Sakai, A. Osaka J. Math. 12 (1975), 33-39

UNIFORM ALGEBRA GENERATED BY $z_1, \dots, z_n, f_1(z), \dots, f_s(z)$

Dedicated to Professor Yukinari Tôki on his 60th birthday

Akira SAKAI

(Received November 29, 1973)

Introduction

Let C^n be the complex Euclidean space with complex coordinates $z = (z_1, \dots, z_n)$ and K a compact subset of C^n . For any complex valued C^{∞} -functions f_1, \dots, f_s defined on an open subset U of C^n containing K, we shall consider the uniform algebra A consisting of uniform limits of polynomials of z_1, \dots, z_n , f_1, \dots, f_s on K.

Hörmander-Wermer [1] proved that, if s=n and if each f_j is 'close' to \bar{z}_j in some sense, then A coincides with C(K), the algebra of all complex valued continuous functions on K. In this paper, we shall deal with the case where 0 < s < n and each f_j is holomorphic in z_{s+1}, \dots, z_n near K. In Section 3, an approximation theorem on the graph of f_1, \dots, f_s will be proved. In Section 4, we shall give a sufficient condition on f_j and K assuring that every function holomorphic in z_{s+1}, \dots, z_n near K belongs to A.

1. The graph of f_1, \dots, f_s

Let f_1, \dots, f_s be C^{∞} -functions defined on an open subset U of C^n . The graph of f_1, \dots, f_s

 $M = \{(z_1, \dots, z_n, f_1(z), \dots, f_s(z)) \in \mathbb{C}^{n+s}; \ z = (z_1, \dots, z_n) \in U\}$

is a real 2*n*-dimensional submanifold of C^{n+s} . If g is a C^{∞} -function on M, then the function g_0 defined by

(1.1)
$$g_0(z_1, \dots, z_n) = g(z_1, \dots, z_n, f_1(z_1, \dots, z_n), \dots, f_s(z_1, \dots, z_n))$$

is a C^{∞} -function on U.

We denote by $H_r(U)$, r=n-s, the class of functions of $C^{\infty}(U)$ which are holomorphic in z_{s+1}, \dots, z_n .

We shall now consider the following assumptions on f_1, \dots, f_s :

(1.2)
$$f_1, \dots, f_s$$
 belong to $H_r(U)$, and

A. Sakai

(1.3)
$$\det \left(\frac{\partial f_j}{\partial \bar{z}_k}\right)_{j,k=1,\cdots,s} \text{ has no zeros on } U.$$

These conditions imply that, for every point p of M, the dimension of maximal complex submanifold of C^{n+s} through p contained in M is just r. It follows from the following lemma, which is easily proved by linear algebra.

Lemma 1. The complex tangent space of M at every point is of r-dimension if and only if

$$\operatorname{rank} \left(\frac{\partial f_j}{\partial \bar{z}_k} \right)_{j=1,\cdots,s} = n - r$$

holds at every point of U.

A C^{∞} -function on M which is holomorphic in complex coordinates of M is called a *CR*-function. (1.1) gives an isomorphism of $H_r(U)$ and the algebra of *CR*-functions on M.

2. Holomorphic convexity of M

By a *region of holomorphy* we mean a disjoint sum of domains of holomorphy. We define

$$\phi(z) = \sum_{j=1}^{s} |f_j(z_1, \cdots, z_n) - z_{n+j}|^2, \qquad z \in U \times \mathbb{C}^s,$$

and

$$G_{\mathfrak{s}}(V) = \{z \!\in\! V; \, \phi(z) \!<\! arepsilon\}$$
 ,

for any open subset V of $U \times C^s$ and for any positive number ε .

Lemma 2. Suppose that f_j satisfy (1.2) and (1.3). Let V be a region of holomorphy in \mathbb{C}^{n+s} such that $\overline{V} \subset U \times \mathbb{C}^s$. Then there exists a positive number \mathcal{E}_0 such that $G_{\mathfrak{e}}(V)$ is a region of holomorphy in \mathbb{C}^{n+s} for any $\mathcal{E}, 0 < \mathcal{E} < \mathcal{E}_0$.

Proof. We consider the complex Hessian form

$$H(\xi,\,\xi)_z=\sum_{\nu,\,\mu=1}^{n+s}\frac{\partial^2\phi}{\partial\,z_\nu\,\partial\,\bar{z}_\mu}(z)\xi_\nu\,\bar{\xi}_\mu\,,\quad z\!\in\!U\!\times\!\boldsymbol{C}^s\,.$$

Let $z=(z_1, \dots, z_{n+s})$ be any point of M and $z_0=(z_1, \dots, z_n)$ the corresponding point in U. Then we have

$$H(\xi, \overline{\xi})_z = \sum_{j=1}^s \left\{ \left| \sum_{\nu=1}^n \frac{\partial f_j}{\partial z_\nu}(z_0) \xi_\nu - \xi_{n+j} \right|^2 + \left| \sum_{\nu=1}^s \frac{\partial f_j}{\partial \overline{z}_\nu}(z_0) \overline{\xi}_\nu \right|^2 \right\}.$$

The right member can vanish only if

34

UNIFORM ALGEBRA

$$\sum_{\nu=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}}(z_{0}) \bar{\xi}_{\nu} = 0 \quad \text{and} \quad \xi_{n+j} = \sum_{\nu=1}^{n} \frac{\partial f_{j}}{\partial z_{\nu}}(z_{0}) \xi_{\nu}, \quad j = 1, \dots, s$$

By (1.3), $H(\xi, \xi)_z$ can vanish only when ξ is a complex tangent vector of M at z:

$$\boldsymbol{\xi} = \left(0, \cdots, 0, \xi_{s+1}, \cdots, \xi_{n}, \sum_{\nu=s+1}^{n} \frac{\partial f_1}{\partial z_{\nu}}(z_0) \xi_{\nu}, \cdots, \sum_{\nu=s+1}^{n} \frac{\partial f_s}{\partial z_{\nu}}(z_0) \xi_{\nu}\right)$$

Therefore the matrix $H_z = \left(\frac{\partial^2 \phi}{\partial z_v \partial \bar{z}_\mu}(z)\right)$ has n+s-r non-zero eigenvalues for every point z of M. Let V_1 be an open set such that $\bar{V} \subset V_1 \subset \bar{V}_1 \subset U \times C^s$. By continuity of H_z , there exists a positive number \mathcal{E}_0 such that H_z has at least n+s-r non zero eigen values for every z in $G_{\varepsilon_0}(V_1)$.

Let S_{ϵ} be the hypersurface $\{z \in V_1; \phi(z) = \epsilon\}$. Fix an arbitrary point $\alpha = (\alpha_1, \dots, \alpha_{n+s})$ on S_{ϵ} . We define a non-singular holomorphic map $z = \Phi(\zeta)$ of $U(\alpha) = \{\zeta \in C^r; (\alpha_1, \dots, \alpha_s, \zeta_1, \dots, \zeta_r) \in U\}$ into C^{n+s} by

$$\Phi_{j}(\zeta) = \begin{cases} \alpha_{j} & j = 1, \dots, s, \\ \zeta_{j-s} & j = s+1, \dots, n, \\ f_{j-n}(\alpha_{1}, \dots, \alpha_{s}, \zeta_{1}, \dots, \zeta_{r}) - f_{j-n}(\alpha_{1}, \dots, \alpha_{n}) + \alpha_{j}, \\ j = n+1, \dots, n+s. \end{cases}$$

The Φ -image of $U(\alpha)$ is an *r*-dimensional complex submanifold of C^{n+s} containing α . Since $\sum_{j=1}^{s} |f_j(\alpha_1, \dots, \alpha_n) - \alpha_{n+j}|^2 = \varepsilon$, it is contained in S_{ε} . Hence the complex Hessian H_{α} evaluated at α has at least *r* zero eigenvalues with complex eigenvectors tangent to S_{ε} (see Wells [2], Lemma 2.5'). Thus, $H(\xi, \xi)_{\alpha}$ is non-negative for any tangent vector ξ to S_{ε} . Since *V* is a region of holomorphy in C^{n+s} , so is $G_{\varepsilon}(V)$. The lemma is proved.

A compact set F of C^n (or of C^{n+s}) is called an *H*-convex set in C^n (or in C^{n+s} resp.), if F is the intersection of regions of holomorphy containing F in C^n (or in C^{n+s} resp.). If U_1 is a region of holomorphy in U, then $U_1 \times C^s$ is a region of holomorphy in C^{n+s} . Therefore, we have

Corollary. If K is an H-convex compact seubset of U, then $K^* = \{(z_1, \dots, z_{n+s}) \in M; (z_1, \dots, z_n) \in K\}$ is H-convex in \mathbb{C}^{n+s} .

3. Holomorphic approximation on M

In this section, we suppose that f_1, \dots, f_s satisfy (1.2) and (1.3).

Lemma 3. Suppose g is a CR-function on M. Then for every positive integer N and for every relatively compact open subset U_0 of U, there exist a function $\tilde{g} \in C^{\infty}(U \times C^s)$ and a positive constant γ such that

A. Sakai

(i)
$$\tilde{g}|_{M} = g$$
, and
(ii) $\left| \frac{\partial g}{\partial \bar{z}_{\nu}}(z) \right| \leq \gamma \cdot d(z, M)^{N}, \quad z \in U_{0} \times \mathbb{C}^{s}, \quad \nu = 1, \dots, n+s,$
where $d(z, M)$ is the Euclidean distance in \mathbb{C}^{n+s} between z and M .

Proof. We consider the system of linear equations at every point of U

(3.1)
$$\sum_{j=1}^{s} h_{j} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}} = \frac{\partial g_{0}}{\partial \bar{z}_{\nu}}, \quad \nu = 1, \dots, s,$$

where g_0 is the function defined by (1.1). By (1.3), there exist the uniquely determined solutions $h_j(z_1, \dots, z_n)$, $j=1, \dots, s$. Since f_j and g_0 are of $H_r(U)$, so are h_j . We shall define the function h_j inductively for every multi-index $J=(j_1, \dots, j_k)$, $1 \le i_i \le s$. Suppose h_j is given in $H_r(U)$. Then h_{J_j} , $j=1, \dots, s$, will be defined as the solutions of the equations

(3.2)
$$\sum_{j=1}^{s} h_{J_j} \frac{\partial f_j}{\partial \bar{z}_{\nu}} = \frac{\partial h_J}{\partial \bar{z}_{\nu}}, \quad \nu = 1, \dots, s.$$

The condition (1.3) guarantees the existence of the solutions h_{J_i} in $H_r(U)$.

We shall prove that h_J are symmetric with respect to J. By differentiating each equation of (3.1) by \bar{z}_{μ} , we have

$$\sum_{j=1}^{s} \frac{\partial f_{j}}{\partial \, \bar{z}_{\nu}} \cdot \frac{\partial \, h_{j}}{\partial \, \bar{z}_{\mu}} = \frac{\partial^{2} g_{_{0}}}{\partial \, \bar{z}_{\nu} \partial \, \bar{z}_{\mu}} - \sum_{j=1}^{s} \frac{\partial^{2} f_{j}}{\partial \, \bar{z}_{\nu} \partial \, \bar{z}_{\mu}} \, h_{j} \, .$$

Since the right member is symmetric in ν and μ , we have

(3.3)
$$\sum_{j=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}} \cdot \frac{\partial h_{j}}{\partial \bar{z}_{\mu}} = \sum_{j=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\mu}} \cdot \frac{\partial h_{j}}{\partial \bar{z}_{\nu}}, \quad \nu, \mu = 1, \dots, s.$$

Substituting (3.2) for k=1 to (3.3), we obtain

$$\sum_{j=1}^{s} \left(\sum_{i=1}^{s} h_{ji} \frac{\partial f_{i}}{\partial \bar{z}_{\mu}} \right) \frac{\partial f_{j}}{\partial \bar{z}_{\nu}} = \sum_{j=1}^{s} \left(\sum_{i=1}^{s} h_{ji} \frac{\partial f_{i}}{\partial \bar{z}_{\nu}} \right) \frac{\partial f_{j}}{\partial \bar{z}_{\mu}}, \quad \nu, \ \mu = 1, \ \cdots, \ s \ ,$$

or equivalently

$$\sum_{i,j} (h_{ji} - h_{ij}) \frac{\partial f_j}{\partial \bar{z}_{\mu}} \cdot \frac{\partial f_i}{\partial \bar{z}_{\nu}} = 0, \quad \nu, \mu = 1, \dots, s.$$

By using (1.3), we can find that $h_{ji} = h_{ij}$ for every *i* and *j*.

General cases will be proved by induction. For simplicity, we write $J = (j_1, \dots, j_k)$, $I = (j_1, \dots, j_{i-1}, j_{i+1}, \dots, j_k)$, $i = j_i$ and $J' = (j_1, \dots, j_{i-1}, j, j_{i+1}, \dots, j_k)$. Since $h_{J'} = h_{I_j}$ and $h_J = h_{I_i}$ by assumption of induction, we have

36

UNIFORM ALGEBRA

$$\sum_{i=1}^{s} h_{J} \frac{\partial f_{i}}{\partial \bar{z}_{\nu}} = \frac{\partial h_{I}}{\partial \bar{z}_{\nu}} \text{ and } \sum_{j=1}^{s} h_{J'} \frac{\partial f_{j}}{\partial \bar{z}_{\mu}} = \frac{\partial h_{I}}{\partial \bar{z}_{\mu}}.$$

By differentiating the first identity by \bar{z}_{μ} and the second by \bar{z}_{ν} , we obtain

(3.4)
$$\sum_{i=1}^{s} \frac{\partial h_{J}}{\partial \bar{z}_{\mu}} \cdot \frac{\partial f_{i}}{\partial \bar{z}_{\nu}} = \sum_{j=1}^{s} \frac{\partial h_{J'}}{\partial \bar{z}_{\nu}} \cdot \frac{\partial f_{j}}{\partial \bar{z}_{\mu}}, \quad \nu, \mu = 1, \dots, s.$$

Substituting the equalities

$$\sum_{j=1}^{s} h_{Jj} \frac{\partial f_{j}}{\partial \bar{z}_{\mu}} = \frac{\partial h_{J}}{\partial \bar{z}_{\mu}} \text{ and } \sum_{i=1}^{s} h_{J'i} \frac{\partial f_{i}}{\partial \bar{z}_{\nu}} = \frac{\partial h_{J'}}{\partial \bar{z}_{\nu}}$$

to (3.4), we have

$$\sum_{i,j} (h_{J_j} - h_{J'_i}) \frac{\partial f_i}{\partial \bar{z}_{\nu}} \frac{\partial f_j}{\partial \bar{z}_{\mu}} = 0, \quad \nu, \mu = 1, \cdots, s.$$

By (1,3), we find that $h_{J_j} = h_{J'_i}$, which implies the symmetry of h_J for all J. Now we define \tilde{g} by

$$\tilde{g}(z_1, \dots, z_{n+s}) = g_0(z_1, \dots, z_n) + \sum_{k=1}^N \frac{1}{k!} \sum_{(j \dots j_k)} h_{j_1 \dots j_k}(z_1, \dots, z_n) (z_{n+j_1} - f_{j_1}(z_1, \dots, z_n)) \cdots (z_{n+j_k} - f_{j_k}(z_1, \dots, z_n)).$$

If $\nu = s+1, \dots, n+s$, we have $\frac{\partial \bar{g}}{\partial \bar{z}_{\nu}} \equiv 0$. For $\nu = 1, \dots, s$, we have

$$\frac{\partial \tilde{g}}{\partial \bar{z}_{\nu}} = \frac{1}{N!} \sum_{(j_1 \cdots j_N)} \frac{\partial h_{j_1 \cdots j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_1} - f_{j_1}(z_1, \cdots, z_n)) \cdots (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_1}}{\partial \bar{z}_{\nu}} (z_{n+j_1} - f_{j_1}(z_1, \cdots, z_n)) \cdots (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_1}}{\partial \bar{z}_{\nu}} (z_{n+j_1} - f_{j_1}(z_1, \cdots, z_n)) \cdots (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_1}}{\partial \bar{z}_{\nu}} (z_{n+j_1} - f_{j_1}(z_1, \cdots, z_n)) \cdots (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_1}}{\partial \bar{z}_{\nu}} (z_{n+j_1} - f_{j_1}(z_1, \cdots, z_n)) + \frac{\partial g_{j_1}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - f_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_N}(z_1, \cdots, z_n)) + \frac{\partial g_{j_N}}{\partial \bar{z}_{\nu}} (z_{n+j_N} - g_{j_$$

which proves the lemma.

We consider two uniform algebras on a compact subset K^* of M. $H(K^*)$ is the algebra of uniform limits on K^* of functions each holomorphic in a neighborhood (in C^{n+s}) of K^* . $CR(K^*)$ is the algebra of uniform limits on K^* of functions each of which is a CR-function on a neighborhood (in M) of K^* .

Suppose K^* is *H*-convex in \mathbb{C}^{n+s} . Let *g* be a *CR*-function on a neighborhood $M_1(\text{in } M)$ of K^* . We can find a region of holomorphy *V* such that $K^* \subset V$ and $\overline{V} \cap M \subset M_1$. We denote by *K* and U_0 the projections of K^* and $M_0 = V \cap M$ respectively by the map $(z_1, \dots, z_{n+s}) \to (z_1, \dots, z_n)$. Let *d* denote the distance between *K* and ∂U_0 . By the way of construction of $G_{\mathfrak{e}}(V)$ in Lemma 2, we can find a positive constant η such that, for every point z^0 of K^* , the ball $B_{\mathfrak{e}\eta}(z^0) = \{z \in \mathbb{C}^{n+s}; |z-z^0| \leq \mathfrak{E}\eta\}$ is contained in $G_{\mathfrak{e}}(V)$, whenever $\mathfrak{E} < d$. Therefore, by using Lemma 2 and Lemma 3 for N=n+1, and applying the same technique as one developed in [1], we obtain the following

A. Sakai

Theorem 1. If K^* is a compact subset of M which is H-convex in C^{n+s} , then we have $H(K^*)=CR(K^*)$.

4. Polynomial approximation.

We consider the following conditions for a compact subset K of C^n and for functions f_i of $C^{\infty}(C^n)$;

(a) f_1, \dots, f_s are of $H_r(U)$ for some open set U containing K,

(b) there exists a constant k, 0 < k < 1, such that

$$\sum_{j=1}^{s} |f_{j}(z+\xi)-f_{j}(z)-\xi_{j}|^{2} \leq k \sum_{j=1}^{s} |\xi_{j}|^{2}$$

holds for any z and $\xi = (\xi_1, \dots, \xi_s, 0, \dots, 0)$ in C^n , and

(c) for any vector $\alpha' = (\alpha_1, \dots, \alpha_s)$, $K \cap E_{\alpha'}$ is polynomially convex in $E_{\alpha'}$, where $E_{\alpha'}$ is the subspace $\{z \in C^n; z_j = \alpha_j, j = 1, \dots, s\}$ of C^n .

The condition (b) implies (1.3). In fact, we can find a constant k_1 , $0 < k_1 < 1$, such that

$$\sum_{j=1}^{s} |\sum_{\nu=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}} \bar{\xi}_{\nu} + \bar{\xi}_{j}|^{2} \leq k_{1} \sum_{j=1}^{s} |\xi_{j}|^{2},$$

and hence the system of linear equations

$$\sum_{\nu=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}} \bar{\xi}_{\nu} = 0, \quad j = 1, ..., s$$

has only trivial solution.

We consider two uniform algebras on K. A is the algebra of uniform limits on K of polynomials of $z_1, \dots, z_n, f_1(z), \dots, f_s(z)$. $H_r(K)$ is the algebra of uniform limits of functions each of which is holomorphic in z_{s+1}, \dots, z_n , in a neighborhood of K.

Theorem 2. Suppose the conditions (a), (b) and (c) are satisfied. Then we have $A=H_r(K)$.

Proof. We shall first prove that K^* is polynomially convex in \mathbb{C}^{n+s} . To do this, it is sufficient to show that the maximal ideal space of $P(K^*)$, the algebra of uniform limits of polynomials in z_1, \dots, z_{n+s} on K^* , ocincides with K^* , or equivalently that every complex homomorphism of A is a point evaluation for some point of K. Let φ be any complex homomorphism on A. Set $\alpha_j = \varphi(z_j), j = 1, \dots, n$, and $\alpha = (\alpha_1, \dots, \alpha_n)$. We consider the function

$$f(z) = \sum_{j=1}^{s} (z_j - \alpha_j) \left(f_j(z) - f_j(\alpha) \right).$$

Then f(z) is in A. By the condition (b), we have

38

UNIFORM ALGEBRA

$$\operatorname{Re} f(z) > 0 \quad \text{for } z \oplus E_{\alpha'}, \, \alpha' = (\alpha_1, \cdots, \alpha_s) \, .$$

Let *m* be a representing measure for φ of *A* supported on *K*. Then we have

$$0 = \operatorname{Re} \varphi(f) = \int \operatorname{Re} f \, dm \, .$$

Therefore, the support of *m* must be contained in $K \cap E_{\alpha'}$ and, in particular, $K \cap E_{\alpha'}$ is not empty.

Let h(z) be any polynomial of $z_1, \dots, z_n, f_1(z), \dots, f_s(z)$. For simplicity, we write $h_1(z_{s+1}, \dots, z_n) = h(\alpha_1, \dots, \alpha_s, z_{s+1}, \dots, z_n)$. Then we have

$$\begin{aligned} \varphi(h) &= \int h(z) \, dm(z) \\ &= \int h_1(z_{s+1}, \, \cdots, \, z_n) \, dm(z_{s+1}, \, \cdots, \, z_n) \, dm(z_{s+1$$

By the condition (a), h_1 is holomorphic in $U \cap E_{\alpha'}$. Since $K \cap E_{\alpha'}$ is polynomially convex, by Oka-Weil's theorem, h_1 is approximated uniformly on $K \cap E_{\alpha'}$ by polynomials of z_{s+1}, \dots, z_n . Since every polynomial of z_{s+1}, \dots, z_n is considered as a polynomials of z_1, \dots, z_n, φ can be considered as a complex homomorphism ψ of $P_0(K \cap E_{\alpha'})$, the algebra of uniform limits on $K \cap E_{\alpha'}$ of polynomials of z_{s+1}, \dots, z_n . Polynomial convexity of $K \cap E_{\alpha'}$ implies that ψ is a point evaluation at α . Therefore we have

$$\varphi(h) = \psi(h_1) = h_1(\alpha_{s+1}, \cdots, \alpha_n) = h(\alpha),$$

which proves the polynomial convexity of K^* .

By Oka-Weil's theorem, $H(K^*)$ coincides with $P(K^*)$. Since K^* is the intersection of polynomial polyhedra containing K^* , it is *H*-convex, and therefore we have $H(K^*)=CR(K^*)$ by Theorem 1. A is isomorphic to $P(K^*)$ and $H_r(K)$ to $CR(K^*)$. Since $A \subset H_r(K)$, we obtain $A=H_r(K)$.

OSAKA UNIVERSITY

References

- L. Hörmander and J. Wermer: Uniform approximation on compact sets in Cⁿ, Math. Scand. 23 (1968), 5-21.
- [2] R.O. Wells: Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245-262.