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PROPER BOUNDARY POINTS OF THE SPECTRUM
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1. Introduction. Let 4 beabounded operator on an infinite dimensional
Hilbert space H. A point A on the boundary 9o(A4) of the spectrum o(A4)
of A will be called proper if there is a bounded sequence {\,} of points in the
resolvent set p(4) of A4 such that

(1) =)= A) M| 1.

Examples of proper boundary points of the spectrum are easily given.

1. If {»|=||4]|, then A is a proper boundary point.

2. If X in o(A4) is a boundary point of the numerical range of 4, then it
is a proper boundary point.

3. If X in o(A4) is a boundary point of a spectral set X for 4 and there
is a sequence {\,} in the complement of X such that

(2) l)‘k_x‘”d()\'k: X)_)ly

then A is a proper boundary point (here d(z, X) denotes the distance from z
to X).

4. If A is seminormal, A is a boundary point of o(4) and there is a
sequence of points in p(A) satisfying (2) with X=g(4), then A is a proper
boundary point.

We shall verify these statements later. We shall also prove the following
theorem and give several applications.

Theorem 1. If N is a proper boundary point of o(A), then for each
bounded sequence {x,} in H we have

(3) (A—\)x, >0 iff (A*—X)x, — 0.

The theorem generalizes results of Putnam [1], Saito [2], Sz-Nagy, Foias
[3], Schreiber [4] and others. The proof will be given in the next section.
Now we shall give some consequences and applications. The essential spectrum

of 4 is defined as
c(d)= N oA+K).

K compact
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Theorem 2. If \ is a proper boundary point of o(A) and it is also in the
essential spectrum of A, then there is an orthonormal sequence {@,} in H such that

(4) (A—\)p,—0 and (4*—A)p,—0.

Proof. If A is in the essential spectrum of 4, then either A—2\ is not a
Fredholm operator or its index is not 0 ([5, p. 180]). The latter case cannot
occur, since A is a boundary point of the spectrum. Hence there is an ortho-
normal sequence satisfying at least one of the statements in (4). By Theorem
1, it must satisfy both.

Corollary 3. If \ is a proper boundary point of the spectrum of A and it
is not isolated, then there is an orthonormal sequence satisfying (4).

Proof. By [6, Theorem 2.12] or by [7, Theorem 1], a nonisolated boundary
point of the spectrum must be in the essential spectrum. Apply Theorem 2.
We now give some applications suggested by the work of Putman [7].

Corollary 4. Let A be a bounded operator in H having at least one proper
boundary point of o(A) in the essential spectrum. Then the operator
(5) C = A*A—A4*
has 0 in its essential spectrum.

Proof. Let A be one such point. By Theorem 2 there is an orthonormal
sequence such that (4) holds. Since

C = (A*—X)(A—N\)—(A—1)(4*—X),

we see that Cp,—0. Thus 0 is in the essential spectrum of C.

Corollary 5. If A has at least one non-isolated proper boundary point of
its spectrum, then 0 is in the essential spectrum of the operator C given by (5).

Proof. Use Corollary 3.

Corollary 6. If every boundary point of the spectrum of A is proper, then
C has 0 in its essential spectrum.

Proof. If not all of the boundary points of o(A4) are isolated, the result
follows from Corollary 5. If they are, then the spectrum of A consists of only a
finite number of points. At least one of these points must be in the essential
spectrum of 4 (if H is infinite dimensional). Now apply Corollary 4.

Corollary 7. Suppose every boundary point of the spectrum of A is proper,
and put A=L-iM, where L and M are self adjoint. Then o(L) [resp. a(M)]
contains the projection of o(A) on the x [resp, y] axis.
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Proof. Suppose A is a boundary point of o(4). Then there is a sequence
of unit vectors satisfying one of the statements in (3). By Theorem 1 it satisfies
both. Since L=4%(4+ A*), we see that (L—Re \)x,—0. Thus Re is in the
spectrum of L. If A is an interior point, then there is a boundary point A, such
that Re(A—2,)=0. We use the point A, in place of A. A similar proof works
for M.

2. The proofs. Let us first verify that the points described in section 1
are proper. Consider the first statement. By rotating we may assume A=||4]|.
For t>\, we have ||(t—A)ul|>(—n)|lull. Hence [[(z—A4)7|<1/(z—2).

Similar reasoning gives the second case. Since the numerical range W(4)
of A is convex, it is contained on one side of line L going through A. Let 2
be any point on the other side of L such that z—2X is orthogonal to it. Thus
| z—n| is the distance d(z, W(A4)) from = to W(A). We know in general that

li(z—A)~II<1/d(=, W(4))
holds for any z not in the closure of W(A4). This shows that
I(z—A)I<1/]z—N]

holds for = on the other side of L. This proves the assertion for the second

case.
If X, is a spectral set for 4, then

(7) lI(z—4)"11<1/d(, X)

holds for all 2 not in X. If there is a sequence in the complement of X such
that (2) holds, then we see that (1) holds for the same sequence.
If A is seminormal, then (7) holds for X=o(A4). Apply the same reason-
ing.
Proof of Theorem 1. Assume A=0, and set W=\ (\,—A4)7".
Then (1) says
(8) Wil —1.
Now
I—W, = (Ne—A)Ne—A) ' —N(Mp—A) 7 = — A\ —A)7".
Thus
I(I— Wi)x|[*=||%]I*—2 Re(x, Wyx)+||W,x||*
= 2 Re (%, [I—W]x)+ || W] —||x||*
= —2Re(A*x, (\e—A)7'%)+ || Wpal|*—||x||*
< 24%| [ |(ue—A) 7 1]+ (Wl P — 1)l [*
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Now assume that |[x,|| <K and that |x,| <M. Let &>0 be given. Take k so
large that

[|Well*—1<E2R°K?,
where R=M+-||4||. Then fix k. If A*x,—0, we can find an N so large that
[|A* x,]| <E[4KR?||(Mp—A) 7], n>N.
These last inequalities imply
I(I—=We)x,l*<&é/R*,  n>N.

Now
[|[Axa* = [|(Me—A)I—Wi)x,|[*<E, n>N.

This shows that Ax,—0. A symmetrical argument shows the converse, that
Ax,— 0 implies A*x,—0. This comples the proof.
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