Hotta, R. and Murakami, S. Osaka J. Math. 12 (1975), 555-564

ON A VANISHING THEOREM FOR CERTAIN COHOMOLOGY GROUPS

RYOSHI HOTTA AND SHINGO MURAKAMI

(Received September 17, 1974)

Let G be a connected semisimple Lie group with finite center and K a maximal compact subgroup of G. We assume that the quotient manifold X = G/K carries a G-invariant complex structure, so that X is holomorphically isomorphic to a symmetric bounded domain in C^N . Let Γ be a discrete subgroup of G acting on X freely and such that the quotient $M = \Gamma \setminus X$ is compact. The quotient $\Gamma \setminus G$ is then also compact. Suppose now an irreducible representation τ of K be given in a finite-dimensional complex vector space V. We know that τ defines an automorphic factor J_{τ} on X, called the canonical automorphic factor of type τ , and this defines in turn a holomorphic vector bundle $E(J_{\tau})$ over the complex manifold $M = \Gamma \setminus X$. The vector bundle $E(I_{\tau})$ is in fact differentiably equivalent to the vector bundle over M which is associated to the principal bundle $\Gamma \setminus G$ over M with group K by the representation τ of K in V. We shall denote by $E(J_{\tau})$ the sheaf of germs of holomorphic sections of the vector bundle $E(J_{\tau})$, and by $H^{q}(M, E(J_{\tau}))$ (q=0, 1, ...) the q-th cohomology group of M with coefficients in the sheaf $E(I_{\tau})$.

In a series of papers [6], [7], [8] (cf. also [9]), Y. Matsushima and one of the present authors have discussed the cohomology groups $H^q(M, E(J_\tau))$ and in particular the vanishing of these cohomology groups. The aim of this note is to prove anew a vanishing theorem for these cohomology groups which generalizes one of the main results in [7]. In [7] (and also in [8]), the result has been obtained after proving the following two kind of assertions. (1) Vanishing theorems for the cohomology groups of M with coefficients in certain locally constant sheaves, and (2) Isomorphisms between cohomology groups of this type and the groups $H^{q}(M, E(I_{\tau}))$. In this note we will apply a formula proved in [8] which expresses the dimension of the space of automorphic forms in terms of the unitary representation of G in $L^2(\Gamma \setminus G)$. As this formula has nothing to do with the earlier results as (1), (2), we get in this way a direct proof to a theorem in [7]. We note that N. Wallach and one of the present authors [3] have recently applied a similar kind of formula proved by Matsushima [5], thus giving a completely new proof to a theorem of Matsushima concerning the first Betti number of the space $\Gamma \setminus X$. The method used in this note generalizes that of [3] and depends on an argument used by R. Parthasarathy [11] who treated " L^2 -cohomologies" of X. We remark also that a different kind of vanishing theorem for the cohomology groups is found in [2].

We need also a formula on a laplacian operator, which is essentially the same as the one given by K. Okamoto and H. Ozeki [10]. The proof of this formula given here may be considered as a simplification of the method developped by them (cf. [1] for another proof).

1. Preliminaries on Lie algebras. We retain the notation in the introduction. Let g be the Lie algebra of G and t the subalgebra corresponding to the subgroup K. Since G/K carries a G-invariant complex structure, t contains a Cartan subalgera \mathfrak{h} of g. We denote by \mathfrak{g}^c the complexification of g and by \mathfrak{h}^c and \mathfrak{k}^c the subspaces of \mathfrak{g}^c spanned by \mathfrak{h} and t respectively.

Let Δ be the root system of \mathfrak{g}^{c} relative to \mathfrak{h}^{c} and

$$\mathfrak{g}^{c}=\mathfrak{h}^{c}+{\displaystyle\sum_{lpha\in\Delta}}\mathfrak{g}_{lpha}$$

be the root space decomposition. Then

$$\mathbf{f}^{c} = \mathbf{\mathfrak{h}}^{c} + \sum_{\mathbf{\sigma} \in \Delta_{k}} \mathbf{g}_{\mathbf{\sigma}}$$

for a subset $\Delta_{k} \subset \Delta$. Moreover, by our assumption on G/K, there exist abelian subalgebras \mathfrak{n}^+ and \mathfrak{n}^- of $\mathfrak{g}^{\mathcal{C}}$ such that

$$\begin{split} \mathfrak{g}^{\mathcal{C}} &= \mathfrak{n}^+ \oplus \mathfrak{n}^- \oplus \mathfrak{k}^{\mathcal{C}} , \\ [\mathfrak{k}^{\mathcal{C}}, \, \mathfrak{n}^{\pm}] \subset \mathfrak{n}^{\pm}, \, \, [\mathfrak{n}^+, \, \mathfrak{n}^-] \subset \mathfrak{k}^{\mathcal{C}} , \\ \overline{\mathfrak{n}^+} &= \mathfrak{n}^- , \end{split}$$

where — denotes the conjugation of g^c with respect to g. It follows in particular that

$$\mathfrak{n}^{\scriptscriptstyle +} = \sum_{\pmb{lpha} \in \mathbf{\Psi}} \mathfrak{g}_{\pmb{a}}$$
 , $\mathfrak{n}^{\scriptscriptstyle -} = \sum_{\pmb{a} \in \mathbf{\Psi}} \mathfrak{g}_{_{-\pmb{a}}}$

for a subset $\Psi \subset \Delta$. For each root $\alpha \in \Psi$ we can choose a vector $X_{\alpha} \in \mathfrak{g}_{\alpha}$ in such a way that $\overline{X}_{\alpha} = X_{-\alpha}$ and $\varphi(X_{\alpha}, X_{-\alpha}) = 1$, φ being the Killing form of \mathfrak{g}^{c} .

Let \mathfrak{h}_0 be the real part of \mathfrak{h}^c . All roots of \mathfrak{g}^c and more generally any weight of a finite-dimensional irreducible representation of the reductive Lie algebra \mathfrak{k}^c relative to the Cartan subalgebra \mathfrak{h}^c are real-valued on \mathfrak{h}_0 and so are considered as elements of the dual space \mathfrak{h}^*_0 of \mathfrak{h}_0 . We know that there exists a linear ordering in \mathfrak{h}^*_0 such that the roots in Ψ are all positive. Choosing such an ordering once and for all, let Δ_+ be the set of all positive roots. Put $\Theta = \Delta_+ \cap \Delta_k$ and

$$\delta = \frac{1}{2} \langle \Delta_+ \rangle, \quad \delta_k = \frac{1}{2} \langle \Theta \rangle, \quad \delta_n = \frac{1}{2} \langle \Psi \rangle$$

where $\langle Q \rangle$ denotes the sum of roots belonging to Q for any subset Q of Δ . Then $\Delta_{+}=\Theta \cup \Psi$ and $\delta=\delta_{k}+\delta_{n}$.

The Killing form φ defines a positive definite inner product on \mathfrak{h}_0 and this induces in turn a linear isomorphism $\mathfrak{h}_0^* \simeq \mathfrak{h}_0$ which assigns to $\lambda \in \mathfrak{h}_0^*$ the element $H_{\lambda} \in \mathfrak{h}_0$ such that $\lambda(H) = \varphi(H_{\lambda}, H)$ for all $H \in \mathfrak{h}_0$. Then

$$[X_{\alpha}, X_{-\alpha}] = H_{\alpha}$$

for any root $\alpha \in \Psi$. We define an inner product in \mathfrak{h}^* by putting

$$\langle \lambda, \mu \rangle = \varphi(H_{\lambda}, H_{\mu})$$

for λ , $\mu \in \mathfrak{h}^*$.

2. The cohomology groups $H^{0,q}(\Gamma, X, J_{\tau})$. We recall some results obtained in [6], [7]. Let τ be a representation of the group K on a finitedimensional complex vector space V, and J_{τ} the canonical automorphic factor of type τ on the space X=G/K (Cf. [6], [9]). We denote by $A^{0,q}(\Gamma, X, J_{\tau})$ the vector space of V-valued C^{∞} -differential forms η of type (0, q) on X such that

$$(\eta \circ L_{\gamma})_{x} = J_{\tau}(\gamma, x)\eta_{x}$$

for all $\gamma \in \Gamma$ and $x \in X$, where L_{γ} denotes the transformation of X defined by γ . Then we get a complex $\sum_{q \geq 0} A^{0,q}(\Gamma, X, J_{\tau})$ with coboundary operator d''. The cohomology groups of this complex, which were denoted by $H_{d'r}^{0,q}(\Gamma, X, J_{\tau})$ in [6] [7], will be here denoted by $H^{0,q}(\Gamma, X, J_{\tau})$ (q=0, 1, ...). The group $H^{0,q}(\Gamma, X, J_{\tau})$ is isomorphic, via the Dolbeault's isomorphism, to the cohomology group $H^{q}(M, E(J_{\tau}))$ defined in the introduction. Now in the space $A^{0,q}(\Gamma, X, J_{\tau})$ we can introduce a "laplacian" operator \Box in a canonical way and we know that each cohomology class of $H^{0,q}(\Gamma, X, J_{\tau})$ is represented by a unique harmonic form, i.e. a form η such that $\Box \eta = 0$. The group $H^{0,q}(\Gamma, X, J_{\tau})$ is thus isomorphic to the group $\mathcal{H}^{0,q}(\Gamma, X, J_{\tau})$ formed by the harmonic forms in $A^{0,q}(\Gamma, X, J_{\tau})$.

The space $A^{0,q}(\Gamma, X, J_{\tau})$ is canonically isomorphic to the space of V-valued q-forms η on the manifold $\Gamma \setminus G$ satisfying the following conditions. An element $X \in \mathfrak{g}^{C}$ being a left-invariant complex vector field on G, X projects to a vector field on $\Gamma \setminus G$ which we write also by X. Let i(X) be the operator of taking interior product by X for differential forms on $\Gamma \setminus G$. Then the conditions to be satisfied by the forms η are the followings.

(2.1)
$$\begin{cases} \eta \circ R_{k} = \tau^{-1}(k)\eta & \text{for } k \in K, \\ i(X)\eta = 0 & \text{for } X \in \mathfrak{n}^{+}, \\ i(Y)\eta = 0 & \text{for } Y \in \mathfrak{k}, \end{cases}$$

where R_k is the transformation of $\Gamma \backslash G$ defined by an element $k \in K$. Now, there exists a bijection between V-valued q-forms satisfying (2.1) and $V \otimes \Lambda^q \mathfrak{n}^+$ valued C^{∞} -functions f on $\Gamma \backslash G$ which verify

$$(2.2) f(xk) = (\tau \otimes \mathrm{ad}_{+}^{q})(k^{-1})f(x)$$

for $x \in X$ and $k \in K$, where $\operatorname{ad}_{+}^{q}$ is the representation of K on $\Lambda^{q}\mathfrak{n}^{+}$ induced from the adjoint action of K on \mathfrak{n}^{+} . To be more precise, put $\Psi = \{\alpha_{1}, \dots, \alpha_{N}\}$ and write $X_{i}, X_{\overline{i}}$ for $X_{\alpha_{i}}, \overline{X}_{\alpha_{i}}(1 \leq i \leq N)$ respectively. Then the function corresponding to a form η is given by

$$f(x) = \sum \eta_{\overline{j}_1 \cdots \overline{j}_q}(x) X_{j_1} \wedge \cdots \wedge X_{j_q},$$

where

$$\eta_{\overline{j}_1\cdots\overline{j}_q} = \eta(X_{\overline{j}_1}, \cdots, X_{\overline{j}_q})$$

and j_1, \dots, j_q run over integers such that $1 \leq j_1 < \dots < j_q \leq N$. We shall denote this function also by η and identify the space $A^{0,q}(\Gamma, X, J_{\tau})$ with the space of $V \otimes \Lambda^q \mathfrak{n}^+$ -valued C^{∞} -functions satisfying the condition (2.2). If we denote by $C^{\infty}(\Gamma \setminus G)$ the space of all complex-valued C^{∞} -functions on $\Gamma \setminus G$, the space of all $V \otimes \Lambda^q \mathfrak{n}^+$ -valued C^{∞} -functions on $\Gamma \setminus G$ may be identified with the tensor product space $C^{\infty}(\Gamma \setminus G) \otimes V \otimes \Lambda^q \mathfrak{n}^+$. The group K acts on this space by $R_k \otimes \tau(k) \otimes \mathrm{ad}^q_+(k)$ $(k \in K)$, and then $A^{0,q}(\Gamma, X, J_{\tau})$ coincides with the subspace of $C^{\infty}(\Gamma \setminus G) \otimes V \otimes \Lambda^q \mathfrak{n}^+$ consisting of all K-invariant elements.

Each vector field on $\Gamma \backslash G$ acting on $C^{\infty}(\Gamma \backslash G)$ in a natural way, we get a natural representation l of the Lie algebra \mathfrak{g}^{C} in $C^{\infty}(\Gamma \backslash G)$. The restriction of lto \mathfrak{k} is denoted by l_{k} , and the representations of \mathfrak{k} induced from the representations τ , ad \mathfrak{q}^{\bullet} of the group K will be denoted by the same letters. The action of the group K on $C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^{q} \mathfrak{n}^{+}$ defines as its differential the tensor product representation $l_{k} \otimes \tau \otimes \operatorname{ad}^{\mathfrak{q}}_{+}$ of the representations l_{k} , τ , ad $\mathfrak{q}^{\bullet}_{+}$ of the Lie algebra \mathfrak{k} . It follows that an element $\eta \in C^{\infty}(\Gamma \backslash G) \otimes V \otimes \Lambda^{q} \mathfrak{n}^{+}$ belongs to the subspace $A^{0,q}(\Gamma, X, J_{\tau})$, if and only if

$$(2.3) (l_k \otimes \tau \otimes \mathrm{ad}_+^q)(Y)\eta = 0$$

holds for all $Y \in \mathfrak{k}$.

Let $\{Y_1, \dots, Y_m\}$ be a basis of \mathfrak{k} such that $\varphi(Y_a, Y_b) = -\delta_{ab}$ $(1 \leq a, b \leq m)$. Then the laplacian operator \Box in $A^{0,q}(\Gamma, X, J_{\tau})$ is induced from the operator, denoted also by \Box , in $C^{\infty}(\Gamma \setminus G) \otimes V \otimes \Lambda^q \mathfrak{n}^+$ defined as follows.

(2.4)
$$\Box = -\sum_{i=1}^{N} l(X_i) l(X_i) \otimes \mathbf{1} \otimes \mathbf{1} - \sum_{a=1}^{m} l(Y_a) \otimes \mathbf{1} \otimes \mathrm{ad}_{+}^{q}(Y_a),$$

where 1 denotes the identity operator in each space (See [6], [7], [9]).

3. An expression of the laplacian operator. Let C be the Casimir

operator of the Lie algebra g^c . This is an element in the enveloping algebra $U(g^c)$ of g^c and, according to our choice of the basis $\{X_1, \dots, X_N, X_{\overline{1}}, \dots, X_{\overline{N}}, Y_1, \dots, Y_m\}$ of g^c , it is written as

$$C = -\sum_{a=1}^{m} Y_a^2 + \sum_{i=1}^{N} (X_i X_{\overline{i}} + X_{\overline{i}} X_i).$$

The operator C acts on $C^{\infty}(\Gamma \setminus G) \otimes V \otimes \Lambda^{q} \mathfrak{n}^{+}$ via the canonical action of $U(\mathfrak{g}^{c})$ on the first factor $C^{\infty}(\Gamma \setminus G)$. Analogously we define an element $C_{k} \in U(\mathfrak{g}^{c})$ as follows.

$$C_{k} = -\sum_{a=1}^{m} Y_{a}^{2},$$

and put

$$\tau(C_k) = -\sum_{a=1}^m \tau(Y_a)^2 \, .$$

From now on we assume that the representation τ of K is irreducible. Then τ induces an irreducible representation, denoted also by τ , of the reductive Lie algebra \mathbf{t}^c . Let Λ (resp. Λ') be the highest (resp. lowest) weight of τ with respect to the ordering in \mathfrak{h}^* chosen in §1. Then we see easily

(3.1)
$$\tau(C_k) = \langle \Lambda, \Lambda + 2\delta_k \rangle \mathbf{1} ; \quad \tau(H_\lambda) = \langle \Lambda, \lambda \rangle \mathbf{1}$$

for H_{λ} belonging to the center of \mathfrak{k}^{c} .

The formula given in the following lemma is essentially the same as the one of Okamoto-Ozeki [10] established for " L^2 -cohomologies".

Lemma 1. In the subspace
$$A^{0,q}(\Gamma, X, J_{\tau}) \subset C^{\infty}(\Gamma \setminus G) \otimes V \otimes \Lambda^{q} \mathfrak{n}^{+}$$
, we have
(3.2)
$$\Box = \frac{1}{2} \{-C + \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1}\}.$$

Proof. For simplicity, we write X for
$$l(X)$$
 $(X \in g^c)$. In the following summations a runs over 1, ..., m and i over 1, ..., N. We shall use the following formula proved in [7. Lemma 4.1].

(3.3)
$$\sum_{a} \operatorname{ad}_{+}^{q}(Y_{a})^{2} = -\sum_{i} \operatorname{ad}_{+}^{q}([X_{i}, X_{\overline{i}}]).$$

Now, in the subspace $A^{0,q}(\Gamma, X, J_{\tau})$, we have

$$2\sum_{a} (Y_{a} \otimes \mathbf{1} \otimes \operatorname{ad}_{+}^{q}(Y_{a}))$$

$$= \sum_{a} (Y_{a} \otimes \mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes \operatorname{ad}_{+}^{q}(Y_{a}))^{2} - \sum_{a} Y_{a}^{2} \otimes \mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \mathbf{1} \otimes \sum_{a} \operatorname{ad}_{+}^{q}(Y_{a})^{2}$$

$$= \sum_{a} (-\mathbf{1} \otimes \tau(Y_{a}) \otimes \mathbf{1})^{2} - \sum_{a} Y_{a}^{2} \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes \sum_{i} \operatorname{ad}_{+}^{q}([X_{i}, X_{\overline{i}}])$$

$$[by (2.3) and (3.3)]$$

R. HOTTA AND S. MURAKAMI

$$= \mathbf{1} \otimes \sum_{a} \tau(Y_{a})^{2} \otimes \mathbf{1} - \sum_{a} Y_{a}^{2} \otimes \mathbf{1} \otimes \mathbf{1}$$
$$- \sum_{i} [X_{i}, X_{\overline{i}}] \otimes \mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \sum_{i} \tau([X_{i}, X_{\overline{i}})] \otimes \mathbf{1} \qquad [by (2.3)]$$

Note that $\sum_{i} [X_i, X_{\overline{i}}] = \sum_{\sigma \in \Psi} H_{\sigma} = H_{2\delta_n}$, which belongs to the center of \mathfrak{k}^c . From (2.4) we get therefore

$$\Box = -\sum_{i} X_{i} X_{\overline{i}} \otimes \mathbf{1} \otimes \mathbf{1}$$

$$-\frac{1}{2} \{ \mathbf{1} \otimes \sum_{a} \tau(Y_{a})^{2} \otimes \mathbf{1} - \sum_{a} Y_{a}^{2} \otimes \mathbf{1} \otimes \mathbf{1}$$

$$-\sum_{i} [X_{i}, X_{\overline{i}}] \otimes \mathbf{1} \otimes \mathbf{1} - \mathbf{1} \otimes \tau(H_{2\delta_{n}}) \otimes \mathbf{1} \}$$

$$= \frac{1}{2} \{ -(\sum_{i} (X_{i} X_{\overline{i}} + X_{\overline{i}} X_{i}) + \sum_{a} Y_{a}^{2}) \otimes \mathbf{1} \otimes \mathbf{1}$$

$$+\mathbf{1} \otimes \tau(C_{k}) \otimes \mathbf{1} + \mathbf{1} \otimes \tau(H_{2\delta_{n}}) \otimes \mathbf{1} \}$$

$$= \frac{1}{2} (-C + \langle \Lambda, \Lambda + 2\delta_{k} \rangle \mathbf{1} + \langle \Lambda, 2\delta_{n} \rangle \mathbf{1}) \quad [by (3.1)]$$

$$= \frac{1}{2} (-C + \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1}) .$$

This proves the Lemma.

4. The theorem. We shall prove the following

Theorem. The notation and hypotheses being as in the preceding sections, let τ be an irreducible representation of K whose highest weight Λ is a dominant integral form with respect to Δ_+ . Then

$$H^{\mathfrak{o},\mathfrak{q}}(\Gamma, X, J_{\tau}) = (0)$$

for q satisfying one of the following conditions.

(I) $q < q_{\Lambda}$, where q_{Λ} is the number of roots α such that $\langle \Lambda, \alpha \rangle > 0$.

(II) q < r, if X is an irreducible symmetric space of rank r and unless q=0 nor $\Lambda=0$.

As mentioned in the introduction, the case (I) has been proved in [7] (and also in [8]) in a different way, while the case (II) is a slight generalization of a result in [3].

To prove the theorem, we recall first a formula in [8, Part II] which we will apply. Let σ be a representation of K in a complex vector space V_{σ} . By an automorphic form of type $(\Gamma, \sigma, \lambda)$ we mean a V_{σ} -valued C^{∞} -function f on G satisfying the following conditions. (i) $f(gk) = \sigma(k^{-1})f(g)$ for $g \in G$, $k \in K$, (ii) $f(\gamma g) = f(g)$ for $\gamma \in \Gamma$, $g \in G$, and (iii) $Cf = \lambda f$, where λ is a complex number

depending only on σ . By what we have observed in §§2 and 3, we can identify the space $\mathcal{H}^{0,q}(\Gamma, X, J_{\tau})$ with the space of $V \otimes \Lambda^q \mathfrak{n}^+$ -valued C^{∞} -functions f on $\Gamma \setminus G$ satisfying (2.2) and such that

$$Cf = \langle \Lambda, \Lambda + 2\delta \rangle f.$$

Therefore, $\mathcal{H}^{0,q}(\Gamma, X, J_{\tau})$ may be considered as the space of automorphic forms of type $(\Gamma, \tau \otimes \mathrm{ad}_{+}^{q}, \lambda)$ with $\lambda = \langle \Lambda, \Lambda + 2\delta \rangle$.

Let π be a unitary representation of G in a Hilbert space H_{π} . Then π gives rise to representations of the Lie algebra \mathfrak{g} and of the universal enveloping algebra $U(\mathfrak{g})$ in H_{π} , which we shall denote also by π . The operator $\pi(C)$ is known to be a self-adjoint operator of H_{π} with a dense domain. Assume now that π is irreducible. There exists then a complex number λ_{π} such that $\pi(C) = \lambda_{\pi} \mathfrak{l}$, i.e. that $\pi(C) u = \lambda_{\pi} u$ for all u in the domain of $\pi(C)$. On the other hand, the space H_{π} being considered as a K-module by the restriction of π to K, decomposes into a countable sum of irreducible K-submodules among which each irreducible K-module occurs with finite multiplicity. So we can define for a representation σ of K on a finite-dimensional complex vector space V_{σ} , the intertwining number $(\pi | K; \sigma)$ as the dimension of the space of all K-homomorphisms of H_{π} into V_{σ} . If σ is irreducible, $(\pi | K; \sigma)$ is equal to the multiplicity of σ in the restriction of π to K.

Let now ρ be the unitary representation of the group G in the Hilbert space $L^2(\Gamma \setminus G)$ induced from the action of G on $\Gamma \setminus G$. We know that ρ decomposes into sum of a countable number of irreducible representations, in which each irreducible representation π of G enters with a finite multiplicity that we denote by $m_{\pi}(\Gamma)$.

Now, for a representation σ of K, let $A(\Gamma, \sigma, \lambda)$ be the space of automorphic forms of type $(\Gamma, \sigma, \lambda)$. Then we have obtained the following formula [8, Theorem 3].

(4.1)
$$\dim A(\Gamma, \sigma, \lambda) = \sum_{\pi \in D_{\lambda}} m_{\pi}(\Gamma)(\pi | K; \sigma^*)$$

where σ^* denotes the representation of K contragredient to σ and D_{λ} is the set of irreducible unitary representations π of G such that $\pi(C) = \lambda \mathbf{1}$. Actually this formula is established in [8] for the case that σ is irreducible, but it follows that the same formula holds for any finite-dimensional representation σ of K, since σ decomposes into a finite sum of irreducible representations. Moreover, if π^* denotes the representation of G contragredient to an irreducible unitary representation π of G, we can easily see $(\pi | K; \sigma^*) = (\pi^* | K; \sigma)$ and that $\pi(C)$ and $\pi^*(C)$ are the same scalar multiple of the identity operators. The representation σ of G in $L^2(\Gamma \setminus G)$ is self-contragredient, from which it follows that $m_{\pi}(\Gamma) =$ $m_{\pi^*}(\Gamma)$ for any irreducible representation π of G. Combining these results, the formula (4.1) can now be written as R. HOTTA AND S. MURAKAMI

dim
$$A(\Gamma, \sigma, \lambda) = \sum_{\mathbf{r} \in D_{\lambda}} m_{\mathbf{r}}(\Gamma)(\pi | K; \sigma)$$
.

Applying this to our case, we get the following formula.

(4.2)
$$\dim \mathcal{H}^{0,q}(\Gamma, X, J_{\tau}) = \sum_{\pi} m_{\pi}(\Gamma)(\pi | K; \tau \otimes \mathrm{ad}^{q}_{+})$$

where π runs over the irreducible unitary representations of G for which $\pi(C) = \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1}$.

Using this interpretation, we have the following lemma whose proof depends on a computation similar to Parthasarathy's [11] (See also [3, Lemma 3.7]).

Lemma 2. Assume $H^{0,q}(\Gamma, X, J_{\tau}) \neq (0)$. Then there exists a subset $Q \subset \Psi$ with cardinality q, satisfying the following conditions;

(1) there exists an irreducible unitary representation π_{μ} of G whose highest weight with respect to the (new) positive root system $\Delta'_{+} = \Theta \cup (-\Psi)$ is $\mu = \Lambda + \langle Q \rangle$. That is, there exists a non-zero vector v in the representation space of π_{μ} such that

$$\begin{split} \pi_{\mu}(X_{\alpha})v &= 0 \qquad (\alpha \in \Delta'_{+}), \\ \pi_{\mu}(H)v &= \mu(H)v \qquad (H \in \mathfrak{h}^{\mathcal{C}}). \end{split}$$

(2) $\langle \Lambda, \alpha \rangle = 0$ for $\alpha \in \Psi - Q$ and $|\delta_k - \delta_n| = |\delta_k - \delta_n + \langle Q \rangle|$, where $|\lambda|^2 = \langle \lambda, \lambda \rangle$ for any $\lambda \in \mathfrak{h}_0^*$.

Proof. By the assumption and (4.2), there exists an irreducible unitary representation π in a space H_{π} containing an irreducible K-module U intertwining with $\tau \otimes \operatorname{ad}_{+}^{q}$. Let μ be the highest weight of U and v be the non-zero eigenvector for μ . Note that there then exists $Q \subset \Psi$ such that $\mu = \Lambda + \langle Q \rangle$. We know that v is in the domain of all operators $\pi(X)$ ($X \in U(\mathfrak{g}^{c})$). Since $\pi(C) = \langle \Lambda, \Lambda + 2\delta \rangle \mathbf{1}$, we have

$$2\sum_{i} \pi(X_{i})\pi(X_{\overline{i}})v$$

$$=\sum_{i} \{\pi(X_{i})\pi(X_{\overline{i}})+\pi(X_{\overline{i}})\pi(X_{i})\}v + \sum_{i} \pi([X_{i}, X_{\overline{i}}])v$$

$$= \{\pi(C_{k})-\pi(C)+\pi(H_{2\delta_{n}})\}v$$

$$= \{\langle \Lambda, \Lambda+2\delta \rangle - \langle \mu, \mu+2\delta_{k} \rangle + \langle \mu, 2\delta_{n} \rangle\}v \qquad [by (3.1)]$$

$$= \{|\Lambda+\delta|^{2}-|\mu+\delta_{k}-\delta_{n}|^{2}\}v \qquad [as |\delta|=|\delta_{k}-\delta_{n}|]$$

$$= \{2\langle \Lambda, 2\delta_{n}-\langle Q \rangle \rangle + |\delta_{k}-\delta_{n}|^{2}-|\delta_{k}-\delta_{n}+\langle Q \rangle|^{2}\}v \qquad [as \mu=\Lambda+\langle Q \rangle].$$

Since π is unitary, if follows

$$-2\sum_{i} ||\pi(X_{\overline{i}})v||^{2}$$

= {2<\Lambda, 2\delta_{n}-<\Q>>+(|\delta_{k}-\delta_{n}|^{2}-|\delta_{k}-\delta_{n}+<\Q>|^{2})}||v||^{2},

where $||\cdot||$ denotes the Hilbert norm on H_{π} . But by the assumption on Λ , $\langle \Lambda, 2\delta_n - \langle Q \rangle \geq 0$ and by a result of Kostant [4],

VANISHING THEOREM FOR CERTAIN COHOMOLOGY GROUPS

$$|\delta_k - \delta_n|^2 \geq |\delta_k - \delta_n + \langle Q \rangle|^2$$
.

Hence $\pi(X_{\bar{i}})v=0$; thus π satisfies the requirement for π_{μ} in (1) and simultaneously Q satisfies (2). Q.E.D.

Proof of Theorem. We are now ready to prove the case (I). Assume $H^{0,q}(\Gamma, X, J_{\tau}) \neq (0)$. Let $Q \subset \Psi$ be as in Lemma 2. Then $\langle \Lambda, \alpha \rangle = 0$ for $\alpha \in \Psi - Q$. Setting

$$Q_{\scriptscriptstyle \Lambda} = \{ lpha \in \psi; \langle \Lambda, lpha
angle > 0 \}$$
 ,

we thus have $Q_{\Lambda} \subset Q$. Hence $q_{\Lambda} \leq q$.

We shall next prove the theorem for the case (II). Under the assumption of (II), the Lie algebra g^c is simple and so there exists a unique root $\alpha_0 \in \Psi$ which is a simple root with respect to the positive root system $\Delta_+ = \Theta \cup \Psi$. If $\langle \Lambda, \alpha_0 \rangle \neq 0$, then clearly $\langle \Lambda, \alpha \rangle > 0$ for all $\alpha \in \Psi$, which means $q_{\Lambda} = N = \dim_c X$. Hence, in this case (I) implies the assertion in (II).

To treat the remaining case, i.e. the case $\langle \Lambda, \alpha_0 \rangle = 0$, we use a criterion of the unitarizability of representations with highest weights obtained in [3]. Assume again that $H^{0,q}(\Gamma, X, J_{\tau}) \neq (0)$. By Lemma 2, there exists an irreducible unitary representation π_{μ} with highest weight $\mu = \Lambda + \langle Q \rangle$ with respect to the positive root system $\Delta'_{+} = \Theta \cup (-\Psi)$. To simplify our notation, put $\delta' = \delta_{k} - \delta_{n}$ and $Q' = -Q \subset -\Psi$. Then by (2) of Lemma 2,

$$|\delta'| = |\delta' - \langle Q' \rangle|.$$

By Kostant [4], there then exists an element $s \in W$ such that $s(-\Delta'_{+}) \cap \Delta'_{+} = Q'$, where W is the Weyl group for $(\mathfrak{g}^{c}, \mathfrak{h}^{c})$. Note that $\langle Q' \rangle = \delta' - s\delta'$ and l(s) = q, where l(s) is the length of a minimal expression of s as product of Weyl reflections for simple roots in Δ'_{+} .

Since π_{μ} is an irreducible unitary representation with highest weight μ with respect to the positive root system Δ'_{+} , we have by [3, Lemma 3.4],

$$\langle \mu, \beta_0 \rangle \neq 0$$
,

if $\mu \neq 0$, where β_0 is the highest root in Δ'_+ . By what we have seen above,

$$\mu = \Lambda - (\delta' - s \delta')$$

with l(s) = q and $s\Delta'_+ \supset \Theta$.

Now, as we suppose $\langle \Lambda, \alpha_0 \rangle = 0$, $\langle \Lambda, \beta_0 \rangle = 0$. Hence applying [3. Lemma 3.6], we have

$$egin{aligned} &\langle \mu,\,eta_{\mathfrak{o}}
angle &= \langle \Lambda {-}(\delta'{-}s\delta'),\,eta_{\mathfrak{o}}
angle \ &= \langle \Lambda,\,eta_{\mathfrak{o}}
angle {+}\langle s\delta' {-}\delta',\,eta_{\mathfrak{o}}
angle \ &= \langle s\delta' {-}\delta',\,eta_{\mathfrak{o}}
angle = 0 \end{aligned}$$

when $q = l(s) < r = \operatorname{rank} X$. Thus we should have $q \ge r$ unless $\mu = 0$.

We shall see that if $\langle \Lambda, \alpha_0 \rangle = 0$ and $\mu = 0$, then $\Lambda = 0$ and q = 0. Since $s\Delta'_+ \supset \Theta$,

$$\langle s\delta' - \delta', \alpha \rangle \geq 0$$
 ($\alpha \in \Theta$)

(see, for example, [3, Lemma 3.5]). But we assume that $\langle \Lambda, \alpha \rangle \ge 0$ for $\alpha \in \Theta \cup \Psi$. Hence if $\mu = 0$, i.e. if $\Lambda = \delta' - s\delta'$, then

$$\langle \Lambda, \alpha \rangle = 0$$
 $(\alpha \in \Theta)$.

Since the center of t is one-dimensional, it follows that there exists a scalar $c \in C$ such that $\Lambda = c\delta_n$. By [9, p. 96, Corollary], we know

$$\langle \delta_n, \alpha_0 \rangle > 0$$

(actually, $\langle 2\delta_n, \alpha \rangle = \frac{1}{2} (\alpha \in \Psi)$). Hence $c = \langle \Lambda, \alpha_0 \rangle / \langle \delta_n, \alpha_0 \rangle$ and so c = 0, because $\langle \Lambda, \alpha_0 \rangle = 0$. Thus we have $\Lambda = 0$. We have also q = 0, since $\mu = \Lambda + \langle Q \rangle = 0$. We have thus completed the proof for the case (II).

HIROSHIMA UNIVERSITY Osaka University

Bibliography

- [1] R. Hotta: A remark on the Laplace-Beltrami operators attached to Hermitian symmetric pairs, Osaka J. Math. 8 (1971), 15–19.
- [2] R. Hotta and R. Parthasarathy: A geometric meaning of the multiplicity of integrable discrete classes in L²(Γ\G), Osaka J. Math. 10 (1973), 211-234.
- [3] R. Hotta and N. Wallach: On Matsushima's formula for the Betti numbers of a locally symmetric space, Osaka J. Math. 12 (1975), 419–431.
- B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329–387.
- [5] Y. Matsushima: A formula for the Betti numbers of compact locally symmetric Riemannian manifolds, J. Differential Geometry 1 (1967), 99–109.
- [6] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365-416.

- [9] S. Murakami: Cohomology groups of vector-valued forms on symmetric spaces, Lecture Notes, University of Chicago, 1966.
- [10] K. Okamoto and H. Ozeki: On square-integrable ∂-cohomology spaces attached to hermitian symmetric spaces, Osaka J. Math. 4 (1967), 95-110.
- [11] R. Parthasarathy: A note on the vanishing of certain "L²-cohomologies", J. Math. Soc. Japan 23 (1971), 676–691.