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0. Introduction

In this note we give two generalisations, (Proposition 1.2 & Theorem 1.3),
of Stasheff’s criterion for homotopy commutativity of H-spaces, [11, Theorem
1.9], and apply them to produce examples of nilpotent H-spaces and to demon-
strate the vanishing of certain Samelson-Whitehead products.

In §1.2 we give a necessary and sufficient condition for the vanishing of the
Samelson-Whitehead product of f:S4—Y and g:SB—Y. In Theorem 1.3 a
criterion for the vanishing of the j-th iterated commutator map in an H-space,
X, is given in terms of a space, X(j). As a corollary it is shown that if the pro-
jective plane of X, (resp. the space X), has a finite Postnikov system then X,
(resp. QX), is nilpotent. In §2 the nilpotency of loop spaces of spheres and
projective spaces is discussed. Many of the results of §2 are known to other
authors and I am grateful to G.]. Porter for drawing my attention to the results
of T. Ganea, [3]. However, for completeness, the results of [3] have been in-
cluded here, as corollaries of Proposition 1.2. The nilpotency of QS** and
QCP? do not appear in [3] although the former was previously known to M.G.
Barratt, I. Berstein and T. Ganea. Since our estimate of the nilpotency of
QCP™ is large we include a corollary of Theorem 1.3 on the vanishing of a
family of triple Samelson-Whitehead products on CP**,

I am grateful to Peter Jupp for helpful conversations about homotopy opera-
tions.

In this paper we work in the category of based, countable CW complexes.
A connected complex in this category is called special. The following notation
is used:—

X A Y=smash product of X and Y.,

VX, AX and X7 are respectively the j-fold wedge, smash and product of X,
I=[0, 1] with basepoint, =0,
SX=S8'AX, QX=the space of loops on X,

and (eval: SQX— X)=the evaluation map.
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1. Let X be a homotopy associative H-space and let ¢,: XX X—X be the

cummutator map. -

DeFINITION 1.1, For (2>2) put ¢, X"=X""'X X—>X be ¢,o(¢n_,X1),
then the nilpotency of X is the least integer, n, such that ¢,., is nullhomotopic.
Nilpotency of X is denoted by nil (X).

Proposition 1.2. Let f: A>QY and g: B>QY be maps. Then ¢,o(fXg):
AXB—QY is nullhomotopic if and only if adj(f)V adj(g): SANV SB—Y (adj=
adjoint) extends to a map SAX SB—Y.

Theorem 1.3. For (j>2) there exist complexes, X(j), and inclusions i;:

VSX —X(j) satisfying the following properties.
(i) X(2)=SXxSX.

(i) X(G)(VSX)=SA(A X).
(i) If (fold),:\/ SX—~/SX is the map which folds the j-th factor onto the
(j—1)-st factor there is a commutative diagram
X() —> XG-1)
i
i) i G>2
j i1
VSX — VSX
(fold),
(iv) THHXX(j—1), VSX; m))=0, (j>2).
(v) There exists a map A;: (XX Y)(j)—=>X(j)X Y(j), (j=2), such that the
k-th factor S(X X Y) is mapped to (k-th SX) X (k-th SY) by
Ajoij([t’ X, y]) = (ij[t’ x]’ ij[t: y]) ’
(tel, xeX, yeY).

(vi) If X is an H-space let XP(2) be the projective plane of X and w;X—
QXP(2) be the H-map of [11, Proposition 3.5.]. If ¢, is nullhomotopic then

\i/adj(w): VSX —XP(2) extends over X(j). The converse is true if X is homotopy
associative and right translation is a homotopy equivalence.
(vii) The commutator ¢ ;: (QY) —QY is nullhomotopic if and only if

\l)(e'oal): VSQY—Y
extends over (QY)(j).

ReMARK 1.4. Proposition 1.2 and Theorem 1.3 are generalisations of
Stasheff’s criterion for homotopy commutativity, [11, Theorem 1.9], which is
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Theorem 1.3 with j=2. The proof of Proposition 1.2 will be omitted. It may
be proved by the same method as [11, Theorem 1.9] or deduced from [13,
Theorem 7] and [11, Propositions 3.5, 4.2] and is closely related to [14, Theorem
3]. The proof of Theorem 1.3 is postponed to §3. Of course, Theorem 1.3 has

a minor generalisation to give a criterion for maps ¢,,0(I"I fi): I 4~X"—>X to
1 1
be nullhomotopic.
Corollary 1.5. (i) If right translation is a homotopy equivalence in X and

XP(2) has only n non-trivial homotopy groups then nil( X)<mn.
(ii) If Y has only n non-trivial groups then ml(QY)<n.

Proof. (i) Since w:X—QXP(2)isan H-map, if f: XP(2)—E, is the map
to the first space in the Postnikov system, Proposition 1.2 implies an extension
of

Vadi(Qf)ow: W SX—E,
to (SX)®. Hence the result follows, by induction up the Postnikov system, using
composition with I"; to kill the obstructions.
Part (ii) is proved similarly.
2. In this section we consider H-spaces, QX. The commutator ¢,: (QX)?

—0X induces a map, also denoted by ¢,, ¢,: /2\QX—>QX. The Samelson-
Whitehead operation derived from ¢,, [2, §4.2], will be denoted by

[, _1:[4, 0X]x[B, QX]—[AAB, QX].

An element of [S4, X] and its adjoint in [4, Q.X] will be denoted by the same
symbol.

Proposition 2.1 [15; 16, Example 1.3].
If X is a special complex then SQSX— QS(/"\X)
k=1
Proof. From [8,§5] we have a homotopy equivalence, QSX=X.., where
X.. is the reduced product of X. In the notation of [8, §1] if X™ is the m-fold

product of X let X,, denote its image in X... The canonical map X" A X fac-
tors through X,, and sends X,,_, to the basepoint, inducing a homeomorphism

X,,,/X,,,_IZ/'(X. The map X,,,——>(/'"\X)=(/M\X)1C(/"{X)w has a continuous

combinatorial extension, [8,§1.4], =: Xm—>(/m\X)m. Define #,, as the composi-
tion

S(X..) 5 (A X).)=SQS(A X) — S(AX).
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Now define a: S(X.)— "\ZS(/(X) by

W27 2—1, te[1/2%, 12" 7]; xe X
a[t,x]=:[ x] [/. [2%77]; xE X)
otherwise.
It is clear that « respects the obvious filtrations and induces homotopy equi-
valences S(Xu/Xou-.) (Y S(A XDI(VS(V X)).

ReMARK 2.2. Using the work of May, [9], a similar proof shows that stably
S”0"S*X is homotopy equivalent to a wedge of n-fold suspensions of equivariant
half-smash products.

For classes a; E7,, (QASY)N SY),

(1<i<k; Sm, = ),
let {or, {at.{"** {h_1, p}} '} E7n_r:+,(S?) be the class of the composition

Sl/\Sml—l/\ -"/\Sm*_l ___)QSq/\Sl/\ .”/\SM,‘—1__>‘_.
a, N1

k
—> QSHAS'—> A S?.
1/\a,,(/\ ) ¢l¢

A similar operation is defined on classes in 74(SQX).

Lemma 2.3. For (¢>1) let a,E7,,(S?), asE7,,(SQS?), (1=2, 3, 4), and
rz(i m;)—2, 82(2 m;)—3. If q is odd the Whitehead product [o;, {ots, ats}]
Ex,(S?) is zero and if q is even [a,, {ct.{ats, A} }E7,(S7) is zero.

Proof.

Case (1): q even.

Let S{V.S§ be the wedge of two coipes of S? and let #,: S*—>S{V.Sji,
(¢=1, 2), be the inclusions. The class

z = {SQ1,0q,{SQ%,0ats, SQiyorr,}}

maps to {a,{a, a}} under the folding map S{V.S§—S? Collapsing Si,
(t=1, 2), kills = and by [4, Theorems A and 6.6] there exist classes o €7,(S*™")
and Te#,(S* %), where t=m,+m,+m,—2, such that

{a.{as, adl = [¢, Joo+[e, J]oT, (e = [1s]E7m4(S9)) -
Hence, by [2, §4.3 et seq; 4, Theorem 6.10; 12, §83.2, 3.3],
[an {az{a:n a4}}] = [ay, [4 tJoa] .

Now consider z€7,(STV S3). Since the composition
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QSIAQSY Q(STV SY) —> QST x S%)

> .
b20(Q2, A\ Q1)

is nullhomotopic the factorisation of. {SQi oy, SQZ,00,},
SIAS™TIAS™ T — SQ(STV.SY) —; S{v.Sg,
eva

extends to a factorisation

siasmiasmonr—Ls SQ(S1x 89— S1xS§.
eva

Hence, if ¢,: /3\Q(S‘1'><S§)—>Q(S§><S§) is the three-fold commutator and g¢:
(S1x 83, S1VSH)—(SiAS], *) is the collapsing map, then the map of pairs,
godso(1A f)o(a, A1) is nullhomotpic. In the notation of [4, §6; 5, Lemma 3]
this represents X-(d"*)(z). Hence, as in [4, Theorem 6.10, and Lemma 6.11]
[ay, [t ]oa] has two-primary order. However, by [4, Theorem 6.10], 3. [«,,
[¢, ¢]oa]=0.

Case (ii): g odd. 'This follows from [4, Theorem 6.10; 12, §§3.2, 3.3] and
the fact that {a,, as} =[¢, oo

Corollary 2.4.

(a) ml(QS*™)<2, (n=0).

(b) mil(QS*™ )<3, (n>1).

(c¢) ml(QS™)=1 ifand onlyif n=1,3or7.
(d) ml(QS?*)=2.

Proof. Parts (a) and (b) are proved using Lemma 2.3 and Proposition 1.2.
For (b) it suffices to extend the map

(eval) \/ (eval)ody: SQS™V S((QAS™))—>S™ over SQS™x S(QS™Y) .

Since S(AXB)=SAV SBV S(A N B), Proposition 2.1 implies that both factors
are wedges of spheres. Hence the obstructions to the extension are Whitehead
products. These obstructions are clearly of the form [, {a,{c;, at,}}]. Parts
(c) and (d) follow from well-known properties of Whitehead products.

Let F denote the real field, (R), the complex field, (C), or the quaternions,
(H). Let d be the real dimension of F. If FP” is the projective n-space over
F, (n>1), let B: S'->QFP” be the adjoint of the inclusion of FP' and let
7. S¢*O71 FP” be the canonical projection, then

pw(F,n) = B:Qn: S x QS+ OFP"X QFP*—QFP*
is a homotopy equivalence, [11, Proposition 14].

Proposition 2.5. If F=R or C, u(F,n) is an H-equivalence if and only if
n>3 and nis odd. Also p(H, 24k—1) is an H-equivalence, (k>1).
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Proof. The map, u(F, n), is an H-map if and only if @ and Q= have zero
“commutator”.

By Proposition 1.2, to demonstrate this we need only extend adj(8)V
adj (Qr): SV SQS? "Y' FP" in the cases indicated. The obstructions to
this are all Whitehead products of the third kind which are zero by [1, §4; 6,
Theorem 2.1]. The converses follow from the behaviour of Whitehead products
of the third kind, [1, §4].

Corollary 2.6.
(i) nil @RP™)=c0,  (n=1).

<2 >0

(ii) m'l(QRP’”“):{— , (n=0) ,
=1 if and only if n=0,1 or 3.
<2 (n=0)

i) il (QCP™ )=
(i) - mel( ) {:1 if and only if n=1
(v) il QHP*)=3,  (k>1).

Proof. (i) By [1,84.1] there are arbitrarily long, non-zero iterated
Whitehead products in z(RP?).

Parts (ii)-(iv) follow from Proposition 2.5, the behaviour of Whitehead
products and the fact that ns/(S°%)=3, [10].

For the rest of this section we concentrate on QCP?*. Let u: S'X QS**!'—
QCP? be the homotopy equivalence of [11, Proposition 1.14] and let v be an
inverse equivalence. Let 8 and Qr be as above and let 7;(i=1, 2) be the pro-
jections from S*x QS***'. Also denote by 8 and Q= the compositions Boz,ov
and Qnom,ov respectively. In the group [QCP**, QCP?*] the homotopy class
of the identity is the product 8-Qz. The n-fold commutator, ¢,, for QCP** is
nullhomotopic if the n-fold iterated Samelson-Whitehead product of 1gcpes is
zero. Before proving that QCP* is nilpotent we derive some preliminary results
about Samelson-Whitehead products in [QCP?*, QCP**], (n>0).

Proposition 2.7. The class, [1gcpen, 1gcpen], is represented by a map which
factors through Qr: QS '—=QCP™.

Proof. We have to show that

(Sl % Sm+1)2 —_— (Qcpzn)z — S
BXp 70V,
is nullhomotopic. It is nullhomotopic on S*x S*, since S* is abelian. However,
further obstructions to extending the nullhomotopy from S* X S* to (S* X QS**+*)?
lie in zero groups, by Proposition 2.1.

Corollary 2.8. [[[1gcp2n, 1gcp]Qn]Qn]=0.
Proof. By Proposition. 2.7 and Corollary 2.4(a).
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Proposition 2.9. [[Qz, Qz]B]=0.

Proof. By Proposition 1.2 this is so if BV (¢,o(27)?) extends over S*X.S
((QS****)?). Since S((Q2S***')?) is a wedge of spheres the obstructions are
Whitehead products of the form [3, zox] €7 «(CP**). However, by the argument
of Lemma 2.3 (proof), x& z4(S****) is a Whitehead product of the form [o,, o,]
=[¢, tJoo. Since [B[r, z]]=0, by the Jacobi identity, [4, Theorem B]; then
[8, wox]=0 by [6, Theorem 2.1].

Let a: A—>QCP?, b;: B—~QCP?, (=1, 2), be maps and define A,: AN\ B—
BAANAB, A,: BAA—-AANBABby Aj(aNb)=bAaNband A(bAa)=aAbADb.
The commutator identity in a group,

[%, ¥, 2] = [%, ¥]-[v, [x, 2]]- [, 2] implies, (c.f. [2, §4]),
[a,b,-b,] = [a,8,].  {[b.[a, b.]]°A} - [a, b.]
and (2.10)
[bl -b,, aZ] = [bz’ a] * {[[a’ bz]bl]oAz} '[bn a]

Notice that if A=B=QCP?* then

[[a’ bZ]ﬂ]oAz = [[d, bz°Q'7t]B]°A2
and
[Bla, b.]]oA, = [Bla, b.0Qx]]oA,

since the diagonal S'—S*'x S* deforms onto S*V .S,
Using (2.10) and B-Qn=1g¢p2s it is straightforward to deduce the following
result from Corollary 2.8 and Proposition 2.9.

Proposition 2.11. Let x,, be the m-fold iterated Samelson- Whitehead product,
% = [lacpe[lacpen - [acplen lacpea]] 1]
and y,, be the (m-2)-fold product,
Ym = [BIBL-[B[lack lacew]l-1l.  Then
Sprs = [0, Yol Yy (M22).
Proposition 2.12. In the notation of (2.11), y,=0.

Proof. By Proposition 2.7, y, factors through a map SQS“**'—=QCP*".
However, SQS**** is a wedge of spheres, by Proposition 2.1. Hence it suffices
to show that [B[B[B[B, a]]]]=0, where a: S*¥***—->CP* and a==ocf. From
[1, §4.2],

[BIBLBIB, 7]1]] = moneSnoS™eS*n, (01E mum(S™7),
which is zero by [7, pp. 328-331]. Now if 7,, (=1, 2) are the inclusions of the
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factors in the wedge SV .§**** then [B[B[B[B, w-E1|]]=(B V = )o[i,[i,[7.[2,, 701111
It is now straightforward to show [B[B[B[B, a]]]]=0, using [1, §4.2; 12, §§3.2
and 3.3]. ~

Corollary 2.13. 3<ml(QCP**)<7, (n>1).

Since the upper bound in Corollary 2.13 is large we prove the vanishing
of another triple product.

Proposition 2.14. Let n,, n, be integers and let n: S*—S n,: S S
be maps of those degrees. Let x be represented by the composition

QCP™ — S'x Q8+ —>
v (Bon,) X Q(mon,)

where m is the multiplication, and (n>1).

If n,-n,=0(mod 2) then 0=[[x, x]x]e[/a\(ﬂCP”‘), QCP*™. In particular
[[8-1acrem B-lacp]B- lncﬁ"]?o-

Proof. By Theorem 1.3 (iii) and (vi) we have a map v: S'(3)—>S'P(2)=
CP*cC CP* extending \3/(,8071,) on (\3/S ?).  Consider the problem of extending

¥ Vmon, over S'(3)x S***'. This map extends over E=(\3/S)>< S*#*1yS'(3) v
S**+1, since the obstructions are Whitehead products, [Bon,, won,], which are
zero by [1,§4.2]. By Theorem 1.3 (ii), the only other obstruction lies in

H4n+6(S1(3)>< S‘m'H, E; 7l'4n+5(CP2")) =0.

(QCP™) — QCP™,
m

If §: S'(3) X S*"*'—=CP*" is the extension, consider §o(1Xf)oA,; where A, is as
in Theorem 1.3(v) and f is derived from Theorem 1.3 (vii) and Corollary 2.4(a).
Since the map g: S(S*XQS***)—S8?x §**** given by g([¢, (2, h)])=([2, 2], k(2))
is homotopic to the map, g,, given by

([2t, =], %) (0<t<1/2)

&([t (=, h)]) = (%, h(2t—1)) (1/2<tL1)

then (So(IXf)oA,| V.S(S'x QS+ is homotopic to V(8om,).(Q(ron,)).
Hence, by Theorem 1.3 (vii) and Remark 1.4, [[x, x], x]=0.

3. The spaces, X(j)

Let {m;, j>1} be the sequence of integers m,=1, m ,,=2.(m;+1). Let
P, (j=2), be the 2-disc represented as a regular (plane) m ;-gon with vertices
a, ***, a,,; and base point a,=*. If S is a finite set in the plane let ch(S)
denote its closed convex hull. Write

Pj = QjU‘Rj UQ;’,’ (]>2)’ where Qj = Ch(av Tt a1+m;_1) ’
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Qj, = Ch(a2+mj_11‘ ) amj) and -Rj = Ch(an Aiim;_y> atm;_ys amj) .

Let k;: Q;/—0; be the linear homeomorphisms given by k;(a,_,+m;,)=a,. Also
let v;:(Q;, ch(a; ay4m;_,))—>(P;-1, *) be a relative homeomorphism such that
v j(a;)=a;, (1<i<m,_,), and 7; is linear on each edge. Put P,=I" with vertices
a,=(0, 0), a,=(0, 1), a;=(1, 1) and a,=(1,0). Let k;: R;—I* be the linear
homeomorphism given by

hi(a) = ay, h(@1im;_,) = @2 B j(G21m;_,) = a5 and hi(am;) = a,.

Now let {X;,7>1} be an indexed set of copies of a space X. Define
8: I’X(X,VX,)—>SX,VSX, by

S(t’ $, *, y) = [s’ y]z’ S(t, Sy X, *) = [t’ x]l

(», yeX; 5, tel and the suffix indicates the wedge factor).
We now inductively construct the spaces, X(j), (j=>2). Put X(2)=I*xX,
x X, U g,(SX,VSX,) where

B,: I*X(X,VX,)UdI*x X, x X, — SX,\V SX, is given by
ﬁz(t’ Ey X, y) == [ta x]l) Bz(e’ §, X, y) = [S, y]za (8 =0or 1) s
and B,=3 otherwise. Thus X(2)=8X, X SX,.
Now let 7T, >j<X,-—>j>_<1X,-, Tyt >j<X,-—>X].,
iy: VSX; > \/SX,, iy: SX,; — VSX,
be the canonical projections and inclusions. Define
X(j) =P, x(XX)Ug(VSX),  (i>2),
where B, 0P, X (X X;)UP; X (V X,V SX; is defined by the following com-
positions:—
j .
B,l(aP;nQ;)X(>l<Xt) = 11°Bj—1°(7j><”1) ’
’ J >
B;1(OP;NQ )X (X Xy) = i,08;-1o((Y ok ;) X 71) ,
B;1(0P,; N R)X (X X)) = ipo(8 11X (X, V4ol X 73)
B IR, x(VX) = x = B;1(Q,UQ,)xX;,
B, IR, X X; = i,o(8|I*X(X,; V*))o(h;x 1),
B10,x(VX) = i\0B, o, x 1),



154 V.P. SNnarte

and 18,‘ | lex(j\:/Xi) = iIOBj_IO((‘Yjij)X 1) .
The map A; of Theorem 1.3 (v) is induced by

P, xXXY —— P*XXXY=P,XXXP,xXY.
7 AXIX]- J 7

We now prove Theorem 1.3 (vi); part (vii) is similar. Consider the problem
of extending \:/adj(w): \J;/SX;—>XP(2) over X(j). The map (\i/ad](w))OB]
sends 9P, \1/( X X;) to the basepoint and induces

p;: OP; A (>:<X,-) = S(>’1<X,.) — XP(2) with adjoint

Byt >:<X,-—>QXP(2). Let f:C(an)iP ; be a cone-wise homeomorphism
which is the identity on 9P;. Also let f have cone-point, z,& P, such that

(( \i/adj(w))o,@ 7) (ZoX \];/X,-)-——*, (if j=2) this can be arranged by altering

adj(w) by a homotopy). Suppose that u; is nullhomotopic then there exists a
nullhomotopy,

G (uel), of (Y’afzj'(w))o 8, such that

Gulg, 5)=((V adi(@)°,) (fu, g}, ), (¢=0P,; xE X X)),

Thus defining H: P, X ( >]1< X;)—XP(2) by H(q, x)=G (¢, x), where f([u, ¢'])
=q(¢ €0P;;q€P;; ucl; xc >1<X,-), induces a map X(j)—XP(2) extending
\I)adj(w). Conversely, if \l/aa'j(lw) extends, we have

1 H:P, ><(>:%X,-)—>XP(2) extending (\j/adj(w))o,@i and we may assume H(P;

X *)=+. Now let G,: 0P ,—~P, be a based homotopy from the inclusion to the
constant map. Thus

Ho(Gx1): Ix 6PJ.><(>QX,-)—>XP(2) induces a nullhomotopy of ;. Ho-
: 1 :

wever, the map p;: >I<X,-——>XP(2) is the composition of (>J<w) and the j-fold
1 1

commutator on QXP(2), Since wis an H-map we have wo¢,~pu;. Thus if
¢, is nullhomotopic the extension exists. If right translation is a homotopy
equivalence in X there exists a map 7: QXP(2)—X, [11, Lemma 4.2], such that

row=1.
The maps, T';, of Theorem 1.3 (iii) are induced by maps G;: P; ><(>2X,~—>
. 1
_P]._l><(1>1<1X,~) which are defined in the following manner. Let proj: R;—R,_,
be such that 4;_,c projo(h;)™" is projection on the first factor in I” and let p, be
P XX—X,=X—X,_,.
1

Ty
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Put

GJ"Q:'X(%Xi) =Y; X7,
G109,/ X (% X)) = (¥ k)7, and

G; |R,-><(>ij,o) = projxXp,.
It is clear that there exist homeomorphisms
X(j))(VSX)=D*x X?|(0D*x X7 UD*x (V X))
=S x X7 |(xx X7 U S*%x (VX))
Also G j(R,X(l>j< X,))C(@P;_,NR;_,)XX;_, which goes to the basepoint in

XG—1/ j\-/lSX). Let ¢: S°— \/S? be the standard pinching map and put
A;: S*AX/—S* A\ X’7" as the composition (fold A1)o((1V*V —1)Ax,)o(gA1).
We have a commutative diagram in which the rows are cofibrations

SIA(VX) > SPAXT  — STXXI|(xx X7 U S?x (VX))
SIANVX) = SIAXIT — S X (xx XU S X (VX)) .
Hence Theorem 1.3 (iv) is proved.
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