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Introduction

Kolmogorov, Petrovskii and Piskunov [1], whom we shall refer to as KPP,
studied the initial value problem for a semilinear diffusion equation

0 {Lu:f(u), 0<u<l (v, )ER'X(0, ),

u(x, 0) = uy(x) XER,

(where L= —g;—(aixy, u=u(x, t), >

under the conditions:

(1) fEEC0, 1],
(ii) fO)=f1)=0,  f(0)>0>f(1)
(ii) f©>0,  fE)=fE-f(§)=0 £€(0,1).
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These conditions are supposed to be satisfied throughout this paper. Replacing
u by w(x+2\t) the equation (1) is reduced to

(2) w”’ =22 w'+f(w) =0, 0<w<1 xER',

(where f = dix’ w = w(x). )

Since the equation (2) is invariant under the transformation (¥, A)—(—x, —\),
we shall treat the case of A >0.
KPP showed that

(3) Xo:\/m

is the critical value in the following sense:

If 0<A <A, then (2) has only trivial solutions w=0 and w=1. (As it is easy to
prove this fact, we omit it.)

If A>X, then (2) andthe normalizing condition w(0)=1/2 determine the unique
solution w,(x). It satisfies automatically @’\(¥)>0 x¥ER', wy(—o0)=0 and
wy(+o0)=1. (This fact is proved in Part I for the sake of completeness.)

We call w,(x) or w,(x-+2xz) the travelling wave of (1) with speed —2.

In Part I we investigate the equation (2) in case of A>\,. The existence
and uniqueness of the nontrivial solution w,(x) will be established. We shall
give also the detailed properties of w,(x) which play important roles in Parts II
and ITI. We also investigate

(4) W’ — {2 g (w)} o' +f(w) =0, 0<w<l xR

under suitable conditions on g. The existence and uniqueness of solution of (4)
will be needed in Part ITI. The nontrivial solution w(x) of (4) is also called the
travelling wave for the sake of convenience.

Replacing u(x+2t, t) by u(x, ¢) the problem (1) is reduced to

5) [L+2x:—x]u=f(u), O<u<l (% )R X(0, o),

u(x, 0) = uy(x) xER.

In Part IT we propose two kinds of criteria on the initial function u,(x) which

conclude
lim sup u(x,t) =0 for any 4
PRI 2

or

lim sup |u(x, £)—w\(x+c)| =0 for some c.
t>o TeR

An application of this result to a problem with higher space dimension is con-
sidered also. Adding the assumption:
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(6) FE<fO) £<01),
we propose certain criterion on the initial function u,(x) which concludes

I‘irg sup [u(x, t)—wi(x)| = 0.

KPP obtained in [1] a remarkable result: If the solution u(x, ¢) of (1) has
the initial function u,(x)=1 (x>0), =0 (x<0), then we have
(2) (sgn &) fu(x+u7(E, 7), T)—wa (x5 (E)INO

as 7 /'4- oo, uniformly with respect to x&R" and uniformly with respect to £ on
every closed subinterval of (0, 1).

(b) lim -0 (g, 7) = —2n, .

T 0T

Here u~'(£, 7) is given by the implicit relation w(u~*(%, 7), 7)=¢ for (£, 7)€(0, 1)

% (0, o). This is well defined since we have %"’_u(x, #)>0 for (x, )R X
x

(0, ). Their proof is based on the fascinating method which we would like to

call the method of KPP transform. Part III is devoted to showing the effecti-

veness of the method of KPP transform. Let us introduce the class M of smooth

functions by

(7) M = {u(x); w'(x)>0 xR, u(—o0)=0, wu(+o)=1}.

Suppose that the smooth function #(x, ) belongs to the class M for any ¢>0.
Then we can define the smooth function #™*(, 7) by the implicit relation

(8) uw?(E 1), 7) =& (& 7)E(0, 1)X[0, ).
Let us call the new function 2(¢, 7) given by
(9) 2, ) =uw@’E 7, 7)  (§ 1)E(, 1)X][0, )

the KPP transform of u(x, £). Here and hereafter for any smooth function f of
two independent variables (x, t) or (&, 7) f’ and f mean the partial differentia-
tions with respect to the first and the second variable respectively. If the above
u(x, t)=u(x) is independent of #, then u~'(¢,7)=u""(£) and #(&,7)=2(£) are also
independent of 7. The transformation

{Z_v: = u(x’ t) ) or X = u_l(E, T) ’

T=1© =T

(10)

gives diffeomorphism between the region R'X [0, o) of the (x, #)-plane and the
region (0, 1) X [0, co) of the (&, 7)-plane. Hereafter, let u(x, t) be the solution of
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(1) with u(x)eM. It follows easily that u(x, t) M for any ¢>0. Differentiat-

ing (8) we have
v oy 11
@Y E = w'(x, t) A, 7)’

@y &= ~;E§ ?) - —{a/(g, R a{s(g)f)} :

The transformation (10) induces the rules of transformations between the partial

differentiations (i, 9 )and <~8—, _6_)
0E ox Ot

(11)

ot
9 _ 1 8
0 /(x, 1) Ox
(12) A
0 _ 0 _ufxt) 0
or 0t u(x, ) Ox’
2 gl
x o0&
(13) 3

0 , 5
Bt = o T IEE DAE DHAO} 5 -

Especially we have

4 L= () = e ) Oy = L.

It follows from (12) that

'E 7Y — u’(x, t)
(15) 2'(&, 7) (5 1)
mg oy — L [W(x, 1)
(16) #ED u'(x, t) {u’(x, t)}
_ 1 {u’”(x,t)_(u”(x, t) 2}
w(x ) W (x,f) \d(x,t)/ )
Differentiating (1) we have
(17) [L—f'@ =0.
This can be rewritten as
(18) [La—f/© =0
or

(19) (g, 7) = 2§, A(E, T)—fEWE, )+ (EE, 7)
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— (e, )= g, ) Dot e, ).

x, 1) u'(x, t)

Since we have
(20) wy"(%)— 2w, (%) +f(w(x)) = O
it follows

ey SO oy
(21) )+ =
Differentiating (21) with respect to & we get
(22) 0 = b, *(EYebr" () — (€)' (E)+Sf'(E)0x(E) -
Subtracting (22) from (19) we have
(23) [La—{f/ &)+ @+d)dy"}] (2—1by) = 0.
Putting
(24) cy(®, t) = {f'(E)+ @+ D"} | ecuca, 0,7t

= f/(u(x, )+ {/(x, t)+aba(u(, 1))}db\"(u(x, 7)) ,

we can rewrite (23) in the form

(25) [L—e¢,(x, )] (' —d\(u)) = 0.
Differentiating (18) with respect to 7 we get
(26) [Li—{f'(E)+200"} ]2 =0.
Putting
(27) co(x, t) = {f'(§)+288"} | a0,
=t 2= ()}

we can rewrite (26) in the form

(28) [L—cy(x, t)]a(u(x, t), ) = 0.
For any function A(£, 7), subtracting [L,—f'(£)]k from (18) we have
(29) [Li— () +@+HY) (a—h) = —[Li—f E)]h.

Let us call the (@, £)-plane the phase plane. Roughly speaking the main results
in Part III are that all the travelling waves are stable from above and below on
the phase plane. Especially corresponding to the original results of KPP, the
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slowest travelling wave is stable from above almost in the large on the phase plane.
In Part III the following standard comparison theorem plays an essential role.

Comparison Theorem (see [2] Chapter 10).
Suppose that ¢(x, t) satisfies the growth condition:

o(x, 1)<C {x*+1} (%, )eR' X [0, T]
for some C>0. Suppose that u(x, t) satisfies the regularity conditions:

u(x, t)eC(R*x [0, T),
W (x, 8), u(x, 1), i(x, 1) C'(R*x (0, T])

and the growth condition:
u(x, )>—Me5**  (x, t)eR'x [0, T
for some M >0 and K,>0. Then the differential inequality
{[L—c(x, t)]u=>0 (x, )eR'X(0, T],
u(x, 0)>0 xER'
implies
u(x, t)>0 (%, )eR' X[0, T].

The following simple fact also plays an important role. If u,(x)E B(R")(u,(x)
has the bounded continuous derivatives up to the third order), then the solu-
tion u(x, t) of (1) satisfies

(30) sup

reR!

(Fa-)ku(x, t)‘<e“““’ >0, k=0,1,2,3
X

for some 4>0 and B>0. This can be shown as follows. Define the approxi-
mate solution u;(x, ¢) by the iteration

up(s, ) = (| Hir—y, tyu(s)dy,
unt) = o, )+ |7 He—y, t—9fu, (0 Dyds j=1,2,3, .

Here and hereafter

H(x, t) = \/———17[t e_xz/”

represents the fundamental solution of the diffusion equation. Then it is easy
to see that there exist 4>0 and B >0 such that
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31) sup

zeR!

(6i)ku ey ] <etB 130, k=0,1,2,3,
x

j=0,1,2,3, .
It is also easy to see that for k=0, 1, 2, 3,

(32) lim sup

j>= Rlx[0,T]

<—:—x)k{uj(x, t)—u(x, 1)} |=0

for any T'>0. (31) and (32) proves (30).

PArRT I 'TRAVELLING WAVES

1. Existence, uniqueness and properties of the travelling wave

In this section we study
(4) W’ — {2n+-g'(w)} w'+f(w) = 0, 0<w<l1 xER'

under the condition

(L.1) g80)=g0)=0, gE)=C[0,1].
The assumptions on f are stated in Introduction. Put
(1.2) 2p = 27 +g(1)

Then (4) is equivalent to

w—1Y 0 1\ fw—1
0 (o) = (oo 2 0 )
w —f'(1) 2 w’
Here “---” represents the higher order term for small (w—1, @’). The coefficient
matrix in (1.3) has two distinct eigenvalues

(1.4) T, =T (p) = pxVp'—f(1)

with opposite sign (7,>0>7_). The singular point (w—1, #’)=(0, 0) is the
saddle. Well known theory of 2-dimensional autonomous system gives

Lemma 1.1 (see [3] Chapter 13). There exists a C= function w(x) defined
and satisfying (4) in the interval [0, o). Moreover it satisfies

(1.5) O<w(x)<l, w/(¥)>0 x>0,

1—w(x) = a,e”-* {14+ 0(e )} as x— +oo,

(16) —w’(x)= T_alef-‘{l—l—O(e’a’)} as x—> +oo

for some a,>0 and §>0,
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(1.7) (&) = w'(w™'(§)) e C[w(0), 1],

(sohere w(£) is given by w(w™(£))=E for E€[w(0), 1],

and

(L8  dE>0  EO), 1,  #l=0, w(l)=r1_.

The above w(x) is unique in the following sense.
Theorem 1.1. We assume A>0. Suppose that v(x)= C*(0, o) satisfies
(1.9) o — 20 +g (@)} +f(v) =0, 0<o<l x>0.
If v(x) is not identically equal to O or 1, then we have
(1.10) o(x) = w(x4-c) x> %,
for some ¢ and x,. Here w(x) is the function stated in Lemma 1.1.

Proof. Integrating (1.9) on the interval [0, x], we have

(1.11) ?'(x) = O(x) as x— oo,

For any €>0, we can rewrite (1.9) in the form

(1.12) (d%_e> {t/'—(2r—E)o—g(0)} = h(2) .
Here

(1.13) h(v) = E2A—E)v—f(v)+-Eg(©) .

Integrating (1.12) and using (1.11), we get
(1.14) 2’ (x)— (2A—E)v(x) —g(v(x))
= —[leernoindy = - e hotaray

Suppose that v(x) is not identically equal to 0 or 1. Then it is easy to see

(1.15) P(x)>0 x>z,
or
(1.16) Y(x)<0 x>,

for some x,>0. In any case there exists the limit v(+ co)=Ilim v(x). By Le-

besgue’s theorem we have

(1.17) tim (e h(o(x+)dy = Lhgo(+ ).
T+ 0 &
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(1.14) and (1.17) assure the existence of the limit v/(4- °°)=,lir+ll. v’(x) and give

(118) (4o0) = L f(ol(+2)..
This implies

(1.19) v(+o0)=1  (+)=0
(1.20) o(+00) =0 (400)=0.

The singular point (v, 2")=(0, 0) has the characteristic roots o,(A)=A % VA*—2L
Since real parts of o.(\) are non negative for A>0. This means that this singular
point is unstable node, center or spiral. So it does not occur (1.20) and (1.16).
It is well known that (1.19) implies (1.10). This proves Theorem 1.1.

Now we proceed to prove the existence of the solution w(x) of (4). Since f
and g may be considered as C*~ functions with compact supports defined on
the whole real line, then w(x) in Lemma 1.1 can be continued uniquely on the
whole real line as a solution of the equation (4). The remaining task is to show

(1.21) 0<w(x)<1 xER

under suitable assumption on g. Put

(1.22) 0. =, (A) = Ak VAL,
Hereafter we assume A >\,. Then we have

(1.23) o (N)=a_(A)>0.

We can rewrite (4) in the form

(1.24) (%—at){(%—ai)w—g(w)} — f(@)+-o.g(w) .

Let us introduce following notations:
(i) Incase of A>Q,

o, 0
(1.25) A= ( (())”) ” (h)) ,
(1.26) u="uy,u), u, = ' —o(N)w—g(w),
(1.27) h(E) = '(hu(€); h-(E)),  hu(&) = foE)Fo.(Mg(E) -
(i1) In case of A=},
o 1
(1.28) A= (7; N ) ,
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(1.29) u="*uy,u), u=w  u =w-2Aw—gw),
(1.30) h(E) = '(h.(€), h_(§)),  hu(E)=2(5),  h_(§) =fuE)+Nug(f).

Then the equation (4) is equivalent to

(1.31) %u — Autho(z)) .

Lemma 1.2. If
(1.32) h (&) = f(E)+o-(Me(§)=0  £€[0, 1],

then w(x) in Lemma 1.1 satisfies

(1.33) 0<w(x)<1, 2'(x)>0 xR
and
(1.34) lim sup ,%, log{|w(®) |+ |2/(x) |} < —o_ (1) <O0.

Proof. The second component of the equation (1.31) and (1.6) yield
(1.35) u(®)= —{ e rh_(w(r))dy
— —S:e“’—’h_(w(x—l—y))dy .

Suppose that (1.33) is violated. Since #’(x)>0 on every interval (x,, o) on
which 0<w(x)<1, then we have only the possibility of the following situation.
There exists x, such that

(1.36) w(x,) = 0, 2’ (y)>0  y>x,.

By (1.32), (1.35) and (1.36) we have

(1.37) /() = —s" -0 h_(w(y))dy<O0.
£

On the other hand by (1.36) we have @/'(x,)>0. Thisisa contradiction. This
proves (1.33). By (1.33) we have the limit w(— co)=lim w(x). By Lebesgue’s

theorem we have
(1.38) tim (e r2h_(w(e+y))dy = L b (@(—c0)).
X p— 0 a.—
(1.35) and (1.38) assure the existence of the limit w’(— oo)= lim %’(x) and yield

(1.39) w(—o0) = — flw(—)).
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This implies
(1.40) - w(—o0) = w/(—o0)=0.

(1.34) follows automatically from (1.40) (see [3] Chapter 13). This completes
the proof of Lemma 1.2.
Suppose that k_(£) satisfies (1.32) and

(1.41) h_(£,)>0
for some &,(0, 1], then we have the more precise information than (1.34).

Lemma 1.3. If A>\, then there exist a>0 and §>0 such that

(1.42) (%)k‘w(x) — (0. )aes-*{14+0(*)}  as x— —oo
E=0,1,2,
(1.43) {:u)_(%)} —0(e) as x—> —oo.

Lemma 1.4.
If A=\, then there exist a>0, bER' and §>0 such that

14 (D) ) =(-L) (- {1+0E)} @ v —c
k=0,1,2,
(1.45) OV _o( 1) @ss—c.

w'(x) |%]*

Proof of Lemma 1.3. By (1.34) we have

(1.46) [ eohony <t

Put

(147) a=——— wO~[ ek (@Oo)D}
(1.48) b=——u(0).

It follows from (1.31) that+ )

(149) ui(®) = (o= per*— [ e+ =2h, y)ay
(1.50) u(®) = —(os—oJaer+ | e h_(u(y))ay

or equivalently
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(1.51) w(x) = ae”-*+be"+*—
S Y

(1.52) w'(x)—g(w(x)) = o_ae’-*+o be"+*—
———{[ e o)+ o e b @)y}

x
o,—0_ —e

(1.51) shows that a>0. Suppose that =0, then by (1.35) and (1.50) we have
(1.53) S:e"’-’h_(w(y))dy —=0.

By (1.32) this implies

(1.54) h_(w(x))=0  xER'.

Since we have (1.41), this is a contradiction. This proves a>0. (1.42) follows
at once from (1.51), (1.52) and (4). Note that

u(x) _ P S e
(1.55) —w(x) O(e*) as x
for some §>0. Since we have
(1.56) @ = o)1)
w w
it follows
(1.57) (27 =g/ () + TR
w (@')*
By (1.42) this implies
w” /—, w \%/ @\ o
(1.58) ( w) —f (0)(7) (?) 1O@®) as x .
Since
(1.59) v = o_w+tg(w)tu,,
(1.60) u) = ou,+h(w),

then it follows

() st

w w

= {g’;w)_ggvu:)} o +<r+u+;i‘—)h+(w)_

Uu

w: {o_w+tg(w)+u,} .
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Thus we have
z0/ 4 u u 2
(1.61) (—) - (o+—a_).:—(_+) 1O@) as x—> —oo.
w w w

By (1.42), (1.55), (1.58) and (1.61) we get (1.43). This proves Lemma 1.3.
Proof of Lemma 1.4. By (1.34) we have

(1.62) [ ewislin@o)ey  <too.

Put

(1.63) a=—{u (O e @o)a},

(1.64) b=u0)—{ e h(0()—yh @)}y .

It follows from (1.31) that
(165) () = B—ax)eo A (h(w(3) + —p)h ()} dy
(1.66) u_(x) = —aet"+ Sime"ou"”h_(w(y))dy
or equivalently
167 w(®) = b—ar)P | A o))k dy
(168)  w(®¥)—g(w(x) = {M(b—ax)—a}e+

+7 o @) 1A= )b ()

(1.67) shows that a>0. Suppose that a=0, then by (1.35) and (1.66) we have

(1.69) Sle‘*o’h_(w(y))dy —0.
By (1.32) this implies
(1.70) h_(w(x)) =0 xER".

Since we have (1.41), this is a contradiction. This proves a>0. (1.44) follows
at once from (1.67), (1.68) and (4). Now we proceed to prove (1.45). First we
note that

u_(x) _ 1 e
(1.71) =0 (m) as x .

In this case we also have (1.58). Since
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(1.72) o = Aw+g(w)+u_,
(1.73) u' =nNu_+h_(w).
Then it follows
' /_ (u 2 e
(1.74) ( 2 )=~( ; J+0@)  as = .

By (1.44), (1.71), (1.58) and (1.74) we get (1.45). This completes the proof of
Lemma 1.4. Thus we obtain

Theorem 1.2. We assume N>\,. Suppose that f satisfies the assumptions
stated in Introduction, g is a C* function satisfying (1.1), (1.32) and (1.41). Then
there exists uniquely the solution w(x) of (4) supplemented by the normalizing con-
dition w(0)=1/2. w(x) belongs to the class M given by (7), and has the bounded
continuous derivatives of any order. Moreover it satisfies

(1.75) {l_ﬂ’(x) — @ {140 ™) as x> 4o,

—o' (%)= 7_a,e"-"{14-0(e ¥} as x— +4oo

for some a,>0 and 8>0. Here 7_=7_(p) is given by (1.4) and (1.2). IfA>,
then there exist a>0 and 6> 0 such that

(1.76) (%)kw(x) — (c.)ae"-*{1+0(c*)}  as x — —oo
k=0,1,2,
(1.77) {Z((;”))}z O™) as x— —oo.

Here o_=a_(\) is given by (1.22). If A=\, then there exist a>0, beR' and
8>0 such that

(1.78) (d%)"w(x) — (d;iy{(b—ax)e"ox} (140}  as x— —oo
E=0,1,2,

w/l(x)

(1.79) {w,(x)}'=o(|;lz) as %> —oco |

Since g(¢)=0 satisfies (1.32) and (1.41) this theorem shows the existence
and uniqueness of the solution w,(x) of (2) supplemented by the normalizing
condition w(0)=1/2. w,(x) also satisfies (1.75)~(1.79).

2. KPP transform of the travelling wave

In this section we investigate the properties of the KPP transform #(¢) of
the travelling wave #(x).
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Theorem 2.1. If A=\, the KPP transform w(&)=w'(w"(¢)) of the travel-
ling wave w(x) stated in Theorem 1.2 has the following properties:

(2.1) w(e)eC'[0, 11N C=(0, 1],
(2:2) wE)>0  £€(0,1),
(2.3) w0)=d(1)=0, WO0)=0a.(n), @A) =r7(n),
(Here a_(\) is given by (1.22), 7_(u) is given by (1.4) and (1.2).)
yeys L&) ,
(24) @'(6)+ 0 2 +g'(6) £=(0,1),
(25) wWH(E) " (6)—g" (e} —fE)W'(e)+f (Eyb(6) =0  E€(0, 1),
(2.6) lim £d(£) = 0

Proof. It is easy to see (2.1)~(2.3). (2.4) follows from (4). Differentiating
(2.4) we get (2.5). Since

ey (e) ={2 )

w'(%)

by (1.43) or (1.45) we get (2.6). This completes the proof of theorem 2.1. It is
easy to show

x=w 1

Lemma 2.1. Suppose that Q(£) and w(E) are both positive valued smooth
Sfunctions on some interval [, B]C [0, 1]. Then the differential inequality

(@) +FE) > ()4 L)
@O+10>YO+LD s ),
o(8)<AB)

yields
w(E)<QE)  E€(a, B

(&) satisfies (2.1)~(2.6). Moreover it satisfies

Theorem 2.2.
(2.7) W,,(8)<y(E) E€(0,1) AN >,
(2.8) 11311 Sup [D,(E) =B =0 M,
(2.9) Al:t;r(x» il;glw,\(f) =0.

Proof. Since ), (1)=1,,(1)=0, u‘;xl’(l)=f_(7\,) <T_(Ay)=ty,'(1), then (2.7)
follows at once from (21) and Lemma 2.1. Multiplying (21) by #@,(€), we get
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(2.10) DAE)DN(E)+S(E) = 20ab\(E)  E€(0, 1).
Integrating over (0, £) and ifnposing the boundary condition #),(0)=0, we get
2.11) %wf(g)qugj Fln)dn = ZxSquz,\(n)dn .

Since #,(1)=0, this implies

1 a 1 1
2.1 = .
(2.12) Sowa(v)dﬂ o Sof(v)dv

Suppose that A,>x, >, by (2.11) and (2.12) we get

213) 3 (0,10 —10,, O} <o fibp ()~ b, (1)} d <
< 20, ()~ b

() s

1

This gives
A A XZ . ! 1
@1y o< @-0uO<(32-1)[ Soddn 5T g0
On the other hand we have
(2.15) 0< (&) < y(E) e€[o, 1] AN, .

(2.14) and (2.15) prove (2.8). Multiplying (2.10) by #,’(&), we get
(2.16) WA(€) (@x'(€))* = {Mabx*(§)—f(E)N(E} +S(E)b(E) -

Integrating over (0, 1) and imposing the boundary condition @,(0)=,(1)=0,
we get

(2.17) [[sen) o nyan = | onibrmian<
PAYIEE &
< sup 7€)1 fonan
Integrating (2.16) over (0, &) and imposing #,(0)=0, we get
@18)  MQ)—F@ie) = [ s @b ) —f )b (n)} dn <
<[ @ieyant | |7 maman.

By (2.12) and (2.17) this gives
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@19)  ME—AOnO< L sup | 1] s,

Since

@20)  AfiO SO = MO —AOO - 1E),

It follows from (2.19) that

ey (i@ O <L {5 et sup 1@ foan)

This proves (2.9). This completes the proof of Theorem 2.2.

3. Second existence theorem for the travelling wave

Theorem 3.1. Suppose that N>\, and g satisfies (1.1). We assume that
there exists smooth function W(E) defined on [0, 1] which satisfies

yey s S E) .

(KBY WEr < te® =01,
3.2) WE>0  E€(0,1),  W0)=0,
(3.3) W) =0, WQA)<r_(u) (or W(1)>0).

Here 7_(p) is given by (1.4) and (1.2). Then there exists uniquely the solution w(x)
of (4) supplemented by the normalizing condition w(0)=1/2. @(&) satisfies (2.1),
(2.2), (2.4), (2.5) and

(3.4) W(0) = (1) =0,  @(1)=T_(u).
(3.5) wW(O0)=o0o_(N) or o,(N\).
(3.6) Ed''(£) is bounded on [0, 1].

Here T_(p) is given by (1.4) and (1.2), and o.(\) is given by (1.22).
Proof. Let us fix ;>\, such that
3.7) -g'(E) <2\, Ee[o, 1].

By Lemma 1.1 we have the solution () of

sy JE) /
(3.8) @ (E)+@ =22 +4(8)

defined in some subinterval [£,, 1] of [0, 1] which satisfies

3-9) Ww1)=0, W()=7(u), DE>0 €, 1).



28 Y. KaAMETAKRA

Lemma 2.1 assures the inequality

(3.10) 1hy,(§) <tb(§) < WI(&)

as long as #(¢) satisfies (3.8). Thus we can continue #(¢&) on [0, 1] as a solution
of (3.8). The relation

_ (" dn 1
(3.11) = Sm iy <R

gives the solution w(x) of (4) with w(0)=1/2. We omit the proof of the remain-
ing parts. It can be easily obtained by the standard theory of 2-dimensional

autonomous system.

ParT II. AsymprOTIC BEHAVIOR OF THE TIME DEPENDENT SOLUTION

4. Stability and instability criteria for w,(x)

Throughout this section we assume A>A,. We study the relation between
the solutions of the time dependent problem

{[L+2xi]u —flw), O<u<l (v, )€R'x(0, o),
(5) Ox
u(x, 0) = uy(x) xR

and the travelling wave w,(x). Asis proved in Part I w,(x) is the unique solution
of the problem

(2) W' — 0w +f(w) =0, O0<w<l xR

supplemented by the normalizing condition w(0)=1/2. Throughout this section
v>0 is taken such that the function F(¢; v) given by

(4.1) F(g;v) =f(&)+v¢  £<[0, 1]

is monotone increasing with respect to ¢ in [0, 1]. Let us introduce following
notations:

1 a2
42 H(x, f) = —1__g=n
(+2) (s 1) V 4t ¢
oo _ 1 e

. K(x; p) = “H(x, t)dt = Vx| ,
4.3) (%5 &) goe (x, 2) v (r>0)
4.4 U(x, y, t; N, v) = QW6 g #

Y

= e VH(x—2\t—y, t),
(4.5) U_(x, y, t; \, v) = &P N0 (x gy f)—H(x+y, £)} ,
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(4.6) G(x, y; N, v) = & PK(x—y; N+v),
4.7) G_(%, y; N, v) = & {K(x—y; M+v)—K(x+y; M)} .
It is easy to see the following relations:
4.8) BCER R T
(4.9) S S UGx, 3, 5 N, D)dyds = ~e7,
t
(4.10) [~ ey, 15, v)dy—l—vs [" vy, 50 yas =1,
(4.11) S G(x, y; N, v)dy——
(4.12) (", 3, 152, vyt = G, 331, 9),
(4.13) U(®% 9, 0 0)>0 (%, 9, §)E(—o0, 0)X (— o0, 0)X (0, ) ,
(4.14) [ —U (® 3, 15\, v)] S0 (%, f)e(— oo, 0)X(0, ),
(4.15) G_(x,y; A 9)>0 (% 3)E(— o0, 0)X(—o0, 0).
Suppose that
3(— oo, 0], 0)=1,

oo [OSICm

<o(x)<1 x»<<0.

Define &(x) by the relation

4.17) B(x) = —o"(%)+ 200" (x)—Ajo(x)  x<0.
Then we have
d\ d 2 ~
(4.18) [_<E) —l—Z)\.E—l—v]w — A ots  x<0.
By (4.16) and (4.18), we have
(4.19) o(x) = +*

+ 6wy w00 ey %<0
Here we use the abbreviation
(4.20) Py = N/ N

It can be also represented as
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(+.21) o(x) = SO_NU-(JC, ¥, t; N, v)o(y)dy-+
+S:S;U'(x’ ¥, t—s; A, v){(Mot+v)o(y)+8(y)} dyds+
+S:[——af;— U_(x, y, t—s; N, v)]y=ods .

We define {w,(x)}3., by

(4.22) W(x) = { mzx) Zg

(4.23) w0 =" G,y F@, L0 )y =123,
We define {z,(x, )} 5., by

(4.24) n,(x, 1) — Wo(x),

(4.25) 7 (x, ) =SlU(x, 3, £ Ny 0)0,(y)dy+

+S'S°° U, y, t—s; N, 0)F(, (3, 5); v)dyds  j=1,2,3, -
0d —o

Hereafter we assume

(4.26) a(x)=0 x<0.

Lemma 4.1.

4.27) 0<w,(x)<w,(x) xR,
(4.28) 0<a,(x, t) <B,(x, t) = W,(x) (x, )ER* X (0, o0),
(4.29) a,(x, t-+h)<a(x, t) (%, )R X (0, o), h>0.

Proof. (4.26) shows that @,(x)=1 it follows from (4.11) and (4.23) that
(4.30) 0<w,(x)<1 xER".
To prove (4.27) it suffices to show

(4.31) 0<w,(x) <o(x) x<0.
By (4.23) we have
(4.32) [——(d%)ﬂrnﬁw]w, — Flo(x);v) %<0,

Therefore w,(x) can be represented as
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(4.33) (%) = wl(O)e"+”+So_mG_(x, yi n 9)F(e(y); v)dy .

Here p, is given by (4.20). Since @,(0)<1 and F(w(y); v)<(Ni+2)o(y) for
<0, it follows from the positivity of the kernel G_ that

(4.34) w,(x) <+ [ _G_(x 33 %, 9 i)o()y
(4.26), (4.34) and (4.19) give (4.31). This proves (4.27). It is easy to see
(4.35) 0<ay(x, )<1 (%, )ER'X(0, ).
To prove (4.28), it suffices to show
(4.36) 0<m(x, ) <o(x) (%, )E(—o0, 0]X (0, o).
By (4.25) we have
[L+2xi+y]a1 — Flo(®);v) (%, H)E(—o0, 0)X(0, ),
(4.37) 0x
7,(x, 0) = o(x) xE(—o0, 0).
So we have
(4.38) n(w )= _Uny 0 a0+
+S:S;U_(x, ¥, t—s; N, v)F(o(y); v)dyds+
¢ 6 .
—}-SO[—@U_(x, y, t—s; A, ”)]y=ou‘(0’ §)ds .
This gives
(439) a(w )< Uy, @)+

trO0
] U@ 3 =55 0 ) 2t v)0lr)ayds+
¢ a .
—I—go[—@U_(x, Y, t—$; A, v)]y=oa's.
(4.26), (4.39) and (4.21) show (4.36). This proves (4.28). For any 2>0 we have
(4.40) n,(x, 14-h) =S°° Ulx, y, t; N, v)i(y, h)dy+
oo
+H{17 U 3, t—si %, )F@,5); vyas

By (4.28) we have
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(441) n(w, t+R) < UG, 3, %, v 0)dy+

+H{ 17 U 3, 155 %, @03 s
By (4.25) this gives (4.29). 'This completes the proof of Lemma 4.1.
Lemma 4.2.
(4.42) W, (x)>w;(x)>0 x€R =123, -,
(4.43) u,_\(x, 0)>0,(x,8)>0 (x,)ER'X(0,00) j=1,2,3, -,
(4.44) a,(x, )>u,(x, t+h) (x, )ER'X(0, ), h>0, j=1,2,3, .

Proof. (4.42) and (4.43) follow from (4.27) and (4.28) by using the monoto-
nicity of the nonlinearity and the positity of the kernels. For any A>0 we have

@45)  wy eth) = |7 UGy, 50, om0 v+

’ el 3
{7 U 3, 155 0, DF @, 0, sy wdyds G =1,2,3, .
(4.28) and (4.43) give

(4.46) a,(y, h<w(y) j=123, .

(4.46) and the induction hypothesis

(4.47) a;_,(y, s+h)<u;_(y, 5) (y, )R X (0, o)
give

(4.48) a,x, t+-h) <[ UG, 3, 85 % )Y+

T StS:U(x, 9, t—53 Ny )F(,; (3, 5); v)dyds =
= (x, t).
This proves (4.44). This completes the proof of Lemma 4.2.
Lemma 4.3. For any j >0 we have
(4.49) !LIE (%, t) = W ;(x)
uniformly with respect to xR, monotone decreasingly with respect to t.

Proof. By (4.12) and (4.23) we have

(4.50) (%) = S:SLU(x, y, t—s; N YF@,_(y); v)dyds-+
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+S‘ S: U, 9, 53 7\ »)F@,_(y); v)dyds .
Subtracting (4.50) from (4.25) we have

(4.51) a,(x%, 0)—w,(x) = L+ L+L 41,
Here
(4.52) L={" Uy 6% w0,

(453) L= —["{" vty 50 nF@, 0); viyas,
(4.54) I, = S:_TS:U(x, 9, 53 My 0){F (@, (9, t—5); v)—
—F(w;_\(y); v)}dyds ,

(4.55) I,— S;SlU(x, 9, t—53 %, ){F@, (3, 5); ¥)—

—F@,.(y); M}dyds  (0<T<1).
By (4.8), (4.9), (4.11) and (4.12) we have

(4.56) I, <e™,
(4.57) |I,|<e™,
(4.58) |I,| <e™¢ D,
1 73 i
(459) IL1< sup |F(&, »)Isup 1,.(5, 9)=,.0)] -

s>T
This proves (4.49) inductively. This completes the proof of Lemma 4.3. Lemma
4.2 shows the existence of the limits

(4.60) (x) = lim ,(x),
(4.61) a(x, ?) _ lim 2,(x, 9).
Letting j tends to infinity in (4.23) and (4.25) we have
(4+.62) w(x) = | G 3 % F@0); )y,
(4.63) u(x, 1) = 51 U, y, t; N, v)wy(y)dy+

+S:SlU(x’ ¥, t—s; N\, v)F(A(y, 5); v)dyds .

So we have
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(4.64) [-(L) +2r-L+v]oew = Fae »,

6 .
(4.65) [L +2n raa ”]”(x’ t) = F(a(x, t); v),

o(x, 0) = wy(x) .
Finally we have
Lemma 4.4.

(4.66) W' —2W+fw)=0, O0<w<l xER,

(4.67) [t4r L]o—sm,  o0<aci @ oeRX(O ),

a(x, 0) = w,(x) XER'.
Since w(x) is continuous it follows
Lemma 4.5.

(4.68) 51_:2 W ;(x) = w(x)

uniformly with respect to x in every finite subinterval of R and monotone decreasingly
with respect to j.

Since #(x, t) is continuous, it follows
Lemma 4.6.
(4.69) 11112 a,(x, t) = a(x, t)

uniformly with respect to (x, t) in every compact subset of R' X [0, oo) and monotone
decreasingly with respect to j.

(4.44) gives
Lemma 4.7.
(4.70) a(x, t)>u(x, t+h) (%, )R X [0, o0), h>0.
By (4.49), (4.68), (4.69) and (4.70) we have
Lemma 4.8.
(4.71) 1‘112 a(x, t) = w(x)

uniformly with respect to x in every finite subinterval of R' and monotone decreasingly
with respect to t.

Theorem 4.1. We assume N>\,. Suppose that the solution u(x, t) of (5)
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has the initial function
(4.22) W(x) = { boo=20,
w(®) x<0

Here w(x) satisfies

o(x)E P (—,0], w0)=1,
(10 ot a0,
(4.26) B(x) = — 0" (x)+ 200’ (x)—Nw(x)=>0  x<0
and
(4.72) lim inf wif(’_;.cl —=0.
Then we have
(4.73) lim #(x, {) =0

tpo0

uniformly with respect to x in every finite subinterval of R* and monotone decreasingly
with respect to t. If we and the assumption o(— co)=0, then the convergence in
(4.73) s uniform with respect to x=(— oo, A] for any A.

Proof. By (4.71) it suffices to prove w(x)=0. Suppose that this is not true,
then by (4.66) there exists ¢ such that w(x)=w,(x+c¢). Since W(x)<w(x) x¥<0,
we have

0 = lim inf 2®) > Iim inf &+
Frme gp(X) - wy(%)

On the other hand, by (1.76) or (1.78) we have

lim &+, ¢

o= wy(%)

This is a contradiction. Therefore we have w(x)=0. This completes the proof
of Theorem 4.1. By comparison theorem we have

Corollary to Theorem 4.1. Suppose that the solution u(x, t) of (5) has the
initial function u,(x). If

0<uy(x) <wy(x) xR
with W,(x) given in Theorem 4.1, then we have
lim u(x, t) =0
tpoo

uniformly with respect to x in every finite subinterval of R*. In case of o(— o0)=0,
the above convergence is uniform with respect to x =(— oo, A] for any A.
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Now we give some examples of w(x) which satisfy all the conditions stated
in Theorem 4.1.

ExampLE 4.1. (A>2,)

(4.74) ox)=e* o (N)<o<ai(N).
ExampLE 4.2. (A>2,)
(4’.75) w(x) — eo'_()\)x(l__ax)_s .

Here >0, >0 and a(14+-B)<o,—0o_.

ExaMpPLE 4.3. (A>2,)

1
142y (—ax) )

Here >0, 8>0, a(14+8+:-+8"+28"")<o,—o_ and

l(x) = B log (1+x),
Lu@)=4(l(x) j=12,-mn.

ExampPLE 4.4. (A=X,)

(4.78) w(x) = " (1—Xx) (1—ada) P .

(4.76) w(x) = eo-®*

4.77)

Here A, >A>0, 1>a>0and 1>8>0.

ExamPLE 4.5. (A=X\,)

1—%x
1+l (—ahar)

Here A,>A>0, 1>a>0, 8>0, B8+---4+B8"+2B8"'<1 and [,,,(x) is given by

(4.79) o(x) =

(4.77).
Suppose that k(x) satisfies
(4.80) k(0) =1, k(+o0) =0, ¥(x)<0  x>0.
Put

_ [em-PR(—ax) A>n),
(+81) ©@) = {e"ox(l—ix)k(—ai.x) (=2

Here >0 and A,>A>0. Since

—e"-"azk’(—ax){a-+;°"+ 11:((——;:;)} (>N,

_ xox(l—Xx)(ai)zk/(_ai.x){a_zix+’;;:§:Z;’xx))} =)

(4.82) @(x) =
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Then we have
(4.83) a(x)=>0  x<0
if and only if

T+79= (A>N),

(4.84) -® ((;‘) S
) 22— =) w0
It is easy to see that
1
4‘.85 k X)) —= —mmmm8 —
(4.85) (%) T

satisfies (4.80) and

CR(x) _ 20,(%) Ly (%)
(4.86) E@)  1+l(®) La/(®)

Since

Uyl (x)  Lynd"(3) 1 Btore B 28"
(+87) O T lsi () Tfx '

Then under conditions stated in Examples 4.3 or 4.5, k(x) given by (4.85) satisfies
(4.84). This shows that o(x) in Examples 4.3 or 4.5 satisfies (4.83). All the other
requirements in Theorem 4.1 are also satisfied. Especially we have w(— c0)=0.
The above examples give fairly sharp instability criteria for the travelling wave
wy(x). Now we proceed to show a stability criteron for the travelling wave w,(x).

Theorem 4.2. Suppose that the solution u(x, t) of (5) has the initial function

1 x>0,
(4.22) Do) = {w(x) %<0
with
_ e (A>N)
(4.88) (%) = {exozg_ix) =2

Here Ny=>A>0. Then there exists ¢ such that
(4.89) }irg u(x, t) = wy(x+c)
uniformly with respect to x € R' and monotone decreasingly with respect to t.

Proof. Note that (TJ(x):;O x<0. By (4.71) and (4.66) it suffices to show
that w(x)=£0. By (1.76) or (1.78) there exists ¢, such that
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(4.90) W(x) = wi(x+c,) x*ER'.

Since we have

(4:91) wi(ete) = |7 Glx, 33 %, )P (y+e); vy,
it follows

(4.92) W ;(x) > w\(x+c,) xER! j=0,1,2 ...
This gives

(4.93) 1>w(x)>wy(x+¢c,) xER'.

This proves Theorem 4.2. Theorem 4.2 and the comparison theorem give

Corollary to Theorem 4.2. Suppose that the solution u(x, t) of (5) has the
initial function uy(x). If

wi(x+¢,) <uy(x) <W,(x+c¢,) xER

for some c, and c,, where Wy(x) is the function given in Theorem 4.2, then there exists
¢ such that

wy(x+¢,)< lim inf u(x, £)<< lim sup u(x, t) <w\(x-+c) XER'.
1ty tpo0

5. A problem with higher space dimension

Theorem 5.1. Suppose that w(x,) satisfies

()€ B (— oo, 0],
(.1) {m(0)= 1,  w(—w)=0, o@)>0 <0,
(5.2) (%) = — (1) + 200 (1)~ Nio(2) =0 2,<0,
(5.3) lim inf ©®) — o,

£y w}\(xl)

Suppose that the continuous function u,(x) defined on n-dimensional Euclidean space
R” satisfies

(5.4) 0<u, (%)< { ! %ISR,
o(R—|x]) |x] >R

for some R>0. Then the solution u(x, t) of the problem

65 ![%—A]u=f(u), O<u<l (%, )ER*X(0, o),

u(x, 0) = u,(x) XER"
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satisfies
(5.6) gr‘r} l‘:ls;zlg_“u(x, t)=0
for any A.

Note that all of w(x,) given by Examples 4.1~4.5 satisfy (5.1)~(5.3).
Suppose that the initial function u,(x) of the solution u(x, ) of (5.5) satisfies

1
of —1
(e,,_, log[,.,r) >,
(5.7) sup u(x) =

O(-eho'—lt,gTﬂTf) (A=2X) as r—>+oo.
Here

log "y = log 7, log U+l = log (log Lilr) i=1.2,3
Then we have (5.6).

Proof of Theorem 5.1. Theorem 4.1 implies that the solution #(x,, ¢) of the
problem

[6%_( a’i 1>z+zxaixl]u(xl, 1) = fa(,, 1)),

5.8) 0<u(x, )<l (m, HERX(0, ),
1 x,>0,
a(x,, 0) = {
o(%,) %,<0
satisfies
(5.9) ltl_g.} §:1<g u(x, 1)=0
for any A. For any ¢€S*'={¢=R"; |£| =1}, we have
[a%— A]ﬂ(<x, E+R+20, t) = f(a(<x, £>+R+-2), 1)),

(5.10)

7<%, §)+R, 0) = {w«x, £+R)  <x, ©>+R<O0.

Here <{x, &>=ux,&,+-+x,&, represents usual Euclidean inner product of x=
(%y5 +++, %) and &=(¢&,, -++, &4). Since o'(x,)=>0 x, <0, we have

o(R—|x|)<a(éx, £>+R)  <x, E>+R<0.
This implies
(5.11) 0<u,(¥)<a(x, £+R,0) veR"
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for any £S*™'. By (5.5), (5.10) and (5.11) we have

(5.12) 0<u(x, t)<a(<x, £>+R+2xt, 1)
(x, £)ER"X [0, oo), gesS* .
This gives
(5.13) sup  u(x, t) = sup sup u(x, t)
15| >R+2)t -4 eS8t 1 (s, g+ R+2AI<4
< §:;<g a(x,, t) .

(5.9) and (5.13) imply (5.6). This completes the proof of Theorem 5.1.

6. Second stability theorem

In this section we add the assumption:
(6.1) FO<rO  ¢€01].
Theorem 6.1. Suppose that 6(x) and u,(x) satisfies
6.2) O<u(@<w()<nH<l xR,
(6.3) [ erme - <too.
Suppose that the solution u(x, t) of (5) has the initial function uy(x). If
(6.4) 1o(%) Suo(%) <T,(x) xER',
then we have
(6.5) %1:2 sup |u(x, t)—w\(x)| =0

for any A.

Proof. Let #(x, t) and u(x, ¢) be the solutions of the problem (5) with the
initial function #,(x) and wu,(x) respectively. On account of the comparison
theorem to prove (6.5) it suffices to show that

(6.6) lim sup {a(, #)—wy(x)} =0
and
6.7) %ir{} sup {wi(x)—u(x, 1)} =0

for any A. Put
(6.8) o(x, t) = A(x, t)—w,(x) (or wy(x)—u(x, 1)) .

We have the differential inequality:
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[L+2xi—x§]v<0 (%, )ER % (0, =),
(6.9) Ox
0<<o(x, 0)<T(x) XER'.
Here
‘10 ) {1 x>0,
. D(x) =
(6.10) = rp)  w<0,

k(x) is a suitable continuous function which satisfies
[}

(6.11) S B(y)dy = K <-4oo .

Let 9(x, £) be the solution of the problem

612 [L+2xaix—x:]ﬁ =0 (v )eR'%(0, =),

7(x, 0) = 7y(x) xER'.

By the comparison theorem we have

(6.13) 0<v(x, 1)<(x, t) (%, )ER' X [0, o).
(6.12) can be solved explicitly. We have

(6.14) o(x, 1) = Sle“"‘”"ﬂz‘*02”H(x—y» 10,(y)dy
_ e"-"so _H(x—y—2VN—=X3t, Dk(y)dy+

—I—Sme}‘(x_’)_("z—}‘oz”H(x—‘y, t)dy .

0

This gives

(6.15) o, )<

V 4xnt
(6.13) and (6.15) prove (6.6) and (6.7). This completes the proof of Theorem 6.1.

{Kee_x_'_leax—(xz—xoz)t} .
A

Parr III. MﬁTHOD or KPP

7. Fundamental theorem of KPP

KPP has established an interesting result in [1]. Suppose that the KPP
transform 4(¢, 7) of the solution u(x, #) of (1) converges to some function as T
tends to infinity. Then u(x, ¢) tends to one of the travelling waves w,(x) in the
manner which will be clarified soon after. The following theorem is a immediate
generalization of this result. For the sake of completeness we give a detailed
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proof of it.
In this section u(x, ) always represents the solution of (1) with u,(x)eM.
M is given by (7). We assume the existence of the limit:

(7.1) lim (g, 7) = 2-(6) €S0, 1)

and supplementary condition:

(7.2) iy (6)<a(e, ISW(E) (& T)E(0, 1)X[0, o)

for some A, >\, and W(x)eM (W(0)=1/2). Conclusion is as follows:
Theorem 7.1. There exists N satisfying N>\, such that

. 0 \/( 0k -1 .
(73) tim|(-2 V(2 Vutwtuie, 7, )
d \J+k B
—(27&)"(—‘17> wy(x+w,
for any integers >0, k>0 and any p satisfying 1< p<+-oo.
. (0
(74) lim () () ta(e )~ = 0
for any integers j >0 and k>0.
-1 1 1 . -1 -
(7.5) tim{u7(e, w5 ) —w @) = 0
(7.6) lim sup (&, t-+7)—u"(E, )2 =0
for any T >0.
(7.7) 1@§ﬂw&ﬂ=_n
(0 -
. 1 g, TV ———
o Ayl
for any integer j >0.
.3 V[ 0\
o ()=

for any integers j =1, k=1 or j >0, k>2.
Convergence with respect to & is uniform in every closed subinteeval of (0, 1) in all
the cases of (7.3)~(7.9). In (7.3) || ||p» means usual L? norm.

s 1/p
llu(@)llr = {{s‘“lu(x)'p"”} (I<p<+e),
suplu(@)|  (p=+c0).
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RemARk 7.1. If we have the additional condition:

(7.10) %S0 (610 DX, ).

Then we have the monoto;icity of the convergence in the following sense.

(7.11) (sen x) {u(x+u7'(§, 7), T)—wx(x+wx"($))}(>)0

as 7 /+oco. Here sgn x=x/lx|. As an immediate consequence of (7.3) we have
REMARK 7.2.

(7.12) tim (1w, o)1%as = - fepte.

Proof of Theorem 7.1.
First of all we have following relations:

ey (¢ dy
W= s s,
(7.13) SW(x) d"? R
x = — ER',
v W)
-1 _ ¢ d’?
oo w@=[ 50 =0,
* . w, (%) d7] .,
x = SI/Z ) xER,
-1 _ 4 d’?
0= [l cean
o x =S“Tm d_ ceR, >0
1/2 ﬂ()], T) o F
-1 - 4 d"l
U (E) - Sl/zam(‘ﬂ) EE(O’ 1)’
(7.16) (o dy .
x _SI/Z 12“,(17) xe )

Here u,”'(&), u(x) and u.."'(€), u.(x) are defined by the relations (7.15) and (7.16)
respectively. It is easy to see

(7.17) w76 = w6, N—u (5, 7)),

(7.18) u(x) =u (x—|—u“<%, T), ’r) .
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It follows from (7.2) that

WIO<u(O<m, (@) 5 <e<l
(7.19) .
(W“(e)>u:‘(e)>wh"(e) 0<e<
(7.20) {W(a’c)>uf(x)>wx,(x) x>0,
' W(x) <u.(x) <wiy(x) x<0.

By (7.15) and (7.16) we have

S“T(x) dn. Xx—u, H(us(x)) =

(7.21) el (7, T) -

“o® (] 1
=L T
vz \B(n) 87, 7)
Since we have (7.1) and (7.2) this implies

(7.22) lim sup |u,(x)—u.(x)| =0

T>o |54

for any A>0. On the other hand (7.20) gives

1—w, (x) x>0,

(7.23) —wied, O 2

Thus we obtain

Lemma 7.1.

(7.24) lim 1 (5) — () = O
for any p satisfying 1< p<+oo.
Put
= - 1
(7.25) u(x, 1) = u(x+u <7’ T), t+T) ,

This is the solution of (1) with the initial function u,(x).

solution of (1) with the initial function u.(x).
In general the solution o(x, ) of

(7.26) Lo = f(x, t)
has the representation:

(7.27) o, 1) = |7 Hx—y, 1—to(y, t)dy+

Let u.(x, t) be the
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£ foo
-+St S H(x—y, t—5)f(y, )dyds (%, ) ER X [ts, ).
.
Differentiating with respect to x, we have

(7.28) (%, ) = f:

2(1‘ to) (x"'y’ t— to)v(y’ o)dy +

S o He 3, 19101 s

to

Since
Ed 1
(7.29) S U H G, s =
we have
(7.30) Sup, Il (x, t)HL,\\/ (1 )H (%, t)llLs+

+z¢h:ﬁ sup |1, )iz,
T fe<iSty

for any triple #,>>#,>%,>0 and any p satisfying 1< p<<+oco. Repeated appli-
cations of the above estimate to

(7.31) L A{u(%, t)— s, 1)} = flr(, 1) —Sf(ua(, 2))
and Lemma 7.1 yield

Lemma 7.2.

(7.32) lim sup

TH® ,<ICH

(:—x)j(ait)k {u (%, t)—u(x,

for any couple t,>1,>0, any integers j >0, k>0 and any p satisfying 1< p<+oo.
In case of j=k=0 we can choose t,=0.

=0
Lp

Now we define @,(¢) and @.(t) by the implicit relations:

(7.33) wpth = 20,730,

(7.34) e pult), )= % 0.

It is easy to see

(7.35) o) = u (L, )= (L, 7).
2 2

Since u(x, )€C=(R' X [0, =0)),

u(%, £)EC~(R* X (0, ))N CY(R' X [0, )),
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it follows @(t)EC[0, ), p.(t)eC=(0, )N C°[0, ).
Especially @.(t) is bounded on [0, T] for any 7>0. By (7.33) and (7.34) we

have
Pt ,
(7.36) [0, 1y = uclpe(t), H—u-pi(0), 1) =

= u(p(t), t)—u(p2), 1) .

Since we have

(7.37) u.'(x, )>0 (x, £)ER' X [0, o)

and

(7.38) lim sup [lu,(x, )—u(%, t)||=-=0
T2 0<IST

for any T>0. (7.36) gives

Lemma 7.3.

(7.39) lim sup |@(f)—@a(t)| =0
T>® 0<I<T
for any T>0.
Differentiating (7.33) and (7.34) with respect to ¢ we have

> .'r T t)) t)

(7'40) q)‘r(t) = _u,(L ’
u/(@(2), 2)

(7.41) Gty = — H=(2=(D); 1)

u(pu(t), 1)
Subtracting (7.40) from (7.41) we have

(742) Gu(t)—gp(t) = DHLELEL

Here
I, = u/(put), D (@-(0), 1),
I, = {iuult), )—itelp(t), Du(@u(2), 1),
I, = {it(@:(2), t)—tteo(ps(2), t)}uis’(x(2), 7)
1, = da(p(2), 1) {u'(pe(2), D) —u'(o(2), D)}
L, = ite(pelt), ) u(@(8), )—(@(8), D} -
Let us fix any 77>0. There exists R>0 such that

sup |p(f)| <R.
o<t<T
By Lemma 7.3 there exists 7,>>0 such that
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sup [ (t) <R.

0<I<T, TS,
Therefore by Lemma 7.2 and (7.37) we have
(7.43) inf I,>0

1 <I<T, TS,

for any fixed £,>>0. On the other hand we have

(7.44) |1 | <[ty —thee|| ol [0 [ ==
(7.45) || < | p(t)— () [l ool It | 2=
(7.40) | L | <[ltteo|| ol sl | Lo | 2o(E) — (D) |
(7.47) | <[ldhee] | ool 220" — 2| o

Thus Lemmas 7.2 and 7.3 give

Lemma 7.4.

(7.48) lim sup |$(8)=9=(t)| =0
for any couple T >1t,>0.
Put
(7.49) (x4 @.(t), t)—t(x+@u(t), t) = I,+1,.
Here
I, = u(x+@.(1), t)—u.(x+@.(t), t),
I, = u(w+@,(t), )t pu(8), 7).
Since

Wl = [lur(, 8)—stee(, 2)l|
1]l < | @r(2) — () | 1! (%, B2

it follows from Lemmas 7.2 and 7.3 that

(7.50) lim sup [[u.(%+@.(t), 1) —thu(%+Pu(?), 2l = 0.
On the other hand we have

(7.51) U (x+po(2), 1) = 4y (%) .

By Lemma 7.1 this shows

(7.52) lim i (x-+p,(8), £)—n(®)llze = 0

for any ¢>0. (7.50) and (7.52) shows

47



Lemma 7.5.
(7.53) Ueo X+ Pec(t), 1) = oo %) (x, )ER'X[0 o0,).

This implies #.(x)C>(R'). Differentiating (7.53) with respect to £, we
have

(7.54) 0 = pu(thu(x+Pu(t), 1)+t +P(2), 2) -
Since #.=u..""4f(u..), (7.54) implies
(7.55) ©e (%) + Do) (%) +f(u(x)) = 0 XER'.

This shows that @.(2) is independent of . Since u.(x) M we have

Lemma 7.6.

(7.56) Po(t) = —2N  for some A=N,,

(7.57) u(x) = w\(x) xER',

(7.58) 2.(6) =d\(8) ¢€(0, 1),

(7.59) lim a(¢, 7) = dx(6)  €€(0, 1).
By (7.14) and (7.15) this gives

(7.60) lim {u,”(§)—w\ (&)} = 0

uniformly with respect to & in every closed subinterval of (0, 1), This proves
(7.5). Since (7.57) gives

(7.61) U2, 1) = w(x+20E),

it follows from Lemma 7.2 that

() ) (o) 047)-

(L)

(7.62) lim sup

T 1y<i<t)

for any couple ¢, >¢,>0, any integers j >0, >0 and any p satisfying 1< p<<+ oo,
Since @.(0)=0, (7.56) gives

(7.63) P(t) = —22t.
Put

(7.64) (‘a%)j (%)ku (x—l—u“(%, 1), 7+1)—
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—@{(-L) mw) = L+1,.
Here
= (2 M) )
—@H (L) wte+20),

1, = @)L )" st oD —g-(1)— s}

By (7.62) we have lirg [11,]|2=0, Lemma 7.3 gives 1im ||I2|| #=0. Thus we have
d \/ad ( o 1
) (o) e+ (3 7))
jt+k
—(20)k( -2
@)

for any integers j >0, k>0 and any p satisfying 1< p<< 40, Put

(7.65) lim

T

p=0

(7.66) (a—i)j<ait)ku(x+u“(§, 7), 7)—
~ @Y (et wy (@) = L+ L.
Here
i (B (& Pleractera () )
—@ (L) et @),
1= (-4 Y ™ ot (@) —onw+ (@O

(7.65) gives lirB [l1,]]22=0, (7.60) gives lim ||Z,]|,»=0. Thus we have

() () e, 7
— (27»)"(—‘%)j+kw,\(x+w{

(7.67) lim

T>2

for any integers j >0, k>0 and any p satisfying 1<<p<+oo. This proves (7.3).
Since '

[&/(@™(&, 7), T)—wa(wn ()| <l (x+u7'(E, ), T)—wi(x+wr T8l
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(7.2) and (7.3) give
(7.68) lim sup |a(g, T)—w\(&)| =0.

T 0<E<1

Since

(5%) ja(g’ )= { : _a"} (%, )| zum 2ty t=r s

u/(x, t) Ox
(%)Jdb.(g) = {ﬁ(x) :x} w,(x )'x—w)\ RO

(7.3) gives
(7.69) lim () 0t D—0s(E)} =0
for any integer j>0. Since
(19) 2 =a'a"—fey+fEa,
(22) 0 = 0,"d\" —f(EYON +f'(E)d »
(7.69) gives

TR B
(7.70) lim (E) aE, 7) =0
for any integer j >0. If we assume

. 0\’
(7.71) 11133( & ) ( ) (g, 7) = 0
for any integers j >0 and /=1, 2, ---, k—1, then it follows from (19) that

KR B
(7.72) lim (-2-) () a6, 1 =0

for any integer j>0. This proves (7.4). (7.6) follows from (7.5) and Lemma 7.3.
Since

o0 . ;o f(E
(11), or wE ) = _{a +f—52_)} ’
@1) by +1E) — 2 |
wy

(7.4) gives (7.7). Since
0, T) = _L
(1), EN =1

(7.8) follows from (7.4). (7.9) follows from (7.4) and (11),. This completes the
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proof of Theorem 7.1.
We shall next prove remark 7.1 and 7.2. (7.15) gives

(7.73) wtu(E, m)—u” (% T) = S/( o T)a(;l:) 7’
(7.74) w(E T)‘“_l( ) leza(n, Ul

Subtracting (7.74) from (7.73) we get

u(x+u=1¢g, 1)) d’?
v=| .
2(n, 7)

Differentiating with respect to 7 we have
~d—{ {u(x+uE, 7), 7}

(7.76) dr - S
B(u(x+u'(&, 7), 7), T)

This proves (7.11). (7.3) gives

(7.77) lim j’”” |4/ (x, )| %dx = s: /(%) | *d = S:wA(E)dE :

(7.75)

u(x+u-1E, 1) ii(’), .,.)
£ 2%(x, 7)

Since we have (2.12) this proves (7.12).

8. Stability of the slowest travelling wave

First we introduce the function E(x) by

(8.1) Bw) = _Ho, dy= " Brie (- %),
Here

8.2) Erfc x = S:e"zdy

is the error function of Gauss. It is easy to see

(8.3) E'(x) = H(x, 1)>0 xER‘ ,

(84) B(—o0) =0, E0)= 1, E(+e)=1,
(8.5) E(x)+E(—x)=1 xR,

The well known asymptotic expansion

. v\ |
(8.6) xe* Bxfe v~ 3 (—1) (_”2.;1)_x :

as x —> oo

yields
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8.7) V7 || E(— le)——l—{-O(’ ll‘) as x| > 4o
and
()e(-
—+1
-1 \/ t Y \/ t 1 oo
(8.8) C'< ViHE 1) <C (% )ERX(0, =)
for some C>0. The KPP transform E(®) of E(x) $at:isﬁes
(8.9) E®)>0 ¢=(0,1). EO0)=E1)=0.
(8.10) Eg) =E(1-8) &0, 1),
(8.11) E@=—2E@) =01,
(3.12) BpE®=——) £SO 1),
E)
(8.13) 6111110 5\/ —log £ =1,
(8.14) 51_1’1110 e oz E 1.
By (8.13) and (8.14) we can find C >0 such that
- E() .
8.15 C'< < 1),
©19) Sti—pv—lgai—p -~ <OD
(8.16) |E' ()| <CV —log E(1—E) - £E€(0,1).
Lemma 8.1. Put
(8.17) 2,(£) = E(&)
and
1 , E)
(3.18) = max{2 | 1~ 5E), sup 2L
For any § satisfying 0 <8<8,, we have
(8'19) ao(£)>wko(§) EE(O’ 1) ’
(8.20) 2(E)8" (E)—AE), (E)+1(€)a(6) <0 £€(0, 1).

The conclusions of this section is as follows

Theorem 8.1. Suppose that u(x, t) is the solution of (1) with the initial func-
tion
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(8.21) uo(x)=E(\/—%> - xeR

for some § satisfying 0<8<3,. Here 8, is given by (8.18). Then we have
(8.22) g, T)>,\E) (& )€, 1)X[0, ),

(8.23) bE <O (5 1)E©O, DXO, ),

(8.24) lim sup |8(§, 7)—(E)| =0.

All the conclusions (7.3)~(7.9) of Theorem 7.1 are valid replacing \ by \,. Espe-
cially we have

(8.25) (sgn %) {u(x+u"'(E, 7), T)—wa(x+w\, ()} \O
as 7/4o0.

Theorem 8.2. Suppose that u(x, t) and u,(x) are the same as above. Suppose
that v(x, t) is the solution of (1) with the initial function vy(x)= M satisfying

(8.26) i, (E)<OE)<aE)  ESO,1).

Then we have

(8.27) WE)SOE, I<AE, T) (5, T)E(0, 1)X]0, ),
(8.28) lim sup |9, 7)—d)(E)| = 0.

All the conclusions (7.3)~(7.9) of Theorem 7.1 are valid replacing u(x, t) and \ by
o(x, £) and N, respectively.

Proof of Theorem 8.1.

To prove Theorem 8.1 it is sufficient to show (8.22) and (8.23). The
remaining parts of the conclusions follow from Theorem 7.1. Formally (8.22)
and (8.23) follow from (25) and (28) respectively. All we have to do is to show
the applicability of the comparison theorem to (25) and (28).

Lemma 8.2. The following inequalities hold on R'X [0, o) with suitable
A>0 and B=0.

(8.29) E(\/—t_x_rs)<u(x, y<erE( 755 )
(8.30) ate, D 1—uts, 0 <evB(— L),

(8.31) e~ 4tH(x, t+8)<u/(x, 1) <e**H(x, t43),
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(8.32) ["(x, )| <e‘4‘+5{—'—xi—+ 1}”2H(x, t15),
t+38
2
8.33 (o, )| <ertr2{E 4 11H(, 145)
(33) s, )] <er o2 1}, 149)
Proof. Note that we have the following relations:
Lu = f(u),
(8.34)

u(x, 0) = E(V%) ,

(8.35) b s,
[L—f ("’ = f"(w) (@),
(8.36) [« 0) = — S H(, 8),
[L—f' ()" = 3f" (ups’+f"" () (&)*
(8.37) T (x, 0) = ( %-%)H(x, 3).
Since

LE((/fﬁ) =0, LH(x, t+8) =0  (x, )€R'x(0, ),

it is easy to see (8.29) and (8.31). (8.30) follows from (8.29). Put

x? k/2
(8.38) halz, t)———eAbHBI:{H_—a—I—l} H(x, t+8) k=1,2.

There exists C >0, which is independent of the choice of 4, and By, such that
(8.39) [L—f'(w)he=>(Ar—Cr)hs (%, )ER*X (0, o) k=1,2.
Taking 4, and B, sufficiently large, we see that (8.31), (8.36) and (8.39) give

L= (@](hxu")>0  (x, )ER'X(0, ),

8.40
(840) (A, £u")|4=e=0 xER'.

The estimate (30) assures the applicability of the comparison theorem to (8.40).
Thus we have
(8.41) [/ (%, £)| <h(x,8) (x, £)ER'X]0, ).

This proves (8.32). Taking A, and B, sufficiently large, we can see that (8.31),
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(8.32), (8.37) and (8.39) give

(5.42) (I @220 DSRX0, ),
' (Ao xu"")|=0=>0 xER'.

The comparison theorem yields

(8.43) [0 (x, £)| <h)(x,8) (%, )ER*X[0, o).

This proves (8.33). This completes the proof of Lemma 8.2. By (8.19) and (25)

we have

LT 7kt

Here

(8.45) c(x, t) = f'(u(x, )+ {o'(, t)4-d, (u(x, 2))} b, (u(x, 1)) .
Since u,,” () is bounded, (8.29) and (8.31) give

(8.46) c(x, H)<eAB(x*+1)*  (x, )ER' X0, )

for some A>0 and B>0. This assures the applicability of the comparison
theorem to (8.44). Thus we have

(8.47) (%, t)—,(u(x, £))=>0  (x, )ER'X[0, o).
This proves (8.22). By (8.20) and (28) we have

[L—cfs, O 1, =0 (3 HER'X(0, ),

(8.48) {a(u(x, 0), 0)<0.
Here

. — u///(x’ t)_ u//(x’ t) 2
(8:49) (%, 2) = flu(, t))+2{u’(x, ?) (u’(x, ?) ) } ’
(8.50) Bu(x, 1), 1) = w"(x, t)—(’:;:((+:3)2—

—fu(z, t))%ﬁ’@(& Dz, 1)
Lemma 8.2 gives
(8.51) () <eA*Btl) (%, )ER'X[0, 00),
(8.52) |B(u(x, ), 1) <eA™*B  (x, )ER'X[0, o)

for some A>0 and B>0. (8.51) and (8.52) assures the applicability of the
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comparison theorem to (8.48). Thus we have
(8.53) a(u(x, t), )<0  (x, )ER'X[0, ).
This proves (8.23). This completes the proof of Theorem 8.1.

Proof of Theorem 8.2.
To prove Theorem 8.2 it is sufficient to show (8.27). The remaining parts

follow from Theorems 8.1 and 7.1.

Lemma 8.3.
(8.54) UE 1)<t E) (& EO 1)X[0, ).
Proof. (8.20) gives
[Li,—f(©18(5)>0  £€(0,1).
Replacing # and & by 9 and %, in (29) we have

{[La— {f'E)+@+a)a,}](2,~0)=0,

(8:3) (#,—0)[,-=>0.

Since >0, #,>0 and #,” <0 this implies (8.54). This completes the proof of
Lemma 8.3. Since

[Lir,—fE)lrE) =0  E€(0, 1).
Replacing # and % by 9 and 4, in (29) we have

{[La— {f/(B)+ @0+, )ibs,"}](0—1by) = 0,
(0—21)M) I‘r=0> 0 .

(1.79) and (8.13) show that #,(£)i,,"(£) and 2, (£),,”(£) are bounded. There-
fore (8.54) shows that {f"(£)+(0+@,)®,,”} is bounded. Thus (8.56) gives

(8.56)

(8.57) WA E)<IE ) (& 7)E(0, 1)X[0, ).
Lemma 8.4.
(8.58) (g, T)Zea(E)  (§, )E(0, 1)X[0, o)
for some A>0.
Proof. Put
(8.59) h(E, T) = e 4ay(€) .

Taking A sufficiently large, we have
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[Li—f(@h<0 (£, )€, 1)X[0, ).

Therefore (29) gives
(8.60) {[L'“‘“ {f(E)+@+nk}](G—h) >0,
' (@—h)|,-o=0.

Since #>0, >0 and A" <0, (8.60) gives (8.58). This completes the proof of
Lemma 8.4. Replacing # and % by 9 and # respectively in (29) we have

{[fla— {f©+@+ay}1(a—0) =0,

(ﬁ_ﬁ) I’r=0>0 .

Note that (8.54) and (8.58) give

(8.61)

(8.62) 8E, <eVUE T (5 T)E(O, X0, )

for some A>0. (19) and (8.23) give

(8:63) W< fOL—r© €m0 DX, ).
Lemma 8.2 shows that

(8.64) fOL<erms e X0, «)

for some A>0and B>0. (8.62), (8.63), and (8.64) give

(8.65) {f'E)+@+2)a"} <eA™B (g, T)€(0, 1)X[0, o)

for some A>0 and B>0. This assures the applicability of the comparison
theorem to (8.61). It follows

(8.66) 0, n)<dE ) (E 1)E(0, 1)X][0, o).
(8.57) and (8.66) prove (8.27). This completes the proof of Theorem 8.2.

9. Stability of the travelling wave with arbitrary speed

Suppose that the solution u(x, ¢) of (1) has the initial function #,(x). Throug-
hout this section we assume that #,(x) belongs to the class N. Here u,(x) belongs
to the class N, if and only if #,(x) belongs to the class M and the KPP transform
2y(E) of uy(x) satisfies the following conditions:

(9.1) 4(£)€C[0, 11N C%0, 1),

-1 _Uy(&)
9.2) c <£(1_§)<C £€(0, 1)
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for some C>0.

(9.3) 4/(£) and 4,(£)4,”(£) are bounded on (0, 1).
Put

(94) pE)=ct(1-E) £€(0,1).

There exist X,>X, and ¢>0 such that

(9:5) W (E)<A(E)<pE) £€(0,1),

(9-6) 0=p°p"—fEW+f' € £<(0,1).

Lemma 9.1. Following inequalities hold on R'X[0, co) with suitable A>0
and B=0.

9.7) Dy (u(x, 1) <u'(x, )< p(u(x, 7)) ,
(9.8) [ (x, t)| <e***Zp(u(x, 1)),
(9.9) [ (x, t)| <eA**Bp(u(x, 1)).

Proof. Since

{[La— {f'(&)+@+p)p"}1(p—2)=0,

19 (P—2)1.4>0,
[L?«‘ {f/(E)+(@+d,)d) "} (d—w,) =0,
(9.11) {(ﬁ—wh) I‘r—-—o?o )

it follows (9.7). Since

(9.12) (%) = Uo(E)h'(€) | t-uocor »

(9.13) uy"'(%) = A(§) {4o(£)A" () + (B ()} | tcaiyemr »
there exists B>0 such that

(9.14) lu"(x)| <e®p(u(x))  x€R',

(9.15) luy”(x)| <eBp(u(x)) xER'.

Put

(9.16) hy(x, £) = eAt+Bap(u(x, 1))  k=1,2.
Since

o N (74
(917)  [L—f"()]hs = (s, 1) [Ak f'® P ].g:u(,,n,,:,.
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There exists C' >0, which is independent of the choice of 4, and B,, such that
(9.18) [L—f'(u)]he=(Ar—C)hy k=12,

On the other hand we have

[L—f' ()" = f"(w) ()",
(©-19) {u” (%, 0) = u,”"(x),

[L__fl(u)]ulll — 3f//(u)ulu1/+flll(u)(ul)3 s
(9:20) {u’ (%, 0) = u/"(x).

Taking A4, and B, sufficiently large, it follows from (9.7), (9.14), (9.18) and (9.19)
that

[L—f'@](hxu")>0 (%, )ER'X(0, o),
©-21) {(h,:!:u”) 4200 xER'.
This gives
(9.22) Ju"(x, t)| <h,(x, t) (x, t)eR* X0, o).

This proves (9.8). Taking 4, and B, sufficiently large, it follows from (9.7), (9.8),
(9.15), (9.18) and (9.20) that

vy (IS0 0
©. (B, w"")| 120 =0 XER'.

This gives

(9.24) |4 (x, t)| <h,(x, t) (x, )ER* X (0, o).

This proves (9.9). This completes the proof of Lemma 9.1.
Lemma 9.2. If

ey SOV
(9.25) {ao<s)+m}(§)o e, 1),
then we have
(9.26) #E T <0 (£ 1), 1)X[0, ).
>)

Proof. By (28) and (9.25) we have

[L—c,(x, )u(x, £), ) =0  (x, )ER'X(0, ),
#(u(x, 0), 0)(< 0 xER',

=

(9.27)
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Here

. ) — f S (%, t)  (u'(x 1)\
(9.28) cofx, t) = f'(u(x, t))+2{ 7 1) (u, B t))},

” — w(m, )& D)
(9.29) f(u(x, 1), £) = " (%, t)— 7ot

—fu(e, »“,((x’ t))+f’(u(x OW(x, 1)

Lemma 9.1 gives
(9.30) o, )<eA™®  (x, )eR'x [0, ),
(9.31) | h(u(x, 1), £)| <eABp(u(x, 1)) (%, )ER X]0, o)

for some A>0 and B>0. Thus the comparison theorem can be applied to
(9.27). (9.27) gives

(9.32) W(u(x, 1), ) < 0 (% H)ER'X][0, ).

=

This proves Lemma 9.2,

Theorem 9.1.  Suppose that the solution u(x, t) of (1) has the initial function
u,(x) which belongs to the class N. Suppose that we have

(9.33) 2,(5)=wE)  £E€(0, 1),

(9.34) fo '(£)+ff("3£)} <0 £€(0,1).

Then we have

(9.35) o, T)ZdE)  (§ T)E(0, 1)X[0, ),
(9.36) 4, 1)<0 (& 7)E€(0, 1)X][0, ‘°°),
(9.37) lim sup [a(g, T)—,(E)| = 0.

All the conclusions(7.3)~(7.9) of Theorem 7.1 are valid replacing X by \,. Especially
we have

(9.38) (sgn x) {u(x+u"(§, ), ) —wr(x+wy, "(E))} \O
as T/ 400,

This Theorem follows at once from Lemmas 9.1, 9.2 and Theorem 7.1.
Note that Theorem 7.1 gives
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REMARK TO THEOREM 9.1.

rgy SE)
(9.39) { @&+ O(E)} >0 E€(0,1)
gives
(9.40) B(E)<w(E) £E€(0,1).

Theorem 9.2. Let us fix any \ satisfying A>N\,. Suppose that the solutions
uy(x, t) (k=1, 2) of (1) have the initial functions u,(x) which belong to the class N.
Suppose that #,,(£)ys C*[0, 1]. Suppose that we have

(9.41) 2/(0) = o_(A) = A—VN—AZ,

(9.42) (=DM (D—7-(\)>10,  7_(\) =A—VA—f1(1),
(9.43) (—1)'={ '(g)+a{52)} >0 £€(0,1).

Then we have

(9.44) (—DFaE, 7)=0 (& 7)E(0, 1)X][0, o),

(9:45) (=)&) —au(E} >0  £€(0, 1),

(9:46) lim sup |24(E, T)—x()| = 0.

All the conclusions (7.3)~(7.9) of Theorem 7.1 are valid replacing u(x, t) by uy(x, t)
Especially we have

(947) (—1)*7(sgn 2){us(x+us T, 7), T)—wa(@+waTH(E)INO
as TN +oo.
Proof. We prove the case of k=1. The case of k=2 can be proved
similarly. Lemma 9.2 shows (9.44). To prove this theorem it suffices to show
(9.45). The remaining parts follow from Theorem 7.1. Suppose that (9.45) is
not valid, since @,(1)=1#,,(1)=0, @,/(1)—a,/(1)=7_(\)— 1210’(1)>O there exists
£,€(0, 1) such that

ﬁm(go) = d")\(fo)’ alo/(go)>wAl(§o) ’
G4 {am<s)>wk<z) TR

By (9.41) we have

(9.49) { () + f(g)} lemso = 2N

(9.43), (9.49) and
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b7 f&) _
(21) wy (EHZ“IKE—) =2n E€(0,1)
give
(9.50) aumﬁ§%<u=mmwj?y
(9.48) and (9.50) give
(9.51) a,o'(z.,)+5f%;l) — 2.

(9.43), (9.49), (9.51) and (9.48) give

)+ JE) 2
052 ai@+ S = re8,

alO(EO) = uI))\o(Eo) .
By (21) and (9.52) we have

(9.54) 0,8) =d:E) EE[0,&).

(9.48) and (9.54) show

(9.55) 2,,E)=d\E) E€(0,1).

(9.44) and (9.55) give

(9.56) 2,(E) >0, 1)Zd\E)  (E TIE(0, 1)X[0, o).
(9.54) and (9.56) give

(9.57) 2,8) = 1) =d:) (& 7)E[0, E]X[0, o).

Since we have the relations:

(9.58) x = S“lm“‘_l‘%’*"ﬂ dy

) o ﬂl(ﬂ, T) !

w\x+w, "W g

9.59 =\ 7.
( ) ¥ S & wx(’])
Then it follows
(9.60) u (%41, (Epy 7), T) = wy(xtw,'(E))  *<0,
(9.61) uy(x+u,"' (& T), T)Zwr(x+wa(E,)) x>0.

Differentiating (9.60) with respect to T we get

~1y. )= — dl(x+u1—l(go’ ), 7)
(9.62) (,7") (€0 7) b 7)) x<0.
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Since w,=u,"+f(u,), w\’+f(w,)=2Aw)/, it follows from (9.60) and (9.62) that

(9.63) (7)) (€0 T) = —2N.
This implies
(9.64) u, (o T) = —2NTHu, 7N (E) -

Let us fix »> 0 sufficiently large so that F(&,v)=f(£)+»£ is monotone increasing
with respect to £ in (0, 1). Put

(9.65) h(x, t) = eN M Ly (x— 20w, (), £)—
—w\(x+w ()}

(9.66) ho(x) = e {uy(%-+ 1,7 (Eo)) —wa(x+wa(E}

(9.67) k(x, £) = eX VML F(u,(x— 202+, Y(E,), £); v)—

—F(wy(x+w,"*(,)); v)} -
It is easy to see the relations:

Lh = k(x, t)>0 (%, 1)E(0, )% (0, o),
(9.68) h0,2)=0 te(0, ),
h(x, 0) = hy(x)>0 x€(0, ).

So we have
(-69) W, 1) = | {HGs—y, —H(x+, Dhh(0)y+
+S:S: {H(x—y, t—s)—H(x+y, t—s)} k(y, s)dyds .

Differentiating with respect to x and putting x=0, we get

9.70) w0, ) = [ "L H, oh)dy+

‘(-
+S S —— H(y, t—s)k(y, s)dyds .

odo t—s§

This shows

(9.71) K0,80)>0  t=(0, o).

On the other hand (9.60) gives

(9.72) HO,0)=0 (0, o).

This is a contradiction. This proves (9.45) and completes the proof of Theorem
9.2. The following two theorems answer the question how to show the existence
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of such functions as u(x) (k=1, 2) in Theorem 9.2. Consider the equation

(9.73) VO =t®  EO D,
giving a smooth function g(£) which satisfies g(0)=g’(0)=0.
Theorem 9.3. Let us fix any \ satisfying N>\,. Suppose that
{g’( 1)<o,
g'E)<0, 2+gE)>2n, £€(0,1).
Then there exists w(x)E N for which W(E) satisfies (9.73) and

(9.74)

(9.75) W) =o.(A), T (M)<()<T_(N),

(9.76) W\E)<b(E)<i)E) £€(0,1).
Theorem 9.4. Let us fix any © satisfying A>N\,. Suppose that

9.77) g)>0,  Z®>0 £SO 1).

Then there exists w(x)EN for which W(E) satisfies (9.73) and

(9.78) W' (0) = o_(A), w'(1)>7_(\),

9.79) bE)<dNE)  ES(O, 1).

Theorem 9.3 and 9.4 follow at once from Theorems 1.2, 3.1 and 9.2.

Theorem 9.5. Let us fix any \ satisfying A>\,. Suppose that uy(x,t) and
ug(x) (k=1, 2) are the functions stated in Theorem 9.2. Suppose that the solution
v(x, t) of (1) has the initial function v(x)eM. If

(9.80) 0,(E)>0(8)>0,8) £€(0, 1),

then we have

(9.81) a,(&, T) =0, T)>a,E, T) (&, 1)€(0, 1) X0, =),
(9.82) lim sup |4(, 7)—ibx(&)] = 0.

All the conclusions (7.3)~(7.9) of Theorem 7.1 are valid replacing u(x, t) by v(x, t).
Proof. Replacing 4 and % by 9 and #, in (29) we have

{[ﬁs— {f(E)+O+a)a}(2,—0) =0,

(9.83) (___l)k—l(ak_{)) |ro=0.

Since

(9-84) 0<h(E, )< pE) = cE(1—E) (5 T)E(0, 1)X[0, o),
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(9.85) @ (B)<B(E, I<DNE)<BE,T) (B T)EO, 1)X[0, )
for some ¢>0 and A, >, it follows
(9.86) 0<d(E, T)SCaE, 7) (£, 7)E(0, 1)X[0, ), k=1,2.

for some C>0. Lemma 9.1 gives

(9.87) |24(E, T, )| <eA™B (£, T)E(0, 1)X[0, o)
for some A>0 and B>0. By (9.86) and (9.87) we have
(9.88) | fE)+(@+a)n | <eA™B (£, 7)E(0, 1)X[0, ) k=1,2

for some A>0 and B>0. This assures the applicability of the comparison
theorem to (9.83). Thus we have

(9.89) (— 1)y, ) —0(E T =0 (£, 7)€(0, 1)X[0, ) k=1,2.

This proves (9.81). The remaining parts of the proof of Theorem 9.5 follow
from Theorem 9.2 and 7.1.

10. An example
To illustrate the meaning of the results obtained in Section 9 we consider

the special example:

[i—(i)zu — Nu(l—w"), 0<u<l  (x, )ER'% (0, ),
ot Ox
u(x, 0) = u,(x) xER'.

(10.1)

Here A,>0 and n=1,2,3, :--. The case of n=1, (10.1) is the combined diffusion
and logistic equation which appears in the theories of population dynamics,
branching Markov processes and so on. ([4], [5]) The case of n=2, (10.1) is
the time dependent Ginzburg-Landau equation which appears in the theory of
super conductivity. ([6], [7]) Consider the one parameter family of the initial
functions in the class V.

(10.2) (%) = {14+ Q22— 1)e-®Des}=n xR >0,

The question is what happens for the solution #(x, t) of (10.1). The answer is
as follows
(i) If o>, then we have

(10.3) (sgn %) {u(x+u"(E, 7), T)—w,(x+w,, '(£))} O as T Ao .

. -1/
(ii) If A>o=A—VA—A>o,= (%—{— 1) zxo, then we have
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(10.4) (sgn #) {u(x+u'(E, 7), )—wi(x+w, ENNO  as T 4o
(iii) If o=0,=\,—VA?—2AZ, then we have

(10.5) u(z, ) = [1+(2"/2— 1) exp {— %a-l(x—}—Z)\,lt)}]

. n 1/2 n -1/2
(2= {G+1) "+ (5+1) D)
(iv) If o,>a=A—VA’—AZ >0, then we have
(10.6) (sgn #) {u(x+u'(€, 7), ) —wi(xF+wi (EN} S0 as T 4o

In all the cases the convergence occurs uniformly with respect to x&R* and uni-
formly with respect to £ in every closed subinterval of (0, 1). The proof of the
above results is based on the following facts:

-2/n

(10.7) 8,(8) = osE(1-5)"*  £€(0, 1),
ey JE) N O (1 Vs
(108) 8@+ 8 = 2o M (241)ole g0, ),
(10.9) NEQ—E) >, (E) £, 1).
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