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1. Introduction

A multitype Galton-Watson process with discrete time (abbreviated to
MGWP) is a mathematical description of a population growth involving several
types of individuals, where each individual produces offspring by a certain
stochastic law independently of others. Suppose that one i-type individual pro-
duces x' individuals of 1-type, x* ones of 2-type, -, ¥V ones of N-type during a
unit time with probability Pé(x) (x=(x", ---, ~)). Then an MGWP is defined
as a Markov chain on the space S of all N-tuples of nonnegative integers, with
the one step transition probability

P's oo xP% oo PN ... xPN(y),
-

~——————

(L1) Pey)=1 * i
: Y) = if O%x=(x, -, 2N)ES, yeS,
3o(¥), if x=0e8S,yeSs,

where * means the convolution of distributions. Since the state 0€.S is a trap
for our process, invariant measures on the whole state space S are trivial in most
cases. But invariant measures of the MGWP restricted onto S— {0} are not
trivial in general, and it is important to study them. For the case of N=1, many
authors have investigated this subject (cf. Harris [4] pp. 22-31, Athreya and Ney
[2] pp. 67-73, 87-93]. Especially, Kesten, Ney and Spitzer [7] gave the definitive
results on the existence and uniqueness of invariant measures of critical simple
GW processes.

In this paper, we shall prove the existence and uniqueness of invariant
measures on S— {0} of a critical, positively regular and nonsingular MGWP,
under the hypothesis of finite x?logx-moments (cf. (H.1)~(H.4) in §2). The
statement of the theorem is given in section 2. In section 3 we shall prove a
basic lemma which was proved in [7] ((2.16), p. 517) in the case of critical simple
GW processes. It will be proved by elaborating those results in [5] since the
proof in [7] does not seem applicable to the case of multitype GW processes.
Finally, in section 4, we shall prove the theorem with the aid of the basic lemma.
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2. Definitions and the statement of Theorem
For s=(s, --,s¥)ERN and y=(¥", ---,yV)ES, we define s*=(s')*"++-(sV)*7,
||s||=r:1ix |s‘| and | y|=y'4---+yV. Special vectors (0,0, ---,0) and (1, 1, ---, 1)
1SSy
are abbreviated simply as 0 and 1 respectively.

We denote the MGWP defined in section 1 by X=(Z(n), P,), n=0,1,2, ---,
x€S. The probability generating function (p.g.f.) Fi(s) of the distribution

{Pi(y)} is given by
Fi(s) = S P(y), IslI<1 .
Then, by (1.1), we have
’é P(x, y)s* = F(s)*, xS,
where F(s)=(F"(s), +--, FN(s)). Therefore it follows from the Markov property
that

(2.1) 5 Pux, 3)° = Fln; s, x€5,
where P,(x, y)=P,(Z(n)=y) and F(n;s) is the n-th iteration of F(s):
F(0; s) =s, F(n+1; s)=F(F(n; s)),n=0, 1, 2, ---.
The mean matrix M=[m}]{,_, is defined by
mj = Fy(1—) = 2 y’P(y), 1<4, j<N,

where F(s)=0F‘(s)/0s’. It is well known that the (Z, j)-component m}(n) of the
n-fold product M” of the matrix M is equal to

mi(n) = Fi(n; 1) = 5 yPules 3), 1<i, j<N,

where e; is the unit vector with ¢-th component equal to 1. Since every m$§>0,
M has a nonnegative characteristic root p with the greatest absolute value. This
root is called Perron-Frobenius root (P—F root) of the matrix M.

In this paper, we shall deal with those MGWP’s which satisfy the following
hypotheses:

(H.1) (Positive regularity). There exists a positive integer n such that
mi(n)>0 for all 1<i, j<N.

(H.2) (Critical property). The P—F root p of the matrix M is equal to 1.

(H.3) (Nonsingularity). Every p.g.f. Fi(s) is not of homogeneous linear
form.
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(H.4) (Moment assumption). For each 1<i, j<N, it holds that
SIPi(3) () log y7 <o

In this paper a nonnegative measure {»(x)} on S— {0} is said to be an in-
variant measure of the MGWP X if

(22) s YOE 3) = ¥(), yES—{0} .

By hypothesis (H.1), the P—F root p of M is simple and there correspond
the unique right eigenvector u=(u’", -+, ") and left eigenvector v=(v,, ---, vy)
whose components are positive with the normalization

N N
(2.3) lul =D =1, 0u=Dovui=1.
i=1 =
It also holds for some 0<p,<p and K, >0 that
(24) ”Mn__M*”<K1P'1n1 n= O: 1’ 2’ AR

where  M*=[m}]{l,;=[uwv,]{;-, and ||M"—M*||= max |mj(n)—m}| (cf.
157

Gantmacher [3], Joffe and Spitzer [5], and Harris [4]).
We set

1 N
= 5.2 2 0 F4(1—)ulu*,
where F$,(s)=0°F%(s)/0s'0s¥. Then it follows that B>0 holds by the hypotheses
(H.1)~(H.3) (cf. [5] p. 429).

It will be seen in the sequel that

2.5) G(x, 5) = 33 Pulx, ) <o0, %, y=S— {0} .
The purpose of this paper is to prove the following theorem.

Theorem. Under the hypotheses (H.1)~(H.4), there exists a unique invariant
measure {u(x)} of the MGWP X up to a constant multiple. Further it is given by

26)  uly)= _B_ lim w*Py(x, 3) = lim G(3, 9), %, 3, s S— {0}
Throughout the following sections, we assume (H.1)~(H.4).

3. Basic lemma

Here we shall introduce some order relations between two vectors s,=(s, »*,
st) and s,=(s3, =+, $7): 5, <5, means s{<sj for all 1<i<N. Similarly s, <s,

1) We shall not distinct row vectors and column vectors in this note.
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[resp. 5,<s,] stands for s,<s, and s,=s, [resp. s <s§ for all 1<i<N]. These
notations are extended for matrices in a natural way.
The purpose of this section is to prove the following

Basic Lemma. There exists the finite limit
3.1) U@s) = ’I'LIB B n*v{F(n; s)—F(n; 0)}, 0<s<1.

Furthermore, U(s)=£0 and
(3.2) lim n*{F(n; )—Fn; 0} = " u,  0<s<1.

We start with some preliminary remarks. We set R(n; s)=1—F(n; s),
Ri(n; s)=1—F(n; s) (i.e. i-th component of the vector R(%; s)), 7,(s)=vR(n; s),
R(n; s)=R(n; s)[ru(s), T(n;s)=F(n;s)—F(n; 0)=R(n; 0)—R(n;s), Ti(n;s)=
Ri(n; 0)—Ri(n; s) and t,(s)=vT(n; s)=v{F(n; s)—F(n; 0)}. We often omit the

variable s like R(n; s)=R(n), etc.
The Taylor expansion of Fi(s) from the left at s=1 gives

(3.3) 1-F(s) = (M—-E@)(1—s),  0<s<I,
34) By = [ (FI1—)—Fi1—(1—90)}d6 = 3 Biu(s)(1—s#),
(35) B = | 1—0)Fu1—(1—s)0)de

— 5 P9 (979 —78) | (1—0){1—(1—5)8}~*1~dB

where 8] is the Kronecker’s delta. (cf. Joffe and Spitzer [5] pp. 426427 or
Ogura [8] (4.15)). Obviously, (3.4) and (3.5) imply that

(3.6) 0<E(s)<M,

0<Biu() <Biu(s)< 3 Fiu(1-), 0<s<s<1,
(.7)
jk(s)/'%Fj,,(l—) as s 71, 1<i, j, k<N.

Replacing s in (3.3) by F(n—1; s), we obtain

(3.8) R(n; s) = (M—E(n—1; s))R(n—1; s),
where
3.9) EYI; s) = EY(F(5 5)) = .NZI By(E(l; )RH(1; s) -

Before the proof of Basic Lemma, we need to prepare several lemmas. We
note that Lemma 1~4 are valid under the hypothesis of finite second moments
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ie. Fiy(1—)< oo instead of (H.4).
Lemma 1. (Joffe and Spitzer [5])® If n— oo, then
nR(n; s) = %Jro(l), 0<s<1,
so that 113.3 nr,(s)=1/B and }'1_2} R(n; s)=u for 0<s<1.

Lemma 1 implies that R(n; s)=7,(s)u+o(1/n).
The next lemma is a refinement of this fact.

Lemma 2. If n—co, then

R(n; 5s) = r,(s)u+0O (logzn , 0<s<1,
n

so that R(n; s)=u+O((log n)/n).

Proof. We fix an s in 0<s<1 and abbreviate it in the descriptions. Using
(3.8) inductively, we have

R(n) = (M—E(n—1))(M—E(n—2))--«(M—E(n—m))R(n—m) .

Further, applying Lemma 1 to (3.9) and noting that mj{=0 yields Ej(/)=0 by
(3.6), we have

O<E(l)<IT<M, 1—1,2, .
for some constant K>0. Hence it follows that
n—1 }Z ” "
i (1—7)M R(n—m)<R(n)<M"R(n—m),
j=n-m

if n—m is large enough. But (1—-K,pP")M* <M™< (14K, p")M* by (2.4), and
M*R(n—m)=r,_,,u by the definition. Hence we have

(3.10) (1—,:”2;%—1{1,);")“_,,#

< TL(-5) 0Kty
J=n-m l

SR(’”) < (1—}—K1p;")r,,_,,,u ’

and simultaneously, by taking the inner product with the left eigenvector v,

2) In their paper there is an error: the inequality (4.42) should be read as

_ 2(s)?o(1—s) _
1o —s5) (2(5)—¢()) LO()<e(s), seC—{1}.

But their assertion is valid.
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(3.11) (-5% B —Kr ) rnom
<7 <(14+-KpP)n_ps -
Multiplying (3.11) by the right eigenvector #, and subtracting it from (3.10), we
obtain
| Ri(m)— 7,4 | <(2Klp + 5 _) fo i, 1<i<N.

Now we take a constant ¢>1/(—log p,) and set m=m(n)=[c log #]. Then it is
clear by Lemma 1 that
K’n em(n)logﬂl

(n—m(n))log n

m(n)

[ -0, as n—> o0,

LEBPe) \

log n
7' Tamon o K'n[c log 7]
< .
log ni=r=mm ] (n—m(n))? log n

Hence we have shown the boundedness of the sequence |Rfi(n)—r,u’|n’/log n,
which proves the first formula of the lemma. The second formula follows from
the first one and Lemma 1.

Lemma 3. If n—>oco, then
1.(5) = 74(0)—7,(s) = O (10%‘)) 0<s<1.

Proof. Taking the inner product of (3.8) and the left eigenvector v with
the aid of (3.9), we have

(3.12) 7a($) = 7a_s(8)—bu_s(5)7a-s(5)"
where
(3.13) b(s) = iﬂv;Bj,‘(F(l; $))Ri(1; s)R¥(1; s)

(note that 7,(s)>0 for all 0<s<1 and /=0, 1, 2, --). From (3.12) it follows
that 1—4,(s)7,(s)>0 and

1 1 121 b,(s)

7a(8)  7o(5) bi(s) r,(s)
Hence
1 1
(3.14) 74(5) —,.”(0)) ro(s) ro(O))
2 b,(s5)—b,(0)

0 (1=5,(5)7.(5)) (1—8,(0)7,(0))
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5 5(0)bi(s) (r{0)—7.(5))
7= (1=0,(s)74(5)) (1—54(0)r,(0))
= I,—1II, (say).

Since 0<s<1 and F(n; 0) 71 as n—oco, one can find a positive integer /, with
s<F(l,; 0)<1. Then, since b,(s) and 5,(0) are bounded in / and 7,(s)—0,
7,(0)—0 as [—oo, we have

50 O="i) __ ko 171, 5)— s
S A=) (=5 0yri0)) <0G )= F O}

<Ko{F(I+1; 0)—F(l; 0)}

for some constant K >0. Hence

(3.15) lim 1T, = Y ___5:10)5:(s) (r(0)—7:(s))
" i=0 (1—by(s)7:(5)) (1—0:(0)7,(0))
<KSo{1—F(; 0} <o .

=0

To estimate I,,, we use the equation

(316)  B()—b,(0) = 31 v ABUW(F(; )—BiW(F(; 0)} Ri(; )RH(; )

i,j,k=1

.

+ 3 wBY(F(; 0){RI(I; )—Ri(l; O} RH(; )

k=1

13 oBL(E(; 0)RA(L; 0){RM(1; 5)— Re(l; 0)} .

sJrk=1

-

Then Lemma 1 and 2 yield the estimate

n-1

|1 <K (23 5 (B )~ BouF; 0+ 5 81

for some constant K>0. But since

(3.17) 0< 33 {BI(F(; 5))—Biu(F(I; O))}
< 31 {BW(F(+1; 0)—BYW(F(; )
=5 {1 Fua-BuEco)
by (3.7), and since "Z_]l(log 0)/I=0((log n)*) as n— oo, it follows that I,=O((logn)?).
Now combining th’i:fact with (3.14) and (3.15), we obtain
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11
7a()  74(0)

Hence by virtue of Lemma 1 we have
7(0)—74(s) = O((log n)’7.(5)7.(0))

— O<(1°%n)2>, as n—>oo ,

Lemma4. If n—>co, then

T(n; 5) — t,,(s)u+o<(l°§l_”)a>, 0<s<1.

= O((log n)?), as n—>oco .

Proof. Noting that B},=Bj;, we have from (3.8) that
(3.18) T(n) = M—G(n—1))T(n—1)+D(n—1),
where  Gi(]) = éBﬁk(F (5 ONARK(L; 0)+RA(1; 9)}

and Di(D) = 3 {BW(F(; 5)— BiW(F(; OB RIG; )RH( )

Since m%=0 implies F'j(s)=0 and hence Bj,(s)=0, 1<k<N by (3.5), it follows
from Lemma 1 that

(3.19) 0<G(I)<IT<M, 1=1,2, .
Further it holds that
(3.20) 0<D()<du, d; = 0(_(1"183_’)2) as [—>oo .
Indeed, by (3.5), Lemma 1 and 3, we have
(3.21) 0<BYW(F(l; ))—BiW(E(l; 0))
< S POWITE I (191 —2) {1— 00— I )} > ~do
<K %P‘(y)yfyka%l)z
for some constant K >0, where we have used the relation
i[l a— '=f[1 B = iz:;al cor i (@i—£B3)Biss ++ Be

in the second inequality. We obtain (3.20) from the definition of D(/) and
Lemma 1. Now using (3.18) repeatedly, we have

T(n) = (M—G(n—1)) - (M—G(n—m))T(n—m)
+ 3 (M—Gn—1)) - (M—GQ-+1)D(U)+D(r) -
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Hence, by the similar arguments as in the proof of Lemma 2, we can use (3.19)
and (3.20) to obtain

(i)t <{(2Kpr+ 5K tumt S i 1<i<,

if n—m is large enough. Take the same m=m(n)=][c log ] as in the proof of
Lemma 2. Then by virtue of Lemma 3 and (3.20), we have

( n ) mom g K'nPe™™log py
lOg n Py n m(n)\(n m(n))z log n

( n >3t 2 1 K"n(log(n—m(n)))*[c log ]
fog ) "SR | ST (nomm)logmy
< n )“‘ SO, <K’”na(log(n—m(n)))z[c log 7]
log n/ 1=r=mm (n—m(n))*(log n)*

Hence the sequence | T%(n)—t,u’|(n/log n)’ is bounded in 7z, which completes
the proof of Lemma 4.

—0, as n—>o0,

Lemma 5. If n—oo, then

1
(3.22) 7.(5) _;Eﬂ(n) 0<s<1.
Moreover
(3.23) s r,,(s)—— ' <oo, 0<s<1.
Proof. First we note that (3.12) yields
(3.24) 1 nB+ -+ S
Tn
1—b,r,

We shall show that >Y7.,|¢;|/l<oo by proving >7.,16,—B|[l<co. Using a
decomposition of B—b, similar to (3.16), we have an estimate

0<|B—b,I<K(.,§:‘={ Fau(l=)— B"(F(l»} logl>

On the other hand
S N )

Z,EZSP‘(J’)(J"'J’”-—y"Si) S:(l—a){1—(1~9R(l))"“r%}d9



92 Y. Ocura anp K. SHioTaNt

<SP (1—04U ¥ —2)IIRQI1 A 1340
< ,EZ}JP"(y)y"y"(#{ A 1) ;

where a o b=min{g, b}. Hence it follows from the hypothesis (H.4) that

(3.25) 0< 3 i{i §k(1—)—B§k(F(l))}
< gropr{35 1 5 K

< 3 Pi(y)y'y*(log|y | K') <o ,

which proves that 337.,|5,—B|[/l<oco and therefore >7.,|¢;|/l<co. Since
c;—0 as [—>o0, (3.24) yields

1 1 =3
+—
1 1 |nBr, =B gcl
(3.26) Ty— —| = — -
nB nB 1 1 1 =
+ —=21¢;
nBr, nB i=o
K K, 2 leil
for some constants K,, K,>0. But
o 1 n—1 o o 1
2—2 !ml=2lc:l2—2—
n=19° I=0 1=0 n=l+1p

<kt el e,
=1
which proves (3.23). The first relation (3.22) is a direct consequence of (3.26).

Lemma 6. Suppose that E—o< )(as n—>o0) and a,|E,| <oco. If

we set

(3.27) 8, = %Jre,.,

then for each I=1, 2, ---, there exists the limit

(3.28) B*(l) = lim »* ’"1”;[‘ (1—8,).

Moreover there exists a constant K >0 such that

(3.29) n’m]i[l(I—B,,,)<Kl2 for every n and 1>1.

Proof. We take an m, satisfying 0<3,,<1 for all m>m,. Since
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log (I_Bm) = — B s T = O(;ﬂ%): m—>oo,
it follows from (3.27) that
tog{n* IT (1— 8,0} = 2(log n— 3} L )42 3 L — 31 (6ntma)

for I>m,. The right side converges as n—co and hence the B*(/) exists for
I>m, For I<m, we have only to note that B*(l)=pB*(m,) IIn<7'(1—Bm)-
Inequality (3.29) is clear since

log {1 (1—B)} = 2log n— 32— S (6+1,)
"2
< 2log n— S —dx+log K
I x
= log (KI?), I=>m, .

Now we are ready to prove Basic Lemma.

Proof of Basic Lemma. Multiplying the left eigenvector v to the both
sides of (3.18), we have

by, = ty—0G(n)T(n)+vD(n),

which is rewritten as

(3.30) tuir = (1—Ba)tatVa
where

Bx = vG(n)u
and

Y» = vG(n) (tau—T(n))+vD(n) .

Since

= iF v; B (F(n; 0)){R*¥(n; 0)+R¥(n; s)}u’

i 1

b

=24 53 0L P )| (RHns 0)—r.(0)w)
n k=1

+ (RMn; §)— r,,(s)u")—i—<r,,(s)+r,,(0)———)u"}u’

o+ 5300 BU(F(n; 0)— L Fiu(1—)| {RH(n; )+ Rém; )}

it follows from Lemma 2 and 5 that {8,} satisfies (3.27). Next we observe that
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(3.31) LAY
Indeed, Lemma 4 and (3.19) imply that
0G(m) (tn u—T(m)) = o(“i]‘)f) .
n
The finiteness of > n*vD(n) is a direct consequence of Lemma 1 and (3.17).
Now using (3.30) repeatedly, we have
Wt = I (1= Bu)trt 50 TT (1= B)y,-+n,
= L+ II, 4111, (say).
It is obvious that 11_:2 I,=B*(0) and lim n*y,=0. Each term of II, converges

as n—>oo and it is dominated by K/?|v,|. But since (3.31) is valid, the conver-
gence of I, follows from the Lebesgue dominated convergence theorem. Since
t,=v{F(n; s)—F(n; 0)} we have proved (3.1).

To show the nontriviality of the function U(s), we note that

lim #°(ra_(5)—~1(0)) =
by (3.12), (3.13) and Lemma 1. Then it holds from (3.1) that
(3.32) U(F(0)) = lim Br(r,(0)—r,u(0)) = 1
Finally, it is clear that (3.2) follows from (3.1) and Lemma 4.

4. Proof of Theorem

In this section, we shall prove the theorem stated in §2. The next lemma
is a direct consequence of Basic Lemma by the standard argument on a convergent
sequence of analytic functions with nonnegative coefficients (eg. [7] p. 518 for a
complete proof).

Lemma 7. The function U(s) in (3.1) is analytic in ||s|| <1 and it is expressed
by the power series with nonnegative coefficients u(x), xS— {0} :

(1) U =, 33 p(e Iol<1,
and
(4.2) u(x) = lim Bn® %} 0:P.es, %)

Now we shall restate the “existence” part of the theorem and prove it.

Proposition 1. The measure {u(x)} on S— {0} is an invariant measure of
the MGWP X. Further it holds that
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(4.3) lim n°P(x, ) = 5 u(y), % yES—{0},
and
(44) lim G(x, y) = u(y), y&S—{0} .

Proof. From (3.1) and (3.32), we have
U(F(s)) = U(s)+1, 0<sL1.

Hence, comparing those coefficients of s* of the above equation, we see that
{w(x)} is an invariant measure of X.
For (4.3), it is enough to show that

lim n*{F(n; s)*—F(n; 0y} = f;gl U(s), 0<s<1.
But this is clear from (3.2) since
(45)  Flns sy —Fn; 0 = 3331 Pl 27 o F='(;
Fin; s~ {Fi(n; s)—Fi(n; O} Fi(n; 0) F**(n; 0)""" .. F¥(n; 0)*" .

We note that (4.3) yields G(x, y)< co.
To show (4.4), we fix an 0<s< 1 and take any £€>0. Then, by means of
Lemma 1 and (3.2), there exists a positive integer #, such that

exp {—%(1+8)2}<Fi(”; s)<exp {—;’%(1—8)} ,

exp {—:—;(14—8)2}<F‘(n;0)<exp{—%(1—8)} :

(1—¢) U(s)n’;—;gF"(n; §)—Fé(n; O)<(1+E)U(s)n1:;3
and exp {%;—}<1+8 for any 1<i<N, n>n,.
n
Hence it follows from (4.5) that
Sy XU XU
—_ el — 27 (14-¢€ 2}< , y
(1)U 5} 2 exp |~ 2 (147} < 5 Gl 9)s
<SS Py, )+ (1HEFU(s) 3 ML ex {__&“_(1_5)}
= n=1 yeS-{0} %y "="onzB‘ P nB '

But since

im S % _xw V("L gy 1
'Eg}”;onZBexp{ nBc}_Sotze dt_c’c>0’
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lim 3% P,(x, y)s’ = hm L {F(n; s)*—F(n; 0} =0,

12| >0 yE5 - (0}

we have
1—¢& 5
e ——U(s)< 11n|1_>1£1f 2 G(x, y)s
<lmswp 33 G(xne< Ly
z[>e © y=S- (0}

Because >0 is arbitrary, it follows that
lim > G(x, y)s* = U(s),

1]+ yET - {0}

so that we have (4.4) by the standard arguments.

To prove the uniqueness of invariant measures, we define the positive in-
teger n, and the distributions {P*(y)} on S by

n, = min {n> 1; F(n; 0)>0} ,
(4.6) Fi(s) = 2 Pi(y)s” = Fi(n,; 5), 1<i<N, 0<s<1.

We denote the MGWP corresponding to {P#(y)} by X=(Z(n), P,). Itis easily
seen that the MGWP X also satisfies the hypotheses (H.1)~(H.4) as well as

4.7) P,(x,0>0 for n>1, xS,

where P,(x, y)=P(Z(n)=y) (especially for (H.4) cf. Athreya [1] or Sevastyanov
[9] Chapter ITI, §3). Let U(s) be the function associated with X in Basic
Lemma, and f(y) the coefficient of s” of U(s). By Proposition 1, {#(y)} is an
invariant measure of X and

(4.8) lim G(x, y) = A(y), yeS— {0},

%]

where G(x, y)=f%ﬁ,,(x, ¥). By the branching property (2.1), it also holds that

(4'9) P,,(x, y) = P,,(e,, ')*"'*Pn(en ')*"'*Pn(eN’ °)*"'*Pn(eN’ )(y)
x! xN
n=>0, x, ye S, x+0.

As in [7], we set
T(x) = {yeS—{0}; G(x, y)>0}, xcS— {0} ,
T= v T(x).

zes8- (0}

Lemma8. T=T(x) for all x=S—{0}.
Proof. Since (4.9) implies P (y, 2)=P(y—=x, 0)P,(x, 2) for all x, y, 2zES,
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n>1 with y>x40, it follows from (4.7) that

(4.10) T(x)cT(y), 0Fx<y.

Next we shall show

(4.11) T(e;) = T(e;), 1<i, j<N.

By the hypothesis (H.1), there is a positive integer n, such that
(4.12) P,(Z(n)>1)>0, 1<i,j<N.

Hence there exists an y;; >e;(y;; €S) such that P, (e;, ;;)>0. It follows from
this and the Markov property that 7(e;) DT(y;;). But T(y;;)DT(e;) by (4.10),
so that T'(e;) D T(e,), which proves (4.11).

Finally, take an x&S— {0} and fix it. Because B>0 (cf. section 2), it is
clear that P, (|Z(1)| >2)>0 for some 1<i,<N. Hence, from the property of
iteration of p.g.f.¢/, it holds that B, (|Z(n,)| > |x|)>0 for some integer n,; i.e.
P, (e;,, 2)>0 for some |z|>|x|. We partition the set

I={e, -, e, -, en, = en} = I+ - +1y
Ny 2
z' zN
such that I; AI,=¢, i, and $I,>*. (4.12) assures that for each e, there
exists y, €S such that y,>e; and P, (e, y,)>0 if e=I;. Then, setting y=31y,,
eI

we have y >« and P, (2, y)>0 by (4.9).

Hence by the Markov property it follows that P, .,(e;,, ¥)>0 and T(e;) D T(y).
Since T(y) D T(x) by (4.10), it holds that T(e;)) D T'(x).

Combining this fact with (4.10) and (4.11), we obtain the conclusion.

Corollary. Every non-trivial invariant measure for the MGWP X is positive
on T and zero off T.

The proof is not difficult and will be omitted (cf. [7] p. 521).

Applying the Martin entrance boundary theory to the MGWP X restricted
on TV {0}, we have the following proposition from (4.8) and Lemma 8 (cf. [7]
pp. 521-522 or [6] pp. 366368 for complete proofs).

Proposition 2. Each invariant measure of the MGWP X on S—{0} is a
constant multiple of the measure {f(x)}.

Now the “uniqueness” part of the theorem is proved since every invariant
measure of the MGWP X is also an invariant measure of the MGWP X.
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Added in proof.

After this paper was submitted, we received a preprint from Dr. Fred Hope,

entitled “The critical Bienaymé-Galton-Watson process.”” (to appear in ‘“Sto-
chastic Processes and their Applications”’), where the same problem is treated
without moment assumptions.





