ON THE BP $_{*}$-HOPF INVARIANT

Yasumasa HIRASHIMA

(Received December 13, 1973)
(Revised June 28, 1974)

In this paper we will consider the $B P_{*}$-Hopf invariant, $\pi_{*}\left(S^{0}\right) \rightarrow$ $\operatorname{Ext}_{B P * B P}^{1, *}\left(B P_{*}, B P_{*}\right)$, i.e. the Hopf invariant defined by making use of the homology theory of the Brown-Peterson spectrum $B P$. The $B P_{*}$-Hopf invariant is essentially "the functional coaction character". Similarly we will define the $B P_{*-e}$ invariant ("the functional Chern-Dold character") and show that the $B P_{*}$-Hopf invariant coincides with the $B P_{*^{-}}$invariant by the $B P_{-}$ analogue of Buhstaber-Panov's theorem ([6], [7]). As applications we give a proof of the non-existence of elements of Hopf invariant 1, and detect α-series.

We will use freely notations of Adams [2], [3], [4]. For example, S, H, $H Z_{p}$ and $H Z_{(p)}$ denote the sphere spectrum, the Eilenberg-MacLane spectrum, Z_{p} coefficient Eilenberg-MacLane spectrum and $Z_{(p)}$ coeffitient EilenbergMacLane spectrum respectively, where $Z_{(p)}$ is the ring of integers localized at the fixed prime p.

We list some well known facts:

$$
\begin{aligned}
& \pi_{*}(B P)=B P_{*}\left(S^{0}\right)=B P_{*}=Z_{(p)}\left[v_{1}, v_{2}, \cdots\right], \quad \operatorname{deg} v_{k}=\left|v_{k}\right|=2\left(p^{k}-1\right) \\
& H_{*}(B P)=H Z_{(p)^{*} *}(B P)=Z_{(p)}\left[n_{1}, n_{2}, \cdots\right], \quad \operatorname{deg} n_{k}=\left|n_{k}\right|=2\left(p^{k}-1\right)
\end{aligned}
$$

The Hurewicz map

$$
h^{H}=\left(i^{H} \wedge 1_{B P}\right)_{*}: \pi_{*}(B P) \rightarrow H_{*}(B P)
$$

is decided by the formula [5]

$$
\begin{aligned}
& h^{H}\left(v_{k}\right)=p n_{k}-\sum_{0<s<k} h^{H}\left(v_{k-s}\right)^{p^{s}} n_{s} \\
& B P_{*}(B P)=B P_{*}\left[t_{1}, t_{2}, \cdots\right], \quad \operatorname{deg} t_{k}=\left|t_{k}\right|=2\left(p^{k}-1\right)
\end{aligned}
$$

The Thom map $B P \xrightarrow{\mu} H Z$ induces

$$
B P_{*}(B P) \xrightarrow{\mu} H Z_{(p)^{*}}(B P)=H_{*}(B P), \quad \mu\left(t_{k}\right)=n_{k}, \quad \mu\left(v_{k} \cdot 1\right)=0
$$

$(k>0)$ and ([10])

$$
H Z_{(p)^{*}}(B P) \xrightarrow{\mu_{*}}\left(H Z_{p}\right)_{*}\left(H Z_{p}\right), \quad \mu_{*}\left(n_{k}\right)=c\left(\xi_{k}\right),
$$

where c is the conjugation map of the Hopf algebra $\left(H Z_{p}\right)_{*}\left(H Z_{p}\right)$ and $\xi_{k}(k=1,2, \cdots)$ are Milnor's basis of a polynomial subalgebra $Z_{p}\left[\xi_{1}, \xi_{2}, \cdots\right] \subset$ $\left(H Z_{p}\right)_{*}\left(H Z_{p}\right) . \quad B P^{*}(B P)=B P_{*} \hat{\otimes} Z_{(p)}\left\{r_{E}\right\}$, where E runs through sequences of non-negative integers $E=\left(e_{1}, e_{2}, \cdots\right)$ in which all but finite number of terms are zero and $\operatorname{deg} r_{E}=|E|=\left|r_{E}\right|=2\left(\sum_{k \geq 1} e_{k}\left(p^{k}-1\right)\right)$.

1. $B P$-analogue of Panov's theorem

To compute $\operatorname{Ext}_{B P *(B P)}^{1, *}\left(B P_{*}, B P_{*}\right)$ we define some subquotient group of $H_{*}(B P)$ and compute this group and next relate this with $\operatorname{Ext}_{B P *(B P)}^{1, *}\left(B P_{*}, B P_{*}\right)$.

We may regard $\pi_{*}(B P)$ as a submodule of $H_{*}(B P)$ by the Hurewicz map h^{H}. Cohomology operations r_{E} act on $H_{*}(B P)$ so that we define

$$
N=\bigcap_{E \neq 0} r_{E}^{-1}\left(\operatorname{Im} h^{H}\right) \quad \text { and } \quad N / \operatorname{Im} h^{H}
$$

We fix a prime p and discuss the Brown-Peterson spectrum associated with this prime, then for $n \neq 2 k(p-1)\left(N / \operatorname{Im} h^{H}\right)_{n}=0$ as $H_{n}(B P)=0$, thus it remains to decide the groups $\left(N / \operatorname{Im} h^{H}\right)_{2 k(p-1)}$.

Theorem 1.1. For odd prime $p\left(N / \operatorname{Im} h^{H}\right)_{2 k(p-1)}=Z_{p^{\nu} p(k)+1}$ with generator $v_{1}{ }^{k} \mid p^{\nu_{p}(k)+1}$ where $\nu_{p}(k)$ denotes the exponent of highest power of p dividing k. For $p=2\left(N / \operatorname{Im} h^{H}\right)_{2 k}=Z_{2}(k:$ odd $), Z_{4}(k=2)$ and $Z_{2^{2 v(k)+2}}(k>2$, even $)$ with generators $v_{1}^{k} / 2, v_{1}^{2} / 4$ and $v_{1}^{k} / 2^{\nu_{2}(k)+2}+v_{1}{ }^{k-3} v_{2} / 2$ respectively.

Similar theorem for $M U$ spectrum was first computed by Panov [7], and Landweber [6] gave a shortened proof of which $B P$-analogue we follow faithfully.

Exponent sequences $E=\left(e_{1}, e_{2}, \cdots\right), F=\left(f_{1}, f_{2}, \cdots\right)$ are ordered as follows: $E>F$ if
(1) $|E|>|F|$, or
(2) $|E|=|F|$, and $n(E)=\sum_{k \geq 1} e_{k}<n(F)$, or
(3) $E=F, n(E)=n(F)$ and there exist a k such that $e_{k}>f_{k}, e_{i}=f_{i}(i>k)$.

We have that if $E>E^{\prime}$ and $F>F^{\prime}$ then $E+F>E^{\prime}+F^{\prime}$, where the sum is componentwise. We say that an element a of N has type E if $r_{E}(a) \notin(p)=p \cdot \operatorname{Im} h^{H}$ and $r_{F}(a) \in(p)$ for any $F>E$, especially a has type 0 if a has type $(0,0, \cdots)$. If a has type E, such a E is denoted by $t(a)$.

Lemma 1.2.

(1) v_{k+1} has type $p \Delta_{k}(k \geq 1)$ and v_{1} has type 0 (i.e. $t\left(v_{k+1}\right)=p \Delta_{k},\left(t\left(v_{1}\right)=0\right)$.
(2) $r_{\Delta_{k+1}}\left(v_{k+1}\right)=p$.
(3) $t\left(v^{E}\right)=\left(p e_{1}, p e_{2}, \cdots\right)$ where $E=\left(e_{1}, e_{2}, \cdots\right)$
and v^{E} means $v_{1}{ }_{1}{ }^{1} v_{2}^{e} \cdots$.
Using the formula ([10])

$$
r_{E}\left(n_{k}\right)= \begin{cases}n_{i}, & E=p^{i} \Delta_{j}(i+j=k) \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
v_{k}=p n_{k} \sum_{0<s<k} v_{k} \stackrel{D}{s}_{s}^{s} n_{s}
$$

the lemma can be proved by a routine induction on k, so we omit it.
By the above lemma we get $t\left(v^{E}\right) \neq t\left(v^{F}\right)$ for $E \neq F,|E|=|F|$.
Theorem 1.1 is divided into three lemmas as Landweber did in $M U$ case.
Lemma 1.3. $\left(N / \operatorname{Im} h^{H}\right)_{2 k(p-1)}$ is cyclic (i.e., has one generator).

Lemma 1.4.

(1) $v_{1}{ }^{k} \mid p^{\nu} p^{(k)+1} \in N_{2 k(p-1)}$, and
(2) if p is odd, or $p=2$ and k is odd, or $p=2$ and $k=2$, then $v_{1}{ }^{k} / p^{\nu} p^{(k)+1}$ represents the generator of $\left(N / \operatorname{Im} h^{H}\right)_{2 k(p-1)}$.

Lemma 1.5. If $p=2$ and $k>2$, then $v_{1}{ }^{k} / 2^{\nu_{2}(k)+2}+v_{1}{ }^{k-3} v_{2} / 2$ represents the generator of $\left(N / \operatorname{Im} h^{H}\right)_{2 k}$.

Proof of Lemma 1.3. Let $a \in N_{2 k(p-1)}$ represent an element of order p in $\left(N / \operatorname{Im} h^{H}\right)_{2 k(p-1)}$, then $p a \in \operatorname{Im} h^{H}$. Write $p a=\lambda v_{1}^{k}+\lambda_{1} v^{E_{1}}+\lambda_{2} v^{E_{2}}+\cdots+\lambda_{i} v^{E_{i}}$ with $\lambda, \lambda_{j} \in Z_{(p)},\left|E_{j}\right|=2 k(p-1)$ and $t\left(v^{E_{1}}\right)<t\left(v^{E_{2}}\right)<\cdots<t\left(v^{E_{i}}\right)$. Apply $r_{t\left(v^{B_{i}}\right.}$ to the element $p a$. We get $\lambda_{i} \equiv 0 \bmod (p)$ since $\lambda_{i} r_{t\left(v^{H_{i}}\right)}\left(v^{E_{i}}\right) \equiv 0 \bmod (p)$. Next apply $r_{t\left(v^{B_{i-1}}\right)}$. By the same argument we have $\lambda_{i-1} \equiv 0 \bmod (p)$. Continue these argument, then we get $\lambda_{1} \equiv \lambda_{2} \equiv \cdots \equiv \lambda_{i} \equiv 0 \bmod (p) . \quad$ So we conclude

$$
p a \equiv \lambda v_{1}{ }^{k} \bmod (p)
$$

and hence

$$
a=\lambda \cdot\left(v_{1}^{k} / p\right) \quad \text { in } \quad\left(N / \operatorname{Im} h^{H}\right)_{2 k(p-1)}
$$

This implies Lemma 1.3.
Proof of Lemma 1.4. (1) We get by induction

$$
r_{E}\left(v_{1}^{k}\right)=\left\{\begin{array}{l}
\binom{k}{e} p^{e} v_{1}^{k-e}, \quad E=e \Delta_{1} \\
0, \text { otherwise }
\end{array}\right.
$$

Using the formula ([6], [7])

$$
\nu_{p}\left(\binom{k}{e}\right)=\nu_{p}(k)-\nu_{p}(e) \text { for } e \leq p^{\nu_{p}(k)}
$$

we have

$$
\nu_{p}\left(\binom{k}{e} p^{e}\right) \geq \nu_{p}(k)+1
$$

The equality holds for $e=1$. Hence

$$
v_{1}^{k} / p^{\nu}(k)+1 \in N_{2 k(p-1)} \quad \text { and } \quad v_{1}^{k} / p^{\nu} p^{(k)+2} \notin N_{2 k(p-1)} .
$$

(2) For odd prime p, or $p=2$ and k : odd, or $p=2$ and $k=2, v_{1}{ }^{k} / p^{\nu_{p}(k)+1}$ has type $\Delta_{1}\left(<t\left(v^{E}\right),|E|=2 k(p-1), E \neq k \Delta_{1}\right)$ by the above argument.

If

$$
a=\lambda \cdot v_{1}^{k} / p^{\nu_{p}(k)+2}+\sum_{\substack{B=2 k(p-1) \\ v \neq k \Lambda_{1}}} \lambda_{E} \cdot v^{E} \in N_{2 k(p-1)}, \lambda, p \lambda_{E} \in Z_{(p)},
$$

then $p a$ has type 0 so that $p|\lambda, p| \lambda_{E}$ by the same type-argument as the proof of Lemma 1.3. This shows that there is no element a such that $v_{1}{ }^{k} / p^{\nu} p^{(k)+1}=p a$ in $\left(N / \operatorname{Im} h^{H}\right)_{2 k(p-1)}$. This implies Lemma 1.4.

Proof of Lemma 1.5. In case $p=2$ and $k>2$,

$$
\nu_{2}\left(\binom{k}{e} 2^{e}\right)=\nu_{2}(k)+1 \quad(e=1,2)
$$

and

$$
\nu_{2}\left(\binom{k}{e} 2^{e}\right)>\nu_{2}(k)+1 \quad(e>2) .
$$

These imply that $v_{1}{ }^{k} / 2^{v_{2}(k)+1}$ has type $2 \Delta_{1}$. After routine computations we obtain

$$
\begin{aligned}
r_{\Delta_{1}}\left(v_{1}^{k} / 2^{v_{2}(k)+1}\right) & =v_{1}^{k-1} \equiv r_{\Delta_{1}}\left(v_{1}^{k-3} v_{2}\right) \bmod (2) \\
r_{2 \Delta_{1}}\left(v_{1}^{k} / 2^{v_{2}(k)+1}\right) & =v_{1}^{k-2} \equiv r_{2 \Delta_{1}}\left(v^{k-3} v_{2}\right) \bmod (2) .
\end{aligned}
$$

So we conclude that $v_{1}{ }^{k} / 2^{v_{2}(k)+1}+v_{1}^{k-3} v_{2}$ has type 0 , and thus $v_{1}{ }^{k} / 2^{\nu_{2}(k)+2}+v_{1}^{k-3} v_{2} / 2$ $\in N_{2 k}$. Put $P=v_{1}^{k} / 2^{\nu_{2}(k)+2}+v_{1}^{k-3} v_{2} / 2$. We decide the type of P in several steps. $t(P)=\Delta_{2}$ or $t(P)>\Delta_{2}$ by $r_{\Delta_{2}}(P)=v_{1}^{k-3}$. The Cartan formula implies $r_{E}(P) \equiv$ $0 \bmod (2)$ for $E>\Delta_{2}$ and $E \neq i \Delta_{1}$, so that $t(P)=\Delta_{2}$ or $i \Delta_{1}(i \geqq 4)$. For $i \geqq 4$

$$
r_{i \Delta_{1}}(P) \equiv\left(\binom{k}{i} 2^{i} / 2^{\nu_{2}(k)+2}\right) v_{1}^{k-i} \bmod (2),
$$

thus

$$
\binom{k}{i} 2^{i} / 2^{v_{2}(k)+2} \equiv 0 \bmod (2) \quad \text { if } \quad \nu_{2}(k)=1
$$

and if $\nu_{2}(k) \geq 2$

$$
\binom{k}{i} 2^{i} / 2^{\nu_{2}(k)+2} \equiv \begin{cases}2^{i-2-\nu_{2}(i)}, & i \leq \nu_{2}(k)+2 \\ 0 \bmod (2), & i>\nu_{2}(k)+2\end{cases}
$$

This implies that $t(P)=\Delta_{2}$ if $\nu_{2}(k)=1$ and $t(P)=4 \Delta_{1}$ if $\nu_{2}(k) \geq 2$.
There is no element $a \in \operatorname{Im} h^{H}$ such that $r_{E}(P) \equiv r_{E}(a) \bmod (2)$ for any E. If not, a is represented by a linear combination of $v_{1}{ }^{k}, v_{1}^{k-3} v_{2}$ and $v_{1}^{k-6} v_{2}{ }^{2}$, then $r_{\Delta_{2}}(a) \equiv 0 \bmod (2)$ which contradicts the assumption. This implies Lemma 1.5 and also completes the proof of Theorem 1.1.

Next we lift the group ($N / \operatorname{Im} h^{H}$) to a subquotient group of $B P_{*}(B P)$ by Thom map $B P_{*}(B P) \xrightarrow{\mu} H_{*}(B P)$. We denote by $\left(r_{E}\right)_{*}$ the right action of r_{E} on $B P_{*}(B P)$ which is compatible under Thom map μ with the action on $H_{*}(B P)$. We consider the groups

$$
N^{B P}=\bigcap_{E \neq 0}\left(r_{E}\right)_{*}^{-1}\left(\operatorname{Im} h^{B P}\right) \text { and } N^{B P} / \operatorname{Im} h^{B P}+B P_{*} \cdot 1
$$

on which Thom map induces the group homomorphism

$$
N^{B P} / \operatorname{Im} h^{B P}+B P_{*} \cdot 1 \xrightarrow{\hat{\mu}} N / \operatorname{Im} h^{H} .
$$

Theorem 1.6. $\hat{\mu}$ is isomorphic.
Proof. In $B P_{*}(B P) \otimes Q=B P_{*} \otimes Q\left[n_{1}, n_{2}, \cdots\right]$

$$
\bigcap_{E \neq 0}\left(r_{E}\right)_{*}^{-1}(0)=B P_{*} \otimes Q
$$

so that in $B P_{*}(B P)$

$$
\bigcap_{B \neq 0}\left(r_{E}\right)_{*}^{-1}(0)=B P_{*} \cdot 1\left(=B P_{*} \otimes 1\right)
$$

We get easily

$$
\operatorname{Ker} \mu \cap N^{B P} \subset \bigcap_{B \neq 0}\left(r_{E}\right)_{*}^{-1}(0)=B P_{*} \cdot 1
$$

and

$$
\begin{aligned}
\operatorname{Ker} \hat{\mu} & =\left\{\left(\operatorname{Im} h^{B P}+\operatorname{Ker} \mu\right) \cap N^{B P}+\operatorname{Im} h^{B P}+B P_{*} \cdot 1\right\} / \operatorname{Im} h^{B P}+B P_{*} \cdot 1 \\
& =0
\end{aligned}
$$

so that $\hat{\mu}$ is monomorphic.
For any prime $p, h^{B P}\left(v_{1}\right)=v_{1}=v_{1} \cdot 1+p t_{1}$, and thus

$$
v_{1}^{k}-v_{1}^{k} \cdot 1=\sum_{1 \leq e \leq k}\binom{k}{e} p^{e} v_{1}^{k-e} t_{1}^{e} .
$$

We get

$$
\left(v_{7}^{k}-v_{7}^{k} \cdot 1\right) / p^{\nu_{p}(k)+1} \in B P_{2 k(p-1)}(B P)
$$

and

$$
\left(v_{1}^{k}-v_{1}^{k} \cdot 1\right) / p_{p}^{\nu}{ }_{p}^{(k)+1} \in N_{2 k(p-1)}^{B P} .
$$

In case of $p=2$ and $k \geq 2$,

$$
h^{B P}\left(v_{2}\right)=v_{2}=v_{2} \cdot 1-3 v_{1}^{2} t_{1}-5 v_{1} t_{1}^{2}+2 t_{2}-4 t_{1}^{3}, \quad([3]) .
$$

We get

$$
\begin{aligned}
& \left(v_{1}^{k}-v_{1}^{k} \cdot 1\right) / 2^{v_{2}(k)+2}=(1 / 2) v_{1}^{k-1} t_{1}+(1 / 2) v_{1}^{k-2} t_{1}^{2}+A, \\
& \left(v_{1}^{k-3} v_{2}-\left(v_{1}^{k-3} v_{2}\right) \cdot 1\right) / 2=(-1 / 2) v_{1}^{k-1} t_{1}+(-1 / 2) v_{1}^{k-2} t_{1}^{2}+B,
\end{aligned}
$$

where $A, B \in B P_{*}(B P)$, and thus

$$
\left(v_{1}^{k}-v_{1}^{k} \cdot 1\right) / 2^{v_{2}(k)+2}+\left(v_{1}^{k-3} v_{2}-\left(v_{1}^{k-3} v_{2} \cdot\right) 1\right) / 2 \in B P_{2 k}(B P) .
$$

We have easily

$$
\left(v_{1}^{k}-v_{1}^{k} \cdot 1\right) / 2^{v_{2}(k)+2}+\left(v_{1}^{k-3} v_{2}-\left(v_{1}^{k-3} v_{2}\right) \cdot 1\right) / 2 \in N_{2 k}^{B P} .
$$

These conclude that $\hat{\mu}$ is epimorphic and complete the proof of Theorem 1.6.
The conjugation map c of the Hopf algebra $B P_{*}(B P)$ induces the isomorphism

$$
\hat{c}: N^{B P} / \operatorname{Im} h^{B P}+B P_{*} \cdot 1 \rightarrow \bigcap_{E \neq 0} r_{E}^{-1}\left(B P_{*} \cdot 1\right) / \operatorname{Im} h^{B P}+B P_{*} \cdot 1
$$

but \hat{c} preserves the generators given in Theorem 1.6 up to sign, so that we obtain

Corollary 1.7.

$$
N^{B P} / \operatorname{Im} h^{B P}+B P_{*} \cdot 1=\bigcap_{B \neq 0} r_{E}^{-1}\left(B P_{*} \cdot 1\right) / \operatorname{Im} h^{B P}+B P_{*} \cdot 1
$$

We next show that

$$
\begin{aligned}
\operatorname{Ext}_{B P *(B P)}^{1, *}\left(B P_{*}, B P_{*}\right) & =\bigcap_{B \neq 0} r_{E}^{-1}\left(B P_{*} \cdot 1\right) / \operatorname{Im} h^{B P}+B P_{*} \cdot 1 \\
& \cong N / \operatorname{Im} h^{H} .
\end{aligned}
$$

Let $S \xrightarrow{i} B P \xrightarrow{p} I$ be the cofibration obtained from the unit $S \xrightarrow{i} B P, I^{(k)}=$ $I \wedge I \wedge \cdots \wedge I$ (k-factors) and d_{k} be the composition $B P \wedge I^{(k)} \xrightarrow{p \wedge 1} I^{(k+1)} \xrightarrow{B}$ $B P \wedge I^{(k+1)}$ (or equivalently $B P \wedge I^{(k)} \xrightarrow{B} B P \wedge B P \wedge^{(k)} \xrightarrow{1 \wedge p \wedge 1} B P \wedge I^{(k+1)}$). Then we obtain the geometric resolution of Adams [4]

$$
B P \xrightarrow{d_{0}} B P \wedge I \xrightarrow{d_{1}} B P \wedge I^{(2)} \xrightarrow{d_{2}} B P \wedge I^{(3)} \xrightarrow{d_{3}} \cdots,
$$

which defines a chain complex of a spectrum X

$$
B P_{*}(X) \xrightarrow{\left(d_{0}\right)_{*}}(B P \wedge I)_{*}(X) \xrightarrow{\left(d_{1}\right)_{*}}\left(B P \wedge I^{(2)}\right)_{*}(X) \rightarrow \cdots
$$

and

$$
\operatorname{Ext}_{B P *(B P)}^{k, *}\left(B P_{*}, B P_{*}(X)\right)=\operatorname{Ker}\left(d_{k}\right)_{*} / \operatorname{Im}\left(d_{k-1}\right)_{*}
$$

For $X=S^{0},\left(d_{0}\right)_{*}=p_{*} h^{B P}$ and $\left(d_{1}\right)_{*}=\left(p_{*} \otimes 1\right) \Psi_{I}$ where $B P_{*}(B P) \xrightarrow{p_{*}} B P_{*}(I)=$ $B P_{*}(B P) / B P_{*} \cdot 1$ is the canonical projection, $B P_{*}(I) \xrightarrow{\Psi_{I}} B P_{*}(B P) \otimes_{B P_{*}} B P_{*}(I)$ is the coaction map of I for which

$$
\Psi_{I}(x)=\sum_{B} t^{E} \otimes r_{E}(x)
$$

Remark. This coaction map is twisted by the conjugation map c of $B P_{*}(B P)$ from the one denfied by Adams [2].

$$
\begin{aligned}
\operatorname{Ker}\left(d_{1}\right)_{*} & =\left\{x \in B P_{*}(B P) / B P_{*} \cdot 1 \mid r_{E}(x)=0, E \neq 0\right\} \\
& =\bigcap_{A \neq 0} r_{E}^{-1}\left(B P_{*} \cdot 1\right) / B P_{*} \cdot 1 \\
\operatorname{Im}\left(d_{0}\right)_{*} & =\operatorname{Im} h^{B P} / \operatorname{Im} h^{B P} \cap B P_{*} \cdot 1=\operatorname{Im} h^{B P}+B P_{*} \cdot 1 / B P_{*} \cdot 1
\end{aligned}
$$

Hence we obtain

Theorem 1.8.

$$
\operatorname{Ext}_{B P *(B P)}^{1, *}\left(B P_{*}, B P_{*}\right)=\bigcap_{B \neq 0} r_{E}^{-1}\left(B P_{*} \cdot 1\right) / \operatorname{Im} h^{B P}+B P_{*} \cdot 1
$$

Corollary 1.9.

$$
\operatorname{Ext}_{B P *(B P)}^{1, *}\left(B P_{*}, B P_{*}\right) \stackrel{\hat{\mu}}{\cong} N / \operatorname{Im} h^{H}
$$

2. The $B P_{*}$-Hopf invariant

Since $B P_{*}(B P)$ is flat over $B P_{*}, B P_{*}(B P)$ comodules and $B P_{*}(B P)$ comodule homomorphisms form a relative abelian category so that similar construction of Adams [1] is valid for $B P_{*}$ homology theory. We review the construction of the $B P_{*}$-Hopf invariant quickly; for a morphism $f: X \rightarrow Y$ of $C W$-spectra in homotopy category such that $f_{*}=0$, we have a short exact sequence

$$
E(f): 0 \rightarrow B P_{*}(Y) \rightarrow B P_{*}\left(C_{f}\right) \rightarrow B P_{*}(S X) \rightarrow 0
$$

which is regarded as an element of $\operatorname{Ext}_{B P * B P}^{1, *}\left(B P_{*}(X), B P_{*}(Y)\right)$. This is the $B P_{*}$-Hopf invariant of f.

For $X=S^{k q-1}(q=2(p-1)), Y=S^{0}$ the $B P_{*}$-Hopf invariant is defined on the whole group $\pi_{k q-1}\left(S^{0}\right)$. For a short exact sequence $E(f)$ we apply the Adams
resolution $B P \rightarrow B P \wedge I \rightarrow B P \wedge I^{(2)} \rightarrow \cdots$ then we obtain a short exact sequence of chain complexes

Let $\quad \sigma_{k q} \in B P_{k q}\left(S^{k q}\right) \quad$ be a generator and $\delta\left(\sigma_{k q}\right)=\left[i_{*}^{-1}\left(d_{0}\right) * j_{*}^{-1}\left(\sigma_{k q}\right)\right] \in$ $\operatorname{Ext}_{B P *(B P)}^{1, k q}\left(B P_{*}, B P_{*}\right)$ then the element $\delta\left(\sigma_{k q}\right)=E(f)_{*}\left(\sigma_{k q}\right)$ is just the element $E(f)$ by well known technique of homological algebra. This construction is considered as follows; let $\sigma_{0}=i_{*}\left(\sigma_{0}\right), \mu_{k q}$ are generators of $B P_{*}\left(C_{f}\right)$ of dimension 0 , dimension $k q$ respectively so that $j_{*}\left(\mu_{k q}\right)=\sigma_{k q}$, and let $\eta_{R}: B P \simeq S \wedge B P \rightarrow$ $B P \wedge B P$ be the Boardman map and put $\eta_{R^{*}}\left(\mu_{k q}\right)=A_{f} \sigma_{0}+\mu_{k q}\left(A_{f} \in B P_{*}(B P)\right)$. Then A_{f} represents $E(f)$. Replacing $B P \rightarrow B P \wedge B P$ by $B P \rightarrow H \wedge B P$, we have the $B P_{*}-e$ invariant (or the functional Chern-Dold character) and is equivalent to the $B P_{*}$-Hopf invariant by Corollary 1.9.

3. Applications

For an element $f \in \pi_{k q-1}\left(S^{0}\right)(q=2(p-1))$ we get a short exact sequence $0 \rightarrow\left(H Z_{p}\right)_{*}\left(S^{0}\right) \rightarrow\left(H Z_{p}\right)_{*}\left(C_{f}\right) \rightarrow\left(H Z_{p}\right)_{*}\left(S^{k q}\right) \rightarrow 0$ and can choose generators $\sigma_{0}{ }^{\prime}$ and $\mu_{k q}^{\prime}$ of $\left(H Z_{p}\right)_{*}\left(C_{f}\right)$ such that $\sigma_{0}{ }^{\prime}=i_{*}\left(\sigma_{0}{ }^{\prime}\right)$ and $j_{*}\left(\mu_{k q}^{\prime}\right)=\sigma_{k q}^{\prime}$ where $\sigma_{n}{ }^{\prime}$ is a canonical generator of $\left(H Z_{p}\right)_{n}\left(S^{n}\right)$. Let $\Psi:\left(H Z_{p}\right)_{*}\left(C_{f}\right) \rightarrow A_{*} \otimes\left(H Z_{p}\right)_{*}\left(C_{f}\right)$ be the coaction, then the definition of the Hopf invariant in the sence of Steenrod is described as follows; $f\left(\in \pi_{k q-1}\left(S^{0}\right)\right)$ is said to have $\bmod p$ Hopf invariant 1 if $\left\langle P^{k}, H_{f}\right\rangle \neq 0$, where P^{k} is the Steenrod reduced power (interpreted as $S q^{2 k}$ if $p=2)$ and $\Psi\left(\mu_{k q}^{\prime}\right)=H_{f} \sigma_{0}^{\prime}+\mu_{k q}^{\prime}\left(H_{f} \in A_{*}\right)$.

Theorem 3.1 (Adams, Liulevicius, Shimada-Yamanoshita.) If f has mod p Hopf invariant 1 then
(2) $k=1,2$ or 4 for $p=2$;
(2) $k=1$ for odd prime p.

Proof, Consider the following diagram

then

$$
\begin{aligned}
\Psi\left(\mu_{k q}^{\prime}\right) & =\Psi \mu\left(\mu_{k q}\right)=(c \otimes 1)\left(\mu_{*} \otimes 1\right)\left(A_{f} \sigma_{0}^{\prime}+\mu_{k q}^{\prime}\right) \\
& =H_{f} \sigma_{0}^{\prime}+\mu_{k q}^{\prime}
\end{aligned}
$$

Since A_{f} is a multiple of $v_{1}{ }^{k} / p^{\nu_{p}(k)+1}=p^{k-\nu_{p}(k)-1} n_{1}{ }^{k}$ or $v_{1}{ }^{k} / 2^{\nu_{2}(k)+2}+v_{1}^{k-3} v_{2} \times$ $2^{k-\nu_{2}(k)-2} n_{1}{ }^{k} \bmod 2 \cdot H_{k q}(B P)$ by Theorem 1.1, H_{f} is a multiple of $p^{k-\nu_{p}(k)-1} \xi_{1}{ }^{k}$ or $2^{k-\nu_{2}(k)-2} \xi_{1}^{2 k}$. In case of an odd prime $p H_{f}=0$ for $k>1$, in case of $p=2$ and odd number $k H_{f}=0$ for $k>1$, in case of $p=2$ and even $k H_{f}=0$ for $k>4$. This completes the proof of Theorem 3.1.

Let $V(0)=S_{p}^{0} \bigcup_{p} e^{1}$ then there exists a map $\phi_{k}: S^{k q} \rightarrow S^{k q} V(0) \rightarrow V(0)$ such that $\phi_{k^{*}}\left(\sigma_{k q}\right)=v_{1}{ }^{k} \cdot \gamma_{0}$ where $\sigma_{k q} \in B P_{k q}\left(S^{k q}\right)$ and $\gamma_{0} \in B P_{0}(V(0))$ are generators ([8]). α-series elements $\alpha_{k}(k=1,2, \cdots)$ of $\pi_{k q-1}\left(S^{0}\right)$ are defined by $\alpha_{k}=j \phi_{k}$ where $j: V(0) \rightarrow S^{1}$ is the canonical projection. We detect these elements by means of the $B P_{*}$-Hopf invariant. We have the following diagram of cofibrations;

Considering the above diagram following results are obtained;

$$
\begin{aligned}
& B P_{*}\left(S^{n}\right)\left\{\begin{array}{l}
\text { generator; } \sigma_{n} \\
\text { relations; none, }
\end{array}\right. \\
& B P_{*}(V(0))=B P_{*} /(p)\left\{\begin{array}{l}
\text { generator; } \gamma_{0} \\
\text { relations; } p \gamma_{0}=0,
\end{array}\right. \\
& B P_{*}\left(C_{\phi_{k}}\right) \begin{cases}\text { generators; } & a_{*}\left(\gamma_{0}\right), \lambda_{k q+1} \\
\text { relations; } & \left(p, v_{1}^{k}\right) \cdot a_{*}\left(\gamma_{0}\right)=0 \\
\text { formula; } & b_{*}\left(\lambda_{k q+1}\right)=p \sigma_{k q+1}\end{cases}
\end{aligned}
$$

$$
B P_{*}\left(C_{a_{k}}\right) \begin{cases}\text { generators; } & c_{*}\left(\sigma_{1}\right), \mu_{k q+1} \\ \text { relations; } & \text { none } \\ \text { formula; } & d_{*}\left(\mu_{k q+1}\right)=\sigma_{k q+1}\end{cases}
$$

and the formula

$$
h_{*}\left(\lambda_{k q+1}\right)=p \mu_{k q+1}-v_{1}^{k} c_{*}\left(\sigma_{1}\right) .
$$

The coefficient $v_{1}{ }^{k}$ of $c_{*}\left(\sigma_{1}\right)$ is decided up to a multiple of a unit of $Z_{(p)}$. The image of these generators of Thom homomorphism are denoted by $\sigma_{n}{ }^{\prime}, \gamma_{n}{ }^{\prime}, \lambda_{n}{ }^{\prime}$ and $\mu_{n}{ }^{\prime}$ respectively.

Theorem 3.2.

$$
e\left(\alpha_{k}\right)=v_{1}^{k} / p \quad \text { in } \quad N / \operatorname{Im} h^{H} \cong \operatorname{Ext}_{B P *(B P)}^{1, k q}\left(B P_{*}, B P_{*}\right) .
$$

Proof. By applying the Chern-Dold character $B P_{*}\left(C_{a_{k}}\right) \xrightarrow{B_{*}}(H \wedge B P)_{*}\left(C_{a_{k}}\right)$ to $\mu_{k q+1}$ we get $B_{*}\left(\mu_{k q+1}\right)=A_{\omega_{k}} c_{*}\left(\sigma_{1}^{\prime}\right)+\mu_{k q+1}^{\prime} . \quad A_{\omega_{k}}$ represents $B P_{*}-e$ invariant of α_{k} in $N / \operatorname{Im} h^{H}$. The computation

$$
\begin{aligned}
p \mu_{k q+1}^{\prime} & =h_{*} B_{*}\left(\lambda_{k q+1}\right)=B_{*}\left(p \mu_{k q+1}-v_{1}^{k} c_{*}\left(\sigma_{1}\right)\right) \\
& =p \mu_{k q+1}^{\prime}+\left(p A_{\omega_{k}}-v_{1}^{k}\right) c_{*}\left(\sigma_{1}^{\prime}\right)
\end{aligned}
$$

implies $p A_{\omega_{k}}=v_{1}{ }^{k}$ and this completes the proof.
Osaka City Univercity

References

[1] J.F. Adams: On the groups $J(X)$-IV, Topology 5 (1966), 21-71.
[2] J.F Adams: Lectures on Generalized Cohomology, Lecture Note in Mathematics 99, Springer-Verlag, 1969, 1-138
[3] J.F. Adams: Quillen's Work on Formal Groups Lows and Complex Cobordism, University of Chicago, 1970.
[4] J.F. Adams: Stable Homotopy and Generalized Homology, University of Chicago, 1971.
[5] S. Araki: Typical Formal Groups in Complex Cobordism and K-theory, Kyoto University, 1973.
[6] P.S. Landweber: On Panov's theorem, (to appear).
[7] N.V. Panov: Characteristic numbers in U-theory, Izv. Akad. Nauk. SSSR Ser. Mat. 35 (1971), Math. USSR Izv. 5 (1971), 1365-1385.
[8] L. Smith: On realizing complex bordism modules I, Amer. J. Math. 92 (1970), 793-856.
[9] L. Smith and R. Zahler: Detecting stable homotoyp classes by primary BP cohomology operations, Math. Z. 129 (1972), 137-156.
[10] R. Zahler: The Adams-Novikov spectral sequence for spheres, Ann, of Math, 96 (1972), 480-504.

