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1. Introduction. D. Quillen showed in [6] that the formal group law of
complex cobordism is a universal formal group, hence for a commutative ring R
there is a natural bijection between ring homomorphisms M Us— R and formal
groups over R, where MU is the coefficient ring of complex cobordism. Simi-
larly, S. Araki [4] has shown that for a fixed prime p, the formal group law of
Brown-Peterson cohomology is universal for typical group laws over commutative
Z p-algebras. Thus if R is a commutative Z ,-algebra, there is a natural
bijection between ring homomorphisms BP,— R and typical formal groups
over R, where BP, is the coefficient ring of Brown-Peterson cohomology.

In this note we shall show that BP4(BP) represents isomorphisms between
typical formal groups over Z-algebras. This places BPy(BP) in a purely
algebraic setting, as was done for MU,(MU)in the Appendix to [5]. We show
how the structure maps for BP4«(BP)arise in this context, and use our point of
view to derive the formulas of J.F. Adams [2, Theorem 16.1] for these structure
maps.

All this works as well for MU4(MU),by omitting mention of #ypical formal
groups; this gives a description of MU 4«(MU)which is somewhat different from
the one given in [5]. In the BP-case it is essential to use coordinates for curves
over a typical formal group # which depend on u. But in the MU- case, it is
optional whether one uses ‘“‘moving coordinates” (as we do here) or “absolute
coordinates’” as in [5].

The ideas in this note grew out of musings over D. Ravenel’s paper [7]
on multiplicative operations in BP*(BP).

2. Recollections (Araki [3, §1] and [4]) For the most part we follow
Araki’s notation. All rings and algebras are to be commutative. By an isomor-
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phism ¢: p— >u’ between formal groups we mean a homomorphism satisfying
&(T)=Tmod deg 2 (Araki calls this a strict isomorphism).

For a formal group u, let C. denote the additive group of curves over p,
i.e. power series ¥(T") with zero constant term and with addition (v,+*v,)(T)
=p(V:(T)5yT)). The identity curve is v,(T)=T. A homomorphism ¢: u—u’
induces a homomorphism ¢: C,—Cy, by ¢y(¥)=goy. Similarly a ring homo-
morphism /: R—R’ sends y to a formal group fsu and induces a homomorphism
fx: Cu—C . 0on curves, by applying f to the coefficients of power series over R.

Fix a prime p, and let Z,, denote the integers localized at p. Let R be a
Z p-algebra and p a formal group over R.  From [4, 2.5] we recall the Frobenius
operators f, on curves; these satisfy f,ps=¢sf. A curve v over u is called fypical
if fgy=0 for all primes g==p. The formal group p is called #ypical if the
identity curve ¢, over wis typical. Theorem 3.6 of [4] states that for a typical
formal group u over a Z s-algebra R, a curve 7 over u is typical if and only if
it has a series expansion in C, of the form

V() zgpckT‘bk

with (uniquely determined) coefficients ¢, R.

From Theorems 4.6 and 5.6 of [4], we see that the formal group ugzp over
BP, of Brown-Peterson cohomology is typical and universal for typical formal
groups over Z p-algebras.

2. Isomorphisms between typical formal groups

Let R be a Z p-algebra and consider triples (u, @, u’) where y and u’ are
typical formal groups over R and ¢: p/— u is an isomorphism. We write
TI(R)for the set of these triples, and TF(R)for the set of typical formal groups
over R. We know that

TF(R)= Hom (BPy, R)
on the category of Z s -algebras, and plan to show that

TI(R) =Hom (BPx(BP),R)

on this category.

Lemma 1. Let R be a Z p-algebra and @: p'—p cm isomorphism ojformal
groups over R.  Then u! is typical if and only if @ is a typical curve over u.

Proof. ¢ induces an isomorphism ¢,: Cwv— C. commuting with the
Frobenius operators, and ¢4(7,)=¢; the result is now immediate. QED

Notice that ¢: x —u an isomorphism implies that
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F'/(X’ Y) = (;b—l(ll‘(';b(X): (ib( Y))

or p'=u? in the notation of [4, 2.11]. Thus u’is determined by 4 and ¢, and
we may view TI(R)as the pairs (4, ¢) where u is a typical formal group over
R and ¢ is a typical curve over u with ¢(T)= 7 mod deg 2.

From [2, Theorem 16.1], we know that BP4(BP)is a polynomial algebra

BPy[t, t,..] = BP«@Z p[t,, t,,..] -
We agree to put z,=1.

Theorem 1. There is a natural bjection TI(R)=Hom (BPx(BPR) on the
category of Z.py-algebras.

Proof. Let (4, ¢, p*)e TI(R),s0 u is a typical formal group over R and
@ is a typical curve over u of the form

S(T) = 3 e, T
£=0
with ¢, R and ¢,=1. To u we can associate a homomorphism
/Z BP* —- R
withfe(ugp)=p. Andthen to p we associate a homomorphism
& Zpltty ] >R
with g(¢,)=c, for all k. Together we obtain a homomorphism
fRg: BP«(BP) = BP4+QRZ ,[t] — R

from which we can recover f and g and so also pu and . Since any homomor-
phism BPy+QZ »[t;]— R has the form f® g, the result is proved. QED

3. The structure maps. We shall now account for the structure maps of
the Hopf algebra BP«(BP) [1, Lecture 3] and the formulas given for them by
Adams in [2, Theorem 16.1]. We begin by defining natural maps:

ne: TIR) = THR), (ps @, p2) i
nr:  TIR) — TE(R),(ps, @, p2) e
TF(Ry> TI(R), p— (1, Yo 1)
TI(R)—> TI(R)! (l’m P, .U‘z)'—)(/-"z, o Ml)

£
C
 : TI*(R)—TI(R), where TI*(R)is defined by the pull-back diagram
T2
TI*(R)— TI(R)

T 7)L

TIR) %> TF(R)
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and the map is

((l"n¢’ F‘z)’ (l‘fz’ ¢,’ .U's)) = (.U'n o', l"s)

On general grounds, these give rise to ring homomorphisms which we
give the same names:

VIR D BP*QBP*(BP)

& . BP,(BP)— BP;

¢ : BP4(BP)— BP4(BP)

W1 BPy(BP)— BPy(BP) ;p.BP+(BP)

where the tensor product is formed by viewing the left copy of BPy«(BP)as a
BPy-module via 7g,, and the right copy as a BPs-module via n,. One sees
immediately that

EnL = 1)
Ny = MR

and v, is 7, followed by the inclusion of the left copy of BP4(BP)into the
tensor product.

Theorem 2. These homomorphisms are the structure maps for the Hopf
algebra BPy (BP)—ns the leftunit, ny is the right unit, € is the counit, c is the
conjugation and ) is the coproduct.

Let long(T):’E;,: m e, T?* (my=1)be the logarithm for BP over BP+®Q

[2, §16], so loggp: wgp— > G, is an isomorphism to the additive group:

logsp(psp(X, Y)) = logpp(X)+logge(Y) .

Theorem 3. We have '
i) UR(mpk—l)?Zk mPi—-l(tj)p’
itj=
ii) mis the obvious inclusion of BPy into BPw(BP)=BPy[t,t,..]
i) €&(¢;)=0 for >0 .
iv) ¢ satisfies = mn_y(t)"(ct ;)P Empn

htivj=k

V) atisfies I ompi (W)= X mp(t)" @)

i+ji=k h+ivj=k

Theorem 2 follows from Theorem 3 and the identical formulas of Adams
[2, Theorem 16.1], in view of the identities preceeding the statement of Theorem
2 which determine the restrictions of 6, ¢ and +r to BP4.

Proof of Theorem 3: ii) %, is a homomorphism BPy—BP.(BP)so that if
fRg: BPy(BP)=BPyQZ[t;]—=Rrepresents (u,, @, w,) then (fRg)n, BPx—R

represents u,. [l.e. this means that
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(f®gm =1,
and is clearly satisfied by the obvious inclusion of BPy in BPy[t, t,..].

i) 7g is a homomorphism BPy— BP4(BP)so that if f®g: BP«(BP)=
BPyQ®Z [t;]— Rrepresents (uy, ¢, u,), then (f@g)ngBPs—R represents
”’2::‘1‘14’-

Take R=BPy(BP), u,=pgp (extended from BP* to BPy[t;])and
§(T) = 3 tart, T2

Then f®g is the identity, so 7r represents the formal group ugzp® over
BPy(BP): 7 (upp)=wpp® Now over BP4+® O we have an isomorphism
loggp: ppp—>G hence also an isomorphism 7g+(loggp): 7g+(pgp)—G,. Noting
that 7e«(upp)= pgp?=(G,°82r)Pwe conclude that

ngr(logpp) = logppod .
Hence
D ng(mpr,)T?" = logpp(Ssrt, T?)
F 7
= 2 logse(t;T7)
= 2 Mpf_l(tj)piTpi+j
b

which proves i).

iii) €is a homomorphism BPx[t;]->BPy such that if f: BP4+— R represents
uthen fo&: BPy[t;]—Rrepresents (u, Yo, ), where v(T)=T. Hence fo&(¢;)=0
for >0, from which it is immediate that &(z;)=0for >0.

iv) ¢ is a homomorphism BP«[t;]— BPx[t;] so that iff@g: BPy[t,]— R

represents (u,, @, u,) then (f@ g)oaepresents (u, ¢°*, ).
Take f®g to be the identity, so / represents pgp with scalars extended to

BPy[t;] and g represents
HT) = S #oet, 77",

Then c¢=f'@gwhere f’ represents ugp® (giving ¢n,=7p as noted above) and
g Z p[t;]—= BPx[t;] must be determined on the t’s. Now g’ represents

&'t pep—>ppp?; thus
$~(T) = et e(t) T
as a curve over upp®. Applying ¢: C#BP¢—>C vpp and noting that

Pi(67") = oo™ = 7,

we compute:
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T = Sor gyelt, )T
= Z“”Pti("(tj))pi T

Finally, we apply loggp and obtain the desired formula.
v) v is a homomorphism BPy(BP)—>BPy(BP)R pp,BP+«(BRuch that if

f®g represents (u,, @, )
and

f'®Rg represents (u,, ¢' ', u;)
then

[(fRRA(f'®E)vr ="Rg"

represents (u,, ¢¢’, us). Note that
4 /
M3 == ﬂz‘b = (ﬂ1¢)¢ = .“14’4)/ .

We seek a universal example. Take R=BPx(BP)Q zp, BP«(BP),which
is a polynomial algebra over BPy on generators ¢;®1 and 1®¢; for 7 and 7> 0.
Take

u, = pBP (extended to R)

¢ = SVer(t,Q1)T*

pe = (nPF)?

¢ = S (1Qt,)T?

J

pa = ps* = pppt? .
One verifies easily that f@g is the inclusion of the left copy of BP«(BP)in R,
while f'®g’ is the inclusion of the right copy. Thus (fQg)R(f Rgiy the
identity, and so in this situation yr=f"®g”.We want to find +(¢;). The
series > srp(t;)T?Mmust agree with the composition

J
(S¥ret,@1TH)o(Sy*rr* 12, T7)

hence

JZJHP\!,\(tj)Tp" _ ;I‘B}w t‘.®(tj)p"Tpi+J"

The formula v) now follows by applying loggzr. This completes the verifica-
tions. QED
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