ON THE NUMBER OF THE LATTICE POINTS IN THE AREA $0<x<n, 0<y \leqslant a x^{k} / n$.

Isao MIYAWAKI

(Received October 18, 1974)

1. Introduction

Let $S_{a}^{(k)}(n)$ be the number of the lattice points in the area $0<x<n$, $0<y \leqslant a x^{k} / n$, where k and n are positive integers and a is a positive integer which is prime to n. Then we have

$$
S_{a}^{(k)}(n)=\sum_{x=1}^{n-1}\left[a x^{k} / n\right]
$$

where [] denotes the Gauss symbol. Let

$$
a x^{k} / n=\left[a x^{k} / n\right]+\overline{\left\{a x^{k} / n\right\}},
$$

where $\overline{\left\{a x^{k} / n\right\}}$ denotes the fractional part of $a x^{k} / n$. Then we have

$$
\sum_{x=1}^{n-1} a x^{k} / n=S_{a}^{(k)}(n)+\sum_{x=1}^{n-1} \overline{\left\{a x^{k} / n\right\}}
$$

or

$$
S_{a}^{(k)}(n)=\sum_{x=1}^{n-1} a x^{k} / n-\sum_{x=1}^{n-1} \overline{\left\{a x^{k} / n\right\}} .
$$

We put

$$
\begin{aligned}
& S_{a}^{(k)}(n)=\sum_{x=1}^{n-1} a x^{k} / n-\frac{n-1}{2}+c_{a}^{(k)}(n), \\
& c_{a}^{(k)}(n)=\frac{n-1}{2}-\sum_{x=1}^{n-1} \frac{\left\{a x^{k} / n\right\}}{}
\end{aligned}
$$

If we suppose that $S_{a}^{(k)}(n)$ behaves approximately as $\sum_{x=1}^{n-1} a x^{k} / n-\frac{n-1}{2}$ then $c_{a}^{(k)}(n)$ can be regarded as error term. T. Honda has conjectured the followings.

Conjecture 1. For a fixed k and any positive real number ε we have

$$
c_{a}^{(k)}(n)=O\left(n^{(k-1) / k+2)}\right),
$$

for $a=1$.

Conjecture 2. $\quad c_{1}^{(2)}(n) \geqslant 0$ and $c_{1}^{(2)}(n)=0$ if and only if n is an integer of the following type

$$
n=p_{1} \cdots \cdots \cdot p_{j}
$$

where p_{1}, \cdots, p_{j} are distinct primes and each p_{i} is equal to 2 or congruent to 1 modulo 4.

In this paper we shall give the complete proof of the above conjectures. Conjecture 1 is true not only in the case $a=1$ but also in the case a is any positive integer which is prime to n. In the case k is odd, $c_{a}^{(k)}(n)$ is a very simple quantity. On the other hand in the case k is even, $c_{a}^{(k)}(n)$ is an interesting quantity which is rather difficult to handle. For example, $c_{1}^{(2)}(n)$ can be expressed in terms of the class numbers of imaginary quadratic fields whose discriminants are divisors of n. For the even $k>2, c_{a}^{(k)}(n)$ is also related to some class numbers of some subfields of the cyclotomic field $\boldsymbol{Q}(\zeta)$ where ζ is a primitive n-th root of unity.

I would like to express my deep gratitude to Professor T. Honda for his presenting this problem to me.

2. Preliminaries

For positive integers k, n and an integer x, we denote by $N^{(k)}(x, n)$ the number of the elements of the set

$$
\left\{y \in \boldsymbol{Z} \mid y^{k} \equiv x \bmod n, \quad 0 \leqslant y<n\right\}
$$

Lemma 1. Let $n=\prod_{i=1}^{j} p_{i}^{e}$ be the prime decomposition of n. Then we have

$$
N^{(k)}(x, n)=\prod_{i=1}^{j} N^{(k)}\left(x, p_{i}^{e} i\right)
$$

Proof. Consider the following map

$$
f ; \boldsymbol{Z}\left|n \boldsymbol{Z} \rightarrow \prod_{i=1}^{j} \boldsymbol{Z}\right| p_{i}^{e} \boldsymbol{Z}, \quad\left(f(a \bmod n)=\prod_{i=1}^{j} a \bmod p_{i}^{e_{i}}\right)
$$

We can easily see that this f is a ring isomorphism. From this we can immediately obtain the lemma.

Let n be a positive integer which is not equal to 1 . We denote by $(\boldsymbol{Z} / \boldsymbol{n} \boldsymbol{Z})^{\times}$ the unit group of the residue ring $\boldsymbol{Z} / \boldsymbol{n} \boldsymbol{Z}$. We put

$$
\Gamma(n)=\left\{\chi \mid \chi ;(\boldsymbol{Z} \mid n \boldsymbol{Z})^{\times} \rightarrow U, \text { homomorphism }\right\}
$$

where $U=\{z \in \boldsymbol{C}| | z \mid=1\}$. Then $\Gamma(n)$ is an abelian group isomorphic to $(\boldsymbol{Z} \mid n \boldsymbol{Z})^{\times}$. An element \mathcal{X} of $\Gamma(n)$ is extended on \boldsymbol{Z} by setting

$$
\chi(a)=\left\{\begin{array}{l}
0 \quad \text { if }(a, n) \neq 1 \\
\chi(a \bmod n) \quad \text { otherwise } .
\end{array}\right.
$$

This function is denoted by χ, and is called a character modulo n. If χ has always the value 1 for any a such that $(a, n)=1$, then χ is called the trivial character modulo n, and denoted by 1 . If χ is a non-trivial character modulo n and there is no character \mathcal{X}^{\prime} of $\left(\boldsymbol{Z} / n^{\prime} \boldsymbol{Z}\right)^{\times}$with a proper divisor n^{\prime} of n satisfying $\chi^{\prime}(a)=\chi(a)$ for any $(a, n)=1$, then χ is called a primitive character modulo n. Any non-trivial character χ modulo n can be uniquely decomposed to the following form

$$
\chi=\chi_{0} \chi^{\prime}
$$

where χ_{0} is the trivial character modulo n and χ^{\prime} is a primitive character modulo n^{\prime} with some divisor n^{\prime} of n. We call this n^{\prime} the conductor of χ and denote it by f_{χ}. If χ is a primitive character modulo some n, then we call χ simply primitive. In this case the conductor f_{x} is equal to n. Let $n=\prod_{i=1}^{j} p_{i}^{e}$ be the prime decomposition of n. Then we have $(\boldsymbol{Z} / n \boldsymbol{Z})^{\times}=\prod_{i=1}^{j}\left(\boldsymbol{Z} / p_{i}^{e} \boldsymbol{i}_{\boldsymbol{i}}^{\boldsymbol{Z}}\right)^{\times}$. Therefore if χ is a character modulo n, then χ has the following unique decomposition

$$
\begin{equation*}
\chi=\prod_{i=1}^{j} \chi_{i} \tag{1}
\end{equation*}
$$

where each χ_{i} is a character modulo $p_{i}^{e_{i}}$. It is clear that χ is primitive, if and only if each χ_{i} is primitive. Let χ be a character modulo n. Then we put $H_{\mathrm{x}}=-\frac{1}{n} \sum_{a=1}^{n} \chi(a) a$.

Lemma 2. Let χ be a non-trivial character modulo n. If $\chi(-1)=1$ then we have $H_{x}=0$.

Proof. First we should note $\chi(n)=0$. Then we have

$$
\begin{aligned}
H_{x} & =\frac{-1}{2 n}\left(\sum_{a=1}^{n-1} \chi(a) a+\sum_{a=1}^{n-1} \chi(-a+n)(-a+n)\right) \\
& =\frac{-1}{2 n}\left(\sum_{a=1}^{n-1} \chi(a) a+\sum_{a=1}^{n-1} \chi(-a)(-a+n)\right) \\
& =\frac{-1}{2 n} \sum_{a=1}^{n-1} \chi(a)(a+(-a+n)) \\
& =-\frac{1}{2} \sum_{a=1}^{n-1} \chi(a)=0 .
\end{aligned}
$$

We put

$$
\Gamma^{(k)}(n)=\left\{\chi \in \Gamma(n) \mid \chi^{k}=1\right\}
$$

Lemma 3. Let p be a prime number. Then we have
(i) $N^{(k)}\left(b, p^{e}\right)=\sum_{\chi \in \Gamma^{(k)}\left(p^{e}\right)} \chi(b)=1+\sum_{\chi: \text { primitive }} \chi(b)$
if $(b, p)=1$, $f_{x} \mid p^{b}$
$\chi^{k}=1$
(ii) $N^{(k)}(b, p)=1+\sum_{\substack{f_{x}=p \\ \chi^{k}=1}} \chi(b)$.

Proof. If we note that $\Gamma^{(k)}\left(p^{e}\right)$ is the character group of the factor group $\left(\boldsymbol{Z} \mid p^{e} \boldsymbol{Z}\right)^{\times} /\left(\boldsymbol{Z} / p^{e} \boldsymbol{Z}\right)^{\times_{\boldsymbol{k}}}$ and $\chi(b)$ is zero for any $\left(b, p^{e}\right) \neq 1$, then we can easily obtain the lemma.

Lemma 4. We denote by $\# \Gamma^{(k)}(n)$ the number of the elements of the set $\Gamma^{(k)}(n) . \quad$ Let p be a prime. Then we have
(i) $\# \Gamma^{(k)}\left(p^{e}\right)=(p-1, k) \quad$ if $(p, k)=1$,
(ii) $\underset{(p \neq 2)}{\# \Gamma^{(k)}\left(p^{e}\right)}= \begin{cases}p^{e-1}(p-1, k) & \text { if } e_{0}+1 \geqslant e, \\ p^{e_{0}}(p-1, k) & \text { if } e_{0}+1<e,\end{cases}$ where we define e_{0} by

$$
p^{e}{ }_{0} \| k, e_{0}>0,
$$

(iii) $\# \Gamma^{(k)}\left(2^{e}\right)= \begin{cases}2^{e-1} & \text { if } e \leqslant e_{0}+2 \\ 2^{e_{0}+1} & \text { if } e \geqslant e_{0}+3,\end{cases}$ where we define e_{0} by

$$
2^{e}\left\|_{\|}\right\| k, \quad e_{0}>0 .
$$

Especially for a fixed k, there is a constant c_{0} such that

$$
\# \Gamma^{(k)}\left(p^{e}\right) \leqslant c_{0}
$$

for any p and e.
Proof. If we note the following facts

$$
\begin{array}{ll}
\left(\boldsymbol{Z} \mid p^{e} \boldsymbol{Z}\right)^{\times} \cong \boldsymbol{Z} /(p-1) p^{e-1} \boldsymbol{Z} & \text { if } p \neq 2, \\
\left(\boldsymbol{Z} / 2^{e} \boldsymbol{Z}\right)^{\times} \cong \boldsymbol{Z} / 2 \boldsymbol{Z}+\boldsymbol{Z} / 2^{e-2} \boldsymbol{Z} & \text { if } e \geqslant 2, \\
\left(\boldsymbol{Z} \mid p^{e} \boldsymbol{Z}\right)^{\times} /\left(\boldsymbol{Z} / p^{e} \boldsymbol{Z}\right)^{\times k} \cong \Gamma^{(k)}\left(p^{e}\right),
\end{array}
$$

then we have immediately the lemma 4.

3. Main theorem and its proof

Let $n \geqslant 2$ be a positive integer and $n=\prod_{i=1}^{j} p_{i}^{e}$ be the prime decomposition of n. We define index sets $A(n)$ and $B(n)$ as follows

$$
\begin{aligned}
& A(n)=\{1,2, \cdots, j\} \\
& B(n)=\left\{i \in A(n) \mid e_{i} \geqslant 2\right\}
\end{aligned}
$$

For a subset $\alpha=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ of the set $A(n)$ we denote by d_{∞} the integer

$$
\begin{aligned}
& d_{a b}=\prod_{i=1}^{l} p_{d_{i}}, \quad \text { if } \alpha \neq \phi \\
& d_{\phi}=1 .
\end{aligned}
$$

For a fixed positive integer k, we put

$$
e_{i}=k s_{i}+r_{i}, s_{i} \geqslant 0,1 \leqslant r_{i} \leqslant k,
$$

and

$$
n_{0}=n_{0}^{(k)}=\prod_{i=1}^{j} p_{i}^{(k-1) s_{i}+r_{i}-1} .
$$

Let d be a positive divisor of n. Then we put

$$
\begin{aligned}
& n(d)=n^{(k)}(d)=n /\left(d^{k}, n\right) \\
& d^{*}(n)=d^{*}(d)^{(k)}=d^{k} /\left(d^{k}, n\right)
\end{aligned}
$$

Under the above notation we have the following proposition.

Proposition 1.

$$
\begin{aligned}
& c_{a}^{(k)}(n)=\sum_{\substack{\chi: \text { primitive } \\
f_{\chi} \mid n, \chi^{k}=1}} \overline{\chi(a)} H_{\chi}-\left[\sum _ { \substack { \alpha \in B (n) \\
\alpha \neq \phi } } \mu (d _ { a }) \left\{\frac{\left(d_{\infty}^{k}, n\right) / d_{\infty}-1}{2}+\frac{\left(d_{\alpha}^{k}, n\right)}{d_{\alpha}}\right.\right.
\end{aligned}
$$

where we denote by $\mu(\cdot)$ the Mobius function.
Proof. By the definition of $c_{a}^{(k)}(n)$ we have

$$
c_{a}^{(k)}(n)=\frac{n-1}{2}-\frac{1}{2} \sum_{x=1}^{n-1} N^{(k)}\left(a^{-1} x, n\right)
$$

where we consider $a^{-1} x$ in $(\boldsymbol{Z} / n \boldsymbol{Z})^{\times}$. If $\left(x, d_{B(n)}\right)=1$ then by Lemma 1 and Lemma 2 we have

$$
N^{(k)}\left(a^{-1} x, n\right)=\prod_{i=1}^{j}\left(1+\sum_{\substack{\chi \\ f_{x} \mid p_{i} \\ \text { primititive }}} \chi\left(a^{-1} x\right)\right)
$$

Therefore we get

$$
\begin{aligned}
& c_{a}^{(k)}(n)=\frac{n-1}{2}-\left[\frac{1}{n} \sum_{x=1}^{n-1} \prod_{i=1}^{j}\left(1+\sum_{\substack{\chi: \text { primitive }_{\begin{subarray}{c}{ \\
f_{X} \mid p_{i}^{g_{i}}, \chi^{k}=1} }}}\end{subarray}} \chi\left(a^{-1} x\right)\right) x\right. \\
& +\sum_{\substack{\alpha \in B(n) \\
\alpha \neq \phi}} \mu\left(d_{a}\right)\left\{\frac{1}{n} \sum_{x=1}^{\left(n / d_{a}\right)^{-1}} \prod_{i \in \infty}\left(1+\sum_{\substack{\chi: \text { primitive } \\
f_{\chi} \mid p_{i}^{p_{i}^{i}}, \chi^{k}=1}} \chi\left(a^{-1} d_{\infty} x\right)\right) d_{\infty} x\right. \\
& \left.\left.-\sum_{x=1}^{\left(n / d_{\infty}\right)-1} \overline{\left\{\frac{a\left(d_{a} x\right)^{k}}{n}\right\}}\right\}\right] \\
& =\frac{n-1}{2}-\frac{n(n-1)}{2 n}-\frac{1}{n} \underset{\substack{\chi \\
f_{\chi} \mid n, x^{k}=1}}{ } \sum_{i=1} \sum_{i=1}^{n-1} \chi\left(a^{-1} x\right) x-\sum_{\substack{a \in B(n) \\
\alpha \neq \phi}} \mu\left(d_{a}\right) \\
& \cdot\left[\frac{d_{\infty}}{n} \cdot \frac{\left(n / d_{\alpha}\right)\left(\left(n / d_{a}\right)-1\right)}{2}-\frac{d_{\infty}}{n} \sum_{\substack{\chi: \text { primitive } \\
f_{x} \mid n, \chi^{k}=1 \\
\left(f_{\chi}, d_{\alpha}\right)=1}} \sum_{x=1}^{\left(n / d_{\infty}\right)-1} \chi\left(a^{-1} d_{\alpha} x\right) x\right. \\
& \left.-\sum_{x=1}^{\left(n / d_{\infty}\right)^{-1}}\left\{\frac{a d_{a}^{*}(n) x^{k}}{n\left(d_{a s}\right)}\right\}\right],
\end{aligned}
$$

where we should note that

$$
\frac{1}{n} \sum_{x=1}^{n-1} \chi(x) x=\frac{1}{n} \sum_{x=1}^{f_{x}^{-1}} \sum_{i=0}^{\left(n / f_{x}\right)^{-1}} \chi(x)\left(x+i f_{\mathrm{x}}\right)=\frac{1}{n} \frac{n}{f_{\mathrm{x}}} \sum_{x=1}^{f^{-1}} \chi(x) x=-H_{\mathrm{x}}
$$

Then we have

$$
\begin{aligned}
c_{a}^{(k)}(n)= & \sum_{\substack{\chi: \text { primitive } \\
f_{x} \mid n, \chi^{k}=1}} \overline{\chi(a)} H_{x}-\left[\sum _ { \substack { \alpha \in B (n) \\
\alpha \neq \phi } } \mu (d _ { \infty }) \left\{\frac{\left(n / d_{\infty}\right)-1}{2}-\sum_{\substack{\chi: \text { primitive } \\
f \times 1 n, \chi^{k}=1 \\
\left(f_{x}, d_{\infty}\right)=1}} \overline{\chi(a)} \chi\left(d_{\infty}\right) H_{x}\right.\right. \\
& -\frac{n}{d_{a} n\left(d_{\infty}\right)} \sum_{x=1}^{n\left(d_{\infty}\right)^{-1}}\left\{\overline{\left.\left.\left\{\frac{a d_{\infty}^{*}(n) x^{k}}{n(d)_{\infty}}\right\}\right\}\right] .}\right.
\end{aligned}
$$

On the other hand we see that

$$
-\sum_{x=1}^{n\left(d_{\infty}\right)^{-1}} \overline{\left\{\frac{a d_{\infty}^{*}(n) x^{k}}{n\left(d_{\infty}\right)}\right\}}=c_{a a_{a}^{*}(n)}^{(k)}\left(n\left(d_{\alpha}\right)\right)-\frac{n\left(d_{\infty}\right)-1}{2}
$$

Therefore we have

$$
\begin{aligned}
& c_{a}^{(k)}(n)=\sum_{\substack{\chi: \text { primitive } \\
f_{\mathrm{X}} \mid n, \chi^{k}=1}} \overline{\chi(a)} H_{\mathrm{x}}-\sum_{\substack{\alpha \subset B(n) \\
\alpha \neq \phi}} \mu\left(d_{a}\right)\left[\frac{\left(n \mid d_{\alpha}\right)-1}{2}-\frac{n}{d_{a n} n\left(d_{a}\right)} \cdot \frac{n\left(d_{a}\right)-1}{2}\right. \\
& \left.-\sum_{\chi: \text { primitive }} \overline{\chi(a)} \chi\left(d_{a s}\right) H_{\mathrm{x}}+\frac{n}{d_{a} n\left(d_{a s}\right)} c_{a a_{a}^{*}(n)}^{(k)}\left(n\left(d_{a}\right)\right)\right] \\
& \begin{array}{l}
f_{x} \mid n, x^{k}=1 \\
\left(f_{x}, d_{a}\right)=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{\chi: \text { primitive } \\
f_{x} \mid n, \chi^{k}=1}} \overline{\chi(a)} H_{x}-\sum_{\substack{a \in B(n) \\
\omega \neq \phi}} \mu\left(d_{a}\right)\left[\frac{\left(n / d_{a} n\left(d_{\alpha}\right)\right)-1}{2}\right. \\
& \left.\left.+\frac{n}{d_{a}\left(n\left(d_{a}\right)\right)}\right)_{c a_{a}^{*}(n)}^{(k)}\left(n\left(d_{a}\right)\right)-\sum_{\substack{\chi: \text { primitive } \\
f_{x} \times \\
\left(f_{x}, d_{a}\right)=1 \\
\chi^{k}=1}} \overline{\chi(a)} \chi\left(d_{a}\right) H_{\mathrm{x}}\right] .
\end{aligned}
$$

But by the definition of $n(d)$ we have

$$
\frac{n}{n\left(d_{a s}\right)}=\frac{n}{\frac{n}{\left(d_{a}^{k}, n\right)}}=\left(d_{a}^{k}, n\right)
$$

Therefore we get

$$
\begin{aligned}
c_{a}^{(k)}(n)= & \sum_{\substack{\chi: \text { primitive } \\
f_{x} \mid n, \chi^{k}=1}} \overline{\chi(a)} H_{x}-\sum_{\substack{a \in B(n)}} \mu(d)\left[\frac{\left(\left(d_{\alpha}^{k}, n\right) / d_{\alpha}\right)-1}{2}\right. \\
& \left.+\frac{\left(d_{a}^{k}, n\right)}{d_{\infty}} c_{a a_{a}^{*}(n)}^{(k)}\left(n\left(d_{\alpha)}\right)\right)-\sum_{\substack{\chi: \text { primitive } \\
f_{x} \mid n, \chi^{k}=1 \\
\left(f_{x}, d_{a}\right)=1}} \overline{\chi(a)} \chi\left(d_{a)}\right) H_{x}\right] .
\end{aligned}
$$

Thus Proposition 1 is proved
Let χ be a non-trivial character modulo n such that $\chi^{k}=1$. Then we define the integer $n(\chi)=n^{(\boldsymbol{k})}(\chi)$ as follows,

$$
\begin{aligned}
& n(\chi)=\prod_{p: \operatorname{prime}} p^{\left[v_{p}\left(n / f_{x}\right) / k\right]+\varepsilon_{p, n}} \\
& \varepsilon_{p, n}=\varepsilon_{p, n}^{(k)}= \begin{cases}0 & \text { if } p \mid f_{X} \text { or } v_{p}\left(\frac{n}{f_{x}}\right)-k\left[v_{p}\left(\frac{n}{f_{x}}\right) \frac{1}{k}\right] \leqslant 1, \\
1 & \text { otherwise, }\end{cases}
\end{aligned}
$$

where we denote by $v_{p}(\cdot)$ the normalized p-adic exponential valuation of the field of the rational numbers \boldsymbol{Q}. Then we can easily obtain the following two remarks.

Remark 1. For a prime p if p divides $n(\chi)$, then p^{2} divides $n \mid f_{\chi}$.
Remark 2. If $n(\chi)$ is divisible by d, then $n /\left(d^{k}, n\right) \equiv 0 \bmod f_{x}$.
Lemma 5. Let n be a positive integer. For distinct primes p_{1}, \cdots, p_{j} such that $p_{i}^{2} \mid n(i=1, \cdots, j)$, we put $d_{0}=p_{1} \cdots \cdot p_{j}$ and $n\left(d_{0}\right)=n /\left(d_{0}^{k}, n\right)$. Let χ be a character modulo $n\left(d_{0}\right)$. Then χ induces the character modulo n through the homomorphism $(\boldsymbol{Z} \mid n \boldsymbol{Z})^{\times} \rightarrow\left(\boldsymbol{Z} \mid n\left(d_{0}\right) \boldsymbol{Z}\right)^{\times}$. Denoting this also χ we have that if d divides $n\left(d_{0}\right)(\chi)$ then dd divides $n(\chi)$.

Proof. We shall show that $v_{p}\left(d d_{0}\right) \leqslant v_{p}(n(\chi))$ for every prime p. We consider the two cases.

The case I. $\quad p \neq p_{i}(i=1, \cdots, j)$.
By the definition of $n\left(d_{0}\right)$ we have

$$
v_{p}(n)=v_{p}\left(n\left(d_{0}\right)\right)
$$

and

$$
v_{p}\left(n \mid f_{x}\right)=v_{p}\left(n\left(d_{0}\right) / f_{x}\right)
$$

It follows from this

$$
\varepsilon_{p, n}=\varepsilon_{p, n\left(d_{0}\right)}
$$

From this and by the definition of d we have

$$
\begin{aligned}
v_{p}\left(d d_{0}\right) & =v_{p}(d) \leqslant\left[v_{p}\left(n\left(d_{0}\right) / f_{\chi}\right) / k\right]+\varepsilon_{p, n\left(d_{0}\right)} \\
& =\left[v_{p}\left(n \mid f_{\mathrm{x}}\right) / k\right]+\varepsilon_{p, n} \\
& =v_{p}(n(\chi))
\end{aligned}
$$

Thus Lemma 5 is proved in our case.
The case II. $\quad p=p_{i}$ (for some i)
By the definition of $n\left(d_{0}\right)$ we have

$$
v_{p}\left(n\left(d_{0}\right) / f_{x}\right)= \begin{cases}v_{p}\left(n \mid f_{x}\right)-k & \text { if } p^{k} \mid n \\ 0 & \text { if } p^{k} \nmid n\end{cases}
$$

Therefore we shall consider the two cases.
(i) The case $v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right)=v_{p}\left(n / f_{\mathrm{x}}\right)-k$.

In this case we have

$$
\begin{aligned}
v_{p}\left(n \mid f_{\mathrm{x}}\right)-k\left[v_{p}\left(n / f_{\mathrm{x}}\right) \frac{1}{k}\right] & =v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right)+k-k\left[v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right) / k+1\right] \\
& =v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right)-k\left[v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right) / k\right]
\end{aligned}
$$

This shows that $\varepsilon_{p, n}=\varepsilon_{p, n\left(d_{0}\right)}$. Noting this we have

$$
\begin{aligned}
v_{p}\left(d d_{0}\right) & =1+v_{p}(d) \leqslant 1+\left[v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right) / k\right]+\varepsilon_{p, n\left(d_{0}\right)} \\
& =1+\left[v_{p}\left(n \mid f_{\mathrm{x}}\right) / k-1\right]+\varepsilon_{p, n} \\
& =\left[v_{p}\left(n \mid f_{\mathrm{x}}\right) / k\right]+\varepsilon_{p, n} \\
& =v_{p}(n(\chi))
\end{aligned}
$$

This also completes the proof of Lemma 5 in our case.
(ii) The case $v_{p}\left(n\left(d_{0}\right) / f_{x}\right)=0$

In this case we should note that $v_{p}\left(f_{x}\right)=0$. Then we have

$$
v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right)-k\left[v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right) / k\right]=0
$$

It follows

$$
\varepsilon_{p, \boldsymbol{n}\left(d_{0}\right)}=0 .
$$

This shows $v_{p}(d)=0$. On the other hand we have

$$
v_{p}(n) \geqslant 2+v_{p}\left(n\left(d_{0}\right)\right) .
$$

This shows that

$$
\left[v_{p}\left(n \mid f_{x}\right) / k\right]>0
$$

or

$$
\left.v_{p}\left(n \mid f_{x}\right)-k\left[v_{p}\left(n \mid f_{\mathrm{x}}\right) \frac{1}{k}\right]>1, \quad \text { (i.e., } \varepsilon_{p, n}=1\right)
$$

Therefore $\left[v_{p}\left(n / f_{x}\right) / k\right]+\varepsilon_{p, n}$ is positive in both cases. Then we have

$$
\begin{aligned}
v_{p}\left(d d_{0}\right)=v_{p}\left(d_{0}\right) & =1 \leqslant\left[v_{p}\left(n / f_{\mathrm{x}}\right) / k\right]+\varepsilon_{p, n} \\
& =v_{p}(n(\chi)) .
\end{aligned}
$$

Thus Lemma 5 is completely proved.
The following lemma is a converse of Lemma 5 in a sense.
Lemma 6. Let χ be a character modulo n and d be a positive divisor of $n(\chi)$. Let p_{1}, \cdots, p_{j} be distinct primes each of which is a divisor of d. If we put $d_{0}=p_{1} \cdots \cdots p_{j}$ and $d=d_{0} d^{\prime}$ with a positive integer d^{\prime}, then χ is a character modulo $n\left(d_{0}\right)$ and d^{\prime} is a divisor of $n\left(d_{0}\right)(\chi)$.

Proof. The former assertion is obvious by Remark 2. So we shall show the latter half in the same manner as in Lemma 5. Let p be a prime.
(I) The case $p \neq p_{i}(i=1, \cdots, j)$

In this case we can show that $v_{p}(n(\chi))=v_{p}\left(n\left(d_{0}\right)(X)\right)$ by the same method as in the case (I) of Lemma 5. Then we have

$$
\left.v_{p}\left(d^{\prime}\right)=v_{p}(d) \leqslant v_{p}(n)(\chi)\right)=v_{p}\left(n\left(d_{0}\right)(\chi)\right)
$$

(II) The case $p=p_{i}$ (for some i).

In this case we have

$$
v_{p}(d) \leqslant v_{p}(n(\chi))
$$

This shows that

$$
\left[v_{p}\left(n / f_{\mathrm{x}}\right) / k\right]>0
$$

or

$$
\left[v_{p}\left(n / f_{x}\right) / k\right]=0 \quad \text { and } \quad \varepsilon_{p, n}=1
$$

Therefore we shall consider the two cases.
(i) The case $\left[v_{p}\left(n / f_{x}\right) / k\right]>0$.

In this case we can easily see that

$$
\begin{aligned}
v_{p}\left(n \mid f_{\mathrm{x}}\right) / k & =v_{p}\left(\frac{1}{f_{\mathrm{x}}} \frac{n}{\left(p^{k}, n\right)}\right) \frac{1}{k}+1 \\
& =v_{p}\left(\frac{1}{f_{\mathrm{x}}} \frac{n}{\left(d_{0}^{k}, n\right)}\right) \frac{1}{k}+1
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
v_{p}\left(d^{\prime}\right)=v_{p}(d)-1 & \left.\leqslant\left[v_{p}\left(n / f_{\mathrm{x}}\right) / k\right]\right)+\varepsilon_{p, n}-1 \\
& =\left[v_{p}\left(n\left(d_{0}\right) / f_{\mathrm{x}}\right) / k\right]+1+\varepsilon_{p, n}-1 .
\end{aligned}
$$

But we can show by the same method as in the case (II)-(i) of Lemma 5 that $\varepsilon_{p, n}=\varepsilon_{p, n\left(d_{0}\right)}$. Therefore it follows

$$
v_{p}\left(d^{\prime}\right) \leqslant v_{p}\left(n\left(d_{0}\right)(\chi)\right) .
$$

(ii) The case $\left[v_{p}\left(n \mid f_{x}\right) / k\right]=0$ and $\varepsilon_{p, n}=1$.

In this case we have

$$
v_{p}\left(d^{\prime}\right)=v_{p}(d)-1 \leqslant \varepsilon_{p, n}-1=0
$$

This shows that

$$
v_{p}\left(d^{\prime}\right)=0 .
$$

Therefore we have

$$
v_{p}\left(d^{\prime}\right) \leqslant v_{p}\left(n\left(d_{0}\right)(\chi)\right)
$$

These complete the proof of Lemma 6.
Now we are in a position to state our main Theorem.
Theorem 1. Notation being as above. Then

$$
\begin{aligned}
c_{a}^{(k)}(n)= & \frac{n_{0}-1}{2}+\sum_{\substack{\chi ; \text { primitive } \\
\chi^{k}=1 \\
f_{x} \mid n}} \chi^{-1}(a) H_{x}\left\{\sum_{d \mid n(\chi)} \frac{\left(d^{k}, n\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\right)}\right)\right. \\
& \left.\cdot\left(\sum_{\substack{d_{\alpha} \mid n(d)(\chi) \\
\left(d_{a}, f_{x}\right)=1 \\
\alpha \subset B(n)}} \mu\left(d_{\infty}\right) \chi\left(d_{a s}\right)\right)\right\} .
\end{aligned}
$$

Proof. Let $n=\prod_{i=1}^{j} p_{i}^{e_{i}}$ be the prime decomposition of n. Then we put $s(n)=\sum_{i=1}^{j}\left(e_{i}-1\right)$. We shall prove our theorem by the induction with respectt to $s(n)$. If $s(n)=0$, i.e., n is a square-free integer, then by taking $B(n)=\phi$ in Proposition 1 we get

$$
c_{a}^{(k)}(n)=\sum_{\substack{\chi ; \text { primitive } \\ \chi^{k}=1 \\ f_{x} \mid n}} \chi^{-1}(a) H_{\mathrm{x}}
$$

On the other hand, in this case we have $n_{0}=1, n(\chi)=1$ and $B(n)=\phi$. This shows that our theorem is true in our case. If $s(n)>0$, then we assume that the theorem is valid for any m such that $s(m)<s(n)$. Now we can easily see that $s\left(n\left(d_{a}\right)\right)<s(n)$ with respect to $n\left(d_{a}\right)$ of Proposition 1. Therefore by the assumption we have

$$
\begin{align*}
& c_{d_{a}^{*}(n) a}^{(k)}\left(n\left(d_{a}\right)\right)=\frac{n\left(d_{a}\right)_{0}-1}{2}+\sum_{\substack{\chi ; \text { primitive } \\
\chi^{k}=1 \\
f_{\chi} \mid n\left(d_{\alpha}\right)}} \chi^{-1}\left(d_{a}^{*}(n) a\right) H_{\chi} \tag{2}\\
& \cdot\left\{\sum_{d \mid n\left(d_{\alpha}\right)(\chi)} \frac{\left(d^{k}, n\left(d_{\alpha}\right)\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\left(d_{\alpha}\right)\right)}\right)\right. \\
& \left.\cdot\left(\sum_{\substack{d_{\beta} \mid\left(n\left(d_{\alpha}\right)\right) \\
\left(d_{\beta}, f\right)=1 \\
\beta \subset B(n)\left(d_{\alpha}\right)}} \mu\left(d_{\beta}\right) \chi\left(d_{\beta}\right)\right)\right\} .
\end{align*}
$$

Hereafter we shall only consider primitive characters which take values k-th roots of unity or zero, though we shall not mention it explicitly. From (2) and Proposition 1 we get

$$
\begin{aligned}
c_{a}^{(k)}(n)= & \sum_{f_{\chi} \mid n} \chi^{-1}(a) H_{\chi}-\sum_{\substack{\alpha \subset B(n) \\
\alpha \neq \phi}} \mu\left(d_{\omega \alpha}\right)\left[\left(\frac{\frac{\left(d^{k}, n\right)}{d}-1}{2}\right)+\frac{\left(d_{\alpha}^{k}, n\right)}{d}\right. \\
& \cdot\left\{\frac{n\left(d_{\alpha}\right)_{0}-1}{2}+\sum_{f_{\chi} \mid n\left(d_{\alpha}\right)} \chi^{-1}\left(d_{a}^{*}(n) a\right) H_{x} \sum_{d \mid n\left(d_{\alpha}\right)(\chi)}\right. \\
& \cdot \frac{\left(d^{k}, n\left(d_{\alpha}\right)\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\left(d_{a}\right)\right)}\right) \\
& \left.\left.\cdot \sum_{\substack{\beta \subset B\left(n\left(d_{\alpha}\right)\right) \\
d_{\beta} \mid n\left(d_{a}\right)(d)(\chi) \\
\left(d_{\beta}, f_{\chi}\right)=1}} \mu\left(d_{\beta}\right) \chi\left(d_{\beta}\right)\right\}-\sum_{\substack{f_{\chi} \mid n \\
\left(f_{\chi}, d_{\alpha}\right)=1}} \chi\left(d_{a s}\right) \chi^{-1}(a) H_{\chi}\right] .
\end{aligned}
$$

Therefore if we prove the following two facts (I) and (II), then the proof of Theorem 1 is completed.

$$
\begin{equation*}
-\sum_{\substack{\alpha \subset B(n) \\ \alpha \neq \phi}} \mu\left(d_{a}\right)\left\{\frac{\frac{\left(d_{\alpha}^{k}, n\right)}{d_{a}}-1}{2}+\frac{\left(d_{\alpha}^{k}, n\right)\left(n\left(d_{a}\right)_{0}-1\right)}{2 d_{a}}\right\}=\frac{n_{0}-1}{2} . \tag{I}
\end{equation*}
$$

$$
\begin{align*}
& \sum_{f_{\mathbf{X}} \mid n} \chi^{-1}(a) H_{\chi}-\sum_{\substack{\alpha \subset B(n) \\
\alpha \neq \phi}} \mu\left(d_{\alpha}\right)\left[\left\{\frac{\left(d_{\alpha}^{k}, n\right)}{d_{\infty}} \sum_{f_{\mathbf{X}} \mid n\left(d_{\alpha}\right)} \chi^{-1}\left(d_{\alpha}^{*}(n) a\right) H_{\mathbf{x}}\right.\right. \tag{II}\\
& \left.\sum_{d \mid n\left(d_{\alpha}\right)(x)} \frac{\left(d^{k}, n\left(d_{\alpha}\right)\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\left(d_{\alpha}\right)\right)}\right) \sum_{\substack{\beta \subset B\left(n\left(d_{\alpha}\right)\right) \\
d_{\beta} \mid n\left(d_{\alpha}\right)(d)(x) \\
\left(d_{\beta}, f_{\chi}\right)=1}} \mu\left(d_{\beta}\right) \chi\left(d_{\beta}\right)\right\} \\
& \left.-\sum_{\substack{f_{\mathrm{x}} \mid n \\
\left(f_{x}, d_{a}\right)=1}} \chi\left(d_{a}\right) \chi^{-1}(a) H_{\mathrm{x}}\right] \\
& =\sum_{f_{\chi} \mid n} \chi^{-1}(a) H_{\chi} \sum_{d \mid n(\chi)} \frac{\left(d^{k}, n\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\right)}\right) \sum_{\substack{\alpha \subset B(n) \\
d_{d} \mid n(d)(\chi) \\
\left(d_{\alpha}, f_{\chi}\right)=1}} \mu\left(d_{\alpha)}\right) \chi\left(d_{a}\right) .
\end{align*}
$$

First we shall prove (I). By the definition of $n\left(d_{a s}\right)$ we get

$$
n\left(d_{a}\right)_{0}=\left(\frac{n}{\left(d_{a}^{k}, n\right)}\right)_{0}
$$

and

$$
n\left(d_{a}\right)_{0} \frac{\left(d_{\alpha}^{k}, n\right)}{d_{a}}=\left(\frac{n}{\left(d_{\alpha}^{k}, n\right)}\right)_{0} \frac{\left(d_{\alpha}^{k}, n\right)}{d_{a s}} .
$$

By examining p-adic valuation of $\left(n /\left(d_{\alpha}^{k}, n\right)\right)_{0} \cdot\left(\left(d_{\alpha}^{k}, n\right) / d_{\omega}\right)$ for each p such that $p \mid n$, we can easily see that

$$
n\left(d_{a}\right)_{0} \frac{\left(d_{\alpha}^{k}, n\right)}{d_{a}}=n_{0} .
$$

On the other hand we have

$$
-\sum_{\substack{\alpha \subset B(n) \\ \alpha \neq \phi}} \mu\left(d_{d o}\right)=-\sum_{\substack{d \mid d_{B(n)} \\ d \neq 1}} \mu(d)=-\left(\left(\sum_{d \mid d_{B(n)}} \mu(d)\right)-1\right)=1
$$

It follows (I).
Next we shall prove (II). We can rewrite the left hand side of (II) to the following formula

$$
\begin{align*}
& \sum_{f_{\mathrm{x}} \mid n} \chi^{-1}(a) H_{\mathrm{x}}\left[\left\{\sum_{\substack{\alpha \subset B(n) \\
\left(d_{\alpha}, f_{\mathrm{x}}\right)=1}} \mu\left(d_{a}\right) \chi\left(d_{a s}\right)\right\}\right. \tag{3}\\
& -\left\{\sum_{\substack{\alpha \subset B(n) \\
\alpha \neq \phi\left|n\left(d_{\alpha}\right)(\chi) \\
f_{\mathrm{x}}\right| n\left(d_{\alpha}\right)}} \sum_{\substack{\beta \subset B\left(n\left(d_{\alpha}\right)\right) \\
d_{\beta} \mid n\left(d_{\alpha}\right)(d)(x) \\
\left(d_{\beta}, f_{x}\right)=1}} \mu\left(d_{a}\right) \cdot \frac{\left(d_{\alpha}^{k}, n\right)}{d_{a}} \cdot \frac{\left(d^{k}, n\left(d_{a}\right)\right)}{d}\right. \\
& \left.\left.\cdot \chi^{-1}\left(\frac{d_{\alpha}^{*}(n) d^{k}}{\left(d^{k}, n\left(d_{a}\right)\right)}\right) \mu\left(d_{\beta}\right) \chi\left(d_{\beta}\right)\right\}\right] .
\end{align*}
$$

Here we note that

$$
\frac{\left(d_{\alpha}^{k}, n\right)}{d_{\infty}} \cdot \frac{\left(d^{k}, n\left(d_{a}\right)\right)}{d}=\frac{\left(d_{\alpha}^{k}, n\right)\left(d^{k}, \frac{n}{\left(d_{\alpha}^{k}, n\right)}\right)}{d d_{a}}=\frac{\left(\left(d d_{\infty}\right)^{k}, n\right)}{d d_{\infty}}
$$

and

$$
\frac{d_{\alpha}^{*}(n) d^{k}}{\left(d^{k}, n\left(d_{a}\right)\right)}=\frac{d_{\alpha}^{k}}{\left(d_{\alpha}^{k}, n\right)} \cdot \frac{d^{k}}{\left(d^{k}, \frac{n}{\left(d_{\alpha}^{k}, n\right)}\right)}=\frac{\left(d d_{a}\right)^{k}}{\left(\left(d d_{a}\right)^{k}, n\right)} .
$$

And by Lemma 5 we note that

$$
d d_{\infty} \mid n(\chi) .
$$

By the definition of $n(d)$ we can easily see that

$$
\left(n\left(d_{\infty}\right)\right)(d)=n\left(d d_{\omega}\right) .
$$

Then we can rewrite the inside of the bracket of (3) as follows

$$
\begin{align*}
& \left\{\sum_{\substack{\alpha \subset B(n) \\
\left(d_{\alpha}, f_{x}\right)=1}} \mu\left(d_{\alpha)}\right) \chi\left(d_{a x}\right)\right\}-\left\{\sum_{\substack{d \mid n(x) \\
d \neq 1}} \frac{\left(d^{k}, n\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\right)}\right)\right. \tag{4}\\
& \left.\cdot \sum_{\begin{array}{l}
d=d^{\prime} d_{\alpha} \\
d^{\prime} \mid n\left(d_{\alpha}\right) \\
\alpha \subset B(x) \\
\alpha \neq \phi \\
f_{\chi} \mid n\left(d_{\alpha}\right)
\end{array}} \mu\left(d_{\alpha}\right) \sum_{\substack{\beta \subset B\left(n\left(d_{\alpha}\right)\right) \\
d_{\beta} \mid n(d)(x) \\
\left(d_{\beta}, f_{\chi}\right)=1}} \mu\left(d_{\beta}\right) \chi\left(d_{\beta}\right)\right\} .
\end{align*}
$$

Here we can easily see that if $\beta \subset B(n)$ and $d_{\beta} \mid n(d)(\chi)$ then $\beta \subset B\left(n\left(d_{a}\right)\right)$. This shows that we may change $B\left(n\left(d_{\omega}\right)\right)$ of the last term of (4) for $B(n)$. Moreover by Lemma 6 we see that $d_{a d} \mid d$ implies that $f_{\mathrm{x}} \mid n\left(d_{a}\right)$ and $d^{\prime} \mid n\left(d_{a}\right)(\chi)$. Therefore we may exclude these conditions of (4). Then we have

$$
\begin{aligned}
& (4)=\left\{\sum_{\substack{\alpha \subset B(n) \\
\left(d_{\alpha}, f_{\chi}\right)=1}} \mu\left(d_{\alpha}\right) \chi\left(d_{a x}\right)\right\}-\left\{\sum_{\substack{d \mid n(\chi) \\
d \neq 1}} \frac{\left(d^{k}, n\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\right)}\right)\right. \\
& \left.\underset{\substack{\beta \subset B \subset(n) \\
d_{\beta} \mid n(d)(\chi) \\
\left(d_{\beta}, f_{X}\right)=1}}{ } \mu\left(d_{\beta}\right) \chi\left(d_{\beta}\right) \sum_{\substack{d=d^{\prime} d_{a} \\
\alpha \subset B(n) \\
\alpha \neq \phi}} \mu\left(d_{a}\right)\right\} \\
& =\left\{\sum_{\substack{\alpha \subset B(n) \\
\left(d_{\alpha}, f_{\chi}\right)=1}} \mu\left(d_{\alpha}\right) \chi\left(d_{\alpha}\right)\right\}+\left\{\sum_{\substack{d \mid n(x) \\
d \neq 1}} \frac{\left(d^{k}, n\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\right)}\right) \sum_{\substack{\beta \subset B\left|B(n) \\
d_{\beta}\right| n(d)(\chi) \\
\left(d_{\beta}, f_{\chi}\right)=1}} \mu\left(d_{\beta}\right) \chi\left(d_{\beta}\right)\right\} \\
& =\sum_{d \mid n(x)} \frac{\left(d^{k}, n\right)}{d} \chi^{-1}\left(\frac{d^{k}}{\left(d^{k}, n\right)}\right) \sum_{\substack{\alpha \subset B(n) \\
\left(d_{a}, f_{\chi}\right)=1 \\
d_{a} \mid n(d)(\chi)}} \mu(d)_{a} \chi\left(d_{a}\right) .
\end{aligned}
$$

which implies (II). Thus the proof of Theorem 1 is completed.
Let $\boldsymbol{Q}(\sqrt{D})=K$ be a quadratic extension field of \boldsymbol{Q} with discriminant D. We denote by $\left(\frac{D}{n}\right)$ or $\chi_{D}(n)$ the Kronecker's symbol of K. Then $\left(\frac{D}{.}\right)$ is a primitive character modulo $|D|$.

Remark 3. Conversely it is well-known that every primitive character of degree 2 is of such type.

Let $h(D)$ be the class number of $K=\boldsymbol{Q}(\sqrt{D})$ and $2 w_{D}$ be the number of the roots of unity in K. Then the following Lemma 7 is well-known.

Lemma 7. Notation being as above. Then we have

$$
H_{x_{D}}= \begin{cases}0 & \text { if } D>0 \\ \frac{h(D)}{w_{D}} & \text { if } D>0\end{cases}
$$

Remark 4. It is also well-known that if $\left(\frac{D}{-1}\right)=1$ then $D>0$ and if $\left(\frac{D}{-1}\right)=-1$ then $D<0$.

Corollary 1. In the case $k=2$ we have

$$
c_{a}^{(2)}(n)=\frac{n_{0}-1}{2}+\sum_{\substack{|D| n \\ D<0}}\left(\frac{D}{a}\right)^{-1} \frac{h(D)}{w_{D}} \sum_{d \mid n\left(\chi_{D}\right)} d \prod_{\substack{p \mid n(d)\left(\chi_{D}\right) \\(p, D)=1}}\left\{1-\left(\frac{D}{p}\right)\right\},
$$

where D runs over all the discriminants of the imaginary quadratic fields dividing n.
Proof. By the definition of $n\left(X_{D}\right)$ we can easily see that if d divides $n\left(X_{D}\right)$ then d^{2} divides n. It follows

$$
\frac{\left(d^{2}, n\right)}{d}=d \quad \text { and } \quad \frac{\left(d^{2}, n\right)}{d^{2}}=1
$$

Therefore by Remark 3, Remark 4, Lemma 2, Lemma 7 and the above facts, Theorem 1 implies our Corollary.

Our Corollary in the case $a=1$ and $n=$ prime is obtained by T. Honda in [2]

Corollary 2. If $k=2$ then $c_{1}^{(2)}(n) \geqslant 0$. Moreover $c_{1}^{(2)}(n)=0$, if and only if n is of the following type

$$
n=p_{1} \cdots \cdots p_{j} \quad \text { or } \quad 2 p_{1} \cdots \cdots p_{j}
$$

where p_{1}, \cdots, p_{j} are distinct primes each of which is congruent to 1 modulo 4.

Proof. The first assertion is obvious from Corollary 1. We shall prove the second assertion. If $c_{1}^{(2)}(n)=0$ then n must be square-free, because if n is not square-free then $n_{0}>1$, which implies $c_{1}^{(2)}(n)>0$. Consequentely we have by Corollary 1

$$
c_{1}^{(2)}(n)=\sum_{|D| \mid n} \frac{h(D)}{w_{D}}
$$

If there exists some p such that $p \mid n$ and $p \equiv 3 \bmod 4$, then $-p$ is the discriminant of $\boldsymbol{Q}(\sqrt{ } \overline{-p})$. This shows

$$
c_{1}^{(2)}(n) \geqslant \frac{h(-p)}{w_{-p}}>0
$$

Thus n must be an integer of such type as in our Corollary. The converse is clear.

Corollary 3. If k is an odd integer, then we have

$$
c_{a}^{(k)}(n)=\frac{n_{0}-1}{2},
$$

therefore $\left|c_{a}^{(k)}(n)\right|<n^{(k-1) / k}$.
Proof. Let χ be any character modulo n of degree k. Then we have

$$
\chi(-1)^{2}=\chi\left((-1)^{2}\right)=1
$$

and

$$
\chi(-1)^{k}=1
$$

This shows $\chi(-1)=1$. Therefore by Lemma 2 we have $H_{x}=0$. This shows the first assertion of our Corollary by Theorem 1. We can immediately obtain the second assertion by a simple calculation.

Remark 5. $c_{1}^{(k)}(n)$ is not always non-negative for even $k>2$. For example $c_{1}^{(4)}(29)=-2$. (See the table of at the end of the section 5.)

4. Proof of Conjecture 1

Let χ be a primitive character modulo f_{χ}. Then we define the Dirichlet's L-function by

$$
L(s, \chi)=\sum_{n=1}^{\infty} \chi(n) n^{-s}
$$

We denote by $G(\chi)$ the Gauss's sum with respect to χ, i.e.,

$$
G(\chi)=\sum_{a=1}^{f_{\chi}} \chi(a) \zeta^{a}
$$

where $\zeta=\exp \left(2 \pi i / f_{x}\right)$. Then the following two lemmas are well-known. (See Hasse [1] and Prachar [3]).

Lemma 8.

$$
|L(1, \chi)|<3 \log f_{x}
$$

Lemma 9.

$$
L(1, \chi)=\frac{\pi i G(\chi)}{f_{\chi}^{2}} \sum_{a=1}^{f_{\chi}} \chi(a) a
$$

Moreover

$$
G(\chi) G(\bar{\chi})=\chi(-1) f_{\chi}
$$

in particular

$$
|G(\chi)|=\sqrt{f_{\mathrm{x}}} .
$$

Lemma 10.

$$
\left|H_{\mathrm{x}}\right|<\sqrt{f_{\mathrm{x}}} \log f_{\mathrm{x}}
$$

Proof. By Lemma 8 and Lemma 9 we have

$$
\begin{aligned}
\left|H_{\mathrm{x}}\right| & =\left|\frac{1}{f_{\mathrm{x}}} \cdot \frac{L(1, \bar{\chi}) f_{\bar{x}}^{2}}{\pi i G(\bar{\chi})}\right| \\
& <\frac{f_{\mathrm{x}}}{|G(\bar{\chi})|} \log f_{\mathrm{x}}=\sqrt{f_{\mathrm{x}}} \log f_{\mathrm{x}}
\end{aligned}
$$

It is obvious that $f_{\overline{\mathrm{x}}}$ is equal to f_{x}. This completes the proof.
We denote by $\delta(n)$ the number of prime divisors of n.
Lemma 11. For any positive number ε and a given positive constant A we have

$$
A^{\delta(n)}=O\left(n^{2}\right),
$$

where O denotes the Landau's large O-symbol.
Proof. We may suppose $A>1$. Let p_{0} be a sufficientely large prime number such that

$$
\frac{\log A}{\log p_{0}}<\varepsilon
$$

We denote by δ_{0} the number of primes which are less than p_{0} and by $\delta^{\prime}(n)$ the number of prime divisors of n each of which is not smaller than p_{0}. Then we can easily see that

$$
\delta(n) \leqslant \delta^{\prime}(n)+\delta_{0} .
$$

By the definition of $\delta^{\prime}(n)$ we have

$$
p_{0}^{\delta^{\prime}(n)} \leqslant n .
$$

Therefore we have

$$
\delta^{\prime}(n) \leqslant \frac{\log n}{\log p_{0}}
$$

From this we get

$$
\begin{aligned}
A^{\delta(n)} & \leqslant A^{\delta^{\prime}(n)+\delta_{0}}=A^{\delta_{0}} A^{\delta^{\prime}(n)} \\
& =A^{\delta_{0} n^{\log }{ }_{n} 8^{8^{\prime}(n)}}=A_{0}^{\delta_{0} n^{\prime}(n) \log A / \log n} \\
& \leqslant A^{\delta_{0}} n^{\left(\log n / \log p_{0}\right) \cdot(\log A / \log n)} \leqslant A^{\delta_{0}} n^{2}
\end{aligned}
$$

This completes the proof.
Lemma 12. For any positive number ε we have

$$
\sum_{d \mid n} 1=O\left(n^{e}\right)
$$

Proof. See Prachar [3]-I-Satz 5.2
Now we shall prove Conjecture 1.
Theorem 2. For any positive number ε and a fixed positive integer k we have

$$
c_{a}^{(k)}(n)=O\left(n^{((k-1) / k)+\varepsilon}\right)
$$

Proof. By Theorem 1 we have

$$
\left|c_{a}^{(k)}(n)\right| \leqslant \frac{n_{0}-1}{2}+\sum_{f_{\mathrm{x}} \mid n}\left|H_{\mathrm{x}}\right| \sum_{d \mid n(x)} \frac{\left(d^{k}, n\right)}{d} \prod_{\substack{p\left(n(d)(x) \\\left(p, f_{\mathrm{x}}\right)=1\right.}}|1-\chi(p)| .
$$

We have already known that

$$
n_{0} \leqslant n^{(k-1) / k}
$$

Therefore we shall show that

$$
\sum_{f_{\mathrm{x}} \mid n}\left|H_{\mathrm{x}}\right| \sum_{d \mid n(\chi)} \frac{\left(d^{k}, n\right)}{d} \prod_{\substack{p \mid n(d)(\chi) \\\left(p, f_{\mathrm{X}}\right)=1}}|1-\chi(p)|=O\left(n^{((k-1) / k)+\varepsilon}\right) .
$$

First we get by Lemma 11

$$
\prod_{\substack{p \mid n(d)(x) \\\left(p, f_{x}\right)=1}}|1-\chi(p)| \leqslant \prod_{p \mid n} 2=2^{8(n)}=O\left(n^{\varepsilon}\right)
$$

Next we get

$$
\sum_{\substack{\chi \\ f_{\mathbf{x}} \mid n}} 1<\prod_{p \mid n}\left(\sum_{\substack{\chi \\ f_{\mathrm{x}}=p^{\infty}}} 1\right) .
$$

But by Lemma 3 we know that

$$
\sum_{\substack{\chi \\ f_{x}=p^{\alpha}}} 1<A, \quad \text { for some positive constant } A .
$$

Hence by Lemma 11 we also get

$$
\sum_{\substack{\chi \\ f_{X} \mid n}} 1<A^{8(n)}=O\left(n^{2}\right) .
$$

Lastly we shall show that

$$
\left.\left(\left|H_{x}\right| \sum_{d \mid n(x)} \frac{\left(d^{k}, n\right)}{d}\right) \right\rvert\, n^{(k-1) / k}=O\left(n^{2}\right)
$$

We transform this into

$$
\left(\left|H_{x}\right| \sum_{d \mid n(x)} \frac{\left(d^{k}, n\right)}{d}\right) \left\lvert\, n^{(k-1) / k}=\frac{\left|H_{x}\right|}{f_{x}^{(k-1) / k}} \cdot \sum_{d \mid n(x)}\left(\frac{\left(d^{k}, n\right)}{d} /\left(\frac{n}{f_{x}}\right)^{(k-1) / k}\right) .\right.
$$

Then we have by Lemma 10

$$
\left|H_{x}\right| \mid f_{x}^{(k-1) / k} \leqslant\left(f_{x}^{1 / 2} / f_{x}^{(k-1) / k}\right) \log f_{x} \leqslant \log f_{x} .
$$

Moreover by Remark 2 we can easily see that

$$
\frac{\left(d^{k}, n\right)}{d} /\left(\frac{n}{f_{x}}\right)^{(k-1) / k}<1
$$

From these and by Lemma 12 we have

$$
\begin{aligned}
\left(\left|H_{x}\right| \sum_{d \mid n(x)} \frac{\left(d^{k}, n\right)}{d}\right) / n^{(k-1) / k} & \leqslant \sum_{d \mid n(x)} \log n \\
& <\log n \sum_{d \mid n} 1 \\
& =O\left(n^{2}\right)
\end{aligned}
$$

This completes the proof of our Theorem.

5. Number theoretic properties of some $c_{a}^{(k)}(\boldsymbol{n})$.

Lemma 13. Let k be a positive integer and p be a prime number which is prime to k. We denote by k_{0} the greatest common divisor of k and $p-1$. Then we have

$$
N^{(k)}(x, p)=N^{\left(k_{0}\right)}(x, p)
$$

Proof. If $x \equiv 0 \bmod p$ then the lemma is trivial. Hence we assume $x \neq 0$ $\bmod p$. Consider the following sequence of groups and homomorphisms

$$
\{1\} \longrightarrow(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times(p-1) / k_{0}} \underset{g_{1}}{\longrightarrow}(\boldsymbol{Z} / p \boldsymbol{Z})^{\times} \underset{g_{2}}{\longrightarrow}(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times k_{0}} \underset{g_{3}}{\longrightarrow}(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times k_{0}} \longrightarrow\{1\}
$$

where we define the homomorphisms g_{1}, g_{2} and g_{3} as follows

$$
\begin{aligned}
& g_{1}(a)=a^{\forall} a \in(Z \mid p Z)^{\times(p-1) / k_{0}}, \\
& g_{2}(a)=a^{k_{0}} \mathbf{V} a \in(Z \mid p Z)^{\times k_{0}}, \\
& g_{3}(a)=a^{k / k_{0}} \mathbf{V} a \in(Z \mid p Z)^{\times k_{0}} .
\end{aligned}
$$

By the definition of k_{0}, we see that k / k_{0} is prime to $(p-1) / k_{0}$ This shows that g_{3} is an isomorphism and the above sequence is exact. By the definition of $N^{\left(k_{0}\right)}(x, p)$ and $N^{(k)}(x, p)$ we see that $N^{\left(k_{0}\right)}(x, p)$ is not zero if and only if $x \in \operatorname{Im}\left(g_{2}\right)=(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times k_{0}}$ and $N^{(k)}(x, p)$ is not zero if and only if $x \in \operatorname{Im}\left(g_{3} \circ g_{2}\right)=$ $(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times k_{0}}$. Therefore $N^{\left(k_{0}\right)}(x, p)$ is not zero if and only if so is $N^{(k)}(x, p)$. If $x \in(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times k_{0}}$ then $N^{\left(k_{0}\right)}(x, p)=\# \operatorname{Ker}\left(g_{2}\right)=\# \operatorname{Ker}\left(g_{3} \circ g_{2}\right)=N^{(k)}(x, p)$. Thus Lemma 13 is proved.

Proposition 2. Let p_{1}, \cdots, p_{j} be distinct primes each of which is prime to k and k_{i} be the greatest common divisor of k and $p_{i}-1$. If we denote by k_{0} the least common multiple of k_{1}, \cdots, k_{j}, then

$$
c_{a}^{(k)}\left(p_{1} \cdots \cdots p_{j}\right)=c_{a}^{\left(k_{0}\right)}\left(p_{1} \cdots \cdots \cdot p_{j}\right)
$$

Proof. By Lemma 13 it is obvious that

$$
N^{(k)}(x, p)=N^{\left(k_{i}\right)}(x, p)=N^{\left(k_{0}\right)}(x, p)
$$

Then by Lemma 1 we have

$$
N^{(k)}\left(x, p_{1} \cdots \cdot p_{j}\right)=N^{\left(k_{0}\right)}\left(x, p_{1} \cdots \cdot p_{j}\right)
$$

On the other hand we have already shown in the proof of Proposition 1 that

$$
c_{a}^{(k)}(n)=\frac{n-1}{2}-\frac{1}{n} \sum_{i=1}^{n-1} N^{(k)}\left(a^{-1} x, n\right)
$$

where we consider $a^{-1} x$ in $(\boldsymbol{Z} \mid n \boldsymbol{Z})^{\times}$. Therefore we can immediately obtain the lemma.

Lemma 14. Let p be a prime such that

$$
p-1 \equiv 0 \bmod 2 k
$$

and χ be a character of modulo p of degree k, then

$$
\chi(-1)=1
$$

Proof. If we put $p-1=2 m k$ with a positive integer m, then the order of -1 in $(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times}$is $m k$. Therefore there exists some $x_{0} \in(\boldsymbol{Z} \mid p \boldsymbol{Z})$ such that

$$
x_{0}^{m k} \equiv-1 \quad \bmod p,
$$

which implies $\chi(-1)=\chi\left(x_{0}^{m}\right)^{k}=1$.
Proposition 3. Let p_{1}, \cdots, p_{j} be distinct primes each of which is prime to k and congruent to 1 modulo $2 k$, then

$$
c_{a}^{(k)}\left(p_{1} \cdots \cdots p_{j}\right)=0
$$

Proof. We put $n=p_{1} \cdots \cdots p_{j}$. Let χ be any character of conductor $f_{\mathrm{x}} \mid n$, then by the decomposition (1) in $\S 2$ of χ and Lemma 14 we see that $\chi(-1)=1$. Therefore by Lemma 2 and Theorem 1 we can immediately obtain our Proposition.

In the case $k=2$, we have obtained the very beautiful formula for $c_{a}^{(2)}(n)$ in corollary 2. But when k is an even integer $>2, c_{a}^{(k)}(n)$ is more complicated. From now on till the end of the this section we shall only consider the case $k=4$ and $n=p$, where p is a prime. If $p=2$, then $c_{a}^{(4)}(2)=0$ and there is nothing to say. If $p \equiv 3 \bmod 4$, then $c_{a}^{(4)}(p)=c_{a}^{(2)}(p)$ by Proposition 2. Further if $p \equiv 1$ $\bmod 8$, then $c_{a}^{(4)}(p)=0$ by Proposition 3. Therefore we may confine ourselves to the cases $p \equiv 5 \bmod 8$.

Let p be a prime which is congruent to 5 modulo 8. Then the unit group $(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times}$of the residue ring $\boldsymbol{Z} \mid p \boldsymbol{Z}$ is a cyclic group of order $p-1$ which is divisible by 4 . We denote by H (respectively H_{0}) the unique subgroup of $(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times}$of index 4 (respectively 2). Let K be the p-th cyclotomic field i.e., $K=\boldsymbol{Q}(\zeta)$, where $\zeta=\exp \left(\frac{2 \pi i}{p}\right)$. Then there exists the subfield L (respectively L_{0}) corresponding to the group H (respectively H_{0}). As the order of -1 is 2 , H does not contain -1 but H_{0} contains it. This shows that L is a totally imaginary field and L_{0} is the maximal totally real subfield of L. Hence we obtain the following diagram

Hereafter till the end of the this section we shall use the following notations.

$$
\begin{aligned}
\zeta & =\exp \left(\frac{2 \pi i}{p}\right) \\
h & =\text { the class number of } L \\
h_{0} & =\text { the class number of } L_{0}
\end{aligned}
$$

$$
\begin{aligned}
h^{*} & =h / h_{0} \\
E & =\text { the unit group of } L \\
E_{0} & =\text { the unit group of } L_{0} \\
w & =\text { the number of the roots of unity of } L
\end{aligned}
$$

By the condition on p we can easily see that the element 2 is not a quadratic residue of modulo p. This shows that the group $(\boldsymbol{Z} \mid p \boldsymbol{Z})^{\times} / H$ is generated by the class represented by 2 . We shall denote by $\chi^{(j)}(j=0,1,2,3)$ the character of $(Z \mid p Z)^{\times} / H$ which takes value $\sqrt{-1}{ }^{j}$ at the class $2 \bmod H$. From these characters we obtain the characters modulo p in the sense of section 2 and we also denote them by $\chi^{(j)}(j=0,1,2,3)$. We can easily see that these characters except $\chi^{(0)}$ have the conductor p. Then the group of characters $\left\{\chi^{(j)} \mid j=0,1\right.$, $2,3\}$ corresponds to L and $\left\{\chi^{(0)}, \chi^{(2)}\right\}$ corresponds to L_{0}. Now we quote the following formula for h^{*} from Hasse [1].

Lemma 15. Let E^{\prime} be the group generated by E_{0} and the roots of unity contained in L. Then we have

$$
h^{*}=Q w \prod_{j=1,3} \frac{1}{2 p}\left(\sum_{x=1}^{p-1}-\chi^{(j)}(x) x\right),
$$

where Q is defined by $Q=\left[E ; E^{\prime}\right]$. In our case we can easily see $Q=1$.
Proof. See Hasse [1] III-(*).
Theorem 3. If we use the above notation, then we have

$$
h^{*}=\frac{w}{4}\left\{\left(\frac{c_{1}^{(4)}(p)}{2}\right)^{2}+\left(\frac{c_{2}^{(4)}(p)}{2}\right)^{2}\right\}
$$

Proof. We put

$$
\frac{1}{p} \sum_{x=1}^{p-1} \chi^{(1)}(x) x=a+b i \quad a, b \in \boldsymbol{Q} .
$$

Then we have

$$
\frac{1}{p} \sum_{i=1}^{p-1} \chi^{(3)}(x) x=a-b i .
$$

We shall prove that

$$
\begin{equation*}
a=-\frac{c_{1}^{(4)}(p)}{2} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
b=-\frac{c_{1}^{(4)}(p)}{2} \tag{8}
\end{equation*}
$$

By the definition of a we get

$$
\begin{aligned}
a & =\frac{1}{p}\left\{\sum_{\substack{x=1 \\
x \equiv y^{4} \bmod p}}^{p-1} x-\sum_{\substack{x=1 \\
x \equiv y^{2} \bmod p \\
x \neq y_{2}{ }^{4} \bmod p}}^{p-1} x\right\} \\
& =\frac{1}{p}\left\{2 \sum_{\substack{x=1 \\
x \equiv y^{4} \bmod p}}^{p-1}-\sum_{\substack{x=1 \\
x \equiv y^{2} \bmod p}}^{p-1} x\right\} .
\end{aligned}
$$

As $p \equiv 1 \bmod 4$, if $x \equiv y^{2} \bmod p$ then $-x \equiv y^{\prime 2} \bmod p$ for some $y^{\prime} \in \boldsymbol{Z} \mid p \boldsymbol{Z}$. From this we get

$$
\begin{equation*}
\sum_{\substack{x=1 \\ x \equiv y^{2} \bmod p}}^{p-1} x=\frac{p(p-1)}{4} . \tag{9}
\end{equation*}
$$

On the other hand we have by the definition of $c_{1}^{(4)}(p)$

$$
\begin{equation*}
c_{1}^{(4)}(p)=\frac{p-1}{2}-\frac{4}{p} \sum_{\substack{x=1 \\ x=y^{4} \bmod p}}^{p-1} x \tag{10}
\end{equation*}
$$

By (9) and (10) we have

$$
\begin{aligned}
a & =\left(\frac{p-1}{4}-\frac{c_{1}^{(4)}(p)}{2}\right)-\frac{p-1}{4} \\
& =-\frac{c_{1}^{(4)}(p)}{2}
\end{aligned}
$$

Thus we obtain the formula (7). Next we shall prove (8). By the definition of b we have

$$
\begin{aligned}
& =\frac{1}{p}\left\{2 \sum_{\substack{x=1 \\
x=2 y^{4} \bmod p}}^{p-1}-\sum_{\substack{x=1 \\
y=2 y^{2} \bmod p}}^{p-1} x\right\} \\
& =\frac{1}{p}\left\{2 \sum_{\substack{x=1 \\
x=2 y^{4} \bmod p}}^{p-1} x-\frac{p(p-1)}{4}\right\} \text {. }
\end{aligned}
$$

On the other hand by the definition of $c_{2}^{(4)}(p)$ we have also

$$
c_{2}^{(4)}(p)=\frac{p-1}{2}-\frac{4}{p} \sum_{\substack{x=1 \\ x \equiv 2 y^{4} \bmod p}}^{p-1} x
$$

Therefore we obtain

$$
\begin{aligned}
b & =\left(\frac{p-1}{4}-\frac{c_{2}^{(4)}(p)}{2}\right)-\frac{p-1}{4} \\
& =-\frac{c_{2}^{(2)}(p)}{2}
\end{aligned}
$$

Thus we have completed the proof of our Theorem.
Remark 6. We can easily see that

$$
\begin{array}{ll}
w=10 & \text { if } p=5 \\
w=2 & \text { otherwise } .
\end{array}
$$

For the even $k>2$ it can be considered that $c_{a}^{(k)}(p)$'s have similar relations to some relative class numbers. But for the composite n 's such relations are more complicated. We shall give the table of $h^{*}, c_{1}^{(4)}(p)$ and $c_{2}^{(4)}(p)$.

Table ($p \equiv 5(8), p<500)$

p	$c_{1}^{(4)}(p)$	$c_{2}^{(4)}(p)$	h^{*}
5	$6 / 5$	$2 / 5$	1
13	2	2	1
29	-2	2	1
37	2	-2	1
53	-2	-2	1
61	2	-2	1
101	-6	2	5
109	10	6	17
149	6	6	9
157	2	6	5
173	-6	-2	5
181	14	2	5
197	-2	-6	17
229	6	10	13
269	10	-2	17
277	-6	10	9
293	6	-6	13
317	2	10	5
349	-6	-2	41
389	18	2	13
397	2	-10	25
421	2	14	25
61	-2	-14	25

6. An afterthought

We shall give an another elementary proof of Corollary 3.
Proposition 4. If the following congruence equation has a solution

$$
\begin{equation*}
x^{k} \equiv-1 \quad \bmod n \tag{10}
\end{equation*}
$$

then

$$
c_{a}^{(k)}(n)=\frac{n_{0}^{(k)}-1}{2}
$$

Proof. If (10) has a solution, then it is clear that

$$
N^{(k)}(x, n)=N^{(k)}(-x, n)=N^{(k)}(n-x, n)
$$

Hence by the defintion of $c_{a}^{(k)}(n)$ we have

$$
\begin{aligned}
c_{a}^{(k)}(n) & =\frac{n-1}{2}-\frac{1}{n} \sum_{x=1}^{n-1} N^{(k)}\left(a^{-1} x, n\right) x \\
& =\frac{n-1}{2}-\frac{1}{2 n} \sum_{x=1}^{n-1}\left\{N^{(k)}\left(a^{-1} x, n\right) x+N^{(k)}\left(a^{-1}(n-x), n\right)(n-x)\right\} \\
& =\frac{n-1}{2}-\frac{1}{2 n} \sum_{x=1}^{n-1} n N^{(k)}\left(a^{-1} x, n\right),
\end{aligned}
$$

where we consider $a^{-1} x$ in $\boldsymbol{Z} / n \boldsymbol{Z}$. But we can easily see that

$$
\sum_{x=0}^{n-1} N^{(k)}\left(a^{-1} x, n\right)=n
$$

From this it follows that

$$
\begin{aligned}
c_{a}^{(k)}(n) & =\frac{n-1}{2}-\frac{1}{2}\left(n-N^{(k)}(0, n)\right) \\
& =\frac{N^{(k)}(0, n)-1}{2}
\end{aligned}
$$

But by a simple computation we get

$$
N^{(k)}(0, n)=n_{0}^{(k)}
$$

Thus we obtain Proposition 4.
Considering the definition of $c_{a}^{(k)}(n)$, if $a x^{k} \equiv 0 \bmod n$ then $\left[\frac{a x^{k}}{n}\right]=\frac{a x^{k}}{n}$, but we suppose that $\left[\frac{a x^{k}}{n}\right]$ is approximately $\frac{a x^{k}}{n}-\frac{1}{2}$. Therefore $\frac{n_{0}^{(k)}-1}{2}$ can be considered the known error term. From this point of view we had better to
consider that $d_{a}^{(k)}(n)=c_{a}^{(k)}(n)-\frac{n_{0}^{(k)}-1}{2}$ is the essential error term. The proof of Theorem 2 shows that the order of $d_{a}^{(k)}(n)$ is less than $n^{(k-1) / k)+\varepsilon}$ for any $\varepsilon>0$. The Corollary 2 is true with slight modification of $d_{a}^{(k)}(n)$.

Osaka University

References

[1] H. Hasse: Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952.
[2] T. Honda: A few remarks on class numbers of imaginary quadratic number fields, Osaka J. Math. 12 (1975), 19-21.
[3] K. Prachar: Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.

