)q(X), q(Z)>+<q(X)J(Y)q(Z)> •

Proof. Since Ax* is a derivation of the algebra of tensor fields and maps

every function into zero, we see (Ax*g) (Y*, Z*)=Ax*(g( Y*,Z*))-g(Ax* Y*, Z*)

-g{ Y*, AX*Z*)= -g{Ax* Y*y Z*)-g( y*, AX*Z*). Since X* is an infinitesimal

isometry, we have Lx*g=0 and hence (Ax*g) (Y*, Z*)=—(Dx*g) (Y*9 Z*).

Thus we have {Dx*g) (F*, Z*)=g(Ax*Y*, Z*)+^(F*, AX*Z*). Since ^ is

locally Hessian it follows (Dx*g) (y*, Z * ) = ( D y ^ ) (jf*, Z*). This shows

which implies (C). Q.E.D.

Since q is a linear isomorphism of g onto F, for each v^V there exists

a unique Xυ^Q such that

(1.6)

We now define an operation of multiplication in V by the formula

(1.7) u-v=f(Xu)v for u,v(ΞV.

We use the following notation

Luv = u v, Ruv = V'U ,

[Z/ ^ ZU] = w (̂  ίί )—(Z/ ^) ZU.

From Lemma 1.1, it follows

(1-8) [Lu, Lυ] = Lu.υ-υ.u,

(1.9) [u v w] = [v'U'ϊϋ] y

(1.10) [L^ΛJ

and these conditions are mutually equivalent. An algebra satisfying one of the

above conditions (1.8)^(1.10) is said to be left symmetric [7].

The condition (C) and the formula in Lemma 1.2 are reduced to

w, v-vi) ,
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(l.Π) ao(v) = ΎτLVJ

(1.12) (Dao){uiv) = ao{u*v).

Using (1.9) and (1.12), we have

(1.13) (Dao) (u v, w)+(Da0) (vy u w)

= (Daa) (v u, w)+(Dao) (u, υ-w).

Lemma 1.4. Let V be a left symmetric algebra endowed with an inner pro-
duct satisfying the condition (C), and let U be a subalgebra of V. For a fixed
element u<= U we put P= {/><Ξ U; p-u=0}. Suppose LuPaP. Then we have

( 1) Lu(P q) = (Lup) q+p. (LJI) ,

( 2 ) exp tLu(p*q) = (exp tLup) -(exp tL^),

( 3 ) — <exp £LŴ >, exp

= <w, exptLu(p-q)>,

forpyq^P.

Proof. (1) follows immediately from (1.9), and (2) is a consequence of
(1). By the condition (C) and (2), we have

--<exp tLupy exp tLuq}
at

= <LM exp tLup, exp ίLMg>+<exp tLup, Lu exp tLuq)

= <(exp tLup) u, exp tLuq>+<tι, (exp tLup).(exp tLuq)y

= <«, exp tLu(p-q)> for p,q<=P. Q.E.D.

A left symmetric algebra V is called elementary, if V satisfies the following
conditions:

(E.I) V = \u}+P (direct sum of vector spaces),

(E.2) u-u = u, wΦO,

(E.3) M P C P , P M = {0} ,

(E.4) ρ-q = Φ(ρ, ?)« for />, ? e P ,

where Φ is a symmetric bilinear form on P.

Proposition 1.5. Let Ωbe a homogeneous domain in V containing 0, on which
an affine Lie group G acts simply transitively. Suppose that the left symmetric
algebra V of Ω at 0 is elementary, i.e. V= {u\ -\-P satisfies the above conditions
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(E.I)—(E.4). Then we have

Ω = lau+p; a——Φ{pip)>—\ for a<ΞR,p<=p\ .

In particular, if Φ is a positive definite symmetric bilinear form on P, then Ω is

the interior of a paraboloid.
Tk

2Proof. From Xvx=Lvx+v for x,v^V, it follows exp Xvx=x

(Lvx+v). Using this formula, for ίeR, J G P we get

exp tXu(au+p) = (aet+et—ί)u+exp tLup ,

exp Xq(au+p) = (a+Φ(p, ί ) + | φ ( j , q))u+p+q,

where αGR,/)GP. We show first that exp tXu and exp Xq leave Ω'=
p a—%Φ{p>p)> — 1 for αGR, p^P} invariant. Let au+peΩ'. Then we have
(ae'+e*— 1)—iΦ(exp ίLtt/>, exp tLup) = (ae?+ef— 1)—^Φ(p,p)et=et(a—h&(p,p)
+ 1)-1> - 1 , by Lemma 1.4. Therefore (exp tXu) {au+p)^a\ On the other
hand, exp XJau+p)&Ω', since a+Φ(p, q)+%Φ(q, qj—^p+q, p+q)=a—^Φ
(pyp)> — l> For any αt/+^^Ω / we have exp t0Xu exp X-p(au-\-p)=0, where
to=—log (α—iΦ(/>,/>)+l) These show that G acts transitively on Ω'. Since
G acts transitively on Ω and Ωr and since ΩΠΩ'30, we conclude Ω=Ω'.

Q.E.D.

Now assume that V is decomposed into a direct sum of vector spaces

(A.0) FΣ

with the following properties:

(A.I) Vk={uk}-\-Pfc is an elementary left symmetric algebra such that the
real parts of the eigenvalues of LUk on Pk are equal to \ and that the symmetric
bilinear form Φk(p, q) is positive definite on PkJ where p q=Φk(p, q)ukfor p, q^P^

(A.2) If we set Vk+1= Σ VI+Vm

f then Vk+1 is a left symmetric subalgebra of

V such that

uk F * + 1 c W?\ Vk+1 uk = {0} ,

and the real parts of the eigenvalues of LUk on Vfc+1 are equal to 0.

(A.3) The factors of the decomposition V=Yi{{uk}+Pk)+Vm are mutually

orthogonal with respect to Dao and Dao is positive definite on Σ({uk}-\-Pk) and

non-degenerate on Vm.
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2. Proof of Theorem: Existence of um in Vm

The main purpose of this section is to prove the following.

Proposition 2.1. Let F==Σ( W +Pfc)+ Vm be the decomposition given in

( ) Then there exists a non-zero element um in Vm such that

( 1 ) «»•«« = ««,

( 2 ) V».um(Z{um}.

We set Qm={Xv<EQ; v^Vm}. Since Vm is a left symmetric sub-
algebra of V, Qm is a Lie subalgebra of g. Since gw is solvable, by Lie's
theorem there exist elements w=t=0, » E F W such that

f(X) (u+iv) = (k(X)-iμ(X)) (u+iv) for

where i2= — 1, and λ, /£ are real linear functions on gm. Hence we have

for Λ E F " 1 , where λ=λo^- 1 , μz=μoq-1. We shall now prove that w and z>
are linearly dependent and so Vm {u} C {w}.

Suppose that u and τ; be linearly independent. Let W be the subspace of
Vm spanned by the elements {u, v). Then we have

Lemma 2.2. Let x e Vm. If (Dao) (x, w)=0 for all WΪΞW, then x-w=0
for allw^W.

Proof. We first remark αo=f=0 on W. Indeed, if cco=0 on W, we have
(Dao)(y, u)=ao(y u)=0 for all J E Γ . Since Dao is non-degenerate on Vm

(cf. (A.3)), we have w=0, which is a contradiction. From the assumption
(Dao) (x, u)=(Da0) (x, v)=0, we get \(x)ao(u)+μ(x)ao(v)=0y —μ(x)ao(u)+
\(x)ao(v)=0. Since αo(w)φ0 or αo(^)Φ0 as remarked above, we get \(x)
==^(Λ?)=0 and hence χ u=x v=0. Thus x w=Q for all w^W. Q.E.D.

Consider now the subspace Wo= {wo^W; (Da0) (wo> w)=0 for all w^ W}
of W. We shall first show that Wo Φ {0}. Suppose that Wo= {0}. Then Dao

is non-degenerate on W and hence there exists a non-zero element z^W such
that (Dao) (zly w)=ao(w) for all w^W. When z1=au+bv (ay έeR), put #2

=—i«+αz;. Then {#!, #2} is a basis of W such that

Λ?.^ = \\x)z1+μ\x)z2,

* * 2 = — μ'(x)*i+^\x)z2,

for xG:Vm, where \' and μr are linear functions on Vm. By (1.13) we have
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{Dao){wy zλ-zλ) = (Dao)(w-zl9 z1)+(Dao)(zlf wz1)-(Dao)(z1'Wy zt)

= (Xoiw-zJ+aoizo-zJ—aofa-fv)

= (Dao)(w,z1)

= cco{w)

for all w^W. This implies z1 z1=z1 and by (2.1') z1 z2=z2. Put z2 z1

and z2*z2=—μ0z1+X0z2. Then we have

by (1.9) and so

0 =

Therefore μo=0, or μ o = l and λo=O. In the case μo=Q> we put x=ao(z2)z1—
ao(z^z2. Then

(Z)αo)(^, x) = ao(zrx) = αo(x) = α ^ α ^ O - α ^ K C ^ ) = 0 ,
(Dao)(z2y x) = ao(z2 x) = X0ao(x) = 0 ,

which imply x=0 and αo(^i)=αo(ar2)=0 This contradicts ao + 0 on Ŵ . If
μo=l and λ o =0, then it follows from (Cr)

and hence ^ ^ ^1>+<^2> ^2>=0> which is a contradiction. Thus we have
shown that Wo+{0}.

Now, we show dim WO>1. Suppose dim W0=l. Then Wo is spanned
by a non-zero element sf^tfίz-f-fo (a, J G R ) . If we set z2=—bu-{-av, then
{̂ i> #2} is a basis of W such that

r Λ ^ = λ"(*

Λ a r / /

for ΛIGF" 1, where λ/r and /z,̂  are linear functions on Vm. Since (Dao)(z19 w)
= 0 for all w^W, it follows from Lemma 2 that #!-#!=#!•.s^O. Using this
and (1.13) we get

(Dao)(z2-z1,z1) = 0,

(Dao)(z2.zly z2) = (Z>ao)(^-^2, z2)+(Da0)(z2y zrz2)—(Da0)(z19 z2-z2) = 0 ,

and hence we can write z2 z1=\0z1, z2 z2=X0z2. We have from

and so
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2λ o<*i, *i> = 0 .

Therefore, we obtain λo=O and (Dao)(z2f z1)=(Dao)(z2y z2)=0. This means
z2^W0 and dim W0=2, which is a contradiction. Thus dim W0=l does not
occur.

Finally suppose dim Wo=2. Since Dao=0 on W, we have by Lemma
2.2.

(2.2) W W={0}.

In this case we first prove:

(2.3) Let P={p£ΞVm;p-u=0}. Then LuV
m(zP and the real parts of the

eigenvalues of Lu on Vm are equal to 0.

Proof of (2.3). By (1.9), (2.1) and (2.2), we have (u x)-u=u-(x u)+
(x-u).u-x (u.u)=0 for all X G Γ Hence it follows L / w c P . Let (Vm)c

be the complexification of Vm and let Pc be the complex subspace of (Vm)c

spanned by P. Then the inner product < , > on Vm can be extended to a
complex symmetric bilinear form on (Vm)c> which is denoted also by < , >.
Let \-\-iμ (λ, μ^R) be an eigenvalue of Lu on Pc and let p+iq(p,q^P)
be an eigenvector corresponding to λ+z'μ, i.e. Lu(p-\-iq)=(X-\-iμ) (p+iq).
Then we have <exp tLu{p+iq\ exp tLu(p-iq)>=<e<k+i™(p+iq), ecλ-ilι't(p-iq)y
=e2λt('\P>P>+<q> ?» . O n the other hand, it follows from Lemma 1.4, (C) and
(2.2) that

— <exp tLu(p+tq)y exp tLu(p-iq)y

= Ίf <Uy e x p tL^P+i^<P-^>

= <u,u-p'>

= <p'.uy u>+<u,p'.u>-<u-uyp'> = 0 ,

where p'=Lu exp tLu((p+iq)-(p—iq))<=Pc. Therefore we get (2λ)3(<J>,/>>+
<?> q»e2λt=0. Since (pypy+^q, ?>>0, we have λ = 0 . According to this and
LuV

mClPy we see that the real parts of the eigenvalues of Lu on Vm are equal to
0. Thus the proof of (2.3) is completed.

We shall next show:

(2.4) ΎrPkLM = 0 .

Proof of (2.4). We have LuPkaPk by (A.2). Let p, q<ΞPk. Then it
follows from (A.I), (A.3) and (1.13) that

(Dao)(Lup, q)+ψao){p, Luq) = {Dao){Rup,
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= (Dao)(Rup, q)+(Dao)(u, φk(p, q)uk)

= {Dao){Rup,q).

Since Da0 is positive definite on Pk by (A.3), denoting by *LU the transpose of

Lu on Pk with respect to Da0, we have

Ru = LU+*LU on Pk

From (1.10) and (2.2), we have [Lu, RU]=RU.U—Rl=—Rl and hence ΎrPkRu

fRu

=ΎrPkRl= — ΎrPk[Lu, Ru]=0. This means Ru=0 and <LU= —Lu on Pk. There-

fore we obtain T r p ^ — 0 .

Using (A.2), (2.3) and (2.4), we get

^Y ίy\ __ "VI HP*, r _j_"SΠ HΓV 7\ -L'TV 7" •==1 0

Taking v for w, we have similarly

ao(v) = 0.

Hence ao=0 on W. As remarked in the proof of Lemma 2, this contradicts

the assumption (A.3).

Thus we conclude that dimPF=l, and this proves that u and v are linearly

dependent which contradicts the assumption that u and v are linearly inde-

pendent and that Vm*u(z{u}.

Suppose now u u=0. Then, by the same argument as above, we get

ao=0 on W and this contradicts (A.3). Therefore we have u u=\ou, where

λ0φ0<ΞR. Putting M O T = - M we get
λ0

(2.5) um-um = um.

This completes the proof of Proposition 2.1.

3. Proof of Theorem (continued): Decomposition of Vm

Proposition 3.1 Let um be the element in Proposition 2.1. We set

P={p(=Vm; p-um=0}. Then LuJP(zP and the real parts of the eigenvalues

of LUm on P are equal to 0 or ^. Let Pm and Vm+1 denote the largest subspaces

of P on which the real parts of the eigenvalues of LUm are equal to \ and 0, respec-

tively. Then we get the decomposition

of V and each factor of the decomposition has the properties stated in (A.1)^(

Proof. For simplicity, we write u for the element um. First we have
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(3.1) LuPc-P,

(3.2) Vm = {u} +P (direct sum).

In fact, for each p^P we have (u p) u=(p u) u—p (u u)-\-u (p u)=O by
(1.9), which shows (3.1). The relation (3.2) follows from x—X(x)u(=P for all
^ e Γ , where λ is a linear function on Vm such that x u=X(x)u.

Let Pc denote the complexiίication of P and let P Γ

[ λ ] denote the larget
subspace of Pc on which the real parts of the eigenvalues of Lu on Pc are equal
to λ, i.e. Pc

ίλl={p^Pc; (Lu—(X+iμ))rρ=0 for some μ,eR and sufficiently
large r}.

Lemma 3.2. The real parts of the eigenvalues of Lu on P are equal to 0
or i i.e. Pc=Pcto+Pc

ίol.

Proof. For p^Pc, we have

d <ext tLup, exp tLuu> = <«, exp tLu(p-u)y = 0 .
dt

by Lemma 1.4. Since exp tLuu=efuy it follows

(3.3) <ext tLup, w> = OB'*

where a is a constant determined by p9 not depending on t. Therefore, for
each x=cu+p(Ξ(Vm)c

 ( C G C ^ G F ) we have

(3.4) <w, exp tL^cy = <w, ce*u+exp tLupy

<μ, exp tLupy

where a, b are constants determined by x> not depending on t. Let
(λ, /iGR) be an eigenvalue of Lu on Pc and let />+/? (p,q^P) be an eigen-
vector corresponding to λ + ί μ . Then we have

^-<exp tLu(p+iq), exp tLu(p-iq)y
at

4
at

On the other hand, we get from Lemma 1.4. and (3.4)

d <exp tLu(p+iq), exp tLu(p-iq)y
dt
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= <uy exp tLu((p+iq).(p-iq))>

= ae~t+bet.

Thus we have

(3.5)

This implies λ = 0 , \ or — \. Let
for some μ and r. Then

be such that (Ltt— (λ+*»y> λ =0

exp tLuPλ =
1=0

and

<exp tLuPλ, u> =

where h(t) is a polynomial of degree r—\ at most. From this and (3.3), we
obtain

^-ci+λ)/ = h{t)eiμt.

Assume now αφO. Since l + λ > 0 and since h{t) is a polynomial of degree
^ r — 1, we have

lim ae = oo and lim = o,

which is a contradiction. Hence we have a=0. Thus it follows

(3.3) <exp tLup, uy = 0 for all p(=Pc,

(3.4) ζexptLjc,u> = bέ for * < Ξ ( P * ) C

and

(3.5) 2λ«A p>+<q, q»e™ = fe* .

This implies λ = 0 or i, which proves Lemma 3. Q.E.D.

Lemma 3.3. L ί̂ P [ λ ] denote the largest subspace of P on which the real
parts of the eigenvalues of Lu are equal to λ. Then the factors of the decom-
position Vm={u}+Pft2+Piol are mutually orthogonal with respect to Dao and
satisfy the following relations

Proof. For λ e R we put (Vm)c

ίλl={x<EΞ(Vm)c; (Lu-(\+iμ))rx=0 for
some μ<=R and sufficiently large r}. Then Vm

Lll={u}y {Vm)e^i=^Pe^ and
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(^Ύco]=^cco]. Let pλtΞPcm and pλ^Pe

ίλf2 such that (Lm-(\+iμ))rpλ=0,
(Lu—(λ,/+iμ/))r'pλ/=0 respectively. For s^r-\-r' we have by Lemma 1

= 0.

This implies P W ^ V ] < = ( J ^ * ) W ' ] From (Dao)(p, u)=ao(p u)=0
it follows that {u} and P are orthogonal with respect to Da0. Let ^ G ? ^ and
} G P [ O ] . Since p q^Pfa and since LM is non-degenerate on P φ , there exists an
element / G ? ^ such that u p'=p-q. Hence we have (Dao)(p, q)=ao(p q)=
ao(u'p')=(Dao)(uyp)=0. This shows that P c i ] and P [ o ] are orthogonal with
respect to Dao. Q.E.D.

Lemma 3.4. ao{u) > 0.

Proof. We have [Lm Ru]=Ru.u-Rl=Ru-R2

u by (1.10), and RU=LU+'LU

on Pk as in the proof of (2.4). Hence it follows

TrPjfeLw = —-ΎτPkRu

= ±ΎrPk(Rl+[Lu,Ru])

According to (A.2) and Lemma 3.2, we have Ύr{Uk]Lu=0, ΎγvmLu=\-\-\ dim
PLil > 0. Thus we obtain

ao(u)=ΎrLu

K } L t t + Σ TrP i f cL i l+Trκ«L i l>0 .

Q.E.D.

Lemma 3.5. Dao is positive definite on P φ .

Proof. For μ^O we put P\i±m= {p<=Pc; (Lu—(i±ίμ))rp=0 for suffici-

ently large r} and P ( i + , » = { ί + ί i ί E ^ W ) } We shall then prove that the

decomposition P[i]=ΣjP<i+*» ίs orthogonal with respect to Dao. For μ, μ'^0,

l e t ^ e P V ί w a n d ^ e P ^ i + ί ^ such that (Lu-(i+iμ))rp=0, (Lu-(i+iμ'))r>'p'
= 0 . Then we have exp tLup=^wtρ{t) and exp tLup'=J»riμ'»ρ'(t), where

p(t)=Έ^(Lu-(h+iμ)YP and / ( O ^ Σ ^ ^ - ί i + ^ O ) ^ respectively.
/=o /! /=o /•
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Therefore we get

(3.6) A < e x p tLap, exp tLa?> = jL
at at

where g(t)=J-<p(t), p'(φ+(l+i(μ-μ')Kp(t), p'(φ. On the other hand, it
at

follows from Lemma 1.4 and 3.3

(3.7) -y-< e xP tLup, exp tLjΓ> = <u, exp tLu{p-p)>
at

= \<u, ύ)e*,

where we ρut^> ^ = λ w (λEC). Thus we get g(t)=X<u, uye**'-^*. Assume

'. Since g(t) is a polynomial and since μf—μ=|=0, we get λ = 0 and
= 0 . Hence we have

(3.8) P W ) PV,>'> = {0}, if

Similarly, using

^ tLup, exp ί L ^ = <«> exp tLJ(ρ-ρ')>,

we obtain h(t)=v<u, uyeiaι'+™, where A ( ί ) = A

). If μ + μ ' > 0 , then we see z/=0 and^ ^ ^ O . Thus

we have

(3.9) Pcci+ivP\i+i^= {0} when

If μ3=μ', then it follows from (3.8) (3.9) that PCi+t»-P(i+,V)={0} and hence
P(l+<», P(i+,>/) are orthogonal with respect to Dao. Now, let j)EPc

(j+»» be a
non-zero element such that (Lu—(^-\-iμ))rp=0. Then we have by (3.6) (3.7)

<ψϊ+k(t) = \<uy u> ,
at

where k(t)=<p(t), pζφ, p(t)=% ζ (La-(h+iμ))'p, and p.p=Xu (λeC).

The solution of this equation is k(t)=ce~t-\~\(u, w> where c is an arbitrary
constant. Since k(t) is a polynomial, we get c=0 and k(t)=\ζuy u}. Thus we
have



CERTAIN LOCALLY FLAT HOMOGENEOUS MANIFOLDS 229

(3.10) λ = m = <M>>o

In the case μ > 0 , by (3.8) (3.9) we obtain (ρ+p)'(p+p)=p*p+p p=2\u.
Therefore it follows from Lemma 3.4 and (3.10)

(Dao)(p+p, p+P) = ao((p+P)-(P+P)) = 2 λ α » > 0 ,

for />ΦθeP c

( | + , μ ). In the case μ=0 we have

(D(*o)(P> P) = cco(p'p) = \ao(u)>0 ,

. Since P ( | + l » and •?(*+,>') (μφμ') are orthogonal with respect to
Dao, it follows that Da0 is positive definite on Pt f ]=Σ Pc*+ί» Q.E.D.

fl.J>0

This completes the proof of Proposition 3.1.
Applying Proposition 2.1 and 3.1 successively, our theorem follows by

induction on m.
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