Yamamoto, K.
Osaka J. Math.
11 (1974), 637-651

REGULARITY THEOREMS OF BOUNDARY VALUE
PROBLEMS FOR FIRST ORDER SYSTEMS

Kazuairo YAMAMOTO

(Received October 5, 1973)

1. Introduction

In this article, we consider the regularity theorems of weak solutions to boun-
dary value problems for first order systems of partial differential equations which
satisfy some L* a priori inequality. Let L be a first order system of partial
differential operators

L=Lx D) = 3 4,(®)D;+4yx), Dy=—v/~1 b%
= 7

with smooth pXp matrix coefficients, which are defined in a domain QcR"
having the smooth, compact boundary I We write the formal adjoint of L

L¥*v= L=, Dyo= 3] D(A(x)0)+ A¥(x)e(x),
where A% is the conjugate transpose of A;(x), j=0, ::-,#n. Throughout this
paper we assume that I' is non-characteristic for L, i.e., for the exterior unit
normal vector »(x) on T, the matrix B(x):ﬁ A (x)v,(x) is non-singular on T.
We associate with L the following two function spaces
B = {u(x)e C~(Q)NH,(Q); M(x)u(x) = 0on T},
B* = {v(x)eC~(Q)N H,(Q); M*B*v = B*von T} .
Here the boundary operator M(x) is a p X p idempotent matrix (i.e. M?*(x)=M(x)
on I'), B* is the conjugate transpose of B(x) and H,(Q) is a Sobolev space
defined in §2.
We shall call u L*(Q) a weak solution of inhomogeneous boundary value

problem, Lu=f in Q, Mu=g on T, if there exists f€L*(Q) and geL*(T)N
Range M such that

(u, L*0) = (f, v)+i<Bg, v, vEB*

where ( , ), <, > are L*(Q), LT inner products respectively. Under this situa-
tion, we suppose the following inequality (P. 1) holds
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(P' 1) 9”7’”%,93 ”Lv”%,n‘}‘cq”v”g-l,g ’ veB,
here [|||; o is a suitable Sobolev norm over Q defined in §2.

Theorem 1. Let r be a given non-negative integer. Let u be a weak solution
of Lu=f and Mu=g with fcH,Q), g&H,.;(T). Furthermore we assume that
(P. 1) is valid with sufficiently large positive q and some constant C, (how large q
must be depends on r, certain derivatives of the coefficients A (x), j=1, ---, n, and
M(x) but not on u, f and g). Then u belongs to H ().

Remarks. 1. If the stronger estimate
gllwll§ o=<11Lew|[§ o+ CollwlZy o +<Mwir,  weC™(Q)NH\(Q)

holds, then this estimate implies (P. 1), so Theorem 1 holds in this case. Here
{+>, r indicates the Sobolev norm over I" defined in §2.

2. It is well known that if a matrix M is idempotent then the trace of M
is equal to the rank of M. Thus our matrix M(x) is of constant rank over T
But we do not need this fact.

We suppose the following another estimate (P. 2) holds

(P.2) gkl o= Lol o+ CollolZa o +< MY,  vEC™(Q)NH(Q).
In this case, we obtain the following regularity theorem.

Theorem 2. Let r be a positive integer. Let u be a weak solution of
Lu=f and Mu=g with f € H,(Q), g €H(T"). Suppose that the inequality (P. 2)
holds with a sufficiently large number q (compared with derivatives of order <r of
the leading coefficients of L and M). Then the vector u belongs to H,(Q).

D.S. Tartakoff [6] considered the regularity theorems under the same
situation. He obtains the same theorems. However, in the second theorem
case he assumes (P. 2) and the dual estimate of (P. 1). Using a mollifier method,
he first obtains the regularity theorem of homogeneous boundary value problem
(i.e. g=0) supposing the inequality (P.1). In the inhomogeneous case, he
applies the regularity and existence theorems of homogenous case and the
technique of functional analysis. But our method is a more unified one.

To verify the theorems, we use the function space H,, (R%) described in
[3]. Since T is non-characteristic for L, the trace #| on T of the weak solution
u has a meaning in the distribution sence, and Mu| coincides with the date
g as a distribution on T". By the transformation from a part of © near each
boundary point of  to some neighbourhood w of the origin in R?, the inequality
(P. 1) implies the following inequality,

(P.1) qllelB<ClLw|i+C/lwlf .4+ C<Mw)}, weCs(RiNw).
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Thus, Theorm 1 and 2 will be proved by the same method, using the mollifier
technique. K. Kubota [5] suggests the use of the function space mentioned
above and its trace theorem, which is essential in our proof.

As an application we mention that (P. 1) is valid with given sufficiently large
q for positive symmetrizable systems in the sense of Friedrichs and Lax [1], [2].
Hormander [4] and others consider ‘“‘subelliptic” case and obtain hypoellipticity
results. Our estimate (P. 1) is weaker than subelliptic estimate, so our result gives
an extension of subelliptic case in a certain sense.

For the higher order single equations with normal boundary operators, we
can also prove the analogous regularity theorems.

The author heartly thanks to Professor T. Shirota and Mr. K. Kubota for
helpful discussions.

2. Analytic preliminaries

a) Function spaces and families of norms.
We use some function spaces which are slight modifications of L. Hor-
mander’s [3].

DEerFINITION 2.1.
1) For real s and 6 (0, 1], we define H 5(R") as the completion of C§(R")
under the norm

lullt, = @) L@ 151+ L£17) 21+ 1 8819,
where 7(£) denotes the Fourier transform
weE) = s e <"y (x)dx .

When 8=1, we write merely H, ,,(R")=H(R") and ||u]| ,,=]lull,.

ii) For real s and 8§=(0, 1], by H, 5(2) we mean the set of all uc 9'(Q)
such that there exists U€ H , »(R") with U=u in 9'(Q). The norm of H, ()
is defined by

”u”<S,s) = inf ”U”<s,8) ’

the infimum being taken over all such U. Similarly, H, ,(Q)=H|(Q), |lull.»
=]lull;.

iii) For real m, s and 8§ (0, 1], we define H,,  5(R") as the completion of
C5(R”™) under the norm

el cs,80 = (Zn)"”s [aE) (14 1E1%)"(1+ | & 17) (14| 87| *)*dE

where £’ is the co-variable of &'=(x,, -+, x,,_,).
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iv) For real, m, s and §&(0, 1], by H, ¢ »(R") we mean the set of all
u= 9)'(R%) such that there exists a distribution U e H,, ., 5»(R") with U=u in
R®. Here R"={x; x,>0}, R"={x; x,>0}. The norm of u is defined by

el s, cs,0 = inf ”U”m,(s,S) ’

the infimum being taken over all such U. For simplicity, we write H,, ., ,(R?%)
Hm,s(Rﬁ) and ”u”m,(s,l)=“u”m,s'

In the following, we state several properties of these norms and spaces,
whose the greater part are described in chapter II of [3].

To prove our regularity theorms, we must consider that the norms of
H¢, 5(R") and H,, »(R%) are invariant under the C=-local transformations.
Let Qy, Oy be bounded open sets in R, Y=(y,, -**,¥,) be a diffeomorphism
from Qx to Qy and X be the inverse transformation.

Proposition 2.1.

i) Let K be a given compact subset of Qx. For real s, there exists C, such
that if supp u C K, u(x) belongs to H(R"), then 6(y)=u(X(y)) also belongs to H (R")
and

@)l =Cllu@llp  for 0<8<1.

—6—_8.. for i=n or j=n, and K is a compact subset of Qyx,
x

o) J
then for a non-negatwe integar m and a real number s, there exists C,, . such that if

w(x)E H,, ;. s(R?) and supp uc K, then #(y)=u(X(y)) € H,, ., »(R") and
”ﬂ(y)”m,(s,mgCm,s”u(x)”m,fs,S) ’ for 0<8§ 1 .
Here C; and C,, ; are independent of 3.

The proof of i) is denoted in D.S. Tartakoff [6]. By Proposition 2.7 stated
below, a similar fact holds for ||u||,, ¢; 5-

Proposition 2.2.
i) u(x)eH\(R") iff u(x)= H(R") and sup [foe] e, < o0

ii) For a non-negative integer s, u(x) Hy(Q) iff D*ucs L*(Q) for |a| <s.
Proposition 2.3. The subspace C(R%) is dense set in H,,, ., »(R%).

Proposition 2.4. In order that H,,, ., 8,(1-3-"1)ch2,(52,5>(1?’1), it is mecessary
and sufficient that m,<m, and m,+s,<m,+s,.

Proposition 2.5. In order that uc H,, ¢, 5(R%) #ff u€ Hpy o11,0(RY) and
DucH,,, »(R%). Moreover

Cillul I'rzn,(s,S) =D u Irzn—l,(s,8)+ | lu“12n—-1,(s+1,8)
=Cllullm s, usH, ;»(R%).
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Proposition 2.6. If m and s are non-negative integers, the space H,, (R%)
consists of all us L*(R%) such that D*ucs L (RY) when |a| =s+m and a,=m.
For the norm we have the etimate

Clllfh = 30 ID*uB<Ilhe,  weHy, ()
@<

where C, is a positive constant, depending on s and m but not on u.
Proposition 2.7. If m is a non-negative integer, the space H,, . »(R")
consists of all ue 9'(R%) such that Dig, is a measurable function when j <m and

312y || 1D2sE, )11 112 m (14 | 88 [7)ddg <o

The left-hand side is a norm equivalent to ||ul|3 s, where #,(E, x,) denotes a
partial Fourier transform

&, x,) = Su(x’, x,)e i< > gy |
Proposition 2.8. Let m be a non-negative integer, then u €H,, ..,(R")
iff u(x) € H, o(RY) and “gp el | s s, < 0.
Proposition 2.9. If m and j are integers, 0= j<m, the mapping
Cs(RY)eu — Diu(-, x,)

can for fixed x ,=0 be extended in one and only one way to a continuous mapping
of H,, . »(R%) into H s pm_ ;3 5(R"") with the following inequality

HD,{u(-, xn)||(s+m—j—i,s)§ HuHm,(s,E) .

Proposition 2.10. For an arbitrary non-negative integer m and f,&
Himp-rp(R*Y), k=0, -, 1, there exists a function uwe H,, »(R%Y) with
D}u(-, 0)=f, k=0, ---,m—1 and

m—1
”u”m,(s.s)é C ? <fk><s+m-k—i,8) .

Where if the f, belongs to S(R*™*) (k=0, ---, m—1) the choice of u is independent
of m, s and C is not dependent on 8 and f, (k=0, ---, m—1).

ReMARK. For the proof in L. Hormander [3] (Theorem 2.5.7), if
feCF(Q) k=0, ---, m—1, then we can choose u such that Cg(Q), where Q is a
bounded open set in R*' and Q is an open set with QN {x,=0}=0. For

by the following proposition we can cut the function # outside a neighbourhood
of O in R™.
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Proposition 2.11. If ucH, . »(R") and acS(R"), it follows that
auc H,, . »(R%) and

||au||m,<s,s)§C“u“m,(s,s) .

When T is a C~ compact, n—1 dimensional surface without boundary in
R”, we may also define H »(T). Let {Q,};,_, ..~ be an open covering of the
neighbourhood of T, {yr;'},_, ..y be a diffeomorphism defined on Q; such
that Q; N T is mapped on an open set of R*™*. Let {\;},_, .. x be the partition
of unity subordinated to {Q;},., .. ny. We mean by ueH s(T") that (A u)ov;

N
€H, ;(R*") i=1, ---, N and denote X}||(A )0y |l3,» by <uis 5. We remark

that different choices of {Q,} and {A;} will yield equivalent norms.
b) Mollifier.

DErFINITION 2.2.
i) Let XeCg(R") and assume that for some integer k=0

X(E) = 0(IE]%)  asE—0,
but that ﬁ(t&)zO for all real ¢ implies £=0 if £¢=R”, then the family J={J.}
of operators, defined for 0<E<1 by
(Je)(*) = (Xeru)(x) ,  Xo(x) = E7"X(x[€), uED'(R7)

is called a full mollifier of type k with kernel X(x).
if) Let X'(x)eC5(R"") satisfy the corresponding conditions required of
X(x) in i). If we define for 0<€<1 and p=C~(R")

(0 d)($) = | X/l O)dv
then evidently X,'dx’ belongs to &'(R") and a family J'={ J,'} with J,'u=X,"dx"+u
is called a tangential mollifier of type & with kernel X'(x’).

Proposition 2.12.

i) Let J be a full mollifier of type k with kernel X(x) and let s, p be real
numbers with s<<k. Then there exist positive constants C, and C, independent of &
and u such that

1
CullulBgrpms. 1 Jeull3E-2 (1816 defet Il -,
=CllullZs p-1,0 » u€H,,, (R").

ii) Let ]’ be a tangential mollifier of type k with kernel X'(x’) and let m be a
non-negative interger and s, p be real numbers with k>s. Then there exist positive
constants C, and C, independent of & and u such that
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Cillulls st p-1,0= So 1S ullm, 5€72 (14 8[€7) 7 dE[E+|[ul |7 o4 -1
= Collullm st p-1,00 5 uEHm,sw—l(E’i) .

Proof. i) can be proved by applying Theorem 2.4.1 [3] (p=0) to the inverse
Fourier transform of (14 |&|%)?/*4(€). In the case ii) applying above i) and
Proposition 2.7, let us replace # by the inverse partial Fourier transform of
(L | 19) 525 DI, 3) (0= <m).

Proposition 2.13.

i) Let ac S(R") and ] be a full mollifier of type k with kernel X(x) and let
s, p be arbitrary real numbers with k>s. Then there exists a positive constant C
independent of & and u such that

1
Soll[a, Jelullze(1+8°€*)"de[e < Cllull%es p-200 »
for alluc H,, ,_(R").

il) Let us replace | in i) by ]’ and let m be a non-negative integer. Then
there exists a positive constant C independent of & and u such that

SOH [a, JTullm, € (14-8°/€%) *de[E S Cllullfs ot p-2,8> »
for alluc H,, ., ,_(R%).

Here the commutator [a, J,] means aJ,.— J.a.

Proof. i) The proof for p=0 is given in L. Hoérmander [3] (Theorem
2.4.2). For arbitrary p, let A? be a pseudo-differential opeator such that

/N o
APu(g) = (1+ [EI*)a(E) .
We remark that the operator A? commutes with J, and
lllcs, = [IAPullco,5 uEHep 5(R") .

since A[a, JJ=[A%, al].+[a, JJA*+] fa, A7),
(LN, Julize==(1+ 86 defe

IA*[a, JoJullse*(14-8%/€%) " de[€
I[A?, a] J.ull3e~(1+8&%)dele

+\ llla, JJA?ull§e~*(1+8°/€%)* defe

+\ I Je[a, A?ull3e~**(1+8%/%)"d¢le.

)
)
|
)
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Here the commutator [a, A?] is of order p—1. Hence in view of Proposition
2.12 and Theorem 2.4.2 of L. Hérmander [3], we obtain following inequalities,

fLr2, @l Tule-(1-+5e") dsje

<C [ I ulloer (1486 dEfE< CllulF pms
(e, 1A ullse=(1486) " dele < ClIAPUIE, % Cllul v s
(L1171, A%Jullze==(1+8e) defe= Cllla, AZIulll, Sl psmar

The proof is complete.
ii) By Proposition 2.7, ||[a, J,'Jull% » is equivalent to

f_é(Zn)“" ﬁ: | Di[a, J/T0)ME, %)X+ |E'| )™ 277 dE’ dx,,
and

j
£=0

Di((a, J/1) = 33 (] ) (D2, J/IDE M)
For fixed x,=0, we have only to estimate the following

glll[D,’:a, JI1Di *u(e, xu)llmsp- ;€7 *(14-8%/€%) *de/€

=C| ID,{"’u( i) xn)“?m+1’+s—i—2,8)

= C’HD,’,"’u(- ’ xn)”?m+p+s—<i—k)—z,s) ’

since once this is established the desired inequality is obtained after integration
with respect to x, and using Fubini’s theorem.

3. The proof of theorems

In order to prove Theorem 1 and 2, we make use of a special open covering
{U;},.....n of Q, such that
i) U,cQand U;NT=*¢ (j=1, -+, N)

if) 'The matrix B(x) is non-singular in ,QU P

iii) There exists a diffeomorphism a7* from U, (j #0) to some neighbo-
urhood of the origin in R* such that a3"|ray; is also the diffeomorphism to
some neighbourhood of the origin in R*"'. Furthermore for all x& U}, y,, which
is n-th component of aj'(x), is equal tozdistance (x, I') where if x=Q then
ya.=dist(x, T') and if x= CQ then y,= —dist(x, T").

Lemma 3.1. Let the vector valued functions u(x) and Lu(x) belong to L*().
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Then for an arbitrary o= C3(U;) (j=+0), (pu)oct; belongs to H, _,(R%).

Proof. From the assumption L(pu)=f € L*(2), and L is represented by the
transformation «3* in the following form

BODa+ 2 Ey)Dat-Ei(3),

where (3(y) is non-singular in a neighbourhood of {y,=0} which is denoted by
Im a3'. Hence

BO)DA(pw)a)) = foa;— 3 ()l (pw)oa)— Efy)(@w)oay)

From Proposition 2.7 and 2.11, the right hand side of the above equality belongs
to H, _,(R%). Thus we obtain the lemma by Proposition 2.5 with §=1.

Lemma 3.2. Let the vector valued functions u(x) and Lu(x) be in L*(Q) and
supp ucQNU; (j=*0). Then

(4 L¥0) = (Lu, ©)+i<Bu, 09, 2 C~(T) .
By Lemma 3.1 and Proposition 2.9, we may consider that u(x) belongs to H_,;,(T).

Proof. From Lemma 3.1, u oe; is an element of H, _(R%). Hence, there
exists a sequence {7} C C;’,"(E'L) such that {v,} converges to uoq; in the topology
of H, _(R%). Let a function ¢ be an element of Cg(R”"), such that supp o C U;
and is equal to 1 in supp(uoar;). By Proposition 2.11,

”¢vk‘_u°aj”x, -1 = “¢(7)k_u°aj)”1,—1
= C”'Uk_u°a]”1, -1
Therefore the sequence {@v,} also converges to uoq; in the topology of
H, _(R%). Clearly, it follows from Proposition 2.4 that {pv,} converges to
uoa; in the topology of L*(R%). Now, it we set u,=(@v;)oas’, then u, is an
element of C~(0) and {u,} converges to u in the topology of L*(Q). On the
other hand, by Proposition 2.9 and by the fact that u4oar; converges to ucq; in
the topology of H, _,(R%), we conclude that uzoq;—>uoq; in the topology of
H_yR""). This shows that u,—u in the topology of H_iT') by deffinition.
Now

(L(ux—u), v)o = (L(tx—u))oct;, J (voet;))ws »
where [ is the Jacobian of transformation a3'. Hence
| (L(ux—u), v)al = [(L(us—u))oat;llo, -1l J(woetj)lo,s
= Cllugoo;—uoatjlly, -, -
This shows that (Lu, v)g — (Lu, v)q. We obtain, by using Green’s formula, the
equality
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(ug, L¥0) = (Luy, v)+i{Bu, v>, veC=(Q).
When £ —co in the above equality we obtain
(u, L*v) = (Lu, v)+1<{Bu, v> .

Lemma 3.3. Let {\;},, .. n be a partition of unity subordinated to an open
covering {U;};, ... n, and let the vector-valued function u(x) be a weak solution of
the boundary value problem Lu=f, Mu=g. Then

M(rju) = ;g in D(T) (j=*0).

Proof. If a vector valued function v & B¥, then by commutativity of vr; and
M, B, we obtain that yr v is also in B¥*. Since u(x) is a weak solution, we obtain
that

(@, L¥((¥0)) = (f, ¥0)+iBg ¥jo>,  vEB*.

Now, let a function »; be in C5(R") such that suppJ»,CU; and =1 in
supp Y»;. Then

(‘I;'iu’ L*(\I’J‘v)) = (f’ ‘1";”)+l<ﬂg$ '\I"jv> ’ ‘UEB* .

Since u is a weak solution, and C7(Q)CB*, we have Lu=f in 9’(Q). Hence
Lu is equal to f in L*(Q). Therefore, \;u satisfies the conditions required in
Lemma 3.2. So we apply Lemma 3.2 to ¥,u and obtain

(s, L¥(Yr0)) = (L(Jr 1), A j0)+i<BYr s, 0>
= (fs ¥ 0)+iBu, ¥r;0> .

A vector-valued function u is approximated by the elements of C*(2). Thus
<u, BHpv) = Mu, B*y;v)> .
Therefore, we obtain
M), B*v) = Vg, B*v>,  v&B*.
For an arbitrary we C=(2), we have a decomposition
Brw = M*B*w+(1—M*)B*w .
Since M is a idempotent matrix,
M ju, (I=M*)B*w) = {Jr;g8, (I—M*)B*w) = 0.
This and B*~! M*B*we B* show that
M ju), Brwy = {rjg, BHwy,  weC=(Q).
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Since the matrix 3 is non-singular, and the restriction mapping: C=(2)—C=(T)
is surjective, we obtain the required lemma.

Lemma 3.4. Let us assume the following estimate is valid

Cillull3 o= C.llLull§ o+ Cillul 21,0
ueCy(R: Nw) and Mu = 0 in {x, = 0},

where L is a first order partial differential operator, M is a smooth idempotent
matrix and o is an open set in R*. Then we obtain the following inequality

(®. 1y Cillwllf o= CollLel[§ o+ Cyllwlf, -2+4-C.KMudE

where w is an arbitrary element of C5(R% N w) and the constant C, is independent
of C, and C,.

Proof. In Proposition 2.10, we take Mw in place of f,, and 0 for f
(k=1, ---,m—1). Then there exists ve CF(Q) such that

Muw| oo = V| 4,0
and
||v”m,s§Cm,s<M‘w>m+s—-‘} .

Since M(w—v)] x”=0:M(I —M)w| «,—o=D0, inserting w—o in the inequality of the
assumption, we see the following

Cillw—2[3,0 = C.l| L(w—2)|[§ 0+ Cillw—2]21,0 -
On the other hand by the trace theorem we see that
ILol13,0=Cllollf o< C'< M),
lollgo = [§. 10", ) "t

= o [[T10ue w1+ 12 1)dnae

+6, ({7108, w121+ 1817 g

< C1'Cllf§ 14 C.C'lol13, -1
= CTY O <{Mwdi+C"||v|I3 -1
and
H‘v”—l,oé H?)Ho,-aé||7)H1,—2§C'<‘w>—%§ C'lell,-z .

Thus applying the three inequalities above, we obtain the lemma.

Proof of Theorem 1. We may assume without loss of generality that the
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non-singular matrix S(x) is the identity matrix. For, if # is a weak solution of
boundary value problem Lu=f, Mu=g, then the L*(Q)-vector u is also a weak
solution of B8~ 'Lu=B"'f, Mu=g, where (8 is extended over Q. Inductively we
assume u<H,_,(Q), since by hypothesis uL*(Q). It suffices, by Leibnitz’
formula, to show each +r;u belongs to H,(Q). For j=0, yue H,(Q) if and only
if yuc H,(R"). For j>0, it suffices to show (yru)oa;€H,(R%). Since T is
non-characteristic for L and Lu=f in L*(Q)), the normal derivative D,(yru)oc; is
expressed by f and tangential derivatives of (yrju)ocr;. Therefore, if we assume
(Y u)oa;eH, (R%) then by Proposition 2.5, (ru)oa; belongs to H,, (R%).
Using above fact and Proposition 2.5 inductively, we can show that (yrju)oa;
belongs to H,,,,_k(l?f‘;) (0<k=<r). Thus, it will suffice to show YucH, (R")
and (Yr;u)oa;EH,,(R%). That is, in view of Proposition 2.1 and Proposition
2.8, 1t suffices to prove

3.1 Rl st 31 0)oat s, SC

for all § with 0<8<1. Here we have to remark that by the assumption of
induction, Proposition 2.5 and Lu=f, (yr;u)ocr; belongs to H, _,(R%). We
begin with the estimation of
1) ”(‘l"ju)"ajllo,(r—l,m .

From the inequality (P. 1)

qllullF=1Lulls+Collul 21, uE B, supp uC U, .
By Proposition 2.1, when # is an element of H(Q) with supp u C U;, then
[lulls o and |[uoajll, , are equivalent norms. Therefore we obtain

glluoa;l5 0= CliL(uoa;)|1 o+ Cy' llwoat;l21,0

where L(-)=(L(+ ca7'))oat;. Thus from Lemma 3.4, we see that

qllwl[§,0= Cl|Le|[§ o+ C'<Me)j+C/ ||wl[} -2 ,

where we Cg(R? N Im a7'), M=Moa; and C'is independent of g. From the
Lemma 3.1, when u is a weak solution, then J,'(y;u)oa; is an element of H,(R?%).
Here {J.'} is a tangential mollifier of type r+1 with kernel X'(x’), whose
support is small, containing the origin of R”, such that for all £<(0, 1], supp
J<(Yju)eatj is contained in Im aj'. Since J/(Yr;ju)oc; is approximated by an
element of C5(R% N Im a) in the topology of H,(R%), we have

(.2) gl (Fu)ea;lls o= CIL . (W u)oct;|F 0+ C'<M ], (Y u)oa ;5
+C¢I/H]e/("l"ju)°aj“§,—2 .

Here, the first term on the right of (3.2)
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Iz]e’(‘!"ju)°aj = [Za ]el](‘!"ju)oaj+Js'[z’ '\!"ioaj](u°ai)+.]e,("l"j°aj)z(u°aj) .
Furthermore we observe that as a distribution in R%
JS(Wrjea ) Liucay) = J.' (¥ f)oa; -
For
(J: (o) Liucay), ¢) = (Lucay), (Yoa;) ] *$)
= (foaja (‘P'joai)]e,*‘;b)
= (J{(¥if)eej, $), p=CT(RY)
where we use the fact (Yr;oa;) J*¢=C5(R%). By using Lemma 3.3,
W] jw)oct; = [V, 10 w)oat; 4] M u)ect;
= [M’ ]E,](‘:b'j u)oai+jel(‘l"ig)°ai .
Therefore we obtain the inequality
3.3) gl T (Y ju)oa;lli o
<C{IIIL, J/ 1 w)oa;(5 0
+IJS L, rjoal(uoar;)| 18,0+11J' (Y f)oat113 0
+L[M, J N ju)oa; D3+ J (W 8)0c D1}
+C N (Prju)eatlli -2 -

Since the coefficient of D,, is the identity matrix and [L, yr;oc;] is the smooth
function, the first and second terms in the right hand side (3.3) are estimated by
the following form

g IEK), J<'1Dy,(drj1)o0t;l[5,0+ I [EL3), T 10 s0) o0
HITLF ()0 wea;)liEo

where E,=Cy(Im a3?), k=0, -, n—1, F(y)eC5(Im a;") and J;€ C5(Im a7")
is equal 1 in supp (Yr;or;). Let usinsert this in (3.3) and multiply the inequality
thus obtained by &*""}(1+48°/€%)7", and then integrate with respect to € in the
interval (0, 1). Then applying Proposition 2.12 and Proposition 2.13, we see

7PN woce i o~ (1+ 816 deje
= C|Wr j(woot))II3 cr-1,
= SVl oa ot o1
= C I o0t Yl st 23 a0t Yol B -1,
< C bty 23 )0t s}
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where we used Proposition 2.1 and the fact that (1-+|&[%)"(1+|6¢|%) ' =
(I+IEPY A+ 815 (r=1)
[[<0, 110w w0 St 14816

= C<('\b‘ju)°aj>%r-%,8) = |(\l/‘j“)°ajl ﬁ,(r—z,s)
= C”{||Dn(1ll‘ju)°aj|’g,(r-z,a)+ ()0 ;] |§,<r-1,5)}
SCL o el o+ H(‘]’ju)°a”§,(r—1,8)} >

where we used that T" is non-characteristic for L and Proposition 2.5. Therefore
the required inequality becomes
N
(34) (qcl_‘cz) 2 ”(‘!"ju)°aj“§,<r—1,6)
= Cllroulltr-1,0+ CLUSIFA<g D74
N
+||u”f—1+21} [[(yrju)oat;|7 -1} .

i1) Next we shall estimate |[yrou||cy-y 5-
Let {J.} be a full mollifier of type r+1 with kernel X(x), whose support is small
such that supp X+supp ¥, CQ. Applying (P. 1) to J(yr,u), we have

gl J ()P = LT (Vo )34 Coll Je(row) 121 -
By the analogous calculation for [|(yr;%)oallo r-1,5, We obtain
(35) (qu‘Cs)H\l’ou“%r—;,s)
= C(I 12l [7-1)+Cs 2 (Fovrsw)oct;licr—e »

where J,€C7(Q) is equal to 1 on supp . By using inducitvely that T is
non-characteristic for L and from Lu=f in L*(Q), we obtain

(3.6) p (IR R RIS STV R py

N

gczl [(rju)o0t;117 -1
N

=G 2 () oct;116,cr—1,0+ CUF 1134l 7-1) -

Combining (3.4), (3.5) and (3.6), we have that for certain C,, C, and C
N
(qca—Cg)(||¢ou||fr-1,s>+2 (¥ ju)ectl15,crmr,8)
N
éC(II.fllf,g+<g>3+;,p+Ilui|3—1,g+2 (s u)eat;ll7 -,) -

If g is larger than C,/C,, then the inequality (3.1) is completed.
The proof of Theorem 2 is performed by the same method as Theorem 1.
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Instead of the above inequality in this case we obtain the following one. Let us
replace (P. 1)’ by (P. 2), then by <->, we can do <{:),,; in the above proof in
Theorem 1. Therefore we see

(@Cu—Co) oty s .+ S3 1(30) ot 1)
N
= CUIF I ot <@t o oS3 (0ot )

Thus taking a sufficient large ¢ such that ¢>C,,/C),, the proof is completed.
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