Sakai, A.

UNIFORM ALGEBRA GENERATED BY $z_{1}, \cdots, z_{n}, f_{1}(z), \ldots, f_{s}(z)$

Dedicated to Professor Yukinari Toki on his 60th birthday

Akira SAKAI

(Received November 29, 1973)

Introduction

Let \boldsymbol{C}^{n} be the complex Euclidean space with complex coordinates $z=$ $\left(z_{1}, \cdots, z_{n}\right)$ and K a compact subset of C^{n}. For any complex valued C^{∞}-functions f_{1}, \cdots, f_{s} defined on an open subset U of \boldsymbol{C}^{n} containing K, we shall consider the uniform algebra A consisting of uniform limits of polynomials of z_{1}, \cdots, z_{n}, f_{1}, \cdots, f_{s} on K.

Hörmander-Wermer [1] proved that, if $s=n$ and if each f_{j} is 'close' to \bar{z}_{j} in some sense, then A coincides with $C(K)$, the algebra of all complex valued continuous functions on K. In this paper, we shall deal with the case where $0<s<n$ and each f_{j} is holomorphic in z_{s+1}, \cdots, z_{n} near K. In Section 3, an approximation theorem on the graph of f_{1}, \cdots, f_{s} will be proved. In Section 4, we shall give a sufficient condition on f_{j} and K assuring that every function holomorphic in z_{s+1}, \cdots, z_{n} near K belongs to A.

1. The graph of $\boldsymbol{f}_{1}, \cdots, f_{s}$

Let f_{1}, \cdots, f_{s} be C^{∞}-functions defined on an open subset U of \boldsymbol{C}^{n}. The graph of f_{1}, \cdots, f_{s}

$$
M=\left\{\left(z_{1}, \cdots, z_{n}, f_{1}(z), \cdots, f_{s}(z)\right) \in \boldsymbol{C}^{n+s} ; z=\left(z_{1}, \cdots, z_{n}\right) \in U\right\}
$$

is a real $2 n$-dimensional submanifold of \boldsymbol{C}^{n+s}. If g is a C^{∞}-function on M, then the function g_{0} defined by

$$
\begin{equation*}
g_{0}\left(z_{1}, \cdots, z_{n}\right)=g\left(z_{1}, \cdots, z_{n}, f_{1}\left(z_{1}, \cdots, z_{n}\right), \cdots, f_{s}\left(z_{1}, \cdots, z_{n}\right)\right) \tag{1.1}
\end{equation*}
$$

is a C^{∞}-function on U.
We denote by $H_{r}(U), r=n-s$, the class of functions of $C^{\infty}(U)$ which are holomorphic in z_{s+1}, \cdots, z_{n}.

We shall now consider the following assumptions on f_{1}, \cdots, f_{s} :

$$
\begin{equation*}
f_{1}, \cdots, f_{s} \text { belong to } H_{r}(U), \text { and } \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial f_{j}}{\partial \bar{z}_{k}}\right)_{j, k=1, \ldots, s} \text { has no zeros on } U . \tag{1.3}
\end{equation*}
$$

These conditions imply that, for every point p of M, the dimension of maximal complex submanifold of \boldsymbol{C}^{n+s} through p contained in M is just r. It follows from the following lemma, which is easily proved by linear algebra.

Lemma 1. The complex tangent space of M at every point is of r-dimension if and only if

$$
\operatorname{rank}\left(\frac{\partial f_{j}}{\partial \bar{z}_{k}}\right)_{j=1, \cdots, s ; k=1, \cdots, n}=n-r
$$

holds at every point of U.
A C^{∞}-function on M which is holomorphic in complex coordinates of M is called a CR-function. (1.1) gives an isomorphism of $H_{r}(U)$ and the algebra of $C R$-functions on M.

2. Holomorphic convexity of \boldsymbol{M}

By a region of holomorphy we mean a disjoint sum of domains of holomorphy. We define

$$
\phi(z)=\sum_{j=1}^{s}\left|f_{j}\left(z_{1}, \cdots, z_{n}\right)-z_{n+j}\right|^{2}, \quad z \in U \times \boldsymbol{C}^{s}
$$

and

$$
G_{\varepsilon}(V)=\{z \in V ; \phi(z)<\varepsilon\},
$$

for any open subset V of $U \times \boldsymbol{C}^{s}$ and for any positive number ε.
Lemma 2. Suppose that f_{j} satisfy (1.2) and (1.3). Let V be a region of holomorphy in \boldsymbol{C}^{n+s} such that $\bar{V} \subset U \times \boldsymbol{C}^{s}$. Then there exists a positive number ε_{0} such that $G_{\varepsilon}(V)$ is a region of holomorphy in \boldsymbol{C}^{n+s} for any $\varepsilon, 0<\varepsilon<\varepsilon_{0}$.

Proof. We consider the complex Hessian form

$$
H(\xi, \xi)_{z}=\sum_{\nu, \mu=1}^{n+s} \frac{\partial^{2} \phi}{\partial z_{\nu} \partial \bar{z}_{\mu}}(z) \xi_{\nu} \xi_{\mu}, \quad z \in U \times \boldsymbol{C}^{s}
$$

Let $z=\left(z_{1}, \cdots, z_{n+s}\right)$ be any point of M and $z_{0}=\left(z_{1}, \cdots, z_{n}\right)$ the corresponding point in U. Then we have

$$
H(\xi, \xi)_{z}=\sum_{j=1}^{s}\left\{\left|\sum_{\nu=1}^{n} \frac{\partial f_{j}}{\partial z_{\nu}}\left(z_{0}\right) \xi_{\nu}-\xi_{n+j}\right|^{2}+\left|\sum_{\nu=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}}\left(z_{0}\right) \xi_{\nu}\right|^{2}\right\} .
$$

The right member can vanish only if

$$
\sum_{\nu=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{v}}\left(z_{0}\right) \xi_{v}=0 \quad \text { and } \quad \xi_{n+j}=\sum_{\nu=1}^{n} \frac{\partial f_{j}}{\partial z_{\nu}}\left(z_{0}\right) \xi_{v}, \quad j=1, \cdots, s .
$$

By (1.3), $H(\xi, \xi)_{z}$ can vanish only when ξ is a complex tangent vector of M at z :

$$
\xi=\left(0, \cdots, 0, \xi_{s+1}, \cdots, \xi_{n}, \sum_{\nu=s+1}^{n} \frac{\partial f_{1}}{\partial z_{\nu}}\left(z_{0}\right) \xi_{\nu}, \cdots, \sum_{\nu=s+1}^{n} \frac{\partial f_{s}}{\partial z_{\nu}}\left(z_{0}\right) \xi_{\nu}\right) .
$$

Therefore the matrix $H_{z}=\left(\frac{\partial^{2} \phi}{\partial z_{\nu} \partial \bar{z}_{\mu}}(z)\right)$ has $n+s-r$ non-zero eigenvalues for every point z of M. Let V_{1} be an open set such that $\bar{V} \subset V_{1} \subset \bar{V}_{1} \subset U \times \boldsymbol{C}^{s}$. By continuity of H_{z}, there exists a positive number ε_{0} such that H_{z} has at least $n+s-r$ non zero eigen values for every z in $G_{\varepsilon_{0}}\left(V_{1}\right)$.

Let S_{z} be the hypersurface $\left\{z \in V_{1} ; \phi(z)=\varepsilon\right\}$. Fix an arbitrary point $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n+s}\right)$ on S_{e}. We define a non-singular holomorphic map $z=\Phi(\zeta)$ of $U(\alpha)=\left\{\zeta \in \boldsymbol{C}^{r} ;\left(\alpha_{1}, \cdots, \alpha_{s}, \zeta_{1}, \cdots, \zeta_{r}\right) \in U\right\}$ into \boldsymbol{C}^{n+s} by

$$
\Phi_{j}(\zeta)= \begin{cases}\alpha_{j} & j=1, \cdots, s, \\ \zeta_{j-s} & j=s+1, \cdots, n, \\ f_{j-n}\left(\alpha_{1}, \cdots, \alpha_{s}, \zeta_{1}, \cdots, \zeta_{r}\right)-f_{j-n}\left(\alpha_{1}, \cdots, \alpha_{n}\right)+\alpha_{j} \\ & j=n+1, \cdots, n+s .\end{cases}
$$

The Φ-image of $U(\alpha)$ is an r-dimensional complex submanifold of \boldsymbol{C}^{n+s} containing α. Since $\sum_{j=1}^{s}\left|f_{j}\left(\alpha_{1}, \cdots, \alpha_{n}\right)-\alpha_{n+j}\right|^{2}=\varepsilon$, it is contained in S_{q}. Hence the complex Hessian H_{a} evaluated at α has at least r zero eigenvalues with complex eigenvectors tangent to S_{z} (see Wells [2], Lemma 2.5'). Thus, $H(\xi, \xi)_{\infty}$ is non-negative for any tangent vector ξ to S_{ε}. Since V is a region of holomorphy in C^{n+s}, so is $G_{\varepsilon}(V)$. The lemma is proved.

A compact set F of \boldsymbol{C}^{n} (or of \boldsymbol{C}^{n+s}) is called an H-convex set in \boldsymbol{C}^{n} (or in \boldsymbol{C}^{n+s} resp.), if F is the intersection of regions of holomorphy containing F in $\boldsymbol{C}^{\boldsymbol{n}}$ (or in \boldsymbol{C}^{n+s} resp.). If U_{1} is a region of holomorphy in U, then $U_{1} \times \boldsymbol{C}^{s}$ is a region of holomorphy in \boldsymbol{C}^{n+s}. Therefore, we have

Corollary. If K is an H-convex compact seubset of U, then $K^{*}=\left\{\left(z_{1}, \cdots, z_{n+s}\right)\right.$ $\left.\in M ;\left(z_{1}, \cdots, z_{n}\right) \in K\right\}$ is H-convex in \boldsymbol{C}^{n+s}.

3. Holomorphic approximation on M

In this section, we suppose that f_{1}, \cdots, f_{s} satisfy (1.2) and (1.3).
Lemma 3. Suppose g is a CR-function on M. Then for every positive integer N and for every relatively compact open subset U_{0} of U, there exist a function $\tilde{g} \in C^{\infty}\left(U \times \boldsymbol{C}^{s}\right)$ and a positive constant γ such that
(i) $\left.\tilde{g}\right|_{M}=g$, and
(ii) $\left|\frac{\partial g}{\partial \bar{z}_{v}}(z)\right| \leq \gamma \cdot d(z, M)^{N}, \quad z \in U_{0} \times C^{s}, \quad \nu=1, \cdots, n+s$,
where $d(z, M)$ is the Euclidean distance in C^{n+s} between z and M.
Proof. We consider the system of linear equations at every point of U

$$
\begin{equation*}
\sum_{j=1}^{s} h_{j} \frac{\partial f_{j}}{\partial \bar{z}_{v}}=\frac{\partial g_{0}}{\partial \bar{z}_{v}}, \quad \nu=1, \cdots, s, \tag{3.1}
\end{equation*}
$$

where g_{0} is the function defined by (1.1). By (1.3), there exist the uniquely determined solutions $h_{j}\left(z_{1}, \cdots, z_{n}\right), j=1, \cdots, s$. Since f_{j} and g_{0} are of $H_{r}(U)$, so are h_{j}. We shall define the function h_{J} inductively for every multi-index $J=\left(j_{1}, \cdots, j_{k}\right), 1 \leq i_{i} \leq s$. Suppose h_{J} is given in $H_{r}(U)$. Then $h_{J_{j}}, j=1, \cdots, s$, will be defined as the solutions of the equations

$$
\begin{equation*}
\sum_{j=1}^{s} h_{J_{j}} \frac{\partial f_{j}}{\partial \bar{z}_{v}}=\frac{\partial h_{J}}{\partial \bar{z}_{v}}, \quad \nu=1, \cdots, s . \tag{3.2}
\end{equation*}
$$

The condition (1.3) guarantees the existence of the solutions $h_{J_{j}}$ in $H_{r}(U)$.
We shall prove that h_{J} are symmetric with respect to J. By differentiating each equation of (3.1) by \bar{z}_{μ}, we have

$$
\sum_{j=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}} \cdot \frac{\partial h_{j}}{\partial \bar{z}_{\mu}}=\frac{\partial^{2} g_{0}}{\partial \bar{z}_{\nu} \partial \bar{z}_{\mu}}-\sum_{j=1}^{s} \frac{\partial^{2} f_{j}}{\partial \bar{z}_{\nu} \partial \bar{z}_{\mu}} h_{j} .
$$

Since the right member is symmetric in ν and μ, we have

$$
\begin{equation*}
\sum_{j=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\nu}} \cdot \frac{\partial h_{j}}{\partial \bar{z}_{\mu}}=\sum_{j=1}^{s} \frac{\partial f_{j}}{\partial \bar{z}_{\mu}} \cdot \frac{\partial h_{j}}{\partial \bar{z}_{\nu}}, \quad \nu, \mu=1, \cdots, s . \tag{3.3}
\end{equation*}
$$

Substituting (3.2) for $k=1$ to (3.3), we obtain

$$
\sum_{j=1}^{s}\left(\sum_{i=1}^{s} h_{j i} \frac{\partial f_{i}}{\partial \bar{z}_{\mu}}\right) \frac{\partial f_{j}}{\partial \bar{z}_{\nu}}=\sum_{j=1}^{s}\left(\sum_{i=1}^{s} h_{j i} \frac{\partial f_{i}}{\partial \bar{z}_{\nu}}\right) \frac{\partial f_{j}}{\partial \bar{z}_{\mu}}, \quad \nu, \mu=1, \cdots, s,
$$

or equivalently

$$
\sum_{i, j}\left(h_{j i}-h_{i j}\right) \frac{\partial f_{j}}{\partial \bar{z}_{\mu}} \cdot \frac{\partial f_{i}}{\partial \bar{z}_{v}}=0, \quad \nu, \mu=1, \cdots, s .
$$

By using (1.3), we can find that $h_{j i}=h_{i j}$ for every i and j.
General cases will be proved by induction. For simplicity, we write $J=$ $\left(j_{1}, \cdots, j_{k}\right), I=\left(j_{1}, \cdots, j_{i-1}, j_{i+1}, \cdots, j_{k}\right), i=j_{i}$ and $J^{\prime}=\left(j_{1}, \cdots, j_{i-1}, j, j_{i+1}, \cdots, j_{k}\right)$. Since $h_{J^{\prime}}=h_{I_{j}}$ and $h_{J}=h_{I i}$ by assumption of induction, we have

$$
\sum_{i=1}^{s} h_{J} \frac{\partial f_{i}}{\partial \bar{z}_{\nu}}=\frac{\partial h_{I}}{\partial \bar{z}_{\nu}} \text { and } \sum_{j=1}^{s} h_{J^{\prime}} \frac{\partial f_{j}}{\partial \bar{z}_{\mu}}=\frac{\partial h_{I}}{\partial \bar{z}_{\mu}} .
$$

By differentiating the first identity by \bar{z}_{μ} and the second by \bar{z}_{ν}, we obtain

$$
\begin{equation*}
\sum_{i=1}^{s} \frac{\partial h_{J}}{\partial \bar{z}_{\mu}} \cdot \frac{\partial f_{i}}{\partial \bar{z}_{\nu}}=\sum_{j=1}^{s} \frac{\partial h_{J^{\prime}}}{\partial \bar{z}_{\nu}} \cdot \frac{\partial f_{j}}{\partial \bar{z}_{\mu}}, \quad \nu, \mu=1, \cdots, s . \tag{3.4}
\end{equation*}
$$

Substituting the equalities

$$
\sum_{j=1}^{s} h_{J j} \frac{\partial f_{j}}{\partial \bar{z}_{\mu}}=\frac{\partial h_{J}}{\partial \bar{z}_{\mu}} \text { and } \sum_{i=1}^{s} h_{J^{\prime} i} \frac{\partial f_{i}}{\partial \bar{z}_{\nu}}=\frac{\partial h_{J^{\prime}}}{\partial \bar{z}_{\nu}}
$$

to (3.4), we have

$$
\sum_{i, j}\left(h_{J_{j}}-h_{J^{\prime} i}\right) \frac{\partial f_{i}}{\partial \bar{z}_{\nu}} \frac{\partial f_{j}}{\partial \bar{z}_{\mu}}=0, \quad \nu, \mu=1, \cdots, s .
$$

By (1,3), we find that $h_{J_{j}}=h_{J^{\prime} i}$, which implies the symmetry of h_{J} for all J. Now we define \tilde{g} by

$$
\begin{aligned}
& \tilde{g}\left(z_{1}, \cdots, z_{n+s}\right)=g_{0}\left(z_{1}, \cdots, z_{n}\right) \\
& +\sum_{k=1}^{N} \frac{1}{k!} \sum_{\left(j \cdots j_{k}\right)} h_{j_{1} \cdots j_{k}}\left(z_{1}, \cdots, z_{n}\right)\left(z_{n+j_{1}}-f_{j_{1}}\left(z_{1}, \cdots, z_{n}\right)\right) \cdots\left(z_{n+j_{k}}-f_{j_{k}}\left(z_{1}, \cdots, z_{n}\right)\right) .
\end{aligned}
$$

If $\nu=s+1, \cdots, n+s$, we have $\frac{\partial \tilde{g}}{\partial \bar{z}_{\nu}} \equiv 0$. For $\nu=1, \cdots, s$, we have

$$
\frac{\partial \tilde{g}}{\partial \bar{z}_{\nu}}=\frac{1}{N!\left(j_{1} \cdots j_{N}\right)} \sum_{\partial h_{j_{1} \cdots j_{N}}}^{\partial \bar{z}_{\nu}}\left(z_{n+j_{1}}-f_{j_{1}}\left(z_{1}, \cdots, z_{n}\right)\right) \cdots\left(z_{n+j_{N}}-f_{j_{N}}\left(z_{1}, \cdots, z_{n}\right)\right)
$$

which proves the lemma.
We consider two uniform algebras on a compact subset K^{*} of $M . H\left(K^{*}\right)$ is the algebra of uniform limits on K^{*} of functions each holomorphic in a neighborhood (in \boldsymbol{C}^{n+s}) of $K^{*} . ~ C R\left(K^{*}\right)$ is the algebra of uniform limits on K^{*} of functions each of which is a $C R$-function on a neighborhood (in M) of K^{*}.

Suppose K^{*} is H-convex in C^{n+s}. Let g be a $C R$-function on a neighborhood $M_{1}($ in $M)$ of K^{*}. We can find a region of holomorphy V such that $K^{*} \subset V$ and $\bar{V} \cap M \subset M_{1}$. We denote by K and U_{0} the projections of K^{*} and $M_{0}=V \cap M$ respectively by the map $\left(z_{1}, \cdots, z_{n+s}\right) \rightarrow\left(z_{1}, \cdots, z_{n}\right)$. Let d denote the distance between K and ∂U_{0}. By the way of construction of $G_{8}(V)$ in Lemma 2, we can find a positive constant η such that, for every point z^{0} of K^{*}, the ball $B_{\varepsilon \eta}\left(z^{0}\right)=\left\{z \in \boldsymbol{C}^{n+s} ;\left|z-z^{0}\right| \leq \varepsilon \eta\right\}$ is contained in $G_{\varepsilon}(V)$, whenever $\varepsilon<d$. Therefore, by using Lemma 2 and Lemma 3 for $N=n+1$, and applying the same technique as one developed in [1], we obtain the following

Theorem 1. If K^{*} is a compact subset of M which is H-convex in \boldsymbol{C}^{n+s}, then we have $H\left(K^{*}\right)=C R\left(K^{*}\right)$.

4. Polynomial approximation.

We consider the following conditions for a compact subset K of $\boldsymbol{C}^{\boldsymbol{n}}$ and for functions f_{j} of $C^{\infty}\left(\boldsymbol{C}^{n}\right)$;
(a) f_{1}, \cdots, f_{s} are of $H_{r}(U)$ for some open set U containing K,
(b) there exists a constant $k, 0<k<1$, such that

$$
\sum_{j=1}^{s}\left|f_{j}(z+\xi)-f_{j}(z)-\xi_{j}\right|^{2} \leq k \sum_{j=1}^{s}\left|\xi_{j}\right|^{2}
$$

holds for any z and $\xi=\left(\xi_{1}, \cdots, \xi_{s}, 0, \cdots, 0\right)$ in $\boldsymbol{C}^{\boldsymbol{n}}$, and
(c) for any vector $\alpha^{\prime}=\left(\alpha_{1}, \cdots, \alpha_{s}\right), K \cap E_{\alpha^{\prime}}$ is polynomially convex in $E_{a^{\prime}}$, where $E_{a^{\prime}}$ is the subspace $\left\{z \in \boldsymbol{C}^{n} ; z_{j}=\alpha_{j}, j=1, \cdots, s\right\}$ of \boldsymbol{C}^{n}.

The condition (b) implies (1.3). In fact, we can find a constant k_{1}, $0<k_{1}<1$, such that

$$
\sum_{j=1}^{s} \left\lvert\, \sum_{v=1}^{s} \frac{\partial f_{j} \xi_{\nu}+\left.\xi_{j}\right|^{2} \leq k_{1} \sum_{j=1}^{s}\left|\xi_{j}\right|^{2}, ~, ~}{\partial}\right.
$$

and hence the system of linear equations

$$
\sum_{v=1}^{s} \frac{\partial f_{j} \xi_{v}=0, \quad j=1, \cdots, s}{\partial \bar{z}_{v}}
$$

has only trivial solution.
We consider two uniform algebras on K. A is the algebra of uniform limits on K of polynomials of $z_{1}, \cdots, z_{n}, f_{1}(z), \cdots, f_{s}(z) . \quad H_{r}(K)$ is the algebra of uniform limits of functions each of which is holomorphic in z_{s+1}, \cdots, z_{n}, in a neighborhood of K.

Theorem 2. Suppose the conditions (a), (b) and (c) are satisfied. Then we have $A=H_{r}(K)$.

Proof. We shall first prove that K^{*} is polynomially convex in \boldsymbol{C}^{n+s}. To do this, it is sufficient to show that the maximal ideal space of $P\left(K^{*}\right)$, the algebra of uniform limits of polynomials in z_{1}, \cdots, z_{n+s} on K^{*}, ocincides with K^{*}, or equivalently that every complex homomorphism of A is a point evaluation for some point of K. Let φ be any complex homomorphism on A. Set $\alpha_{j}=\varphi\left(z_{j}\right), j=1, \cdots, n$, and $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. We consider the function

$$
f(z)=\sum_{j=1}^{s}\left(z_{j}-\alpha_{j}\right)\left(f_{j}(z)-f_{j}(\alpha)\right) .
$$

Then $f(z)$ is in A. By the condition (b), we have

$$
\operatorname{Re} f(z)>0 \quad \text { for } z \notin E_{\alpha^{\prime}}, \alpha^{\prime}=\left(\alpha_{1}, \cdots, \alpha_{s}\right)
$$

Let m be a representing measure for φ of A supported on K. Then we have

$$
0=\operatorname{Re} \varphi(f)=\int \operatorname{Re} f d m
$$

Therefore, the support of m must be contained in $K \cap E_{a^{\prime}}$ and, in particular, $K \cap E_{a^{\prime}}$ is not empty.

Let $h(z)$ be any polynomial of $z_{1}, \cdots, z_{n}, f_{1}(z), \cdots, f_{s}(z)$. For simplicity, we write $h_{1}\left(z_{s+1}, \cdots, z_{n}\right)=h\left(\alpha_{1}, \cdots, \alpha_{s}, z_{s+1}, \cdots, z_{n}\right)$. Then we have

$$
\begin{aligned}
\varphi(h) & =\int h(z) d m(z) \\
& =\int h_{1}\left(z_{s+1}, \cdots, z_{n}\right) d m\left(z_{s+1}, \cdots, z_{n}\right)
\end{aligned}
$$

By the condition (a), h_{1} is holomorphic in $U \cap E_{a^{\prime}}$. Since $K \cap E_{a^{\prime}}$ is polynomially convex, by Oka-Weil's theorem, h_{1} is approximated uniformly on $K \cap E_{a^{\prime}}$ by polynomials of z_{s+1}, \cdots, z_{n}. Since every polynomial of z_{s+1}, \cdots, z_{n} is considered as a polynomials of $z_{1}, \cdots, z_{n}, \varphi$ can be considered as a complex homomorphism ψ of $P_{0}\left(K \cap E_{a^{\prime}}\right)$, the algebra of uniform limits on $K \cap E_{a^{\prime}}$ of polynomials of z_{s+1}, \cdots, z_{n}. Polynomial convexity of $K \cap E_{a^{\prime}}$ implies that ψ is a point evaluation at α. Therefore we have

$$
\varphi(h)=\psi\left(h_{1}\right)=h_{1}\left(\alpha_{s+1}, \cdots, \alpha_{n}\right)=h(\alpha),
$$

which proves the polynomial convexity of K^{*}.
By Oka-Weil's theorem, $H\left(K^{*}\right)$ coincides with $P\left(K^{*}\right)$. Since K^{*} is the intersection of polynomial polyhedra containing K^{*}, it is H-convex, and therefore we have $H\left(K^{*}\right)=C R\left(K^{*}\right)$ by Theorem 1. A is isomorphic to $P\left(K^{*}\right)$ and $H_{r}(K)$ to $C R\left(K^{*}\right)$. Since $A \subset H_{r}(K)$, we obtain $A=H_{r}(K)$.

Osaka University

References

[1] L. Hörmander and J. Wermer: Uniform approximation on compact sets in \boldsymbol{C}^{n}, Math. Scand. 23 (1968), 5-21.
[2] R.O. Wells: Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245-262.

