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Introduction. Let R be a commutative ring and S a commutative R-
algebra. An 72-Azumaya algebra A is called an S/R-Azumaya algebra if A
contains S as a maximal commutative subalgebra and is left 5-projective.
Kanzaki [10] has determined the structure of *S/Λ-Azumaya algebras by using

generalized crossed products when S/R is a separable Galois extension. He
then has derived directly the so called seven terms exact sequence due to
Chase, Harrison and Rosenberg [4], [5]. And recently Hattori [9] has also
derived the seven terms exact sequence by another method. In this paper, we
shall generalize the notion of cohomology over Hopf algebras introduced by
Sweedler [12] and then investigate SCgS-module structure of S/Λ-Azumaya

R

algebras when S/R is a Hopf Galois extension.
In §1, we shall define the cohomology of algebras over Hopf algebras.

Secondly, in §2 we shall give a criterion for *S/Λ-Azumaya algebras to be S(g)S-
R

projective. And we shall characterize smash product algebras in §3. Finally
we shall give a criterion for SCgS-projective modules to be 5/Λ-Azumaya alge-

R

bras. In appendix, we shall give a direct proof of the exactness of the following
seven terms sequence for an H-Hopf Galois extension S/R;

0 -> H\H, SIR, U) -> Pic(R) -> H\H, S/R, Pic) -> H\H, S/R, U) ->

Br(S/R) -> H\H, S/R, Pic) -+ H\H, S/R, U)

where Br(S/R) denotes the Brauer group of Λ-Azumaya algebras split by S, U
denotes the units functor and Pic denotes the Picard group functor.

Throughout, R is a fixed commutative ring with 1. Algebras mean R-
algebras, each (g), Horn, etc. is taken over R unless otherwise stated. Repeated
tensor products of an algebra T are denoted by exponents, T"=T(g) '(g)T with
(/-factors (T° means R).

0. Preliminaries

We shall quote for the sake of convenience some definitions, notations and
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fundamental facts on Hopf algebras and Hopf Galois extensions. For details
the reader will be expected to refer Chase-Sweedler [6] and Sweedler [13].

Let H be a Hopf algebra. We denote its diagonalization by Δ# (or simply
by Δ), its augmentation by 6H (or by £) and its antipode by \H (or by X) and
for h^H we use the following notations;

Δ(A) = ΣA(1)®A(2), (1®Δ)Δ(A) = (Δ<g)l)Δ(A) = g *

ACS), etc., λ(A) = h-1 .

Then h = Σ £(A(1)) A(2) = Σ £(A (2))A(1), £(A) = Σ £(ACl))£(A(2)) =

A Hopf algebra H is called to be finite cocommutative if H is a finitely
generated projective jR-module and the diagonalization is commutative, i.e.,
Σ ACI>®A(2>= Σ A(2>®Aα). In this paper, H denotes a finite cocommutative

Hopf algebra.
Let A be an algebra, then Horn (H, A) has a natural algebra structure (its

multiplication is denoted by *) defined by (f*g)(h)= Σ/(Aα))£(A(2))> lHom(H,^)(A)

=8(h)lA9 where /, ^eHom (H, A), h^H. We call this algebra a convolution
algebra of H and A.
Furthermore if A—R9 then Horn (H, /?)=//* has also a Hopf algebra structure
defined by ΔH*(f)(g®h)=f(gh), £/**(/)=/(!#),/^//*,£, h^H.

Let S be an Λ-algebra with the left //-module structure map ψ: H®S-+S,
then we call S an //-module algebra if -v|r satisfies the following conditions;

(i) ψ(h®xy) =
CΛ)

(ii) Λ/r(A®l) = £(A)

We call ψ- a measuring and write h x for
Further, we assume S is commutative and define the (trivial) smash product
algebra SφH of S and // as follows; As an /2-module, SΦH=S®H, except
that we write sΦh rather than s®h, for seS, Ae//. Multiplication in SΦ//
is defined by the formula

) A , x, ytΞS, g,

is an algebra with unit 1 # 1, S and H become subalgebras of SΦH via the
canonical imbeddings.
Now, we regard S as a left SΦ/ί-module by setting

So, we have an Λ-algebra homomorphism SφH-*Hom (5, S).
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DEFINITION (cf . Chase-Sweedler [6] 9.3). Let She a commutative H-module
algebra, which is finitely generated faithful protective as an R-module, then we call
the extension S/R is an H-Hopf Galois extension if the homomorphism SΦH
-+Hom (Sy S) is an isomorphism.

REMARK. If S/R is an H-Hopf Galois extension in our sense, it is an H*-
Hopf Galois extension in Chase-Sweelder's sense, and conversely. So, we have
an isomorphism S®S^S®H*. We adopt this definition for the sake of
cohomological descriptions.

The following lemma will be useful.

Lemma 0.1 (Chase-Sweedler [6] 9.8). Let S/R be an H-Hopf Galois
extension and T be a commutative R-algebra. Then T®S is a T® H-Hopf Galois
extension of T.

1. Cohomology and smash product algebras

Let S be a commutative //-module algebra, then we have commutative
algebras Horn (H*,S), q=Q, 1, •••, and homomorphisms df: Horn (Hg, S)-»

Horn (H*+l, S), f=0, 1, -,{+1, given by rf0(/)(Ai®-®^+i)=^-/(A2®-<8)

A*+I)> *(/)(AI® ®Λ€+I)=Λ*I® *®A^ ft* ί=ι, •••>
?, </*+ι(/)(Aι® - ®*f+ι)=y(Aι® - ®h*)e(hq+λ) where /eHom(#*, 5), h,

Let F be a covariant functor from the category of commutative algebras to the
category of abelian groups. We form a complex as follows; The object of q-th
degree is ^(Hom (H9, S)), the coboundary operator D«=D«(H, S/R, F)=

The cohomology of H in S with respect to F is defined to be the homology
of the above complex and the ή -th group (Ker Dq\lm D*'1 for q>0 and Ker Z)°
for 2=0) is denoted by H (H, S/R, F).

Next let 1,: Hom(#*+1, S)-+Hom(H*, 5), ί=l, 2, -, j+1, be the homo-
morphisms given by lίί/X^® ®hq)=f(hl® ®hi.l® 1 ® hf ® •• ® A^),
/eHom(ίf*+1, 5). We define a subcomplex as follows; The object of q-th
degree is the intersection of kernel F ( l f )

9 s if ?>0, and F(Hom(R, S))if ?=0.
This complex is a normal subcomplex and the inclusion map induces an isomor-
phism between two chomologies.

Theorem 1.1 (cf. Sweedler [12]). If S/R is an H-Hopf Galois extension,
then the above cohomology coincides with the Amistur cohomology.

Proof. Consider the maps aq: ιS
g+1->Hom (H9, S) defined by aq(x^® ••• ®

Xg+ι)(h1® ®hg)==x1h1 (x2h2 ( (xghg x<l+l) ). aq is an algebra homomor-
phism as is easily verified. To see aq is an isomorphism, we use an induction
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on q. For #=0, a0: 5->Hom(.R, S) is an isomorphism. For <?— 1, the com-
position of the isomorphism S2^S®H* and the canonical isomorphism S®H*^
Horn (H, S) is aly so a1 is an isomorphism. Now let aq-^ be an isomorphism
and m be an arbitrary maximal ideal of R. We shall show that the induced
Λ/m-homomorphism aq®ί : S9+1®Rlm->Hom(H9, S)®Rlm is an isomor-
phism, then that aq is an isomorphism will follow immediately since *S*+1 and
Horn (Hgy S) are finitely generated projective jR-modules. For this purpose we
may assume that R itself is a field. Let x= 2 «, ®#, be a non-zero element of

t
Sg+1 where {af} is an Λ-basis of S and x/s are the elements of Sg. Since #ΦO,
some Xj, say x19 is non-zero. So there exists h'^H*~l with the property
(α0-ι(tfι))(λ')Φθ «ι is an isomorphism and {at} is an Λ-basis, hence there
exists h^H such that (a1(^ίaί®(aq-l(xi))(h/)))(h)^FQ. Since (αx( Σ «ί®

» i

(αff-ι(#f))(λ')))(A)=(α*( Σ Λ f ®tfί))(*®*')> α^ is a monomorphism. Hence com-
t

paring dimensions gives that it is an isomorphism. By easy computations, we
can show that {aq} gives an isomorphism between two complexes.

Let σ be a normal 2-cocycle with respect to the units functor U. We make
a (general) smash product algebra SφH as follows; As an Λ-module, S#H=

<r σ

S®H, except that we write sΦh rather then s®h, s^S, h^H. Multiplication

in SφH is defined by the formula

= Σ x(gω y)<r(g™®hM)#gί3yhω, x, y<=S, g,
Cί).C*) σ

We remark that a trivial smash product algebra SφH coincides with Sφ/f,

where £' is the trivial 2-cocycle 6': H®H-+S, defined by B'(g®h)=S(gh).

Proposition 1.2 (cf. Sweedler [12] 9.1). Let S/R be an H-Hopf Galois
extension and σ a normal 2-cocycle, then the smash product algebra SφH is an S/R-

<Γ

Azumaya algebra.

Proof. We shall show that S®(S#H) is S-algebra isomorphic to HomS(8)/?

(S2, S2), then the other properties will follow easily. We put a2~
λ(σ)= 2 xt®

yi®z{. And we consider an S®H-Hopf Galois extension S2 of S. Define an
S-homomorphism p: S®H-^S2 and a normal 2-cocycle σ: (S®H)®s(S®H)-^>
S2 by setting p(s®g)=^sxi®yig»zi and <r((s®g)®s(t®h))=st®σ(g®h),

s, t^S, g, h^H. Then D1(ρ)=σ y i.e. σ is cohomologous to the trivial 2-cocycle
£/. So S2Φ (S®H) is isomorphic to S2Φ{S®H) as is easily verified. We have

σ £s'

a chain of 5-algebra isomorphisms;

S®(SΦH) ^ S2Φ(S®H) ^ S2Φ(S®H) ^ HomsΘI?(S2, S2)
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Thus we get the proposition.

An isomorphism between 5/JR-Azumaya algebras is called S/R-isomorphism

if it is compatible with the maximal commutative imbeddings.

Proposition 1.3 (cf. Sweedler [12] 9.4). Let σ, r be normal 2-cocycles. Then

two smash product algebras SΦH and SΦH are S\R-isomorphicy if and only if, σ
<Γ T

and r are cohomologous 2-cocycles.

Proof. We define the homomorphisms vσ, vσ': H-+SΦH, vτ, vτ', w, w':
OΓ

H^SΦH, by setting for h<=H
T

vσ(h) = Iφh, vr'(h)
σ

»/(Λ) = Σ (Aω T-'ίA

where V is the given 5//?-isomorphism

Since sw(h)=zυ(h)s and sw'(h)=w'(h)s for all s^S, h^H, w and w' are contained

in the convolution algebra Horn (H, S) and are inverse to each other. From

V(lφh)= Σ w(Acl))#A(a» we have
σ (A) T

Applying 1®£ on both sides, we get

σ*(wmH) = (w®ε

where mH is the multiplication in H and ψ is the measuring. This proves that

σ and T are cohomologous.

Conversely if σ and r are cohomologous, then there exists peHom (#, *S)
such that σ*τ~1=Z)1(p), p(ljff)=ls. Define the homomorphism V \

y V\sφh)=^]sp(hw)φh^ then V is a desired 5/Λ-isomorphism.
o- (A) T

2. S®S-module structure of S/i?-Azumaya algebras

Let S be a commutative 7?-algebra, which is finitely generated faithful

projective as an Λ-module, and A be an ^/Λ-Azumaya algebra. Since A con-

tains S as a maximal commutative subalgebra and contains R as a center, we

can regard A as a left ^-module by setting for tf

(x®y)a = xay ,
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As to S2-projectivity of 5//?-Azumaya algebras, we have

Theorem 2.1. Let S be a commutative R-algebra, which is a finitely
generated faithful protective R-module. Then the following conditions are equivalent:

(i) S/R is a quasί-Frobenius extension.
(ii) Horn (S, R) is a finitely generated faithful projective S-module.
(iii) Horn (S, S) is a finitely generated faithful projective S2-module.
(iv) Any S/R-Azumaya algebra is a finitely generated faithful projective

S2-module.

Proof. The equivalence (i)<=*(ii) follows from the definition of quasi-
Frobenius extensions.
(ii)<^(iii). By the Morita theory, Horn (S, S)^S® Horn (5, R) as Horn (5, S)-
Hom (S, SJ-bimodules, hence as 52-modules. In this case the *S2-module
structure of S®Horn (5, R) is given by (x®y)(s®f)=xs®yf, where yfis the
homomorphism defined by (yf)(t)=f(yt), x,y, s, £e5, /^Horn (S, R). Hence,
that Horn (S, S) is a finitely generated faithful projective *S2-module is equivalent
to that 5® Horn (S, R) is a finitely generated faithful projective S2-module,
which is equivalent to that Horn (5, R) is a finitely generated faithful projective
S-module.

(iii)<=>(iv). Let A be any S/Λ-Azumaya algebra, then *S®^4^Homs(P, P) for
some finitely generated faithful projective *S-module P. By the same arguments
in Chase-Rosenberg [5] 2.13, P is a finitely generated faithful projective S2-
module. If P is isomorphic to S2 as SVmodules, then we have S3-isomorphisms
Homs(P, P)^HomS(g)/e(S2, S2)^S®Horn (5, S). So Homs(P, P) is a finitely
generated faithful projective 53-module by (iii). The general case follows by
usual direct summand arguments. Thus A is a finitely generated faithful pro-
jective S2-module. The converse is trivial.

Theorem 2.2. If S/R is an H-Hopf Galois extension, then any S/R-
Azumaya algebra is a finitely generated faithful projective S2-module.

Proof. Larson-Sweedler [11] ensures that a Hopf algebra S®H over S is
a finitely generated faithful projective left Homs(*Sr®fί, *S)-module (the assump-
tion that S is a principal ideal domain is unnecessary). And we have isomor-
phisms Homs(S®#, S)^Hom(H, S)^S2 and Horn (5, S)^SΦH=S®H.
The 52-module structure on S®H given by Larson-Sweedler and our structure
are same. Thus Hom(*Sf, S) is a finitely generated faithful projective *S2-module.
By Theorem 2.1, we get the theorem.

Corollary 2.3. If SIR is an H-Hopf Galois extension, then S/R is a quad-
Frobenius extension.
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From now on, we always assume that S/R is an H-Hopf Galois extension.
By theorem 2.2, any *?/!?- Azumaya algebra A, especially Horn (5, S)^S#His a
finitely generated protective *S2-module of rank one. So we can put A=
Θ(A)®(SΦH) as an «S2-module, where Θ(A) is a finitely generated Iprojective

s2

*S2-module of rank one.
We shall investigate Θ(A). First we have

Proposition 2.4. Let P be a finitely generated protective S-module of rank
one. Then we have an S2-isomorphism:

Horn (P, P) « (P®S)®(S®P*)®(SΦH) ,
s2 s2

where P*=Homs(P, S). Thus

0(Hom (P, P)) = (P®S)®(S®P*)
s2

Proof. Define an 52-homomorphism β: (P®S)®(S®P*)®(SΦH)~>
52 82

Hom(P, P) by β((p®s)®(t®q*)®(u#h))(x) = tuh (sq*(x))p, s, ty ut=S,p, x<Ξ
P, <?*eP*, h^H. By localization, we get easily that β is an isomorphism.

3. Characterization of smash product algebras as S®S-modules

In this section we shall prove

Theorem 3.1. Let A=Θ(A)®(SΦH) be an S/R-Azumaya algebra, then
s2

the following conditions are equivalent:
( i ) A is a smash product algebra.
(ii) Θ(A)^S2 as S2-modules, i.e. A^SΦH as S2-modules.

Lemma 3.2. Let A=Θ(A)®(AΦH) be an S/R-Azumaya algebra, then the
s2

subalgebra Θ(A)®(SΦR)=Θ(A)®S coincides with the maximal commutative sub-
q2 «2
o o

algebra S.

Proof. Since any element in Θ(A)®S commutes with any element in
s2

S, Θ(A)®S is contained in S. Passing to an arbitrary residue class field of R,
s2

we see Θ(A)®S and S are in fact equal by comparing dimensions.
s2

Lemma 3.3. If an S/R-Azumaya algebra A is S2-isomorphic to SΦH, then
its opposite algebra A° is also S2-isomorphic to

Proof. We define a new S2-module SΦH as follows; As an jR-module

y except that we write sφh rather than s®h. The *S2-action is
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defined by (x®y)(sφh)= ΣMι> *®*<», *> y^S, sΦh^SφH, i.e. the twisted

52-module of S#H. Consider an ^'-isomorphism <y: SΦH-+&ΦH defined

by γ(*#A)= Σ AdJ-ittA^1, the inverse of γ is given by γ-^sφh)^ Σ AS
CA)

Then, since the S2-module structure of A° is the twisted one of A, we get the
lemma.

Let B be an arbitrary algebra containing S as a subalgebra. Then following
to Sweedler [12], we say that the action of if on S is B-inner if there exists an
invertible element v^Hom (H, B) such that v(h)s= Σ (Acι> *MA(2)) or equi-

valently h s= Σ v(h^)sv~l(h^), and v(lH)=lB for all h^H, $e S. We say such
CA)

v gives the S-inner action.

Proposition 3.4. Let P<=Pic(S) have the Sz-isomorphism π:P®S^S®P.
Then the action of H on S is Horn (P, P}-innery where we regard that S is contained
in Horn (P, P) as usual.

Proof. We define v(h) and V(h), h^H, by the following commutative
diagram;

inc π
P >P®S ^ S®P

v(h) \V(h)
v con v π
P< P®S as S®P

where inc is the canonical inclusion map, con is the contraction map and V^h) is
defined by setting Vl(h)(s®p)=h s®p, s®p^S®P.

Then v is an element of Horn (H, Horn (P, P)). For s<=S, p^P.

V(h)(inc (sp)) = V(h)(sp®l) =

Applying the contraction map on both sides, we get

v(h)(sp) = Σ (Λcι> *MA(2>)(P)> i.e.v(A)ί - Σ (Ac

And the identity v(lH)=l is clear.
Next we must show that v is invertible. For this purpose, we define a

homomorphism V'(h): P®S-*P®S by V'(h)=V(Jrl)9 h^H. Then F and V
are contained in the convolution algebra Hom(/f, Hom/?(2)S(P®iSr, P®5)), and
for any peP we have

= £(h)p®l .

Since F(A) and V'(h) are contained in HomR<ss(P®S, P®5)»Hom (P, P)®5,
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we identify this isomorphism and write V(h)= Σ//®^> Vr(K)= Σ/yΛ®^yΛ>
3, P), 4, s'^S. Then <A)=Σ4/* Define ^eHom^,

Horn (P, P)) by setting «/(*)== Σ (Aω ^*w)/y*w BY the identities (F*F')(A)=

and v(h)s= J] (Aα) ί)ϊ;(λC2)), we can easily see that #' is the inverse of τ>.

Proposition 3.5 (Sweedler [12] 9.6). Let A be an S/R-Azumaya algebra
and assume that v gives the A-inner action. If we puts σ=(mA(v®v))*(v~lmH):
H®H-+A, where mA means the multiplication in A andmH the multiplication in H.
Then

( i ) The image of σ is contained in S.
(ii ) σ is a normal 2-cocycle (with respect to units functor U).
(iii) ω: SΦH-+A given by ω(sφh)=sv(h), s#h<=S#H, is an S/R-

σ <τ <r σ

isomorphism.

Proof, (i), (ii) can be proved in the same manner as Sweedler [12] 9.6.
(iii). ω is an algebra homomorphism by direct computations. Since ω

restricted to R is a monomorphism and SΦH is an Azumaya algebra, ω itself
<Γ

is a monomorphism. By the usual arguments of passing to residue class fields
of R, that ω is an isomorphism will follow easily.

Combining above propositions we get ,

Corollary 3.6. Let P as in Proposition 3.4, then its endomorphism ring
Horn (P, P) is a smash product algebra.

Proof of Theorem 3.1. The implication (i)=^(ϋ) is clear. (ii)=^(i). We may
assume that the 52-isomorρhism A^SΦH carries 1 to Iφ 1, because the image
of 1 is an invertible element of S2 by Lemma 3.2. Let A° be an opposite algebra
of A, then we have ^4® AQ= Horn (A, A). If we regard the extension S2/R as
an £P-Hopf Galois extension, then from Proposition 2.4 and Lemma 3.3 we have
a chain of SMsomrphisms

S2#H2^A®A« = Horn (^4, A) » (A®S2)®(S®A*)®(S2ΦH2) .
S4 S4

Hence by Corollary 3.6, there exists a normal 2-cocycle T: H2®H2->S2 such that
W: S2φH2^Hom(A, A). We denote the ^-isomorphisms SΦH^A and

by V and F°, their restrictions to H by v and v\ W~l(V®V°) is
an ^-automorphism of S2ΦH2, so there exists an invertible element u=

4 such that W~1(V®V°)=u. We have forg®h<=H2
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Define the homomorphism (v®v°)': H®H-+A(g>A°=Ilom(A, A) as follows;

Easy computations show that (vξ$v°)' is

the inverse of V®VQ in the convolution algebra Hom(Hξ§H, A(&A°), hence v
itself is invertible. Since V is an 52-isomorphism, v gives the -4-inner action.

Let v: H-+SΦH be the canonical imbedding of H to the smash product
σ

algebra SΦH, then the homomorphism vf: H-+SΦH defined by v'(h)=
<Γ (T

Σ (Acι) σ"1^)® *5>))# *ΰ), Ae £Γ, is the inverse of ̂ e Horn (#, S##) And
CA) O" β"

2; gives the SΦ/Z-inner action as is easily verified. So we have
(Γ

Corollary 3.7. Lei A be an S/R-Azumaya algebra. Then the action of H
on S is A-inner, if and only if, A is a smash product algebra.

Corollary 3.8. If Pic (S2) is trivial, then for any SIR-Azumaya algebra A,
the action of H on S in A can be extended inner ly to the action on A.

4. Properties of θ

We shall denote the θ'/.R-isomorphism classes of S/-R-algebras by A(S/R),
and we shall not distinguish an algebra from an algebra isomorphism class.
Chase-Rosenberg [5] 2.14 showed that A(S/R) forms an abelian group by an
abstract manner. In this section, we first show that the inverse of A in A(SIR)
is given by its opposite algebra AQ.

Let A, B^A(SIR), then the product A B is defined by

A B =
a2 s2 8 .

where S is an 52-module via the contraction map S2-*S, and ® denotes the
8

tensor product regarding A and B as left S-modules.

By the monomorphism from A B to A®B which carries f^A B to
8

/(1®1), we consider A B is contained in AξQB. Thus
S 8

A B = {x^A®B\x(l®s) = x(s®l) for all s&S} .
s

Let Δ7 be the monomorphism from Θ(A)®Θ(B)®(SΦH) to Θ(A)®Θ(B)®
s2 s2 s2 s2

((S#H)®(SΦH))=A®B induced from the diagonalization of H. Then Im(Δ')
8 S

is contained in A B. By usual arguments, Im (Δ/)=-4 B. Thus we get
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Proposition 4.1. Let A)B^A(SIR)) then Θ(A B) is S2-isomorphic to
Θ(A)®Θ(B).

s2

Now let A^A(SIR), then since A is a finitely generated faithful projective
*S2-module, an opposite algebra A° is also an element of A(S/R).

Theorem 4.2. A° is the inverse of A in A(S/R).

Corollary 4.3. Θ(A°) s* Homj(θ(A), S2) = Θ(A)*.

Proofs. For x= Σ a{ <g)AJ ϊ=A A\ we define η(x) e Horn (5, A) by (φ))(s)=

2 α/ι6;, s^S. To see ^(Λ:) is contained in Horn (5, S), we may assume that R

isalocalring. Then^=Sφ#and^°=S*#asS2-modules.

we put *= Σ Σ(^*^cυ)®(ί/*^(2)), frfA^eΛ t&h^A*. Define the

isomorphisms γ1? γ2 and γ2 as follows;

γ: 5 (twisted 52-module) -̂  A° = SΦH,

AeS*^.

A° = SΦH, anti-isomorphism.

72: A = 5* Jϊ -* 5*^ff, τ2(ί*A) = /*A,

Since A°^Pic (S2) and 71

fy;r1'y~1" ^40^^^10 is an S2-isomorphism, there exists an
invertible element u^S2 such that 717^7~l=u. We put u~1= Σ Uj®vίy then

= y y
V

Hence

* = Σ Σ (^*Aί(1))®(^*Aίc2)) = (Σ Σ Σ (**# Aί (A/) ί y CA,O
Further, we may assume that A is a smash product algebra SΦH for some

<Γ

normal 2-cocycle σ by Theorem 3.1, then for any s^S, we have

W*))W = ΣΣ
= ΣΣ

which is contained in S. Thus η is a homomorphism from A A° to Horn (5, *S).
By usual arguments, 17 is in fact an S/Λ-isomorphism. This completes the proof.

Now we shall consider some cohomological properties of Θ(A).

Lemma 4.4. For Horn (5, S)=SφHf we have an S* -isomorphism
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V

\ where ®(ί=0, 1) means a tensor product regarding S*
s2 s2 s2

as an S3-module by the homomorphίsms d/: S2^S* given by dQ

f(x®y)=l®x®yf

d1'(x®y)=x®l®y, x®y<=S2.

Proof. Consider the iSV^-isomorphism φ: Horn (5, S)®S

(Horn (5, *S), Horn (S, S)) induced by left homotheties of an algebra Horn (5, S),

i.e. (φ(g® !))( !)=?/, g> /e Horn (5, S). Then from Proposition 2.4, the lemma
follows easily.

Proposition 4.5 (Cocycle condition of 0(A)). Let A be an S/R-Azumaya

algebra, then we have an S3-isomorphism:

(Θ(A)®S3)®(Θ(A)®S3) ^ Θ(A)®S3 ,
s2 s3 s2 s2

where d2

f: S2-*S3 is given by d2'(x®y)=x®y®l, x®y<=S2.

Proof. Consider the S2/*5-isomorphism A®S^HomR®s(A, A) induced

by left homotheties of an algebra A. Then we get our conclusion from Proposi-

tion 2.4 and Lemma 4.4.
Next, we shall determine the condition that an element in Pic (S2) can be

expressed in the form Θ(A) for some A in A(S/R). For this purpose, let M be

in Pic(S2) satisfying the cocycle condition of Proposition 4.5, i.e.

We set A=M®(SΦH) as an 52-module, then the above

isomorphism gives an 53-isomorphism φ: A®S^lϊomR®s(A, A). Define the
homomorphisms Φlf Φ2: A®A->ΐiom(A, A) by

(Φ2(a®b))(x) = (φ(a®l))((φ(x®l))(b)), a, b, x£ΞA .

We regard A® A and Horn (A, A) as 54-modules as follows;

((p®q®r®s)(f))(x) = (p®q)(f((r®s)x))

(p®q®r®s)(a®b) = ((p®r)a)®((s®q)b) ,

where/), q, r, s^S, /eHom (A, A), a, b, x^A.

Then, Φl and Φ2 are 54-homomorphisms.

REMARK. If A is an *S/Λ-Azumaya algebra and φ: A®S^HomR<s>s(A, A)

is the isomorphism induced by left homotheties of A. Then Φί and Φ2 coincide

and are ^-isomorphisms.

Easily we get for A=M®(SΦH)
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Lemma 4.6. Let φ'=φu: AξZ)S^Ή.omR®s(A, A) be another S*-ιsomor-

phίsm, where u— Σ A®?« ®r* ̂  an Avertible element of S*. Then
I

/ = Φι( Σ Σ AΛ ®r ®?/®? >V) and Φ/ = Φ2* y » y
where Φ/ rarf Φ2' are the homomorphisms defined from φ' in similar manners.

By localization, we get from Remark and Lemma 4.6 that Φx and Φ2 are

isomorphisms. So, Φf1Φ2 is an S4-automorphism of A®A^Pic(S*). We
define an element μ(M, φ)<ΞS4 by μ(M, φ)=(perm (243))(Φ1~

1Φ2), where
(perm (243))(p®q®r®s)=(p<ξξ>rξ§sξζ>q), />, q, r, s^S. Lemma 4.6 asserts that
μ(M, φ) and μ(M , φ') differ only by a coboundary in the Amitsur complex with

respect to U. Also by localization techniques, we get easily from Remark and

Lemma 4.6 that μ(M, φ) is a 3-cocycle.

Theorem 4.7. Let Me Pic (S2) satisfying the cocycle condition of Proposition
4.5. Then, A=M®(SΦH) has an S\R-Azumaya algebra structure compatible

with the original S2 -module structure, if and only if, μ(M, φ) is a 2-coboundary in
Amitsur complex with respect to U.

Proof. The only if part follows from Remark and Lemma 4.6. If part:
Let μ(M, φ)=D'2(v), where D'2 is the coboundary operator of Amitsur complex,
v is a unit of *S3. We consider a new 53-isomorphism φ'=φv~l:

Hom^Θs(^4, A) and define the multiplication in A by a b= (φ'(a® !))(£)> a>
Then this product is associative and gives an iS/Λ-Azumaya algebra structure

compatible with the original 52-module structure.

Appendix. On seven terms exact sequence

From the exact sequence of Amitsur cohomology (Chase-Rosenberg [5]),

we get also an exact sequence related to a Hopf Galois extension by Theorem

1.1. We shall give a rough sketch of a concrete construction of an exact
sequence, the details of proofs are omitted but they follow straightforward.
We always assume that S/R is an //-Hopf Galois extension, and we often
identify Horn (Hg, S) with Sg+1 by the isomorphism aq of Theorem 1.1.

For p^Hl(H, S/R, U), we take a normal 1 -cocycle p as a representative.
We make a new *SΦ //-module PS as follows; PS=S as 5-modules with the SΦH-

action defined by (sφh)x= Σ spίh^h^ x, sφh^SφH, x^S. We set

PS
H = {x^pS\(lφh)x = 8(h)x for all
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Since S is a finitely generated faithful projective Sφίf-module, we get from the
Morita theory

PS sa HomsίH(S, PS)®S^PS
H®S.

Hence pS
H^Pic(R).

Next p' be another representative of p, then there exists a unit element
weHom (Λ, S)=S such that p'=p0*p where p0(h)=u~lh uy h^H. Then the

homomorphism P'S
H^>PS

H which carries x^p'S
H to u~1x^pS

H is an isomor-
phism. We define 0 lβ #'(#, S/Λ, U)-*Pic(R) by θl(ρ)=isomorphism class of

PS
H. We have

Lemma A.l. 0! w a monomorphism.

Proof. Let θ1(ρ)=pS
H=Ru be a free Λ-module with a free base w. Since

^S, u is. a unit element of 5. Let p'1 be the inverse of p, then since
we have

Thus p(A)=(A iέ"1)ι/ and ρ~1(h)=(h u)u~ϊ. This gives that !̂ is injective.
Next PJ and p2 be 1-cocycles, we define the homomorphism

v: P15«®P25^ - f)tttS
a by

xy is the product of x and j> in S. To see z> is an isomorphism, we may assume

that R is a local ring. Then by the above arguments of free case, we get easily

that v is an isomorphism. So, θλ is a monomorphism.

Θ2: Pic (R) -» H\H, S/R, Pic)

We define Θ2 by <92(P) = class of P® Horn (R, S)=P®S, P^Pic (R). Θ2

is a well defined homomorphism and we have

Lemma A.2. H\H, S/R, U) i Pic (R) i ίί°(/7, 5/Λ, JPfc) ά an exact
sequence of abelian groups.

Proof. Let p be a 1-cocycle then as 5-modules (θ2θ1)(p)=pS
H®S^pS^S.

Thus Θ2Θ1=0
Conversely, let P be in Pic (R) such that P®S is S-isomorphic to S.

Define the homomorphism £Λ for h^H by the following commutative diagram;

XΠf
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where Gh(p®s)= p®h s, p®s^P®S, and π is the given isomorphism. And

define peHom (//, S) by p(h)=gh(\s). Then p is invert ible (the inverse of p is
given from P*=Hom(P, R) in the same manner) and p is a 1-cocycle with

respect to U. Further π(P®R) is equal to PS
H. Thus we get the lemma.

03 : H\Hy S/R9 Pic) - H\H, S/R, U)

For P<=H\H, SIR, Pic) let P be its representative. Then we have an S2-
isomorphism P®S^S®P. By Proposition 3. 4, 3. 5, we get a 2-cocycle σp

such that Horn (P, P)^SΦH. We define <93 by θ3(P)=class of σp.
σp

Θ2 03
Lemma A.3. Pic (R) -I #°(#, S/R, Pic) -1 #2(#, S/Λ, C7) ύ m αuzrf

sequence of abelian groups.

Proof. By direct computations, we get easily that 03 is a well-defined homo-

morphism and Θ3Θ2(P)=0.
For P^Ker (03) let P be its representative. Then we have an isomorphism

Horn (P, P)^SΦH, which is isomorphic to Horn (5, S)=SΦH since σp is a
<Γ

f»
coboundary. By the above isomorphisms, we regard P as an Sφ //-module,
then from Morita theory we get an isomorphism P^HomSSH(S, P)®S, and

HpmS|#(*S',. P) is a finitely generated faithful projective Λ-module of rank one.

Thus we get the lemma.

θ4:H
2(H,S/R,U)->Br(SIR)

For σ^H\H, S, U)y we take a normal 2-cocycle σ as a representative. By

Proposition 1.2, SΦH is an *S//2-Azumaya algebra. We define Θ4 by Θ4(σ)=
(Γ

class of SΦH.
(Γ

Lemma A.4. #°(tf, S/R, Pic) θ-ί H2(H, S/R, U) i jBr(S/Λ) ώ on exact
sequence of abelian groups.

Proof. That 04 is well-defined follows from Proposition 1.3. Next, let σ, τ
be normal 2-cocycles, we put a^1(τ)=^xi®yi®zi and a^1(r'1)

y/®%/ We consider an 7/2-Hoρf Galois extension S2/.R and define the maps

p, pr: H2-*S2 and 2-cocycles σ®τ, <r*T(g)£: H4-*S2 as follows;

(g®g'®h®h') =

Then ί)1(p)*ί)1(p/)*(σ(8)τ)r=Cr*τ(g)6, where Z)1 is the coboundary operator.
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Hence we have a chain of 7?-algebra isomorphisms

S2ΦH2^S2 Φ H2

σ®τ σ#τ®ε

« (5 Φ H)®(SΦH) ^(SΦ #)®Hom (S, S)
<r*τ ε σ*τ

This proves that 04 is a group homomorphism.
By Proposition 3.4, 3.5, 0403=0. Conversely, let σ be a normal 2-cocycle

such that S φH^ Horn (P, P) for some finitely generated faithful projective
σ

Λ-module P. By this isomorphism, P has an S-module structure and as an
5-module P is contained in Pic (S).

dQ

We must show that P® Horn (H, S) is Horn (H, *S)-isomorphic to
dl dt

 s

P® Horn (Hy *S), where <g) (ι= 1, 2) means a tensor product regarding Horn (Hy S)
s s

as an S-module by the homomorphisms dι : S-^Hom (if, S) given by (d0(s))(h)=
h s, (dί(s))(h)=£(h)sj s^S, h^H. And that σ is cohomologous to σ>. For
this purpose, we shall consider a Hopf algebra SξQH over S, then its diagonali-
zation induces an S-algebra structure on Homs(*Sr®fί, S^Hom^, S). We
denote its multiplication by p. By Lar son- S weedier [11] §3, Horn (H, S) has a
left S®/f-comodule structure and its structure map q: Horn (//, S)-+H®
Hom(H, S) is defined uniquely to make the following diagram commutative;

Hom(//, S)®Hom(#, 5) - ?— ̂  Hom(//,

, S)

where t(f®g)=g®f, f, g<Ξ Horn (H, S) and < >(/z® f)=f(h),
Horn (H, S).

Let v be the restriction of V: SφH^Uom(P, P) to H, then v has the
σ

inverse v"1 by Corollary 3.7. We define

π,: P®Hom (H, S) -* P®Hom (H, S) and τr2: P®Hom (Hy S)
s s s

-* P®Hom (H, S) as follows;

= Σ W
where ^eP, /e= Horn (H, 5) and ?(/)= Σ A,.(g)/,-e//®Hom (//, 5).

ί

Then we get easily that πl and τr2 are Horn (H, *S)-homomorphisms and π^ is

the inverse of τr2. From Proposition 1.3, 3.4, 3.5, we get the lemma.

Θ5: Br(S/R) -» H\H, S/R, Pic)
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For A^Br (S/R) we can take an 5//?-Azumaya algebra A as a representative
(cf. Chase-Rosenberg [5]). We define Θ5 by θδ(Ά)=class of Θ(A). From Pro-
position 2.4, 4.1, ̂ 5 is a well-defined homomorphism, and from Theorem 3.1 we
get

Lemma A.5. H2(H, SjR, U) -ί Br(SjR) -I H*(H, S/R, Pic) is an exact
sequence of abelίan groups.

Θ6: H\H, S/R, Pic) -* H\H, S/R, U)

For P^Hl(H, S/R, Pic), let P be its representative. Then by Theorem
4.7, μ(φ, P) is a 3-cocycle in Amitsur complex. We define Θ6 by θ6(P)=class of

a* (μ(Φ,

From Lemma 4.6 and Theorem 4.7, we get

Θ5 Θ6Lemma A.6. Br(S/R) -I H\H, S/R, Pic) -I #3(#, 5/Λ, E7) is an exact
sequence of abelian groups.

Summing up lemmas, we get

Theorem A.7.

0 -> H\H, SIR, U) -I Pfc(/Z) -i /i°(/i, S/Λ, JPfc) -i //2(/ί. S/Λ, C7)

. Z7)

sequence of abelίan groups.

REMARK. If S/R is a separable Galois extension, then above homomor-
phisms coincide with those of Kanzaki [10].
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