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Introduction. Let R be a commutative ring and S a commutative R-
algebra. An R-Azumaya algebra A is called an S/R-Azumaya algebra if A
contains S as a maximal commutative subalgebra and is left S-projective.
Kanzaki [10] has determined the structure of S/R-Azumaya algebras by using
generalized crossed products when S/R is a separable Galois extension. He
then has derived directly the so called seven terms exact sequence due to
Chase, Harrison and Rosenberg [4], [5]. And recently Hattori [9] has also
derived the seven terms exact sequence by another method. In this paper, we
shall generalize the notion of cohomology over Hopf algebras introduced by
Sweedler [12] and then investigate S(?S-module structure of S/R-Azumaya

algebras when S/R is a Hopf Galois extension.
In §1, we shall define the cohomology of algebras over Hopf algebras.
Secondly, in §2 we shall give a criterion for S/R-Azumaya algebras to be S®.S-
R

projective. And we shall characterize smash product algebras in §3. Finally
we shall give a criterion for S S-projective modules to be S/R-Azumaya alge-
R

bras. In appendix, we shall give a direct proof of the exactness of the following
seven terms sequence for an H-Hopf Galois extension S/R;

0 — H'(H, SR, U) — Pic(R) — H(H, S|R, Pic) - H*(H, S|R, U) —
Br(S/R) — H'(H, S|R, Pic) — H¥H, S|R, U)
where Br(S/R) denotes the Brauer group of R-Azumaya algebras split by S, U
denotes the units functor and Pic denotes the Picard group functor.
Throughout, R is a fixed commutative ring with 1. Algebras mean R-
algebras, each @, Hom, etc. is taken over R unless otherwise stated. Repeated

tensor products of an algebra T are denoted by exponents, 79=TQ---Q T with
g-factors (7T° means R).

0. Preliminaries

We shall quote for the sake of convenience some definitions, notations and
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fundamental facts on Hopf algebras and Hopf Galois extensions. For details
the reader will be expected to refer Chase-Sweedler [6] and Sweedler [13].

Let H be a Hopf algebra. We denote its diagonalization by Ay (or simply
by A), its augmentation by €4 (or by €) and its antipode by Ay (or by A) and
for he H we use the following notations;

Ah) = 33 hay®ha, (1Q8) A(R) = (ABT) AR) = 33 b @t @
hy, etc., AM(h) =h7".
Then & = 3} &(hyy) by = 23 E(h )by E(B) = 23 E(heyy) E(hey) = 23 e
® & & &
= § hagh(z) .

A Hopf algebra H is called to be finite cocommutative if H is a finitely
generated projective R-module and the diagonalization is commutative, i.e.,
N by @bpy= D] h2;@hyy. In this paper, H denotes a finite cocommutative
Chd ()

Hopf algebra.
Let A be an algebra, then Hom (H, A) has a natural algebra structure (its
multiplication is denoted by #) defined by (f*g)(h)= X f(h))8(hw)s 1somer, a)(H)
()

=&(h)1,4, where f, ge Hom (H, A), he H. We call this algebra a convolution
algebra of H and 4.
Furthermore if A=R, then Hom (H, R)=H* has also a Hopf algebra structure

defined by Ap(f)(g@h)=f(gh), Ex(f)=f(1n), fEH*, g, he H.
Let S be an R-algebra with the left H-module structure map J: HQS—S,
then we call S an H-module algebra if + satisfies the following conditions;

(i) ‘I’(h®xy) = § ‘V(’kx)@x) ‘I"(h(z)®y)
(i) v(h®1)=&Mr)ls, heH, x yeS.

We call 4 a measuring and write 4-x for y(AQx).

Further, we assume S is commutative and define the (trivial) smash product
algebra S#H of S and H as follows; As an R-module, S#H=SQH, except
that we write st rather than sQ#, for s&€ S, he H. Multiplication in S#H
is defined by the formula

(xHg)(y4h) = (g)xgm-y#gmh, %, yES, g, heH.

S4 H is an algebra with unit 141, S and H become subalgebras of S# H via the
canonical imbeddings.
Now, we regard S as a left S H-module by setting

(s4:h)x = sh-x, s, xS, heH.
So, we have an R-algebra homomorphism S# H—Hom (S, S).
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DerINITION  (cf. Chase-Sweedler [6]9.3).  Let S be a commutative H-module
algebra, which is finitely generated faithful projective as an R-module, then we call
the extension S|R is an H-Hopf Galois extension if the homomorphism S H
—Hom (S, S) is an isomorphism.

Remark. If S/R is an H-Hopf Galois extension in our sense, it is an H*-
Hopf Galois extension in Chase-Sweelder’s sense, and conversely. So, we have
an isomorphism SQS=SQH*. We adopt this definition for the sake of
cohomological descriptions.

The following lemma will be useful.

Lemma 0.1 (Chase-Sweedler [6] 9.8). Let S/R be an H-Hopf Galois
extension and T be a commutative R-algebra. Then TQ®S is a T Q H-Hopf Galois
extension of T.

1. Cohomology and smash product algebras

Let S be a commutative H-module algebra, then we have commutative
algebras Hom (H?,S), ¢=0, 1, -, and homomorphisms d;: Hom (H?, S)—
Hom (H?*, S), =0, 1, ---, ¢+1, given by d,(f)(5,Q - Qhlgs))=h, f(h, Q- R
hq+1), d:(f)(}h@ ®hq+1)=f(hl®"' b, Qhih; 1, Qh; 1, ®hq+1) for i=1, .-,
¢ Ao ()@ -+ Qbgyy) =f(1 R -+ Qhg)E(hg,,) where feHom (H?, S), k,
®“‘®hq+1EHq+l'

Let F be a covariant functor from the category of commutative algebras to the
category of abelian groups. We form a complex as follows; The object of ¢g-th
degree is F(Hom (H?, S)), the coboundary operator D‘=D‘H, S/R, F)=
F(dy) F(d) ™+ Fd )™,

The cohomology of H in S with respect to F is defined to be the homology
of the above complex and the g-th group (Ker D?/Im D?"* for ¢>0 and Ker D°
for g=0) is denoted by H%(H, S/R, F).

Next let 1;: Hom (H?*', S)—Hom (H?, S), i=1, 2, -+, g+1, be the homo-
morphisms given by 1L;(f)(AQ  Qh)=f(hQ  Qh;-,QR1Qh;Q - Qh,),
f€Hom (H*', S§). We define a subcomplex as follows; The object of g-th
degree is the intersection of kernel F(1;)’s if ¢>0, and F(Hom (R, S)) if g=0.
This complex is a normal subcomplex and the inclusion map induces an isomor-
phism between two chomologies.

Theorem 1.1 (cf. Sweedler [12]). If S/R is an H-Hopf Galois extension,
then the above cohomology coincides with the Amistur cohomology.

Proof. Consider the maps a,: S?*'—Hom (H?, S) defined by a,(x,Q - ®
%041) (PR Qhg)=2,hy+ (%5, (-++ (Xghg*%g1,)+++). g is an algebra homomor-
phism as is easily verified. To see @, is an isomorphism, we use an induction
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on g. For ¢=0, a,: S—Hom (R, S) is an isomorphism. For ¢g=1, the com-
position of the isomorphism S?2< S @ H* and the canonical isomorphism S Q H*=<
Hom (H, S) is a;, so a, is an isomorphism. Now let a,_, be an isomorphism
and m be an arbitrary maximal ideal of R. We shall show that the induced
R/m-homomorphism «,®1: S"'QR/m—Hom (H?, S)®QR/m is an isomor-
phism, then that @, is an isomorphism will follow immediately since S?** and
Hom (H?, S) are finitely generated projective R-modules. For this purpose we
may assume that R itself is a field. Let x= 37 a;®x; be a non-zero element of

St where {a;} is an R-basis of S and «;’s are the elements of S?. Since x=+0,
some X;, say ¥,, is non-zero. So there exists A’€H?' with the property
(ctg-i(%))(A)*£0. @, is an isomorphism and {@;} is an R-basis, hence there
exists h€H such that (o,( 2 a:®(atg—s(x:))(#')))(R)F0. Since (o(>a:®

(ctq-1(2:))(R))) (M) = (e 2 a:Rx;))(hQFK’), aq is 2 monomorphism. Hence com-

paring dimensions gives that it is an isomorphism. By easy computations, we
can show that {a,} gives an isomorphism between two complexes.

Let o be a normal 2-cocycle with respect to the units functor U. We make
a (general) smash product algebra S+ H as follows; As an R-module, S+ H=

S®H, except that we write s#:/ rather then sQ#h, s€.S, he H. Multiplication
in S+ H is defined by the formula

(x:ﬂ: g)(y:E:h) =(g)2mx(gm-y) 0(g<2>®h<1>)‘f L, %, YES, g, heH .
We remark that a trivial smash product algebra S+# H coincides with S¥H,
where & is the trivial 2-cocycle &': HQH—S, defined by &'(gQh)=E&(gh).

Proposition 1.2 (cf. Sweedler [12] 9.1). Let S/R be an H-Hopf Galois
extension and o a normal 2-cocycle, then the smash product algebra S 4 H is an S|R-

Azumaya algebra.

Proof. We shall show that SQ (S H) is S-algebra isomorphic to Homggp
(S?% S?), then the other properties will follow easily. We put or,'(0)= >3 %:®
:®2;. And we consider an SQH-Hopf Galois extension S? of S. Define an
S-homomorphism p: SQ H—S? and a normal 2-cocycle ¢: (SQH)Q(SQH)—
S? by setting p(s®g)= > sx;®y;g-2; and H(sQR )RV (tQh))=stQo(gRh),
s, teS, g, he H. Then D'(p)=g, i.e. & is cohomologous to the trivial 2-cocycle
&'. So S2=ﬁ= (S®H) is isomorphic to SZ# -(SQH) as is easily verified. We have

a chain of S—algebra 1somorphlsms,
SQ(S4H) = S*4(SQH) = S*4 (SQH) = Homger(S?, S
o o ES
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Thus we get the proposition.

An isomorphism between S/R-Azumaya algebras is called S/R-isomorphism
if it is compatible with the maximal commutative imbeddings.

Proposition 1.3 (cf. Sweedler [12] 9.4). Let o, T be normal 2-cocycles. Then
two smash product algebras S4 H and S+ H are S|R-isomorphic, if and only if, o

and T are cohomologous 2-cocycles.
Proof. We define the homomorphisms v, v,”: H—>S#H, v., v/, w, w’:

H—S4#H, by setting for he H

0o(h) = 14k, 9,/ (B) = 3 (o o~ (heo @K 1 v(h) = 11,
‘v‘rl(h) = § (hm‘T_l(h(z)®h5;)):ﬁ=h<—4)ly w = (ch)*vT,’ w’ = rl;'r*(ly‘va',)

where V is the given S/R-isomorphism S# H=S4 H.

Since sw(k)=w(h)s and sw’(h)=w'(k)s for all s&€ S, he H, w and @’ are contained
in the convolution algebra Hom (H, S) and are inverse to each other. From

V(li#:h): g w(h(l))ﬁﬁ:h(z,, we have

) O'(ga)@hm) W(g<2>h<z>) ngmh(a) = V((1 :ﬁ: 8)1 :ﬁ: h))

()]

=V *:Fg) ra ‘J‘ff k) = (g) W(gw)( g wlher) T(g(3,®h(2))=|fri=gmh(3) .
Applying 1Q¢€ on both sides, we get
ax(wmy) = (WQRE)* (1 Qu)*7,

where my is the multiplication in H and + is the measuring. This proves that
o and 7 are cohomologous.

Conversely if o and 7 are cohomologous, then there exists pe Hom (H, S)
such that o*7 '=D'(p), p(1g)=1s. Define the homomorphism V’: S%H—>

S:l:TkH by V’(s#i:h)z %;; sp(hm):ifh(z), then V7’ is a desired S/R-isomorphism.

2. S®S-module structure of S/R-Azumaya algebras

Let S be a commutative R-algebra, which is finitely generated faithful
projective as an R-module, and 4 be an S/R-Azumaya algebra. Since 4 con-
tains S as a maximal commutative subalgebra and contains R as a center, we
can regard A as a left S*-module by setting for xQ ye S? ac 4,

(*@y)a = xay,
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As to S*projectivity of S/R-Azumaya algebras, we have

Theorem 2.1. Let S be a commutative R-algebra, which is a finitely
generated faithful projective R-module. Then the following conditions are equivalent:

(i) S/R is a quasi-Frobenius extension.

(ii) Hom (S, R) is a finitely generated faithful projective S-module.

(i) Hom (S, S) is a finitely generated faithful projective S>-module.

(iv) Any S/R-Azumaya algebra is a finitely generated faithful projective
S?-module.

Proof. The equivalence (i)=(ii) follows from the definition of quasi-
Frobenius extensions.
(ii)=(iii). By the Morita theory, Hom (S, S)=S®Hom (S, R) as Hom (S, S)-
Hom (S, S)-bimodules, hence as S*modules. In this case the S*module
structure of S®@Hom (S, R) is given by (*®y)(sQf)=xsQ yf, where yf is the
homomorphism defined by (y3f)(#)=f(»t), », 9, s, te S, feHom (S, R). Hence,
that Hom (S, S) is a finitely generated faithful projective S*-module is equivalent
to that S®Hom (S, R) is a finitely generated faithful projective S*module,
which is equivalent to that Hom (S, R) is a finitely generated faithful projective
S-module.
(iii)=(iv). Let A be any S/R-Azumaya algebra, then S®QA=Homg(P, P) for
some finitely generated faithful projective S-module P. By the same arguments
in Chase-Rosenberg [5] 2.13, P is a finitely generated faithful projective S*-
module. If P isisomorphic to S?as S*-modules, then we have S*-isomorphisms
Homg(P, P)=~Homger(S? S*)=S®@Hom (S, S). So Homg(P, P) is a finitely
generated faithful projective S°-module by (iii). The general case follows by
usual direct summand arguments. Thus 4 is a finitely generated faithful pro-
jective S*>-module. The converse is trivial.

Theorem 2.2. If S/R is an H-Hopf Galois extension, then amy S|R-
Azumaya algebra is a finitely generated faithful projective S*-module.

Proof. Larson-Sweedler [11] ensures that a Hopf algebra SQH over S is
a finitely generated faithful projective left Homg(S ® H, S)-module (the assump-
tion that S is a principal ideal domain is unnecessary). And we have isomor-
phisms Homg(S®H, S)=Hom (H, S)==S? and Hom (S, S)=S#H=SQH.
The S*-module structure on SQH given by Larson-Sweedler and our structure
aresame. Thus Hom(S, S) is a finitely generated faithful projective S?-module.
By Theorem 2.1, we get the theorem.

Corollary 2.3. If S|R is an H-Hopf Galois extension, then S|R is a quasi-
Frobenius extension.
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From now on, we always assume that S/R is an H-Hopf Galois extension.
By theorem 2.2, any S/R-Azumaya algebra 4, especially Hom (S, S)=S# Hisa
finitely generated projective S%module of rank one. So we can put A=
0(A)®(S 4 H) as an S*-module, where 0(4) is a finitely generated Iprojective

Sz-module of rank one.
We shall investigate §(4). First we have

Proposition 2.4. Let P be a finitely generated projective S-module of rank
one. Then we have an S*-isomorphism:

Hom (P, P) = (P®S)§(S®P*)§(S:H:H) )
where P¥*=Homg(P, S). Thus
6(Hom (P, P)) = (P®S)§(S Q®P¥*)

Proof. Define an S?-homomorphism B: (P®S)§(S ®P*)§)(S #H)—>
Hom (P, P) by B((pQs)Q(tQq*)R(ud h))(x) = tuh-(sq*(x))p, s, t, uE S, p, xE
P, g*P*, he H. By localization, we get easily that 8 is an isomorphism.

3. Characterization of smash product algebras as S®S-modules

In this section we shall prove

Theorem 3.1. Let A=0(A)§(S 4 H) be an S|R-Azumaya algebra, then

the following conditions are equivalent:
(i) A is a smash product algebra.
(i) 60(A4)==S* as S*-modules, i.e. A==S % H as S*-modules.

Lemma 3.2. Let A= 6(A)®(A:ﬁ=H ) be an S|R-Azumaya algebra, then the
subalgebra 6(A)Q(S+# R)= 0(A)®S coincides with the maximal commutative sub-
algebra S. g

Proof. Since any element in 0(A)®S commutes with any element in
S, 0(A)®S is contained in S. Passing to an arbitrary residue class field of R,

we see 0(A)®S and S are in fact equal by comparing dimensions.
§°

Lemma 3.3. If an S|R-Azumaya algebra A is S*~isomorphic to S # H, then
its opposite algebra A° is also S*-isomorphic to S+ H.

Proof. We define a new S%module S# H as follows; As an R-module
S4#H=SQ®H, except that we write si:h rather than s®hk. The S?-action is



680 K. Yokocawa

—~— T ——
defined by (xQ y)(s#h)= X ysh - by, x, YES, s#the S+ H, i.e. the twisted

Ch)

S?-module of S ;Hi_gonsider an S’-isomorphism 7y: S4 H—>S4 H defined
by v(s#h)= g:)}h;;-s# he;, the inverse of v is given by v~ *(s# k)= % hyes4Ehg)

(6] (2

Then, since the S*-module structure of A° is the twisted one of A, we get the
lemma.

Let B be an arbitrary algebra containing S as a subalgebra. 'Then following
to Sweedler [12], we say that the action of H on S is B-inner if there exists an
invertible element v&Hom (H, B) such that v(k)s= 3] (hqy*5)v(h) or equi-

[}

valently A-s= 3 v(h,) 597 *(hey), and v(lg)=1zforall ke H,s€ S. Wesay such

[}
v gives the B-inner action.

Proposition 3.4. Let P< Pic(S) have the S*-isomorphism =:PQS=SQP.
Then the action of H on S is Hom (P, P)-inner, where we regard that S is contained
in Hom (P, P) as usual.

Proof. We define v(h) and V(h), heH, by the following commutative
diagram;

P_™.pos ZSoP
v(h) lV(h) lVl(h)

v con b
Pe———PRRS =SQRP

where #nc is the canonical inclusion map, con is the contraction map and V' (k) is
defined by setting V,(A)(sQ p)=h-sQp, sQpsSQP.
Then v is an element of Hom (H, Hom (P, P)). Fors€S, peP.
Vik)(ine (sp) = V(R)sp®1) = 33 (hay s@ NV (B )(pB1) -

Applying the contraction map on both sides, we get

o(h)(sp) = 3 (hey+ ) V(i) p), 1.e.0(h)s = 2 (heyy+$) V(A -

And the identity v(15)=1 is clear.

Next we must show that v is invertible. For this purpose, we define a
homomorphism V'(h): PQS—P®S by V'(h)=V(h™"), he H. Then V and V’
are contained in the convolution algebra Hom (H, Homges(PRS, PR®S)), and
for any pe P we have

(VV)B)(p®1) = 22 V(ho))V' (h)(p®1) = ER)PpR1 .
Since V(%) and V’(h) are contained in Homges(P® S, PQS)=Hom (P, P)QS,
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we identify this isomorphism and write V(h)= X f}®s}, V'(h)= 2 f*®s}%,
Y f*€Hom (P, P), s, s;*&S. Then o(h)=3] ;f‘ff‘ Define o/ é Hom (H,

Hom (P, P)) by setting v'(h)= > (hqg>-s;*@)f ]f"(z;. By the identities (V* V") (k)=

&(h) and v(h)s= (%‘, (hery+ ) v(hu’)’)(,h)we can easily see that o’ is the inverse of .

Proposition 3.5 (Sweedler [12] 9.6). Let A be an S|R-Azumaya algebra
and assume that v gives the A-inner action. If we puts o=(m4(vQv))*(v 'mpy):
HQH—A, where m, means the multiplication in A and my; the multiplication in H.
Then

(1) The image of o s contained in S.

(i1) o s a normal 2-cocycle (with respect to units functor U).

(ili) e S:?H—’A given by w(s3#h)=sv(h), s#fheS#;i:H, is an S|R-

isomorphism.
Proof. (i), (ii) can be proved in the same manner as Sweedler [12] 9.6.

(iii). o is an algebra homomorphism by direct computations. Since o
restricted to R is a monomorphism and Si# H is an Azumaya algebra, o itself
o

is a monomorphism. By the usual arguments of passing to residue class fields
of R,that o is an isomorphism will follow easily.

Combining above propositions we get ,

Corollary 3.6. Let P as in Proposition 3.4, then its endomorphism ring
Hom (P, P) is a smash product algebra.

Proof of Theorem 3.1. The implication (i)=>(ii) is clear. (ii)=>(i). We may
assume that the S*-isomorphism A==S+# H carries 1 to 141, because the image
of 1is an invertible element of S* by Lemma 3.2. Let A°be an opposite algebra
of 4, then we have AQ A°=Hom (A4, A). If we regard the extension S*/R as
an H’-Hopf Galois extension, then from Proposition 2.4 and Lemma 3.3 we have
a chain of S*isomrphisms

S*4 H*~ A® A = Hom (4, A) = (AQS)Q(SQA*)Q(S?4 H?) .
gt st

Hence by Corollary 3.6, there exists a normal 2-cocycle 7: H*® H?*—>S*? such that
W: S?# H?*~Hom (4, A). We denote the S*isomorphisms S#H=A4 and

S4 H=A°by V and V", their restrictions to H by v and . W (VQV") is
an S'-automorphism of S?4 H? so there exists an invertible element u= 33 p;®

7:Q7;Rs;S5* such that W (VV°)=u. We have for gQhcs H*
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(v®?°)g®@h) = W(u(1R1)3 (g @A)
=W (g(:h)z‘,} (Di8c>1:®Gihcsyes )# (82> ®h)) -

Define the homomorphism (v®v°): HQH—>ARA’=Hom (4, A) as follows;
(v®@2°) (g @h)=W( 22(’ 8D R by 4 (g ®h) T (8Pl g ®

heo)) ¥ 80 Rhs), where g®hEH ®H. Easy computations show that (v®42°) is

the inverse of v®%° in the convolution algebra Hom (H®H, A®A’), hence v
itself is invertible. Since V is an S*-isomorphism, v gives the A-inner action.

Let v: H—>S4 H be the canonical imbedding of H to the smash product
algebra S#H then the homomorphism o': H—>S#H defined by o'(h)=
2 (hayeo ‘(h(2)®h(3§)):ﬁ=h“), he H, is the inverse of veHom (H, S#H). And

v gives the S# H-inner action as is easily verified. So we have
o

Corollary 3.7. Let A be an S|R-Azumaya algebra. Then the action of H
on S is A-inner, if and only if, A is a smash product algebra.

Corollary 3.8. If Pic (S®) is trivial, then for any S|R-Azumaya algebra A,
the action of H on S in A can be extended innerly to the action on A.
4. Properties of 6

We shall denote the S/R-isomorphism classes of S/R-algebras by A(S/R),
and we shall not distinguish an algebra from an algebra isomorphism class.
Chase-Rosenberg [5] 2.14 showed that A(S/R) forms an abelian group by an
abstract manner. In this section, we first show that the inverse of 4 in A(S/R)
is given by its opposite algebra A°.

Let 4, B€ A(S/R), then the product 4-B is defined by

A4-B= HomAQB(S@(A®B), SQR(ARB)) = HomAQB(AQ.%B, A?B)

E 52 .
where S is an S*-module via the contraction map S*—.S, and @ denotes the

tensor product regarding A and B as left S-modules.
By the monomorphism from A4-B to AQB which carries feAd-B to
S

f(l?l), we consider 4-B is contained in A(?B. Thus

= {xeA@le(l®s) =x(s®1) forall s&S}.
Let A’ be the monomorphism from 0(A)®0(B)®(S #H) to 0(A)®0(B)®
(S#H )®(S #H))=A4 ®B induced from the dlagonahzatlon of H. Then Im (A’)
is contamed in A-B. By usual arguments, Im (A’)=A-B. Thus we get
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Proposition 4.1. Let A, B€ A(S/R), then G(A-B) is S’-isomorphic to
6’(A)6%>0(B).
8
Now let A= A(S/R), then since A is a finitely generated faithful projective

S?*-module, an opposite algebra 4° is also an element of A(S/R).

Theorem 4.2. A°is the inverse of A in A(S|R).
Corollary 4.3. 6(A4°) = Homg(0(4), S*) = 0(4)*.

Proofs. Forx=>a;Qb{c A-A° we define n(x)= Hom (S, 4) by (2(x))(s)=
[l
2l aush;, s€8. To see n(x) is contained in Hom (S, S), we may assume that R
isalocal ring. Then A=S4 H and A°=S# H as S*-modules. Since xeIm(A’),
we put X= Z (’Z'; (S,'#h;(l))®(ti#h,'(z)), S';:H:h;(l)EA, t,-:i#:h,-(z)e AO. Deﬁne the
isomorphisms v,, v, and 1, as follows;
v: S# H (twisted S*module) — 4° = S+ H, v(s4 k)=
Mk st hg, sHHheSH#H .

(D)

v.: A= S4H — A° = S+ H, anti-isomorphism.
Y.: A= S#H— S¥H, v,(s#h) = sih, sssheS4H.

Since A°€ Pic (S?) and v,y;'y"': A°>>A° is an S*-isomorphism, there exists an
invertible element € S? such that v,y;'y '=u. We put u'= 3 u,;®uv;, then
7

for t4he A°

YO EAER) = o7 T (R = X g; v;h3) (tu )R
Hence

X == Z (112,) (si#hi(x))®(ti#hi(2)) = (Z'] ? (hX,; (si:ﬁ:hi(l))®(‘v.iha;)'(t"ui)#h;z::)) .

Further, we may assume that 4 is a smash product algebra S+ H for some
normal 2-cocycle o by Theorem 3.1, then for any s& S, we have

(n(x))(s) = 2 g (% (s;:#i:h,-m)(Sii: 1)(vihi?;)' (t"ui):ﬂ:h‘;;)

f__ 2 g (1.2,) s"t"ui(h"(l)'wi) a'(h;(z)®h2;))=ﬁ_= L,

which is contained in S. Thus % is a homomorphism from 4-4° to Hom (S, S).
By usual arguments, 7 is in fact an S/R-isomorphism. This completes the proof.

Now we shall consider some cohomological properties of (A4).

Lemma 4.4. For Hom (S, S)=S+4H, we have an S*-isomorphism
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(S:Iul:H)@Sf’*'(S=|n|=H)®S3 where ®(z—0 1) means a tensor product regarding S*
as an Sa-module by the homomorphzsms d;/: §*—=8? given by d/(xQRy)=1QxRQy,
d/(xQy)=xQ1RQy, xQyc S°.

Proof. Consider the S?/S-isomorphism ¢: Hom (S, S)®S=Homggs
(Hom (S, S), Hom (S, S)) induced by left homotheties of an algebra Hom (S, S),
i.e. (p(g®1))(1)=gf, g, feHom (S, S). Then from Proposition 2.4, the lemma

follows easily.

Proposition 4.5 (Cocycle condition of 6(A)). Let A be an S|R-Azumaya
algebra, then we have an S*-isomorphism:

do/ do’ dy’
(9(14)@33)%(9(/1)@33) = (A)®S*,
s? 5% 52
where d,/: S*—S* is given by d,/(xRQ y)=xQyR1, xQys S

Proof. Consider the S?/S-isomorphism A®S=Hompggs(4, 4) induced
by left homotheties of an algebra 4. Then we get our conclusion from Proposi-
tion 2.4 and Lemma 4.4.

Next, we shall determine the condition that an element in Pic (S?) can be
expressed in the form 6(A4) for some 4 in A(S/R). For this purpose, let M be

in ch (S? satlsfymg the cocycle condition of Proposition 4.5, i.e. (M ®S3)®
(M®S3) (M®S3) We set A= M®(S:H=H) as an S*-module, then the above

1somorphlsm glves an S3-1somorphlsm ¢: ARQS=Hompggs(4, A). Define the
homomorphisms ®,, ®,: AQ A—Hom (4, A) by

(P,(a®0))(*) = ((($(aB1)(x)) @1))(®)

(@,(a@B)() = (Ha@D(SED)B), a, b, xe 4.
We regard AQ A and Hom (4, A) as S*-modules as follows;

(2 ®9Qr@s)(N)(*) = (POINA(r®s)«))

(PQgRTQs)(a®b) = ((pRr)a)R((s®q)b) ,
where p, ¢, r, s€S, feHom (4, A), a, b, x A.

Then, ®, and ®, are S*-homomorphisms.

ReMARk. If 4 is an S/R-Azumaya algebra and ¢: AQS=Hompggs(4, 4)
is the isomorphism induced by left homotheties of 4. Then ®, and P, coincide
and are S*-isomorphisms.

Easily we get for A=MQ(S4H)
SZ
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Lemma 4.6. Let ¢'=¢u: AQS=Hompegs(A4, A) be another S°*-isomor-
phism, where u= 3 p;Rq,;Qr; is an invertible element of S°. Then

D/ = ®(D 3 pip,;Q7:Q9,;Q4q:r;) and B, = @ (X p, Q77 ;Qp:9,;Q4:)
i j i j
where ®," and D, are the homomorphisms defined from ¢’ in similar manners.

By localization, we get from Remark and Lemma 4.6 that @, and &, are
isomorphisms. So, ®'®, is an S*-automorphism of ARAe Pic (S*). We
define an element u(M, ¢p)=S* by u(M, ¢)=(perm (243))(D;'D,), where
(perm (243))(pRqPrRs)=(pRrRsQq), p, ¢, r, sS€S. Lemma 4.6 asserts that
w(M, ¢) and u(M, ¢’) differ only by a coboundary in the Amitsur complex with
respect to U. Also by localization techniques, we get easily from Remark and
Lemma 4.6 that u(M, ¢) is a 3-cocycle.

Theorem 4.7. Let M e Pic (S?) satisfying the cocycle condition of Proposition
4.5. Then, A=M Q(S#H) has an S|R-Azumaya algebra structure compatible
8

with the original S*-module structure, if and only if, u(M, ) is a 2-coboundary in
Amitsur complex with respect to U.

Proof. The only if part follows from Remark and Lemma 4.6. If part:
Let w(M, ¢)=D"*(v), where D’* is the coboundary operator of Amitsur complex,
v is a unit of S°. We consider a new S*-isomorphism ¢'=¢v™': AQS=
Hompygs(A4, A) and define the multiplication in 4 by a-b=(¢'(a®1))(d), a, b= A4.
Then this product is associative and gives an S/R-Azumaya algebra structure
compatible with the original S*module structure.

Appendix. On seven terms exact sequence

From the exact sequence of Amitsur cohomology (Chase-Rosenberg [5]),
we get also an exact sequence related to a Hopf Galois extension by Theorem
1.1. We shall give a rough sketch of a concrete construction of an exact
sequence, the details of proofs are omitted but they follow straightforward.
We always assume that S/R is an H-Hopf Galois extension, and we often
identify Hom (H?, S) with S?** by the isomorphism «a, of Theorem 1.1.

0,: H'\(H, S/R, U) — Pic (R)

For pe H'(H, S|R, U), we take a normal 1l-cocycle p as a representative.
We make a new S'# H-module ,S as follows; ,S=S as S-modules with the S'4 H-
action defined by (s3:h)x= D] sp(hp)hey %, s¥heS4H, x=S. We set

)

SH = {x&,S|(14h)x = &(k)x  forall heH} .
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Since S is a finitely generated faithful projective S# H-module, we get from the
Morita theory

oS == Homgy(S, ,S)QS=,SHRS .
Hence ,S¥ € Pic (R).

Next p’ be another representative of p, then there exists a unit element
u€Hom (R, S)=S such that p’=pp where p,(h)=u"'h-u, he H. Then the
‘homomorphism #S¥—,SH which carries x& /S to u~'x,S¥ is an isomor-
phism. We define 6,: H'(H, S/R, U)—Pic (R) by 0,(p)=isomorphism class of
oSH, We have

Lemma A.l. 0, is a monomorphism.

Proof. Let 0,(p)=,S#=Ru be a free R-module with a free base u. Since
pSHRS==S, u is a unit element of S. Let p~* be the inverse of p, then since
uE,SH we have

3 ha)p~ () = (p#p~Y) = &) = (3] plhco) o)™, hEH .
Thus p(h)=(h-u"")u and p~'(h)=(h-u)u~'. 'This gives that 6, is injective.
Next p, and p, be 1-cocycles, we define the homomorphism
v: 5 SH®p,SH — , SH by v(x®y) = xy, xQyE »,SHR,,SH,

xy is the product of x and y in S. To see v is an isomorphism, we may assume
that R is a local ring. 'Then by the above arguments of free case, we get easily
that » is an isomorphism. So, ¢, is a monomorphism.

0,: Pic (R) — H°(H, S|R, Pic)

We define 0, by 6,(P) = class of PQHom (R, S)=P®S, P Pic (R). 0,
is a well defined homomorphism and we have

01 02 . .
Lemma A.2. H'(H, S/R, U)— Pic(R)— H°(H, S|R, Pic) is an exact
sequence of abelian groups.

Proof. Let p be a 1-cocycle then as S-modules (6,0,)(p)=,SHRQS=,S=S.
Thus 6,0,=0

Conversely, let P be in Pic (R) such that PQS is S-isomorphic to S.
Define the homomorphism g, for & H by the following commutative diagram;

G,
PRS— PRS
U= k4
s £, 5
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where G,(pRs)=pRQh-s, pQscPRS, and = is the given isomorphism. And
define peHom (H, S) by p(h)=gi(1s). Then p is invertible (the inverse of p is
given from P*=Hom (P, R) in the same manner) and p is a 1-cocycle with
respect to U. Further z(PQR) is equal to ,S¥. Thus we get the lemma.

9,: H'(H, SR, Pic) — H*H, S|R, U)

For P H(H, S|R, Pic) let P be its representative. Then we have an S*-
isomorphism P®RS=SQP. By Proposition 3. 4, 3. 5, we get a 2-cocycle op
such that Hom (P, P)=S4 H. We define 6, by 0,(P)=class of o p.

p

0, 0 .
Lemma A.3. Pic(R)-> H%H, S|R, Pic)=> H*H, S|R, U) is an exact
sequence of abelian groups.

Proof. By direct computations, we get easily that 6, is a well-defined homo-
morphism and 6,6,(P)=0.

For P Ker (0,) let P be its representative. Then we have an isomorphism
Hom (P, P)=S4 H, which is isomorphic to Hom (S, §)=S4H since op is a

coboundary. ByPthe above isomorphisms, we regard P as an S H-module,
then from Morita theory we get an isomorphism P==Homgy(S, P)®S, and
Homg, (S, P) is a finitely generated faithful projective R-module of rank one.
Thus we get the lemma.

0,: H*H, S|R, U) — Br(S/R)

For 6 H*(H, S, U), we take a normal 2-cocycle o as a representative. By
Proposition 1.2, S#H is an S/R-Azumaya algebra. We define 6, by 6,(s)=
class of S#H.

0 0
Lemma A4. H°(H, S/R, Pic) > H*(H, SR, U) - Br(S|R) is an exact
sequence of abelian groups.
Proof. That §, is well-defined follows from Proposition 1.3. Next, let o, 7
be normal 2-cocycles, we put o;'(7)= 2] %;®y:®%2; and o7 (77)=2x,/Q
7 7

y;/®z;". We consider an H*-Hopf Galois extension S?/R and define the maps
p, p': H*—>S8? and 2-cocycles o @7, o%7QE: H*—S? as follows;

p(g®h) = Z}g-y;@x;h'z;, P'(g®h) = Z x;g-2;/Qy;Eh),

(e@7)(eRE' RRON) = o(gRg)RT(hQHK) and (o*TQE)
(@8’ ®hBK) = 3} o(80B8a)) (8@ )DE(RK), 8, &', h, K €H .

, (&

Then D'(p)xD'(p")*(c @T)=0*TQE, where D' is the coboundary operator.
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Hence we have a chain of R-algebra isomorphisms;

(S#H)®(S#H) = $* 4 H = S* 4 H*

G*Tge

=(S# H)®(S4;|=H) (s 4 H)®Hom (S, S)

This proves that 6, is a group homomorphism.
By Proposition 3.4, 3.5, 6,0,=0. Conversely, let ¢ be a normal 2-cocycle
such that S# H=Hom (P, P) for some finitely generated faithful projective

R-module P. By this isomorphism, P has an S-module structure and as an
S-module P is contained in Pic (S)

We must show that P®Hom (H, S) is Hom (H, S)-isomorphic to

P®Hom (H, S), where ® (=1, 2) means a tensor product regarding Hom (H, .S)

as an S-module by the homomorphxsms d;: S—Hom (H, S) given by (d,(s))(h)=
h-s, (d,(s))(h)=E(h)s, s€S, he H. And that o is cohomologous to op. For
this purpose, we shall consider a Hopf algebra S@QH over S, then its diagonali-
zation induces an S-algebra structure on Homg(S®H, S)=Hom (H, S). We
denote its multiplication by p. By Larson-Sweedler [11] §3, Hom (H, S) has a
left SQ@H-comodule structure and its structure map ¢: Hom (H, S)-H®
Hom (H, S) is defined uniquely to make the following diagram commutative;

?

Hom (H, S)@;Hom (H, S) = Hom (H, S)

ow1 o OB
(H@Hom (H, S))@Hom (H, §)—>H@Hom (H, S)@Hom (H, S)

where HfQg)=¢g®Xf, f,g€Hom (H, S) and J{H(hQ f)=f(h), R QfeEHR
Hom (H, S).
Let v be the restriction of V': S4 H=Hom (P, P) to H, then v has the

inverse v by Corollary 3.7. We define
7t P®Hom (H, S)— P®Hom (H,S) and =, P®Hom (H, S)
- P@ Hom (H, S) as follows;
m(p®f) = 22 (v (h)N(P)® iy mp®f) = 23 (v(R)NP)B S+ »
where p& P, f& Hom (H, S) and ¢(f)= 32 h:@® fic HQHom (H, S).

Then we get easily that z, and =, are Hom (H, S)-homomorphisms and =, is
the inverse of z,. From Proposition 1.3, 3.4, 3.5, we get the lemma.

6,: Br(S/R) — H'(H, S|R, Pic)
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For A€ Br (S/R) we can take an S/R-Azumaya algebra A4 as a representative
(cf. Chase-Rosenberg [5]). We define 6, by 0,(A)=class of 6(4). From Pro-
position 2.4, 4.1, 6, is a well-defined homomorphism, and from Theorem 3.1 we
get

6, 0, :
Lemma A.5. H*H, S/R, U)— Br(S|R) — H'(H, S|R, Pic) is an exact
sequence of abelian groups.

0.: H'(H, S|R, Pic) — H¥H, S|R, U)

For Pe H'(H, S|R, Pic), let P be its representative. Then by Theorem
4.7, u(¢, P) is a 3-cocycle in Amitsur complex. We define 6, by ,(P)=class of

ot (9, P)).

From Lemma 4.6 and Theorem 4.7, we get

05 0,
Lemma A.6. Br(S/R)— H'(H, S|R, Pic) - HH, S|R, U) is an exact
sequence of abelian groups.

Summing up lemmas, we get

Theorem A.7.
01 . 02 0
0 — H'(H, S|R, U) — Pic(R) — H°(H, S|R, Pic) 3 H*(H. S|R, U)
0, A N2
— Br(S/R) - H'(H, S|R, Pic) — H*H, S|R. U)

is an exact sequence of abelian groups.

Remark. If S/R is a separable Galois extension, then above homomor-
phisms coincide with those of Kanzaki [10].
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