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1. Introduction

Let D={z&C; |z|<1} be the unit disc in C and B= {e*; 0<¢<2x}
the boundary of D. For a complex-valued continuous function F on D and
0<r<1, we define a continuous function F, on B by F,(«)=F(ru) for ucB.
We denote by ||F,||, the usual L*-norm of F, with respect to the normalized
rotation invariant measure —21— dt on B. Let A be the Laplace-Beltrami

T
operator on C* functions on D with respect to the Poincaré metric on D. We
denote by H*(D) the class of all C= functions F on D such that AF=0 and
sup ||F,||, is finite. The Poisson kernel P(z,u) on DX B for A is given by
0<r1

1—7?

P(re®, ¢it) = ,
e ) = 27 cos (0—t) 17

0<r<1.

Then it is known (Zygmund [14]) that a function F on D belongs to H*(D) if
and only if there exists a square integrable function f on B with respect to the

measure zldt on B such that
T

F(s) = & [ ftenPea, eyt
27 Jo
for z=D. The integral is called the Poisson integral of f and H*(D) the Hardy
class of harmonic functions on D. Our purpose is to extend these results to
sections of a vector bundle on a symmetric space of non-compact type.

Now let G/K be a hermitian symmetric space of non-compact type. Let
g=I-+p be a Cartan decomposition of the Lie algebra g of G with respect to the
Lie algebra £ of K. Let a be a maximal abelian subspace of p and let f) be a
Cartan subalgebra of g containing a.

Now G/K can be holomorphically embedded (Harish-Chandra [2]) as a

bounded domain 9 in a complex vector space p~ and the Silov boundary of 9
in p~ is identified with the homogeneous space G/B(E). Here the subgroup
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B(E) is a parabolic subgroup M(E)AN where M(E) is the centralizer in K of
some element X° (cf. §3) in a, 4 is the analytic subgroup corresponding to a
and N is a nilpotent subgroup (cf. §2) of G. Let > be the root system of the
complexification g€ of g with respect to the complexification )¢ of §. Fix an
order on a and choose an order (Satake [12]) of >} compatible with respect to
the order on a. Let 2pz be the restriction to a of the sum of all positive roots
a of >3 with a(X°)>0.

Assume that G/K is holomorphically isomorphic with a tube domain. Let
us consider a linear form A=zpg on the complexification a® of a where 2 is a
complex number with the positive imaginary part. Let t¢=Ad(u,)"")¢ be
the Cartan subalgebra of the complexification € of £, obtained from §¢ by the
Cayley transform Ad(u,) (Moore [10]). Suppose that there exists an irreducible
representation (7,, V) of K with the highest weight A on 1¢ satisfying the
condition

(©) *Ad(ut')A = —(In+pg) on a.

Let =7% be the representation of K contragredient to 7,. Let L?,(G/B(E))
be the set of all measurable mapping ¢ of G into the dual space V¥ of V,
satisfying

(§)) d(gman) = e~ PR DTy~ g( g)

for me M(E), ac 4, neN, g G where log a is the unique element in a such
that exp (log a)=a

@ [ lg@ypdr< oo

where ||+|| is a 7(K)-invariant norm on V% and dk is the Haar measure of K,
normalized byS dk=1. G acts on LZ,(G/B(E)) by U, i(g)¢(x)=¢(g x) for
K

every g, xG.
Following K. Okamoto [11], we define the generalized Poisson integral &
as follows:

Lra(8) = SKT(k)qi(gk)dk(gEG) for g€ L?\(G/B(E)) -

On the other hand, we define a norm |- [|,, analogously in Knapp-Okamoto
[6], for C= sections of the vector bundle E, over G/K associated with the rep-
resentation 7 of K. We construct a representation (U, I'y(A)) of G on the
completion of the space of all C= sections f of E, satisfying the condition
[[fll,<<ec and certain boundary conditions (cf. §4). We define the Hardy class
H,(A) as the space of all harmonic sections (cf. §5) in T',(A). Then we obtain
the following results:
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(i) The generalized Poisson integral &, , maps (U, ,, L? \(G/B(E))) into
(Uy, Ty(A)) G-equivariantly and strongly continuously (cf. Theorem 2 in §4).

(ii) The image of a certain G-submodule of L?,(G/B(E)) under &, , is
contained in the Hardly class H,(A) (cf. Theorem 3 in §5).

The second result may be useful in proving the non-vanishingness of
Hy(A).

At the end of this paper we investigate the above condition (C) on the
weight A for the unit disc D. If 7 is the trivial representation, our Hardy
class H,(A) is the usual Hardy class H*(D).

The author wishes to express his gratitude to Prof. K. Okamoto who sug-
gested him to investigate this problem.

2. Asymptotic behavior of Poisson integrals

In this section we investigate the asymptotic behavior of Poisson integrals
of symmetric space G/K of non-compact type. The results obtained in this
section are natural generalizations of those obtained by Koranyi [7], [8].

Let G be a non-compact semi-simple Lie group with finite center and let
K be a maximal compact subgroup of G. Then the homogeneous space G/K
is a symmetric space of non-compact type. Let g=f-+p be the Cartan decom-
position of the Lie algebra g of G' with respect to the Lie algebra f of K. Let
a be a maximal abelian subalgebra of p; then we can find a Cartan subalgebra
b of g containing a. Let >} be the set of all non-zero roots of the complexifica-
tion g€ of g with respect the complexification ¢ of ). The conjugation o of g€
with respect to g preserves ), and induces the permutation o of > defined by

o(a)(H) = a(s(H))

for ac>), HeY). We fix a o-order > of >, that is a linear order of 3 such
that o(a) >0 if >0 and if the restriction of « to a does not vanish. Let >},
be the set of all elements of > which vanish on a. The restriction to a of a
root of >1—>7 is called a restricted root. The order > on > induces a linear
order > on the set of restricted roots. Let F be the fundamental system of
restricted roots with respect to the order >.

Following Satake [12] and Moore [10], if E is a subset of F, let

oE) = {Hea; y(H)=0 for all yeE}
SWE) = {aeX]; n(a) = 23 nyy(YEE, n, integers)}

where 7 is the restriction map of linear forms on §) to a. Let >3, (E) (resp. > _(E))
be the set of all a3 —>(E) such that >0 (resp. «<0). Then the sub-

algebras > CE,, 2\ CE, of o€ are both invariant under ¢ where E,’s are
asy (B LIS NIRE))

root vectors for ¢ > ). (E). Their intersections n(E), (E) with g are the real
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forms of these subalgebras. The analytic subgroups of G corresponding to
n(E), T(E) will be denoted by N(E), N(E). Let b(E) be the normalizer of n(E)
in g and m(E) be the centralizer of a(E) in f. Let B(E) be the normalizer of
n(E) in G, and M(E) the centralizer of a(E) in K. Let A(E) be the analytic
subgroup of G corresponding to a(E). If E=¢, we write a, 4, n, i, N, N, b,
m, B and M instead of a(E), A(E), --- respectively. We denote by 2ppca*
the sum of all restrictions of roots in >} ,(£) with multiplicity counted where a*
is the dual space of a. We also write p instead of pg if E=¢. We obtain the
Iwasawa decomposition g=f-+a-+n and G=KAN. So for geG, it can be
uniquely decomposed as g=«(g) exp H(g)n(g) where «(g)eK, H(g)ca and
n(g)eN.

DerFINITION. For a complex number 2&C, we put A=2pzEag where ag
is the complexification of the dual space a* of a. For a finite dimensional
unitary representation T of K on a complex vector space V., we denote by
C, \(G/B(E)) the set of all continuous mappings ¢ of G into V, satisfying the
following condition:

(1) Blgman) = e P+ IPLEOT(m 1))

for me M(E), ac A, n< N where log a denotes the unique element of a such
that a=exp(log a). For a real number p>1, we also denote by L2 ,(G/B(E))
the set of all measurable mappings ¢ of G into V. satisfying (1) and

(2) lglls = { g1k <

where ||-|| is a T7(K)-invariant norm of V, and dk is the Haar measure of K,
normalized by S dk=1.
K

Following Okamoto [11], for every element ¢ of C,\(G/B(E)) or
L2 \(G/B(E)), we define a Poisson integral of ¢ by

(3) P, () = | (Wip(gk)ak.

Then P, ¢ is a section of the vector bundle E, over G/K associated to the
representation 7 of K. Before investigating the asymptotic behavior of &, , ¢
we prepare the following Lemma.

Lemma 1. Let G/K be a symmetric space of non-compace type. Then

eZPE(H(gm)) 2P H (&)

= ¢

for every g G, me M(E).

Proof. For the proof, we notice (Koranyi [8] Lemma 1.1) the fact that
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e n H® — | det(Ad(b))| for b= B(E) where Ad(b) is the adjoint representation of
B(E) on b(E). Then for g=«(g) exp H(g)n(g) and me M(E), using the decom-
position B(E)=M(E)AN (cf. Moore [10]), we may write

exp H(g)n(gym = m'a'n’
where m'e M(E), a’=A’, ”=N. Then exp H(gm)=a'. Hence we obtain

e*PrtHEm) ]det(Ad(H(gm)))l
= | det(Ad(m'a'n))|

since M(E) is compact and N is nilpotent. Therefore we have

e*PnHE™ — | det(Ad (exp (H(g))n(g)m))|
= | det(Ad(exp H(g)))|
— (PPHCHE Q.E.D.

From Lemma 1, the right translation by b& B(E) of the measure e™**5H@>dg
on G is equal to e **nH®e~2nHE g Therefore the measure e **87¢dg on
G induces (Bourbaki [1]) the measure dugz on G/B(E) unique up to the constant
factor such that

S G/BE> S B(E)f(gb)db dp(¢B(E)) = Scf(g)e—sz(Hcg»dg

for every continuous function f on G with compact support. Let duz(guB(E))
be the transform of the measure dugz under the mapping G/B(E)>uB(E)—
guB(E)e G|B(E), then it follows (Koranyi [8]) that

(+) dus(uB(E)) = €5~ du(uB(E)) .
Thus duy is a K-invariant measure on G/B(E). Let dugz be normalized by

S , dug=1. And let us identify K/M(E) and G/B(E) under the mapping
G/B(E>

K/M(E)=>kM(E)—kB(E)= G|B(E), then the measure dug corresponds to the
measure dkyg, on K/M(E) induced from the measure dk on K. And then
the mapping G/B(E)SuB(E)—guB(E)eG|B(E) induces the transformation
K|M(E)=>EM(E)—«(gk)M(E)s K|M(E). Put h=«(gk). Then we have, from
the above equality (4), that k=«(g~'h), H(gk)=—H(g'h) and

(4) dhycgy = PP HERD dRys g,

In the case E=¢, M(E) is the centralizer M of a in K and the equality (4')
is obtained in Harish-Chandra [3].

Corollary G acts on L2 ,(G/B(E)) by U, \(g)d(x)=¢(g7'x) for every
g, x€G. Then U, \(g) is a bounded operator on L2 \(G|B(E)) with respect to
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the norm ||-||, and C. \(G|B(E)) is a G-invariant subspace of L? \(G/B(E)).

Indeed, we have

SK||¢(g—1k)dekgig£ ' e—(iA+pE)(H(g-1k)) l ? SK|]¢(M(g—1k))||ﬁdk

<sup |e-GreRHE TR | b gy e—ZPE(H(gk))g R)|2dE
sup | | sup ol

since the mapping A||d¢(«(g~"k)|| is right M(E)-invariant, i.e. it is invariant
under the right translation by elements of M(E).

Proposition 1. Let a*(E)={H €a(E); a(H)>O0 for all x> (E)}. For
Hea"(E), we put a,=exp tH. Then we have

(5) limenemmsti@ glga) = [ eomm s ®r(u(m)a(g)dn
(E)

oo

for all g= G and ¢=C, \(G|B(E)). Here the measure dn is the Haar measure on
N(E), normalized by S__ e P HM =1,

N(E)

Proof. For every integrable right M(E)-invariant function f on K, it
follows (cf. Korényi [8] Lemma 1.3) that

S Kf (k)dk = Sﬁ(E) Fr(@))e2PaH@ g

For = C, \(G/B(E)), the V -valued function 7(k)¢(gk) on K is right M(E)-
invariant for fixed g&G. Hence it follows that

Prad(ga) = | e B r(c(n))g(gape(m)dn .

(E>

Since we have
an(n) = r(ama;") exp (H(anar*)—H(n)+tH)n, neN
for i N(E), it follows from (1) that

P. A¢(ga‘) — S e—(ih+p,,)(11(a,7-a; 1)+H(»)+tH>e—zp,,(H(7-))T(x(ﬁ)) ¢(g1€(d,ﬁa,_1))dﬁ .
’ NE)

Then a,nia;* converges (cf. Koranyi [8] Lemma 2.2) to the identity of G for every

Hea*(E) and i€ N(E) as t—>co. Then we obtain the conclusion. Q.E.D.

If N\, p=aé, let Hycac be determined by MH)=B(H,, H) for Hea,
where B is the Killing form of g¢. Put {\, up=DB(H,, H.). Then the integral
of the right hand side of (5) converges if Re{in, a><0 for all =} (E).
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From now on we shall assume A=zpj satisfies the condition: Re<in,
<0 for all e (E), that is, y >0 (z=x+1y).

Lemma 2. For ¢ L} \(G|B(E)), we obtain

(6)  Loabl9) = [, 60 7(ul g )M

K/ME

where dRyx, is the K-invariant measure on K|M(E) induced from the Haar measure
dk on K. - Therefore P,  may be ragarded as an integral operator with the kernel
K. \(g k):e(ix—pﬂ)(li(g’lk)) T(/c(g‘lk)).

Proof. For ¢=L; \(G/B(E)),

gDT,A¢(g) — S e—(i)\+PE)(H(gk))T(k)¢(x(gk))dkM(E)

K/M(E)

from the condition (1). Put hA=«(gk). Substituting (4’) into the right hand
of the above equality, Lemma 2 is obtained. Q.E.D.

Corollary For every g€G, kEK, let ||K, \(g, k)|| be the operator norm
[|«]| of the transformation K. (g, k) of V, with respect to the norm ||-|| in V..
Then 1t follows that

(i) 1K A(g Rl = | e¢ir-PmXHE ) |
(i) K (g km)ll = |IK, (g, R)ll  for allgeG, ke K, me M(E).

Indeed, (i) is clear. Since we assume A==x2pg and % is a complex number, (ii)
follows from Lemma 1.

Lemma 3. For H<=a*(E), we put a,=exp tH. For every neighborhood V
of eM(E) in K|M(E), we have

hm [ e(it\+PE)(log “,)I S
t-yo0 K/ME)-V

”KT,A(an k)”dkM(E) =0.

Proof. For every continuous function ¢ on K/M(E), we have

(7) K A(as, B)|| | $(RM(E)) | dRpsce>

SK/M(E)

— S_ le(ik—pn)(a,“x(i))[ |¢(/c(ﬁ)M) I e-sz,(H(i))dﬁ .
NG

Put #'—a;'7a,. Then it follows that di=e *sH* dp’ and a;'x(i)=
«(') exp (H(#")—H(a,n'a;*)—tH)n for some nN. Then, substituting these
into (7), we have

(7) = | g=Cir+PEI0gap | S |e“"‘“ﬂxmat;ﬂf‘1”e""""EXH(’—'))¢(/c(a,ﬁa,—1)M(E))ldﬁ .

N(E)
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Therefore we obtain

( 8 ) liml e(i}d'PE)(loga,)’ S
t-yoo K/M(E)

1K A(@r, R)II | §(RM(E))| ks>
— [ §eME))| | | H® | dim| g(eM(E))| Co(n) < oo
where CE(X)=S_ |e<ix—pE)<H<§>)|dﬁ=S_ e~ (YHLPRHGG) 5 < oo because of
NC(E) NEY
A=2pg (¥3=x-+1iy, y>0). In particular, we have

( 9 ) llml e(i?\+PE,)(loga,)| S
tpoo K/M(E

)“Kf,)\(an k)lldkycg; = Cg(N) .

For every neighborhood V' of eM(E), there exists a continuous function ¢ on

K/M(E) such that |¢| <1, ¢(eM(E))=1 and sup 17|¢(kM(E))| =m<1. Then
MDD &

we have

(10)  lim |etstrimdos®o] S WK a(an B)I | p(RM(E))| dRutcrs = C() -

K/M(E

On the other hand, we obtain

A K B EME) s,
< - .
< (o K Bt n—1) | K (e Bk
Hence from m—1<0, (9), (10), (11), the proof is complete. Q.E.D.

Proposition 2. Let 1<p<<co. For Hea"(E), we put a,—exp tH. Then
for every ¢= L2 \(G|B(E)), we have

im . |
Proof. From Lemma 1, for every ¢= L2 \(G/B(E)),

(1) Poad(ka)—| K.aan oE)dh = | K. (@, BYGER)—g(E)dh.

For every function g& LY(K/M(E)) where }1)- + L1, we put g(k)=g(RM(E)).
g

A= ewHM (7)) §(R) A “}"dk —0.

elirtPpogap (p d(ka,)— 5

NE)

Then we have

SK{L“KT.A(% Bl u¢<kh)—¢(k)ndh} g (kydk
<[ {1 e —oter1iz e 1 s, mla

<12llzrcs | Ildn—dllrcoll K. a(ass B)Idh
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where @,(k)=¢(kh) and ||¢,— || 2> is the usual L?-norm of the function
|igu(k)—@(R)|| on K with respect to the Haar measure dk on K. Hence together
with (12), we obtain

@9 U

< quqsh—qsl|Lt(K>||K,,x(a,, B)|ldh .

P, Ad(kas)— SKK,,A(a,, h)qs(k)dh“pdk} v

Here for every neighborhood V' of eM(E) in K/M(E), the right hand side of
(1)<, sup_l$s—lloras | 11K s M)ldhunce

2 blcermacen § KA Bldhs,

K/M(E)

Therefore by Lemma 3 and its proof, we get
(14) }iml elin+rglogap | { SK{ “EZ’,.@(ka,)—S K. \(a;, h)p(k)dh “ }pdk} 1/p:0 .
>oo K

On the other hand, since e“"‘“’lﬂ"‘”“t’g K, \(a;, h)p(k)dh is equal to
K

S— eCiA= P H =i+ o H @ A3 7 (1e(7)) p(R)d i, it follows that
NE)

(15) e(i)\+ Pp(log @) SKKT,)\(at’ h) ¢(k)dh__ Sﬁ(E)e(ik— pEXH(i))T(IC(ﬁ))(b(k)dﬁ ‘l

< ]|¢(k)” {S_ Ie-(iupﬂ)(maﬁa;l))_l [ Iecix—pﬂxmfm ida .
NE)

From the fact that CE(X)=S | AP H®) | d7i < 00 and a,fia;* converges to
E)

N(
the identity as #—>oco, the right hand side converges to zero as t—co. So,

together with (14), Proposition 2 is proved. Q.E.D.
ReMARK From Proposition 2, it follows that for every ¢ = L2 ,(G/B(E))

lim SK” EMeRARID P d(ka,)||Pdk = SK{ ” S e(i)c-PE)(H(;))T(M(ﬁ))gs(k)dﬁ“}pdk

tyoo NC(E)

if 1< p<oo and Rein, a><0 for all a3} (E). Now we denote the above
limit by (/% ¢llp,x)?. Then we have [|1P: 2015, a < Cg(N)1Bl|22ck /0> Where
16|l L2cx/mc g 1s the usual L?-norm of the function ||¢(k)|| on K.

3. Properties of hermitian symmetric spaces

From now on we shall assume G/K is an irreducible hermitian symmetric
space of tube type; let G be a non-compact connected simple Lie group with a
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faithful matrix representation, K a maximal compact subgroup and we shall
assume the homogeneous space G/K is an irreducible hermitian symmetric space
holomorphically diffeomorphic with a tube domain. Let g and ¥ be the Lie
algebras of G and K, and let g=%-p be the Cartan decomposition of g corres-
ponding to £. For any subspace m of g, we denote by m¢ the complexification
of m. Since G has a faithful matrix representation, we can regard G as a sub-
group of a connected Lie group G¢ with Lie algebra g¢. Let K¢ be the analytic
subgroup of G¢ with Lie algebra £¢. Let t be a Cartan subalgebra of £, T the
corresponding analytic subgroup of G, and let 7'C be the analytic subgroup of
G¢ with Lie algebra t. Then t is a Cartan subalgebra of f and of g. And T
is also a Cartan subgroup of K and of G.

Let R be the set of all non-zero roots of (g°, t€). For aER, let g, be the
root space for «, then g,C¥ or g,C 9 and « is called a compact root or a
non-compact root according to the respective cases. Let Rt and Rn be the set
of compact and non-compact roots respectively.

We identify p and p¢ with the tangent space T,x(G/K) of G/K at eK and
its complefixication T%(G/K), respectively, under the natural projection of G
onto G/K. Let p_ (resp. p.) be the subspace of p¢ corresponding to the set of
all holomorphic (anti-holomorphic) tangent vectors of TS(G/K) respectively.
Then p, and p_ are ad(¥C)-invariant abelian subalgebras of pC such that
pC=p,.+p_. Let P,, P_ be the corresponding analytic subgroups of G°.
Moreover there exists a subset Pn of R such that p+=wezpngw. We can define a

linear order &~ on R such that the set P of all positive roots includes Pn. We
put Pt=PN Ry

Let 7 be the conjugation of g¢ with respect to the compact real form
g.=!-++/ 19 of ¢ and we choose root vectors {E,} such that 7E,=—E_, for
acR. Let A={y,~3----3v,,} be the maximal set of strongly orthogonal non-
compact positive roots of Harish-Chandra [2]. For a€R, let H, be the unique
element of \/—1t satisfying B(H,, H)=a(H) for all Het¢. For aEA, we

put Xo=E,+E_,, Yi=(—v/—1)E,—E_,) and H,= 2 H,. Moreover
a,
we put X°— 3V X? and Z°=—% SVH,. Lett-=y/—1 3 RH, be the
acsA oA ac

subalgebra of t spanned by \/—1 H/, a= A over the real number field R. Let
t* be the orthocomplement of - in t with respect to the Killing form B, and let
T-, T* be the analytic subgroups of T corresponding to t~, t* respectively.
We have the decomposition $¢=(1")C-(17)¢, and corresponding to this, we can
decompose each element g of the complexification 1§ of the dual space t* of t, as

(16) p=pitp-

where p, (resp. p_) is the same as the restriction of p on (t*)¢ (resp. (7)¢) and
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vanishes identically on (17)¢ (resp. (t*)¢). The vectors X3, o € A span a maximal
abelian subalgebra a of p and Y)=t"+a is a Cartan subalgebra of g. Let 4, H
be the analytic subgroups of G corresponding to a, §) respectively.

Now we define, analogously in Knapp-Okamoto [6]

u,=exp<”ztm§(—-\/_—1)Yg)EGc for 0<t<1.

We have the following lemma:

Lemma 4. Let G/K be an irreducible hermitian symmetric space, not
necessarily of tube type. Then we have the following decomposition of u,:

(17) u, = G,k 2, for 0<t<1
where §,—exp( tan %t NE_ )EP-, k,=exp<log (cos ”Zt) 3N H,;)E TC and z,=
acA aEA
exp(—tan Z—t ZAEa)€P+. Moreover for 0<t<1,

(18) e = ashym,

where a,—=exp (sX) A (tanh (s)=tan %t) , b= exp(rug H)He Tc<e’ = coslll (s)>
and n,—=exp(—tanh(s)e™* D E,)EP,.
aEA

The proof follows from a straightforward calculation in SL(2, C), analo-
gously in Knapp-Okamoto [6].
Now it is well-known that

(19)  Ad(u) = id on t+ and Ad(w)(H]) = X2, a€A.

Hence we obtain Ad(u,)(1€)=5%¢. Ad(u,) is called a Cayley transform (cf. Moore
[10]). Let 3} be the set of all non-zero roots of (g¢, §¢). For AR, we put
tAdur )M X)=MAd(u7")X), X €¥ . Then ‘Ad(ur*)\ belongs to 2] if AER;
*Ad(ur") sends R onto >). We can define a linear order > on > such that the
set of all positive roots in > coincides with *Ad(u;*)P.

Let IT be a fundamental system of R with respect to the order §-. Then
under the assumption of tube type, it follows (Moore [10]) that

R(I—{0} = [ Lri=m), ) L Cm=m), 7

where for a linear form A on t¢, #(\) means the restriction of X\ to (7)C.
Therefore it follows immediately that the above linear order > on > is a
o-order. Then, as in §2, we can consider >, >\, and F. The o-invariantness
of >}, implies the following equality:
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(20) 2 Hy =2H,,

a’EZ_,_
where H, is an element of a defined by p(H)=B(H, H,) for all HEa and H
is an element of )¢ defined by o’/(H)=B(H, H,) for all H €.

4. Construction of Hardly class (I)

We shall always assume that G/K is an irreducible hermitian symmetric
space of tube type. We take {d¢EF: a(X°)=0} as the subset E of F in §2.
Then, under the notation in §2, a(E) is spanned by X°, and M(E) is the cen-
tralizer of X°in K. Let 28 be the sum of all roots in P. Then we obtain

(21) p='Adwus’)s on a,
Pe(X°) = p(X°) = 8( X Hy) -

Let A be an integral linear form on t¢, dominant with respect to £, that is,
A satisfies

(1) ANH)E2rn/—1Z  forevery HEt, exp (H) = e
(ii) <A, a>=0 for every a= Py .

Let 7, be the irreducible unitary representation of K with the highest weight
A on the complex vector space V,. Then T, is uniquely extended to a
holomorphic representation of K¢. Since P, is a normal subgroup in the sub-
group KCP, of G¢, we can extend 7, uniquely to a holomorphic representation
of K¢P, which is trivial on P,. We denote by the same notation 7, this
extended representation. Let 7=7% be the representation contragredient to 7
on the dual space V* of V,. Let E, be the vector bundle over G¢/KCP,
associated to the representation 7 of K¢P,. We notice that GNKC°P,=K.
Then, as is well-known, G/K can be identified with the open G-orbit of the
origin in G¢/K€P,. We denote by E, the restriction of E, to the open sub-
manifold G/K of G¢/|KCP,.

DeriNITION. Let T'(A) be the set of all C* mappings f of GKCP, into
V% satisfying

(22) f(gb) = 7(b™)f(g), g=GKCP., beKCP,

(23) IF1f = lim SK” Flhup)|Pdk < oo

where ||+|| is the operator norm in V¥ with respect to 7,(K) invariant norm
[l«]l in V. From Lemma 4, f(ku,) is well-defined. We remark that the space
T'(A) can be regarded as a space of C= sections of E,. For an element
¢ L? \(G/B(E)), a Poisson integral P, ,¢ of ¢ can be considered as a C* section
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of E, since &, , is an integral operator with the kernel K, ,. Moreover from
the results in §2, we have the following theorem.

Theorem 1. Let G/K be an irreducible hermitian symmetric space of tube
type. Suppose that n=zpgEaf, 2=x-+iysC, y>0 satisfies the following con-
dition:

©) *Ad(ur')A = —(ix+pg)on a.

Then we have
@, \L2A(GIBE)CT(A) .
Before proving the Theorem, we prepare the following Lemma.

Lemma 5. Let G/K be an irreducible hermitian symmetric space of tube
type. Under the above notation, for a=exp X, X € Cl(a*), we have

(24) [I7(urt au,) || S et4d D) g for all ve VE
where at={Hea; o/(H)>O0 for all &' €3,} and Cl(a*) is the closure of a*in a.
In particular, for a,=exp tX°, we have

tA( T Hy)
aEA v

(25) T(urtau) v =e for all veV%

where uy'au,=exp (tmg H)).
Proof. From C. Moore [10],
Cl(a*) = {i‘;‘a,fXS‘.; 0<a,<-<a,} .
Let a=exp(:;: a;X%), 0<a,<--<a,. Then by means of (19), we have

uy'au,=exp (i a;H,). On the other hand, all the weights of 7, are of the form
=1

A—>_1m;a; when D= {a;}%., is the set of all simple roots in R with respect
to the order &- in R and m;>0 are integers. Let V;_ynq, be the weight space
for A—> m;a;, and let V% 5., be the dual space of V,_5m,, which is
identified with the subspace of all elements in V% vanishing on the orthocomple-
ment of Vi 5m,, in Vs, Let {Ohymps j=1, -+, dim V_5n,} be an ortho-
nomal base in Vi_sma, and let wh..m, be its dual base in VX _gm4,. For
vEVE, We put 9=231 @}, .m, O} -my Gni-m,&EC. Then we have
T(ur  aw) v = 3 @hhym, T(UT Q) T Oy,
a-= miai)(f?lakmu) 5

= Ea,’,.r..,,.ﬂe nyeomy +

From C. Moore [10], the non-zero vectors in z(D) are of the form
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1 .
?('Yj+l—'yj)’ j=1,m—1

if G/K is of tube type. Then we have
A—Xma;) (iakH%,) A(édkH{v,,) _mél%(akﬂ—ak)”k
e k=1 —= e k=1 e k=1

m
A(aHy,)
e k=1

IA

for some non-negative integers m, (k=1, -, m—1) and the equality holds if
a,=+-=a,,. It follows that

Im(uitan,) " ol* = 33| @y, | |7 (4 at0) ™" 0y |

{ A(ia,-Hg,.)}
e i=1

2
< 3 @y, |

AR 2
A g

In partiqular, if a=exp tX°,

ACEH Q.ED.

T(uitaw,)'v =e
Proof of Theorem 1. For ¢ L2 y(G/B(E)), from Lemma 4,
(260)  Pradlgu) = T(exp(r 2 Ha)) "' 7(ke) " Lo ap(g45)

(r+log (cos%—t))A( S H)
aca

=e P r(8as)
— (r+1log (cos %t)) ({24 pm) (X%
=e g’r,hgb(gas)
log (cos %t) 2+ 0m) (X9
under the notations in Lemma 4. We put C=lime < oo,

t>»1
We notice that e—f(;upnxxo):(Cosh(s))(;up,,)(sxo),\,?e(iHPu)(sX”) as §—> oo,

Hence we obtain

lims | P, p(ku,)|*dk = € lim |e<i*+"a><"‘°’|$ |P: A B(ka)||dk
11 JK 2 s> K

C
< ECE(X)||¢”L2<K/M<E))< .

from Remark of Proposition 2. Q.E.D.
Moreover, by considering the subspace I',(A) of T'(A) consisting of all
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elements of I'(A) which satisfies the following boundary conditions (iii), (iv),
we construct a representation of G.

DeFiNiTION.  Let T'(A) be the set of all f eT'(A) satisfying
(iii) for every g=G, there exists a limit lim f(gu,), say f(gu,), and the
t41
boundary value f(gu,) satisfies

(27) flgmanu,) = ¢ 44°4™ON W OT(m)f( gu,)

for g G, me M, ac A and ne N where M is the centralizer of a in K.
(iv) G>3g||f(gu,)ll is continuous.

Then we can apply Theorem of bounded convergence to the sequence of
functions k—||f(ku,)|| (0<#<1) by means of the conditions (iii), (iv), and then
it follows that

@8) lfIE=1lim | | fGulidl = | IIfGkuidk  for fET ).

Let us define the action U,(g) of G on T'(A) by U,(g)f(x)=f(g 'x). Let us
consider the factor space of T',(A) by the subspace {f&T(A); [If|l,=0}, and let
T',(A) be its completion with respect to the norm induced from the norm |- ||,
Then we have the following Proposition.

Proposition 3. Let us preserve the assumption in Theorem 1. Then T'(A)
1s stable under U \(g) and U,(g) acts by a bounded operator on it with respect to the
norm ||-||,. Moreover U(g) acts on T',(A) by a bounded representation of G.

Proof. For gegG,

S ”f(g_l ku1)||2dk§ sup letAd(ul—l)A(H(g'lk)) | 2 S ”f(IC(g_lk)uIHde .
K kEK K

The function &—||f(x(g™*k)u,)||* is a right M-invariant because of «(g~"km)M
=x(g~'k)M in K/M and the condition (27). Put A=«(g™'k). Then it follows
from (4') that

k= k(gh), H(g7'k) = —H(gh) and dky = e **HEdp,,,

Therefore s I f(;c(g‘lk)ul)llzdkgsupe‘zp(H‘g"”SKH F(hu)Pdh. Hence T(A) is
K hEK

stable under U,(g) and U,(g) acts by a bounded operator on it with respect
to the norm | |,.

For the proof of the last statement, let L3}(G/MAN) be the set of all
measurable mappings ¢ of G into C satisfying ¢(gman)=e‘~+"?n8 ¢(g) and
llll3= S | (k)| *dk is finite. Then G acts on LY G/MAN) by Ux(g)é(x)=(g™"x).

K

Then U,(g) is a bounded operator on L}(G/MAN) with respect to the above
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norm || [, Now we define the linear map £ of T'(A) into LY G/MAN) by
(-Lf)&)=f(gu,) for feT(A). Then L is a G-equivariant isometry of T'y(A)

into L}(G/MAN), that is, LU,(g)=Ux\(¢)-L and ||Lf=f]|., i.e. lelf(kuz)lldk

=1‘im jx“ f(ku,)|*dk, for fET(A) because of (28). Therefore U,(g) can be
>1

extended to a bounded operator on T',(A). Q.E.D.

Summing up the above results, we have the following theorem as a Corallary
of Theorem 1.

Theorem 2. Let G/K be an irreducible hermitian symmetric space of tube
type. Suppose that N=zpg, z=2x-+iy, y>0 and A satisfy the condition (C).
Then P, is a G-equivariant bounded operator from L% ,(G/B(E)) into T',(A), that
is,

(29) Un(8)oPrp= PrpolU,a(8)  on LIA(G[B(E))-

Proof. The boundedness of &P, , has been proved in Theorem 1 and, by
the definition of Poisson integrals, we have the G-equivariantness (29) of
P, Since C,\(G/B(E)) is dense in L G|B(E)), it suffices to prove that
P,,C, A(GIB(E)CTA).

For ¢=C, \(G/B(E)), we have

— (r+log (cos Z-1)) (i2-+ pm) (X7
(26)  Pap(gu;) = e P ap(gas) -

Then, from Proposition 1, we obtain

1:1311 Prap(gu,) = %P_E} e pE)(SXO)gJT,Afb(gas)

_C

A COPOLLE
N(E)

that is, Q’,,,\qﬁ(gul)zgs NP HED T (y(7))§(g)dR. From the condition (1),

N(E)
we have, for meM, ac A, neN,

P\ p(gmanu,) = %e—(iH s SN(E)em—pExH(n))T("(ﬁ)m—1)¢(g)d7_’ .

Here «(f)m™'=m"'k(mam™") for meM. We put #’=mam*, then H(#")=H(#)
and di’=dn. Therefore we have P, , ¢( gmcmul):%e“""*"’lﬂ"log Dr(m™) P, A X

é(gu,). It follows from the assumption (C) that the condition (27) is satisfied.
Q.E.D.
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5. Construction of Hardy class (II)

We preserve the notation and the assumption in §4. Let C=(G, V%) be
the set of all C~ mappings of G into VV¥. Let v be the left regular representa-
tion of G on C=(G, V¥). We define a representation » of g¢ on C=(G, V¥) by

WX () = | £ flexp (—tg)]

for geG, feC=(G, V). Let U(g) be the universal enveloping algebra of g°.
Then v defines a representation v of U(g) on C=(G, V%). Let »(C) be the
Casimir operator of » with respect to the Killing form B on C=(G, V%).

We put C7\(G/B(E))=C.\(G/B(E))NC=(G, V¥). Then the representa-
tions (T'y(A), Up) and (C7\(G/B(E)), U,,,) are subrepresentations of the left
regular representation of (C~(G, V%), v) of G.

DeFINITION. Let Hi(A) be the set of elements f in T',(A) satisfying
(30) (4(C)—<A+28, AD)f = 0.

Let us consider the factor space of Hy(A) by the subspace {f&H(A); ||f|l,=0}
and let H,(A) be its completion with respect to the norm ||-||,. Then, for
g€G, Uy(g) acts on H,(A) as a bounded operator with respect to this norm.
H,(A) is called the Hardy class of the vector bundle E, over G/K.

Now we can write A and § as A=A,+A_, §=8§,4 8- according to (16).
Let M, be the connected component of the centralizer M of a in K. Thent'is
a Cartan subalgebra of the Lie algebra of M, M, and A, satisfies the following

conditions:
(1) AH)=ANH)e2r\/-1Z forall Het,ct,expH=¢
(i) <A4, a>=>0  for all a=Prsuch that (o) = 0.

Hence there exists an irreducible unitary representation z,, of M, with the
highest weight A, on a representation space V', . We define the projection
operator ey, of C7°\(G/B(E)) as follows:

en $(e) = da, | B (mglgm)im  for g CIA(GIB(E)

where dy,=dim V, , 04, the character of 7, and 6, (m) is the complex con-

jugate of 8, ,(m).
Then e, ,C7A\(G/B(E)) is a G-invariant subspace of C;\(G/B(E)). Moreover
we have the following theorem.

Theorem 3. Under the assumption of theorem 2, we have

Prren, CoAGIB(E) T HA(A) -
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Proof. We will prove that »(C)P, . en, d=<A+28, ADP, e, ¢ for
6= C, \(G/B(E)). Since Up(g)o P =L, 1 U, \(g), it suffices to prove that

WClen,d = (A+25, Ades,6  for g Cou(GIB(E)).

Now let ¥ be the right regular representation of G on C=(G, V'%). We
define a representation ¥ of g¢ on C~(G, V%) by

50f(e) = [ £ fgexp 1) _

for geG, Xeg and feC=(G, VV¥). v defines a representation ¥ of U(g) on
C~(G, V%). Then it follows (Harish-Chandra [4]) that

v(C)p =9(C)¢  for every o=C=(G, V¥).

So we will show that 5(C)e, , d=<A+28, Ade, ¢ for p= C7\(G/B(E)).
Following Harish-Chandra [3], let {X} be the root vector for &’ such
that 7Xy=—X_y and B(Xy, X_»)=1, and let H, be an element of ¢ such
that B(H, Hy)=a/(H), for HeY. Then [X,, X_y]=Hy. Let {H;}i., be a
base of §¢ such that H,, ---, H,, is an orthonormal base of a with respect to the
Killing form B of ¢ and H,,,,, **-, H, is that of v/ —1t" with respect to B.
Then {H,,+,H;, X, X_o; &’€2}, a’>0} is a base of g°. Then we have

¥(C) = 33 (H)+ 3 (X (X)X (X))

= D1+D2+D
where 2 D(I{ )2+ Z (ﬁ(X )g(X—a )+g(X—w )D(X ))

i=m+1
a'>0

SY(H)+ 3 S(HL Y

i EE+

s =2 33 AX_)P(Xa) .

€X,

D, =
and D
Since e, ¢ belongs to C7°A\(G/B(E)), we have

31) Dey 6=0

because of e, ¢(gn)=ex, #(g), nEN.
We note (20) 22 H,=2H,=a. Then since we have
a/'e +

#(g exp H) = ¢~ PpH@+Hg (o))
for every ¢= C;\(G/B(E)), H <, it follows that
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(32) Djen,d = (<iM+pg, N+ pe>—EN+pE, 2P>)¢’A+¢ .

On the other hand, let 7, (Cy) be the Casimir operator of the representation
Ta, of M, with respect to the form B. Then we have

Ta,(Cr) = <A 428, AT
where I is the identity operator on V, . And we have (cf. Harish-Chandra [4])
D,gy,(m) = Ses, 7a (m7a (Carl0)
= (A+25,, ADE,(m)

where {v;} is an orthonormal basis of 7, with respect to the inner product

(,)on V,,. Then we have (cf. Harish-Chandra [4])
(33) Dies.4(8) = da, |, B (m(Dig)(gm)dm

= dy, { D (m)g(gmyim
= (A+28, Ades, 9(8) -
Hence together with (31), (32), (33), we have
(34) ¥(C)en,p={KEN+-pgs iIN+pp>—<IN+pg, 200+<A+2p4, A} en 6.

Since we have *Ad(ui’)A_-=—(EN+pg) and (21) p=*Ad(u7*)8 on a, it follows
that

(34) = KA, AD+H<CAL, 280 +<A 4284, Aden o
= {A+23, Adey, . QE.D.

Exampie. Let G=SU(1, 1), K=T=S(U(1)x U(1))= {(g"’ 2_{0): eeR},

and so G/K is the unit disc D. Then G¢=SL(2, C), K¢=TC¢= {(g 3-1):

fyeC—(O)}. Then g—8u(l, 1), E=t = {(ff 0,0); eeR}, ©=31(2, C),
—1
fC=1c= {(g O); ae C} and the set R of roots of (g€, t€) is given by
a 0
R = {+v}. where 7: tCE( )1——> —2a.
0 —«

. b 0 l
A linear order & on R is defined as v3-0. Let E'y=<1 8)* E"':(g 0>'
We have
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1 0 1 0
cos =2 sin Z%
b — ex (_ﬂ(O —1)) . 4
‘ P 4M 0 —sin”—t cos”—t ,
' 4

t-—t, t = (0), M=M(E):{(§ 2>;e=i1},

S:ta(ig _?g>H—i0 and p:aa((t) é>1—>t.

Let A=—nd, n=Z. Then we obtain a holomorphic representation 7=7% of
Kc¢P, given by
vy O
KCP+5( ) >y -"eC—(0).
a 9
Now our conditions “Relin, a><0, a=2p and *Ad(ur*)A=—(ir+p) on
a” coincide with (cf. Okamoto [11])

If =0 i.e., A=0, then :A=—p and 7, is the trivial representation of K.
Then our Hardy class H,(A) is the usual Hardy class H* D) given in the

introduction.
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