BP*(BP) AND TYPICAL FORMAL GROUPS

PETER S. LANDWEBER¹⁾

(Received July 22, 1974)

1. Introduction. D. Quillen showed in [6] that the formal group law of complex cobordism is a universal formal group, hence for a commutative ring R there is a natural bijection between ring homomorphisms $MU_* \rightarrow R$ and formal groups over R, where MU_* is the coefficient ring of complex cobordism. Similarly, S. Araki [4] has shown that for a fixed prime p, the formal group law of Brown-Peterson cohomology is universal for typical group laws over commutative $Z_{(p)}$ -algebras. Thus if R is a commutative $Z_{(p)}$ -algebra, there is a natural bijection between ring homomorphisms $BP_* \rightarrow R$ and typical formal groups over R, where BP_* is the coefficient ring of Brown-Peterson cohomology.

In this note we shall show that $BP_*(BP)$ represents isomorphisms between typical formal groups over $Z_{(p)}$ -algebras. This places $BP_*(BP)$ in a purely algebraic setting, as was done for $MU_*(MU)$ in the Appendix to [5]. We show how the structure maps for $BP_*(BP)$ arise in this context, and use our point of view to derive the formulas of J.F. Adams [2, Theorem 16.1] for these structure maps.

All this works as well for $MU_*(MU)$, by omitting mention of *typical* formal groups; this gives a description of $MU_*(MU)$ which is somewhat different from the one given in [5]. In the BP-case it is essential to use coordinates for curves over a typical formal group μ which depend on μ . But in the MU- case, it is optional whether one uses "moving coordinates" (as we do here) or "absolute coordinates" as in [5].

The ideas in this note grew out of musings over D. Ravenel's paper [7] on multiplicative operations in BP*(BP).

2. Recollections (Araki [3, §1] and [4]) For the most part we follow Araki's notation. All rings and algebras are to be commutative. By an isomor-

Abstract. It is shown that $BP_*(BP)$ represents the functor which assigns to a commutative $Z_{(p)}$ algebra R the set of isomorphisms between typical formal groups over R. The structure maps of the Hopfalgebra $BP_*(BP)$ all arise naturally from this point of view, and one can easily derive the formulas of Adams [2, Theorem 16.1] for them.

¹⁾ Research supported in part by an N.S.F. grant.

phism $\phi: \mu \to \mu'$ between formal groups we mean a homomorphism satisfying $\phi(T) \equiv T \mod \deg 2$ (Araki calls this a *strict* isomorphism).

For a formal group μ , let C_{μ} denote the additive group of *curves* over μ , i.e. power series $\gamma(T)$ with zero constant term and with addition $(\gamma_1 + {}^{\mu}\gamma_2)(T) = \mu(\gamma_1(T), \gamma_2(T))$. The *identity* curve is $\gamma_0(T) = T$. A homomorphism $\varphi: \mu \to \mu'$ induces a homomorphism $\phi_*: C_{\mu} \to C_{\mu'}$, by $\phi_*(\gamma) = \phi \circ \gamma$. Similarly a ring homomorphism $f: R \to R'$ sends μ to a formal group $f_*\mu$ and induces a homomorphism $f_*: C_{\mu} \to C_{f_*\mu}$ on curves, by applying f to the coefficients of power series over R.

Fix a prime p, and let $Z_{(p)}$ denote the integers localized at p. Let R be a $Z_{(p)}$ -algebra and μ a formal group over R. From [4, 2.5] we recall the Frobenius operators f_n on curves; these satisfy $f_n\phi_{\xi}=\phi_{\xi}f_n$. A curve γ over μ is called *typical* if $f_q\gamma=0$ for all primes $q \neq p$. The formal group μ is called *typical* if the identity curve γ_0 over μ is typical. Theorem 3.6 of [4] states that for a typical formal group μ over a $Z_{(p)}$ -algebra R, a curve γ over μ is typical if and only if it has a series expansion in C_{μ} of the form

$$\gamma(t) = \sum_{k=1}^{\infty} {}^{\mu}c_k T^{p^k}$$

with (uniquely determined) coefficients $c_k \in R$.

From Theorems 4.6 and 5.6 of [4], we see that the formal group μ_{BP} over BP_* of Brown-Peterson cohomology is typical and universal for typical formal groups over $Z_{(p)}$ -algebras.

2. Isomorphisms between typical formal groups

Let R be a $Z_{(p)}$ -algebra and consider triples (μ, φ, μ') where μ and μ' are typical formal groups over R and $\varphi: \mu' \to \mu$ is an isomorphism. We write TI(R) for the set of these triples, and TF(R) for the set of typical formal groups over R. We know that

$$TF(R) \simeq \operatorname{Hom}(BP_*, R)$$

on the category of $Z_{(p)}$ -algebras, and plan to show that

$$TI(R) \cong \operatorname{Hom}(BP_*(BP), R)$$

on this category.

Lemma 1. Let R be a $Z_{(p)}$ -algebra and φ : $\mu' \rightarrow \mu$ cm isomorphism of formal groups over R. Then $\mu!$ is typical if and only if φ is a typical curve over μ .

Proof. φ induces an isomorphism $\phi_*: C_{\mu'} \to C_{\mu}$ commuting with the Frobenius operators, and $\phi_*(\gamma_0) = \phi$; the result is now immediate. QED

Notice that $\phi: \mu \to \mu$ an isomorphism implies that

$$\mu'(X, Y) = \phi^{-1}(\mu(\phi(X), \phi(Y)))$$

or $\mu' = \mu^{\phi}$ in the notation of [4, 2.11]. Thus μ' is determined by μ and ϕ , and we may view TI(R) as the pairs (μ, ϕ) where μ is a typical formal group over R and ϕ is a typical curve over μ with $\phi(T) = T \mod \deg 2$.

From [2, Theorem 16.1], we know that $BP_*(BP)$ is a polynomial algebra

$$BP_*[t_1, t_2,...] = BP_* \otimes Z_{(p)}[t_1, t_2,...]$$
.

We agree to put $t_0 = 1$.

Theorem 1. There is a natural bijection $TI(R) \cong \text{Hom}(BP_*(BP)_*^R)$ on the category of $Z_{(p)}$ -algebras.

Proof. Let $(\mu, \varphi, \mu^{\phi}) \in TI(R)$, so μ is a typical formal group over R and φ is a typical curve over μ of the form

$$\phi(T) = \sum_{k=0}^{\infty} {}^{\mu}c_k T^{p^k}$$

with $c_k \in R$ and $c_0 = 1$. To μ we can associate a homomorphism

$$/:BP_* \to R$$

with $f_*(\mu_{BP}) = \mu$. And then to μ we associate a homomorphism

$$g: Z_{(p)}[t_1, t_2, \cdots] \rightarrow R$$

with $g(t_k)=c_k$ for all k. Together we obtain a homomorphism

$$f \otimes g : BP_*(BP) = BP_* \otimes Z_{(p)}[t_i] \to R$$

from which we can recover f and g and so also μ and φ . Since any homomorphism $BP_* \otimes Z_{(p)}[t_i] \to R$ has the form $f \otimes g$, the result is proved. QED

3. The structure maps. We shall now account for the structure maps of the Hopf algebra $BP_*(BP)$ [1, Lecture 3] and the formulas given for them by Adams in [2, Theorem 16.1]. We begin by defining natural maps:

 $\eta_L: TI(R) \to TF(R), (\mu_1, \varphi, \mu_2) \mapsto \mu_1$

 η_R : $TI(R) \rightarrow TF(R), (\mu_1, \varphi, \mu_2) \mapsto \mu_2$

 $\varepsilon : TF(R) \rightarrow TI(R), \ \mu \mapsto (\mu, \gamma_0, \mu)$

 $C: TI(R) \rightarrow TI(R), (\mu_1, \phi, \mu_2) \mapsto (\mu_2, \phi^{-1}, \mu_1)$

 ψ : $TI^2(R) \rightarrow TI(R)$, where $TI^2(R)$ is defined by the pull-back diagram

$$TI^{2}(R) \xrightarrow{\pi_{2}} TI(R)$$

$$\downarrow_{\pi_{1}} \qquad \downarrow_{\eta_{L}}$$

$$TI(R) \xrightarrow{\eta_{R}} TF(R)$$

and the map is

$$((\mu_1, \phi, \mu_2), (\mu_2, \phi', \mu_3)) \mapsto (\mu_1, \phi \phi', \mu_3)$$

WEBER

On general grounds, these give rise to ring homomorphisms which we give the same names:

 $\eta_L, \, \eta_R \colon BP_* \to BP_*(BP)$ $\varepsilon: BP_*(BP) \rightarrow BP_*$ $c: BP_*(BP) \rightarrow BP_*(BP)$ $\psi: BP_*(BP) \rightarrow BP_*(BP) \otimes_{BP_*} BP_*(BP)$

where the tensor product is formed by viewing the left copy of $BP_*(BP)$ as a BP_* -module via η_R , and the right copy as a BP_* -module via η_L . One sees immediately that

$$\varepsilon \eta_L = 1,$$

$$\varepsilon \eta_L = \eta_R$$

and $\psi \eta_L$ is η_L followed by the inclusion of the left copy of $BP_*(BP)$ into the tensor product.

These homomorphisms are the structure maps for the Hopf algebra $BP_*(BP)-\eta_L$ is the leftunit, η_R is the right unit, ε is the counit, ε is the conjugation and ψ is the coproduct.

Let $\log_{BP}(T) = \sum_{k=0}^{\infty} m_{p^k-1} T^{p^k}(m_0 = 1)$ be the logarithm for BP over $BP_* \otimes Q$ [2, §16], so \log_{BP} : $\mu_{BP} \rightarrow G_a$ is an isomorphism to the additive group:

$$\log_{\mathit{BP}}(\mu_{\mathit{BP}}(X,\ Y)) = \log_{\mathit{BP}}(X) + \log_{\mathit{BP}}(Y)\ .$$

Theorem 3. We have

- $\eta_R(m_{p^k-1}) = \sum_{i+i=k} m_{p^i-1}(t_j)^{p^i}$
- η_L is the obvious inclusion of BP_* into $BP_*(BP)=BP_*[t_1,t_2,...]$
- iii) $\mathcal{E}(t_i)=0$ for i>0
- iv) $c \text{ satisfies } \sum_{h+i+j=k}^{\sum} m_{p^{h}-1}(t_{i})^{p^{h}}(ct_{j})^{p^{h+1}} = m_{p^{h}-1}$ v) $\psi \text{ atisfies } \sum_{i+j=k}^{\sum} m_{p^{i}-1}(\psi t_{j})^{p^{i}} = \sum_{h+i+j=k}^{\sum} m_{p^{h}-1}(t_{i})^{p^{h}} \otimes (t_{j})^{p^{h+1}}.$

Theorem 2 follows from Theorem 3 and the identical formulas of Adams [2, Theorem 16.1], in view of the identities preceding the statement of Theorem 2 which determine the restrictions of 6, c and ψ to BP_* .

Proof of Theorem 3: ii) η_L is a homomorphism $BP_* \rightarrow BP_*(BP)$ so that if $f \otimes g: BP_*(BP) = BP_* \otimes Z_{(p)}[t_i] \rightarrow R$ represents (μ_1, ϕ, μ_2) then $(f \otimes g)\eta_L BP_* \rightarrow R$ represents μ_1 . *I.e.* this means that

$$(f \otimes g)\eta_L = f$$

and is clearly satisfied by the obvious inclusion of BP_* in $BP_*[t_1 t_2,...]$.

i) η_R is a homomorphism $BP_* \to BP_*(BP)$ so that if $f \otimes g : BP_*(BP) = BP_* \otimes Z_{(p)}[t_i] \to R$ represents (μ_1, ϕ, μ_2) , then $(f \otimes g)\eta_R BP_* \to R$ represents $\mu_2 = \mu_1^{\phi}$.

Take $R=BP_*(BP)$, $\mu_1=\mu_{BP}$ (extended from BP^* to $BP_*[t_i]$)and

$$\phi(T) = \sum_{i} {}^{\mu_{BP}} t_{i} T^{p^{i}}.$$

Then $f \otimes g$ is the identity, so η_R represents the formal group μ_{BP}^{ϕ} over $BP_*(BP)$: $\eta_{R*}(\mu_{BP}) = \mu_{BP}^{\phi}$ Now over $BP_* \otimes Q$ we have an isomorphism \log_{BP} : $\mu_{BP} \to G_a$, hence also an isomorphism $\eta_{R*}(\log_{BP})$: $\eta_{R*}(\mu_{BP}) \to G_a$. Noting that $\eta_{R*}(\mu_{BP}) = \mu_{BP}^{\phi} = (G_a^{\log_{BP}})^{\phi}$ we conclude that

$$\eta_{R^*}(\log_{BP}) = \log_{BP} \circ \phi$$
.

Hence

$$\begin{split} \sum_{k} \eta_{R}(m_{p^{k}-1}) T^{p^{k}} &= \log_{BP}(\sum_{j}^{\mu_{BP}} t_{j} T^{p^{j}}) \\ &= \sum_{j} \log_{BP}(t_{j} T^{p^{j}}) \\ &= \sum_{i,j} m_{p^{i}-1}(t_{j})^{p^{i}} T^{p^{i+j}} \end{split}$$

which proves i).

- iii) \mathcal{E} is a homomorphism $BP_*[t_i] \rightarrow BP_*$ such that if $f: BP_* \rightarrow R$ represents μ then $f \circ \mathcal{E}: BP_*[t_i] \rightarrow R$ represents (μ, γ_0, μ) , where $\gamma_0(T) = T$. Hence $f \circ \mathcal{E}(t_i) = 0$ for i > 0, from which it is immediate that $\mathcal{E}(t_i) = 0$ for i > 0.
- iv) c is a homomorphism $BP_*[t_i] \to BP_*[t_i]$ so that if $f \otimes g : BP_*[t_i] \to R$ represents (μ_1, ϕ, μ_2) then $(f \otimes g) \circ \text{depresents}$ $(\mu_2, \phi^{-1}, \mu_1)$.

Take $f \otimes g$ to be the identity, so / represents μ_{BP} with scalars extended to $BP_*[t_i]$ and g represents

$$\phi(T) = \sum_{i} {}^{\mu_{BP}} t_{i} T^{p^{i}}.$$

Then $c=f'\otimes g$ where f' represents μ_{BP}^{ϕ} (giving $c\eta_L=\eta_R$ as noted above) and $g'\colon Z_{(p)}[t_i]\to BP_*[t_i]$ must be determined on the t_i 's. Now g' represents $\phi^{-1}\colon \mu_{BP}\to \mu_{BP}^{\phi}$; thus

$$\phi^{\scriptscriptstyle -1}(T) = \sum_i^{\mu_{BP}^{\phi}} c(t_i) T^{p^i}$$

as a curve over μ_{BP}^{ϕ} . Applying ϕ_{\sharp} : $C_{\mu_{BP}}^{\phi} \rightarrow C_{\mu_{BP}}^{\phi}$ and noting that

$$\phi_{\sharp}(\phi^{{\scriptscriptstyle -1}}) = \phi {\circ} \phi^{{\scriptscriptstyle -1}} = \gamma_{{\scriptscriptstyle 0}}$$
 ,

we compute:

$$T = \sum_{j}^{\mu_{BP}} \phi_{\mathbf{t}}(c(t_{j})) T^{p^{j}}$$

= $\sum_{i,j}^{\mu_{BP}} t_{i}(c(t_{j}))^{p^{i}} T^{p^{i+j}}$.

Finally, we apply log_{BP} and obtain the desired formula.

v) ψ is a homomorphism $BP_*(BP) \rightarrow BP_*(BP) \otimes_{BP_*} BP_*(BP)$ uch that if

$$f \otimes g$$
 represents (μ_1, ϕ, μ_2)

and

$$f' \otimes g'$$
 represents (μ_2, ϕ') , μ_3

then

$$[(f \otimes g) \otimes (f' \otimes g')] \circ \psi = f'' \otimes g''$$

represents $(\mu_1, \phi \phi', \mu_3)$. Note that

$$\mu_3 = \mu_2^{\phi'} = (\mu_1^{\phi})^{\phi'} = \mu_1^{\phi\phi'}$$
.

We seek a universal example. Take $R=BP_*(BP)\otimes_{BP_*}BP_*(BP)$, which is a polynomial algebra over BP_* on generators $t_i\otimes 1$ and $1\otimes t_j$ for i and j>0. Take

$$\begin{split} &\mu_1 = \mu^{BP} \text{ (extended to } R) \\ &\phi = \sum_i^{\mu_{BP}} (t_i \otimes 1) T^{p^i} \\ &\mu_2 = (\mu^{BP})^{\phi} \\ &\phi' = \sum_j^{\mu_2} (1 \otimes t_j) T^{p^j} \\ &\mu_3 = \mu_2^{\phi'} = \mu_{BP}^{\phi\phi'}. \end{split}$$

One verifies easily that $f \otimes g$ is the inclusion of the left copy of $BP_*(BP)$ in R, while $f' \otimes g'$ is the inclusion of the right copy. Thus $(f \otimes g) \otimes (f' \otimes g')$ the identity, and so in this situation $\psi = f'' \otimes g''$. We want to find $\psi(t_j)$. The series $\sum_{i=1}^{m} \mu_{BP} \psi(t_j) T^{p'}$ must agree with the composition

$$(\sum_{j}^{\mu_{BP}} t_i \otimes 1 T^{p^i}) \circ (\sum_{i,j}^{(\mu_{BP})^{\phi}} 1 \otimes t_j T^{p^j}),$$

hence

$$\sum_{j} {}^{\mu_p} \psi(t_j) T^{p^i} = \sum_{i,j} {}^{\mu_{BP}} t_i \otimes (t_j)^{p^i} T^{p^{i+j}}.$$

The formula v) now follows by applying log_{BP} . This completes the verifications. QED

RUTGERS UNIVERSITY

References

- [1] J.F. Adams: Lectures on generalized cohomology, Lecture Notes in Mathematics, 99 (1969), Springer-Verlag, 1-138.
- [2]——: Quillen's Work on Formal Groups and Complex Cobordism, University of Chicago, Lecture Notes, 1970.
- [3] S. Araki: A typical formal group in K-theory, Proc. Japan Acad. 49 (1973), 477-482.
- [4]—— Typical Formal Groups in Complex Cobordism and K-theory, Lectures in Mathematics, Kyoto University, 6, Kinokuniya Book-Store, 1973.
- [5] P.S. Landweber: Associated prime ideals and Hopf algebras, J. Pure Appl. Algebra 3 (1973), 43-58.
- [6] D. Quillen: On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
- [7] D.C. Ravenel: *Multiplicative operations in BP**(*BP*), Columbia University, preprint, 1974.