ON MULTIPLY TRANSITIVE GROUPS XII

Tuyosi OYAMA

(Received January 21, 1974)

1. Introduction

The known 4-fold transitive groups are the symmetric groups $S_{n}(n \geq 4)$, the alternating groups $A_{n}(n \geq 6)$ and Mathieu groups $M_{n}(n=11,12,23,24)$. The main purpose of this paper is to characterize these known 4-fold transitive groups. The result is as follows.

Theorem. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$. Assume that
(*) t is the maximal number of fixed points of involutions of G.
Furthermore assume that G contains a 2 -subgroup Q which satisfies the following conditions:
(1) $|I(Q)|=t$ and Q is a Sylow 2-subgroup of $G_{I(Q)}$,
(2) $N(Q)^{I(Q)}=S_{t}$ or A_{t}.

Then G is one of the following groups; $S_{n}(n \geq 4), A_{n}(n \geq 6)$ or $M_{n}(n=11,12,23$, 24).

This theorem is a generalization of theorems of M. Hall ([2], Theorem 5.8.1), H. Nagao [10] and the author [11]: the case $t<4$ has been proved by M. Hall, the case $t=4$ or 5 by H. Nagao and the case $t=6$ or 7 and $N(Q)^{I(Q)}=A_{t}$ by the author.

The followings are corollaries.
Corollary 1. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$, and P a Sylow 2-subgroup of a stabilizer of four points in G. Assume that n is even and $P \neq 1$.
(1) If $I(P)=I(Z(P))$, where $Z(P)$ is the center of P, then G is one of the following groups; $S_{n}(n \geq 6), A_{n}(n \geq 8$ and $n \equiv 0(\bmod 4))$ or M_{12}.
(2) For any point i of $\Omega-I(P)$ if P_{i} is semiregular $(\neq 1)$ on $\Omega-I\left(P_{i}\right)$ or 1 , then G is one of the following groups; $S_{6}, S_{8}, A_{8}, A_{10}, M_{12}$ or M_{24}.

Corollary 2. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$ and P a Sylow 2-subgroup of a stabilizer of four points in G. If P is a transitive group
$(\neq 1)$ on $\Omega-I(P)$, then G is one of the following groups; $S_{2^{k}+4}(k \geq 1), S_{2^{k}+5}(k \geq 1)$, $A_{2^{k}+4}(k \geq 2), A_{2^{k}+5}(k \geq 2), M_{12}$ or M_{23}.

Corollary 2 is a generalization of Theorem 1 and Theorem 2 in [7] and Theorem in [8]. In the proof of Corollary 1 we make use of the following

Lemma. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$. Assume that the maximal number of fixed points of involutions of G is twelve. Then for any 2-subgroup Q fixing exactly twelve points $N(Q)^{I(Q)} \neq M_{12}$.

We shall use the same notations in [12].

2. Proof of the theorem

We proceed by way of contradiction. From now on we assume that G is a counter-example to our theorem of the least possible degree. Since there is no 4-fold transitive group of degree less than thirty-five except known ones ([2], P. 80), the degree n of G is not less than thirty-five. Set $I(Q)=\{1,2, \cdots, t\}$ and $\Delta=\Omega-I(Q)$. For any point $t+i$ of Δ set $i^{\prime}=t+i, 1 \leq i \leq n-t$.
2.1. $t \geq 6$. In particular if $N(Q)^{I(Q)}=A_{t}$, then $t \geq 8$.

Proof. If $t<4$, then by a theorem of M. Hall ([2], Theorem 5.8.1) $G=S_{4}$, S_{5}, A_{6}, A_{7} or M_{11}, which is a contradiction since $n \geq 35$. If $t=4$ or 5 , then by a theorem of H. Nagao [10] $G=S_{6}, S_{7}, A_{8}, A_{9}$ or M_{12}, which is also a contradiction. Thus $t \geq 6$.

Suppose that $N(Q)^{I(Q)}=A_{t}, t=6$ or 7. Since Q is a Sylow 2-subgroup of $G_{I(Q)}, Q$ is a Sylow 2-subgroup of a stabilizer of four points of $I(Q)$ in G. Hence by a theorem of [11] $G=M_{23}$, which is also a contradiction. Thus if $N(Q)^{I(Q)}$ $=A_{t}$, then $t \geq 8$.

2.2. $|\Delta| \geq 17$.

Proof. $\quad G$ is a 4 -fold transitive group and $n \geq 35$. Hence by a theorem of W. A. Manning [5]

$$
|\Delta| \geq \frac{n-1}{2} \geq \frac{35-1}{2}=17
$$

2.3. Let R be a 2-subgroup of $N(Q)$ containing Q, and X a 2-subgroup of $N(Q)$. If $\langle R, X\rangle^{I(Q)}$ is a 2-group, then there is a 2-subgroup X^{\prime} in $N(Q)$ such that $X^{I(Q)}=X^{\prime(Q)},\left\langle R, X^{\prime}\right\rangle$ is a 2-group and $\left\langle Q, X^{\prime}\right\rangle$ is conjugate to $\langle Q, X\rangle$ in $N(Q)$.

Proof. Let P be a Sylow 2-subgroup of $\langle R, X\rangle$ containing R. Since $\langle R, X\rangle^{I(Q)}$ is a 2-group, $P^{I(Q)}=\langle R, X\rangle^{I(Q)}$. Then P contains a 2-group X^{\prime} such that $X^{I(Q)}=X^{\prime(Q)}$. Then $\left\langle R, X^{\prime}\right\rangle$ is a 2 -subgroup of P. Since Q is a Sylow 2-subgroup of $G_{I(Q)}$ and $\langle Q, X\rangle^{I(Q)}=\left\langle Q, X^{\prime}\right\rangle^{I(Q)}$, both $\langle Q, X\rangle$ and $\left\langle Q, X^{\prime}\right\rangle$ are

Sylow 2-subgroups of $\left\langle Q, X, X^{\prime}\right\rangle$. Hence $\left\langle Q, X^{\prime}\right\rangle$ is conjugate to $\langle Q, X\rangle$ in $\left\langle Q, X, X^{\prime}\right\rangle$. Thus $\left\langle Q, X^{\prime}\right\rangle$ is conjugate to $\langle Q, X\rangle$ in $N(Q)$.
2.4. If $N(Q)^{I(Q)}=S_{t}$, then $N(Q)$ has a 2-group $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$, where

$$
x_{i}=(1)(2) \cdots(2 i-2)(2 i-12 i)(2 i+1) \cdots(t) \cdots,
$$

$1 \leq i \leq k, k=\frac{t}{2}$ if t is even and $k=\frac{t-1}{2}$ if t is odd.
Furthermore since $N(Q)^{I(Q)}=S_{t}$ or $A_{t}, N(Q)$ has a 2-group $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}\right.$, $\left.y_{1}\right\rangle$, where

$$
\begin{aligned}
& y_{i}=(12)(3)(4) \cdots(2 i)(2 i+12 i+2)(2 i+3) \cdots(t) \cdots \\
& y_{1}^{\prime}=\left(\begin{array}{ll}
1 & 3)(24)(5)(6) \cdots(t) \cdots
\end{array}\right.
\end{aligned}
$$

$1 \leq i \leq k, k=\frac{t-2}{2}$ if t is even and $k=\frac{t-3}{2}$ if t is odd.
In either case $k \geq 3$.
Proof. Since $N(Q)^{I(Q)}=S_{t}$ or A_{t}, this follows immediately from (2.1) and (2.3).

From now on we denote that $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ and $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ are the groups in (2.4).
2.5. Suppose that $N(Q)$ has the 2 -group $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ in (2.4), which is abelian and fixes a subset Δ^{\prime} of Δ. If $\left\langle Q, x_{1}, x_{2}\right\rangle$ is semiregular on Δ^{\prime}, then $\left\langle Q, x_{1}\right.$, $x_{2}, \cdots, x_{k}>$ is semiregular on Δ^{\prime}.

Proof. Suppose that $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle, i \geq 2$, is semiregular on Δ^{\prime} and $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i+1}\right\rangle$ is not semiregular on Δ^{\prime}. Then $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle x_{i+1}$ has an element x fixing a $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle$-orbit of length $2^{i} \cdot|Q|\left(\geq 2^{i+1}\right)$ in Δ^{\prime} pointwise since $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i+1}\right\rangle$ is abelian and $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle$ is semiregular on Δ^{\prime}. Then since x has at most $i+12$-cycles in $I(Q)$ and $i \geq 2,|I(x)| \geq t-2(i+1)+$ $2^{i+1}>t$, contrary to the assumption (*). Thus if $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle, i \geq 2$, is semiregular on Δ^{\prime}, then $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i+1}\right\rangle$ is semiregular on Δ^{\prime}. Then since $\left\langle Q, x_{1}\right.$, $\left.x_{2}\right\rangle$ is semiregular on Δ^{\prime}, this implies by induction that $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on Δ^{\prime}.
2.6. $N(Q)$ has the 2-group $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ in (2.4). Suppose that $\left\langle Q, y_{1}\right.$, $\left.y_{2}, \cdots, y_{k}\right\rangle$ is abelian and fixes a subset Δ^{\prime} of Δ. If $\left\langle Q, y_{1}, y_{2}, y_{3}\right\rangle$ is semiregular on Δ^{\prime}, then $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is semiregular on Δ^{\prime}.

Proof. Suppose that $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i}\right\rangle, i \geq 3$, is semiregular on Δ^{\prime} and $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i+1}\right\rangle$ is not semiregular on Δ^{\prime}. Then $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i}\right\rangle y_{i+1}$ has an element y fixing a $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i}\right\rangle$-orbit of length $2^{i} \cdot|Q|\left(\geq 2^{i+1}\right)$ in Δ^{\prime} pointwise
since $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i+1}\right\rangle$ is abelian and $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i}\right\rangle$ is semiregular on Δ^{\prime}. Then since y has at most $i+2$ 2-cycles in $I(Q)$ and $i \geq 3,|I(y)| \geq t-2(i+2)+$ $2^{i+1}>t$, contrary to the assumption (*). Thus if $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i}\right\rangle, i \geq 3$, is semiregular on Δ^{\prime}, then $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i+1}\right\rangle$ is semiregular on Δ^{\prime}. Then since $\left\langle Q, y_{1}\right.$, $\left.y_{2}, y_{3}\right\rangle$ is semiregular on Δ^{\prime}, this implies by induction that $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is semiregular on Δ^{\prime}.

2.7. $|\Delta| \equiv 0(\bmod 4)$.

Proof. Since Q is semiregular $(\neq 1)$ on $\Delta,|\Delta|$ is even, i.e., $|\Delta| \equiv 0$ or 2 $(\bmod 4)$. Suppose by way of contradiction that $|\Delta| \equiv 2(\bmod 4)$. Then $|Q|=2$. Hence we may assume that $Q=\langle a\rangle$ and

$$
a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots(n-1 n)
$$

Then $N(Q)=C(Q)=C(a)$ and $C(a)^{I(a)}=S_{t}$ or A_{t}. We treat these cases separately.
(i) Suppose that $C(a)^{I(a)}=S_{t}$. Then $C(a)$ has the 2-group $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ in (2.4). First we show that $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ has exactly one orbit Γ of length two in Δ and is semiregular on $\Delta-\Gamma$.

Since $|\Delta| \equiv 2(\bmod 4)$ and Δ is a union of $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$-orbits, $\left\langle a, x_{1}\right.$, $x_{2}, \cdots, x_{k}>$ has at least one orbit of length two in Δ. Hence we may assume that $\left\{1^{\prime}, 2^{\prime}\right\}$ is the $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$-orbit of length two. Then x_{i} or $a x_{i}, 1 \leq i \leq k$, fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ pointwise. Hence we may assume that x_{i} fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ pointwise. Then $I\left(x_{i}\right)$ contains $(I(a)-\{2 i-1,2 i\}) \cup\left\{1^{\prime}, 2^{\prime}\right\}$ of length t. Hence by the assumption $(*)\left|I\left(x_{i}\right)\right|=t$ and $I\left(x_{i}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$. Since $I\left(x_{i}{ }^{x_{j}} \cdot x_{i}\right)$ contains $I(a)$ $\cup\left\{1^{\prime}, 2^{\prime}\right\}$ of length $t+2,1 \leq i, j \leq k, x_{i}^{x_{j}} \cdot x_{i}=1$ by the assumption (*). Thus $x_{i}{ }^{2}=1$ and $x_{i} x_{j}=x_{j} x_{i}$. Hence $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is elementary abelian.

Since a and $x_{i}, 1 \leq i \leq k$, has no fixed point in $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$ and $\mid \Delta-\left\{1^{\prime}, 2^{\prime}\right\}$ $\left|\equiv 0(\bmod 4),\left|I\left(a x_{i}\right) \cap\left(\Delta-\left\{1^{\prime}, 2^{\prime}\right\}\right)\right| \equiv 0(\bmod 4) . \quad\right.$ On the other hand since $\left|I\left(a x_{i}\right) \cap I(a)\right|=t-2,\left|I\left(a x_{i}\right) \cap \Delta\right|=2$ or 0 by the assumption (*). Hence $\mid I\left(a x_{i}\right)$ $\cap\left(\Delta-\left\{1^{\prime}, 2^{\prime}\right\}\right) \mid=0$. Thus $\left\langle a, x_{i}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$.

Suppose that $\left\langle a, x_{1}, x_{2}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Then $\left\langle a, x_{1}, x_{2}\right\rangle$ has an orbit Δ^{\prime} of length four in $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Since $\left\langle a, x_{1}, x_{2}\right\rangle$ is an elementary abelian group of order eight, there is exactly one element $(\neq 1)$ in $\left\langle a, x_{1}, x_{2}\right\rangle$ fixing Δ^{\prime} pointwise. Since $\left\langle a, x_{1}\right\rangle$ and $\left\langle a, x_{2}\right\rangle$ are semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$, $x_{1} x_{2}$ or $a x_{1} x_{2}$ fixes Δ^{\prime} pointwise. Since $I\left(x_{1} x_{2}\right)$ contains $(I(a)-\{1,2,3,4)\} \cup$ $\left\{1^{\prime}, 2^{\prime}\right\}$ of length $t-2, x_{1} x_{2}$ does not fix Δ^{\prime} pointwise by the assumption $(*)$. Hence $a x_{1} x_{2}$ fixes Δ^{\prime} pointwise. Then $\left|I\left(a x_{1} x_{2}\right)\right|=t$ and so $a x_{1} x_{2}$ has no fixed point in $\Delta-\left(\left\{1^{\prime}, 2^{\prime}\right\} \cup \Delta^{\prime}\right)$. This shows that $\left\langle a, x_{1}, x_{2}\right\rangle$ is semiregular on $\Delta-$ ($\left.\left\{1^{\prime}, 2^{\prime}\right\} \cup \Delta^{\prime}\right)$. By (2.4) $k \geq 3$ and so $C(a)$ has x_{3} in (2.4). Since x_{3} normalizes $\left\langle a, x_{1}, x_{2}\right\rangle, x_{3}$ fixes Δ^{\prime}. Then by the same argument as above $a x_{1} x_{3}$ fixes Δ^{\prime} pointwise. Thus $I\left(a x_{1} x_{2} \cdot a x_{1} x_{3}\right)=I\left(x_{2} x_{3}\right)$ contains $(I(a)-\{3,4,5,6\}) \cup\left\{1^{\prime}, 2^{\prime}\right\}$ $\cup \Delta^{\prime}$ of length $t+2$, contrary to the assumption (*). Thus $\left\langle a, x_{1}, x_{2}\right\rangle$ is semire-
gular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Hence by (2.5) $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on $\Delta-$ $\left\{1^{\prime}, 2^{\prime}\right\}$.

On the other hand a normalizes $G_{1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}}$, which is even order. Hence a commutes with an involution u of $G_{1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}}$. Since $C(a)^{I(a)}=S_{t},\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ has a subgroup which is conjugate to $\langle a, u\rangle$ in $C(a)$. Since u fixes at least four points of $\Delta,\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ has an element $(\neq 1)$ fixing at least four points in Δ, which is a contradiction. Thus $C(a)^{I(a)} \neq S_{t}$.
(ii) Suppose that $C(a)^{I(a)}=A_{t}$. Let y be a 2-element such that $y^{I(a)}$ is an involution consisting two 2-cycles. Since $|I(y)| \leq t,|I(y) \cap \Delta|=0,2$ or 4.
(ii.i) First assume that $|I(y) \cap \Delta|=4$. By (2.4) $C(a)$ has the 2-group $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$. Since $\left\langle a, y_{1}\right\rangle$ is conjugate to $\langle a, y\rangle$ in $C(a), y_{1}$ or $a y_{1}$ is conjugate to y. Hence we may assume that y_{1} is conjugate to y and

$$
y_{1}=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots
$$

Since $\left|\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}\right| \equiv 2(\bmod 4)$ and $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ is a union of $\left\langle a, y_{1}\right\rangle$-orbits, the number of $\left\langle a, y_{1}\right\rangle$-orbits of length two in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ is odd. Hence we may assume that $\left\{5^{\prime}, 6^{\prime}\right\}$ is the orbit of length two. Then $y_{1}=\left(5^{\prime} 6^{\prime}\right)$ on $\left\{5^{\prime}, 6^{\prime}\right\}$, and $\left\langle a, y_{1}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, \cdots, 6^{\prime}\right\}$ since $\left|I\left(a y_{1}\right)\right| \leqq t$. Furthermore $C(a)$ has a 2-element

$$
y_{2}{ }^{\prime}=(1)(2)(34)(57)(6)(8)(9) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle a, y_{1}, y_{2}{ }^{\prime}\right\rangle$ is a 2-group. Then y_{2}, y_{3} and $y_{2}{ }^{\prime}$ normalize $\left\langle a, y_{1}\right\rangle$. Since $\left|I\left(y_{1}\right)\right| \neq\left|I\left(a y_{1}\right)\right|, y_{1} y_{2}=y_{1} y_{3}=y_{1}{ }^{y^{\prime}}=y_{1}$. Thus y_{2}, y_{3} and $y_{2}{ }^{\prime}$ centralize $\left\langle a, y_{1}\right\rangle$, and so fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and $\left\{5^{\prime}, 6^{\prime}\right\}$. Since y_{i} or $a y_{i}$, $i=2,3$, and $y_{2}{ }^{\prime}$ or $a y_{2}{ }^{\prime}$ fix $\left\{5^{\prime}, 6^{\prime}\right\}$ pointwise, we may assume that y_{2}, y_{3} and $y_{2}{ }^{\prime}$ fix $\left\{5^{\prime}, 6^{\prime}\right\}$ pointwise. Since $I\left(y_{i}^{\prime} y_{j} \cdot y_{i}\right)$ contains $I(a) \cup\left\{5^{\prime}, 6^{\prime}\right\}$ of length $t+2$, $2 \leq i, j \leq 3, y_{2}{ }^{2}=y_{3}{ }^{2}=1$ and $y_{2} y_{3}=y_{3} y_{2}$ by the assumption (*). Similarly $y_{2}{ }^{\prime}$ is of order two. Thus $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ and $\left\langle a, y_{1}, y_{2}^{\prime}\right\rangle$ are elementary abelian. Since y_{2}, y_{3} and y_{2}^{\prime} fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, y_{2}, y_{3}$ and y_{2}^{\prime} are $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right),\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)$, $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right),\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right),\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)$ or $\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $I\left(y_{2}\right)$ contains $(I(a)-\{1,2,5,6\}) \cup\left\{5^{\prime}, 6^{\prime}\right\}$ of length $t-2, y_{2}$ does not fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Similarly y_{3} and y_{2}^{\prime} do not fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. If $y_{2}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$, then $I\left(a y_{1} y_{2}\right)$ contains $(I(a)-\{3,4,5,6\}) \cup\left\{1^{\prime}, 2^{\prime}, \cdots, 6^{\prime}\right\}$ of length $t+2$, contrary to the assumption $(*)$. Thus $y_{2} \neq\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$. Similarly y_{3} and $y_{2}{ }^{\prime} \neq\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$. Next suppose that $y_{2}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$. The proof in the case $y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$ is similar. Since y_{3} commutes with $y_{2}, y_{3}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$ or $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots . \quad$ If $y_{3}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$, then $I\left(y_{2} y_{3}\right)$ contains $(I(a)-\{5,6,7,8\}) \cup\left\{1^{\prime}, 2^{\prime}, \cdots, 6^{\prime}\right\}$ of length $t+2$, contrary to the assumption $(*)$. Thus $y_{3}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$. On the other hand as we have seen above $y_{2}^{\prime}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime}\right)\left(6^{\prime}\right),\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime}\right)\left(6^{\prime}\right),\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)\left(5^{\prime}\right)$ $\left(6^{\prime}\right)$ or $\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right)\left(5^{\prime}\right)\left(6^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, \cdots, 6^{\prime}\right\}$. If y_{2}^{\prime} is of the first form, then
$\left(y_{2} y_{2}^{\prime}\right)^{3}$ is of even order and $\left|I\left(\left(y_{2} y_{2}\right)^{\prime}\right)\right| \geq t+2$, contrary to the assumption $(*)$. If $y_{2}{ }^{\prime}$ is of the second form, then $\left(y_{3} y_{2}{ }^{\prime}\right)^{3}$ is of even order and $\left|I\left(\left(y_{3} y_{2}{ }^{\prime}\right)^{3}\right)\right| \geq t+2$, contrary to the assumption (*). If $y_{2}{ }^{\prime}$ is of the third or fourth form, then $\left(y_{2} y_{2}{ }^{\prime}\right)^{6}$ is of even order and $\left|I\left(\left(y_{2} y_{2}^{\prime}\right)^{6}\right)\right| \geq t+2$, contrary to the assumption (*). Thus $y_{2} \neq\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$ and so $y_{2} \neq\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$. Finally suppose that $y_{2}=$ $\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right) \cdots$. The proof in the case $y_{2}=\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right) \cdots$ is similar. Then by the same argument as is used for y_{2}, y_{3} and $y_{2}{ }^{\prime}$ are $\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)$ or $\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. If y_{3} or $y_{2}^{\prime}=\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right) \cdots$, then $\left|I\left(y_{2} y_{3}\right)\right|$ or $\left|I\left(\left(y_{2} y_{2}^{\prime}\right)^{3}\right)\right|$ $\geq t+2$ respectively, contrary to the assumption (*). Thus y_{3} and $y_{2}^{\prime}=\left(1^{\prime} 4^{\prime}\right)$ $\left(2^{\prime} 3^{\prime}\right) \cdots$. Then $\left(y_{3} y_{2}^{\prime}\right)^{3}$ is of even order and $\left|I\left(\left(y_{3} y_{2}^{\prime}\right)^{3}\right)\right| \geq t+2$, contrary to the assumption (*). Thus if y is a 2 -element of $C(a)$ such that $y^{I(a)}$ is an involution consisting of two 2-cycles, then $|I(y) \cap \Delta| \neq 4$.
(ii.ii) By (ii.i) for any 2-element y of $C(a)$ such that $y^{I(a)}$ is an involution consisting of two 2-cycles, $|I(y) \cap \Delta|=0$ or 2. By (2.4) $C(a)$ has the 2-group $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$. First we show that $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ has exactly one orbit Γ of length two in Δ and is semiregular on $\Delta-\Gamma$.

Since $|\Delta| \equiv 2(\bmod 4)$ and Δ is a union of $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$-orbits, $\left\langle a, y_{1}\right.$, $\left.y_{2}, \cdots, y_{k}\right\rangle$ has at least one orbit of length two in Δ. We may assume that $\left\{1^{\prime}, 2^{\prime}\right\}$ is the $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$-orbit of length two. Then y_{i} or $a y_{i}, 1 \leq i \leq k$, fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ pointwise. Hence we may assume that y_{i} fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ pointwise. Since $\mid I\left(y_{i}\right)$ $\cap \Delta \mid=0$ or $2, I\left(y_{i}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$. Since $I\left(y_{i} y_{j} \cdot y_{i}\right)$ contains $I(a) \cup\left\{1^{\prime}, 2^{\prime}\right\}$ of length $t+2,1 \leq i, j \leq k, y_{i}{ }_{j} \cdot y_{i}=1$ by the assumption (*). Hence $y_{i}{ }^{2}=1$ and $y_{i} y_{j}=y_{j} y_{i}$. Thus $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is an elementary abelian group.

Since a and y_{1} has no fixed point in $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left|\Delta-\left\{1^{\prime}, 2^{\prime}\right\}\right| \equiv 0(\bmod$ 4), $\left|I\left(a y_{1}\right) \cap\left(\Delta-\left\{1^{\prime}, 2^{\prime}\right\}\right)\right| \equiv 0(\bmod 4)$. Hence by (ii.i) $\left|I\left(a y_{1}\right) \cap\left(\Delta-\left\{1^{\prime}, 2^{\prime}\right\}\right)\right|$ $=0$. Thus $\left\langle a, y_{1}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$.

Suppose that $\left\langle a, y_{1}, y_{2}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Then $\left\langle a, y_{1}, y_{2}\right\rangle$ has an orbit Δ^{\prime} of length four in $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Since $\left\langle a, y_{1}, y_{2}\right\rangle$ is an abelian group, there is an involution y^{\prime} in $\left\langle a, y_{1}\right\rangle y_{2}$ fixing Δ^{\prime} pointwise. Then $y^{\prime I(a)}$ is an involution consisting of two 2-cycles and $I\left(y^{\prime}\right) \cap \Delta \supseteq \Delta^{\prime}$, contrary to (ii.i). Thus $\left\langle a, y_{1}, y_{2}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$.

Suppose that $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Then $\left\langle a, y_{1}\right.$, $\left.y_{2}, y_{3}\right\rangle$ has an orbit Δ^{\prime} of length eight in $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Since $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is an abelian group of order sixteen, there is exactly one involution y^{\prime} in $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ fixing Δ^{\prime} pointwise. Since $\left|\Delta^{\prime}\right|=8, y^{\prime}$ has at least four 2-cycles on $I(a)$. Thus $y^{\prime}=y_{1} y_{2} y_{3}$ or $a y_{1} y_{2} y_{3}$. If $y^{\prime}=y_{1} y_{2} y_{3}$, then $I\left(y^{\prime}\right)$ contains $(I(a)-\{1,2, \cdots, 8\}) \cup$ $\left\{1^{\prime}, 2^{\prime}\right\} \cup \Delta^{\prime}$ of length $t+2$, contrary to the assumption (*). Thus $y^{\prime}=a y_{1} y_{2} y_{3}$. Then $I\left(a y_{1} y_{2} y_{3}\right)=(I(a)-\{1,2, \cdots, 8\}) \cup \Delta^{\prime}$ since $\left|(I(a)-\{1,2, \cdots, 8\}) \cup \Delta^{\prime}\right|=\mathrm{t}$. Furthermore this shows that $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ has no orbit of length eight in Δ $\left(\left\{1^{\prime}, 2^{\prime}\right\} \cup \Delta^{\prime}\right)$. On the other hand $C(a)$ has a 2-element

$$
y_{1}^{\prime}=(13)(24)(5)(6) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle a, y_{1}, y_{2}, y_{3}, y_{1}{ }^{\prime}\right\rangle$ is a 2 -group. Then $y_{1}{ }^{\prime}$ normalizes $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ and so $y_{1}{ }^{\prime}$ fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ and Δ^{\prime}. Set $R=\left\langle a, y_{1}, y_{2}, y_{3}, y_{1}\right\rangle_{i}$, where $i \in \Delta^{\prime}$. Then the order of R is four and so R is cyclic or elementary abelian. Since $\left\langle a, y_{1}\right\rangle$ is contained in the center of $\left\langle a, y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\rangle$ and semiregular on Δ^{\prime}, any element of R fixes at least four points of Δ. Suppose that R is a cyclic group generated by an element z. Then since $a y_{1} y_{2} y_{3}$ is the involution of R, $z^{2}=a y_{1} y_{2} y_{3}$. Thus $z^{I(a)}$ has two 4-cycles since $\left(a y_{1} y_{2} y_{3}\right)^{I(a)}=(12)(34)(56)$ (78). However this is impossible since $\left\langle a, y_{1}, y_{2}, y_{3}, y_{1}\right\rangle^{I(a)}$ has no such element. Next suppose that R is elementary abelian. Since $R_{I(a)}=1, R^{I(a)}$ is also an elementary abelian group of order four. Furthermore since any element of R fixes at least four points of Δ, every element $(\neq 1)$ of $R^{I(a)}$ has at least three 2cycles by the assumption (*) and (ii.i). This is a contradiction since $\left\langle a, y_{1}, y_{2}\right.$, $\left.y_{3}, y_{1}\right\rangle^{I(a)}$ has no such group. Thus $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$. Hence by (2.6) $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$.

On the other hand a normalizes $G_{1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}}$, which is of even order. Hence a commutes with an involution u of $G_{1^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}}$. Since $C(a)^{I(a)}=A_{t},\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ has a subgroup which is conjugate to $\langle a, u\rangle$ in $C(a)$. Since u fixes at least four points of $\Delta,\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ has an element ($\neq 1$) fixing at least four points of Δ, which is a contradiction. Thus $C(a)^{I(a)} \neq A_{t}$. Hence $|\Delta| \equiv 0(\bmod 4)$.
2.8. Let x be a 2-element of $N(Q)$ such that $x^{I(Q)}$ is an involution consisting of m 2-cycles. If x fixes r-orbits in Δ, then $r \leqq 2 m$ and $Q x$ has at least $\frac{r}{2 m}|Q|$ involutions which have fixed points in Δ.

Proof. Assume that x fixes $r Q$-orbits $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}$ in Δ. Set $\Gamma=\Delta_{1} \cup$ $\Delta_{2} \cup \cdots \cup \Delta_{r}$. Then

$$
r \cdot|\langle Q, x\rangle|=\sum_{u \in\langle Q, x\rangle}\left|I\left(u^{\Gamma}\right)\right|
$$

Since $\langle Q, x\rangle=Q+Q x$ and $|Q|=\left|\Delta_{1}\right|=\cdots=\left|\Delta_{r}\right|$,

$$
\begin{aligned}
r \cdot 2 \cdot|Q| & =\sum_{u \in Q}\left|I\left(u^{\Gamma}\right)\right|+\sum_{u \in Q}\left|I\left((u x)^{\Gamma}\right)\right| \\
& =r \cdot|Q|+\sum_{u \in Q}\left|I\left((u x)^{\Gamma}\right)\right|
\end{aligned}
$$

Hence

$$
\sum_{u \in Q}\left|I\left((u x)^{\Gamma}\right)\right|=r \cdot|Q|
$$

On the other hand $|I(x) \cap I(Q)|=t-2 m$. Hence for any element u of $Q \mid I(u x)$ $\cap \Delta \mid \leq 2 m$ by the assumption $(*)$. Hence $\left|I\left((u x)^{\Gamma}\right)\right| \leq 2 m$. Suppose that $Q x$ has s elements which have fixed points in Γ. Then

$$
\sum_{u \in Q}\left|I\left((u x)^{\mathrm{r}}\right)\right| \leqq 2 m s
$$

Hence $r \cdot|Q| \leqq 2 m s$. Thus $\frac{r}{2 m} \cdot|Q| \leqq s$. Furthermore since $s \leqq|Q|, \frac{r}{2 m} \cdot|Q|$ $\leqq|Q|$. Hence $r \leqq 2 m$.

Let x^{\prime} be any element of $Q x$ such that $\left|I\left(x^{\prime}\right) \cap \Delta\right| \neq 0$. Then $\left|I\left(x^{\prime 2}\right)\right|>t$. Hence $x^{\prime 2}=1$ by theassumption ($*$).

We use the following notations: Assume that the Q-orbits on Δ consist of $\Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}$. For any element $x \in N(Q)$ let \bar{x} be the permutation on $\left\{\Delta_{1}, \Delta_{2}\right.$, $\left.\cdots, \Delta_{r}\right\}$ induced by x,

$$
\bar{x}=\left(\begin{array}{ccc}
\Delta_{1} & \Delta_{2} & \cdots \Delta_{r} \\
\Delta_{1}^{x} & \Delta_{2}^{x} & \Delta_{r}^{x}
\end{array}\right) .
$$

Then \bar{x} form a permutation group $\overline{N(Q)}$ on $\bar{\Delta}=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}\right\}$.
2.9. Suppose that $N(Q)$ has the 2-group $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ as in (2.4), and $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ fixes a subset Δ^{\prime} of Δ. If $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ is semiregular on Δ^{\prime}, then $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on Δ^{\prime}.

Proof. Suppose that $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle, i \geq 4$, is semiregular on Δ^{\prime} and $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i+1}\right\rangle$ is not semiregular on Δ^{\prime}. Then $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle x_{i+1}$ has an element x having fixed points in Δ^{\prime}. Since $\left\langle\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{i+1}\right\rangle$ is abelian and $\left\langle\bar{x}_{1}\right.$, $\left.\bar{x}_{2}, \cdots, \bar{x}_{i}\right\rangle$ is semiregular on the set of the Q-orbits contained in Δ^{\prime}, \bar{x} fixes at least $2^{i} Q$-orbits in Δ^{\prime}. On the other hand since $x \in\left\langle Q, x_{1}, x_{2}, \cdots, x_{i+1}\right\rangle, x$ has at most $i+12$-cycles on $I(Q)$. Hence by (2.8) $2^{i} \leq 2(i+1)$, so $i \leq 3$, which is a contradiction. Thus if $\left\langle Q, x_{1}, x_{2}, \cdots, x_{i}\right\rangle, i \geq 4$, is semiregular on Δ^{\prime}, then $\left\langle Q, x_{1}\right.$, $\left.x_{2}, \cdots, x_{i+1}\right\rangle$ is semiregular on Δ^{\prime}. Since $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ is semiregular on Δ^{\prime}, this implies by induction that $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on Δ^{\prime}.
2.10. Suppose that $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ as in (2.4) fixes a subset Δ^{\prime} of Δ. If $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{4}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on Δ^{\prime}, then $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on Δ^{\prime}.

Proof. Suppose that $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i}, y_{1}{ }^{\prime}\right\rangle, i \geq 4$, is semiregular on Δ^{\prime} and $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i+1}, y_{1}^{\prime}\right\rangle$ is not semiregular on Δ^{\prime}. Then there is an element y $(\neq 1)$ in $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i+1}, y_{1}{ }^{\prime}\right\rangle$ such that \bar{y} fixes Q-orbits in Δ^{\prime}. Then $y^{I(Q)}$ is of order four or two. If $y^{I(Q)}$ is of order four, then $y^{I(Q)}$ consists of exactly one 4-cycle (1 3224) or (1423) and some 2-cycles. Hence $\left(y^{2}\right)^{I(Q)}=y_{1}{ }^{I(Q)}$ and so $\bar{y}^{2}=\bar{y}_{1}$. This is a contradiction since \bar{y}_{1} has no fixed point in the set of the $Q-$ orbits in Δ^{\prime}. Thus $y^{I(Q)}$ is of order two and consists of at most $i+2$ 2-cycles. Then \bar{y} centralizes $\left\langle\bar{y}_{1}, \bar{y}_{2} \bar{y}_{3}, \bar{y}_{2} \bar{y}_{4}, \cdots, \bar{y}_{2} \bar{y}_{i}, \bar{y}_{1}\right\rangle$ or $\left\langle\bar{y}_{1}, \bar{y}_{2}, \cdots, \bar{y}_{i}\right\rangle$, which is semiregular on the set of Q-orbits in Δ^{\prime} and of order 2^{i}. Hence \bar{y} fixes at least $2^{i} Q$-orbits in Δ^{\prime} and so by (2.8) $2^{i} \leq 2(i+2)$. Hence $i \leq 3$, which is a contradiction. Thus if $\left\langle Q, y_{1}, y_{2}, \cdots, y_{i}, y_{1}{ }^{\prime}\right\rangle, i \geq 4$, is semiregular on Δ^{\prime}, then $\left\langle Q, y_{1}, y_{2}\right.$,
$\left.\cdots, y_{i+1}, y_{1}^{\prime}\right\rangle$ is semiregular on Δ^{\prime}. Since $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{4}, y_{1}^{\prime}\right\rangle$ is semiregular on Δ^{\prime}, this implies by induction that $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}^{\prime}\right\rangle$ is semiregular on Δ^{\prime}.

2.11. G is not 5 -fold transitive on Ω.

Proof. If G is 5 -fold transitive on Ω, then G_{1} is 4-fold transitive on Ω $\{1\}$ and satisfies the assumptions of the theorem. Hence by the minimal nature of the degree of G, G_{1} contains A_{n-1}, so G contains A_{n}. This is a contradiction. Thus G is not 5 -fold transitive.
2.12. Let x be an involution of $N(Q)$. If there is a Q-orbit Δ^{\prime} in Δ such that $\left|I(x) \cap \Delta^{\prime}\right|=2$, then $C(Q)^{I(Q)}=A_{t}$ or S_{t}.

Proof. Since x is an involution and $\left|I(x) \cap \Delta^{\prime}\right|=2, x$ induces an involutory automorphism of Q which fixes exactly two elements. By a theorem of H . Zassenhaus ([16], Satz 5) Q contains a cyclic group of index two. Then the automorphism group of Q is S_{3}, S_{4} or a 2-group (cf. H. Zassenhaus [17], IV, §3, Exercise 4). Since $N(Q)^{I(Q)}=A_{t}$ or $S_{t}, t \geq 6$ and $N(Q)^{I(Q)} / C(Q)^{I(Q)}$ is involved in the automorphism group of $Q, C(Q)^{I(Q)}$ contains A_{t}.
2.13. Let x be a 2-element of $N(Q)$. If $x^{I(Q)}$ is an involution consisting of exactly one 2-cycle, then $|I(x) \cap \Delta|=0$.

Proof. Since $|I(x)| \leq t,|I(x) \cap \Delta|=0$ or 2 . Suppose by way of contradiction that $x^{I(Q)}$ is an involution consisting of exactly one 2-cycle and $|I(x) \cap \Delta|=$ 2. Then $\left|I\left(x^{2}\right)\right| \geq t+2$. Hence $x^{2}=1$. Since $x^{I(Q)}$ is an odd permutation, $N(Q)^{I(Q)}=S_{t}$. Furthermore by (2.12) $C(Q)^{I(Q)}=S_{t}$ or A_{t}. We treat these cases separately.
(i) Suppose that $C(Q)^{I(Q)}=S_{t}$. Then $C(Q)$ has a 2-element x^{\prime} such that $x^{\prime I(Q)}=x^{I(Q)}$. Since Q is a Sylow 2-subgroup of $G_{I(Q)},\langle Q, x\rangle$ and $\left\langle Q, x^{\prime}\right\rangle$ are Sylow 2-subgroups of $\left\langle Q, x, x^{\prime}\right\rangle$. Hence $\langle Q, x\rangle$ is conjugate to $\left\langle Q, x^{\prime}\right\rangle$. Thus x is conjugate to $x^{\prime} c$, where $c \in Q$, and so $\left|I\left(x^{\prime} c\right) \cap \Delta\right|=2$. Hence $x^{\prime} c$ commutes with exactly one element of Q other than 1 , which is a central involution of Q. On the other hand since $x^{\prime} \in C(Q), x^{\prime}$ commutes with c. Hence $x^{\prime} c$ commutes with c. Thus c is 1 or a central involution of Q. Hence $x^{\prime} c \in C(Q)$ and so Q is of order two. Set $Q=\langle a\rangle$. Then we may assume that

$$
a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots(n-1 n) .
$$

Since $|\Delta| \equiv 0(\bmod 4)$ and $|I(x) \cap \Delta|=2,|I(a x) \cap \Delta| \equiv 2(\bmod 4)$. Hence $|I(a x) \cap \Delta|=2$ because $|I(a x)| \leq t$. Since $C(a)^{I(a)}=S_{t}, C(a)$ has the 2-group $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ as in (2.4). Since $\left\langle a, x_{i}\right\rangle, 1 \leq i \leq k$, is conjugate to $\langle a, x\rangle$ in $C(a),\left\langle a, x_{i}\right\rangle$ is elementary abelian and $\left|I\left(x_{i}\right) \cap \Delta\right|=\left|I\left(a x_{i}\right) \cap \Delta\right|=2$. Hence we may assume that

$$
x_{1}=(12)(3)(4) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots
$$

Then $\left\langle a, x_{1}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.
Now we show that $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is elementary abelian and semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, where $\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left\{3^{\prime}, 4^{\prime}\right\}$ are $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$-orbits of length two. Since x_{2} normalizes $\left\langle a, x_{1}\right\rangle, x_{1}^{x_{2}}=x_{1}$ or $a x_{1}$. Suppose that $x_{1}^{x_{2}}=a x_{1}$. Then $\left(x_{1} x_{2}\right)^{2}=a$. Hence $\left\langle x_{1} x_{2}\right\rangle$ is a cyclic group of order four and contains a. On the other hand since $C(a)^{I(a)}=S_{t},\left\langle a, x_{1}, x_{3}\right\rangle$ is conjugate to $\left\langle a, x_{1}, x_{2}\right\rangle$ in $C(a)$. Hence $x_{1}^{x_{3}}=a x_{1}$. Thus $x_{1}^{x_{2} x_{3}}=x_{1}$ and so $x_{2} x_{3}$ centralizes $\left\langle a, x_{1}\right\rangle$. Furthermore since $I\left(x_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$ and $I\left(a x_{1}\right) \cap \Delta=\left\{3^{\prime}, 4^{\prime}\right\}, x_{2} x_{3}$ fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left\{3^{\prime}, 4^{\prime}\right\}$. Thus $I\left(\left(x_{2} x_{3}\right)^{2}\right)$ contains $I(a) \cap\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ of length $t+4$. Hence $\left(x_{2} x_{3}\right)^{2}=1$. This is a contradiction since $\left\langle a, x_{2} x_{3}\right\rangle$ is conjugate to the cyclic group $\left\langle x_{1} x_{2}\right\rangle$. Thus x_{2} commutes with x_{1} and so $\left\langle a, x_{1}, x_{2}\right\rangle$ is elementary abelian. Furthermore $\left\langle a, x_{1}, x_{2}\right\rangle$ is conjugate to $\left\langle a, x_{i}, x_{j}\right\rangle, i \neq j$ and $1 \leq i, j \leq k$. Hence $\left\langle a, x_{i}, x_{j}\right\rangle$ is also elementary abelian. Thus $\left\langle a, x_{1}, x_{2} \cdots, x_{k}\right\rangle$ is elementary abelian. Since $I\left(x_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$ and $I\left(a x_{1}\right) \cap \Delta=\left\{3^{\prime}, 4^{\prime}\right\},\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left\{3^{\prime}, 4^{\prime}\right\}$ are $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$-orbits of length two. Since x_{i} or $a x_{i}, 2 \leq i \leq k$, fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ pointwise, we may assume that x_{i} fixes $\left\{1^{\prime}, 2^{\prime}\right\}$ pointwise.

Suppose that $\left\langle a, x_{1}, x_{2}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then $\left\langle a, x_{1}, x_{2}\right\rangle$ has an orbit Δ^{\prime} of length four in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $\left\langle a, x_{1}, x_{2}\right\rangle$ is an elementary abelian group of order eight, there is exactly one involution x^{\prime} in $\left\langle a, x_{1}, x_{2}\right\rangle$ fixing Δ^{\prime} pointwise. Since $\left|\Delta^{\prime}\right|=4, x^{\prime}$ has at least two 2 -cycles in $I(a)$. Hence $x^{\prime}=x_{1} x_{2}$ or $a x_{1} x_{2}$. If $x^{\prime}=x_{1} x_{2}$, then $I\left(x^{\prime}\right)$ contains $(I(a)-\{1,2,3,4\})$ $\cup\left\{1^{\prime}, 2^{\prime}\right\} \cup \Delta^{\prime}$ of length $t+2$, contrary to the assumption (*). Thus $x^{\prime}=a x_{1} x_{2}$. Then $I\left(a x_{1} x_{2}\right)=(I(a)-\{1,2,3,4\}) \cup \Delta^{\prime}$ since $\left|(I(a)-\{1,2,3,4\}) \cup \Delta^{\prime}\right|=t$. This shows that $\left\langle a, x_{1}, x_{2}\right\rangle$ is semiregular on $\Delta-\left(\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\} \cup \Delta^{\prime}\right)$. By (2.4) $C(a)$ has x_{3}. Then x_{3} normalizes $\left\langle a, x_{1}, x_{2}\right\rangle$ and so fixes Δ^{\prime}. Hence by the same argument as above $a x_{1} x_{3}$ fixes Δ^{\prime} pointwise. Thus $I\left(a x_{1} x_{2} \cdot a x_{1} x_{3}\right)=I\left(x_{2} x_{3}\right)$ contains $(I(a)-\{3,4,5,6\}) \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\} \cup \Delta^{\prime}$ of length $t+4$, contrary to the assumption (*). Thus $\left\langle a, x_{1}, x_{2}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence by (2.5) $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

On the other hand $\left\langle a, x_{1}\right\rangle$ normalizes $G_{5^{\prime} \sigma^{\prime} \tau^{\prime} 8^{\prime}}$, which is even order. Hence a and x_{1} commute with an involution u of $G_{5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}}$. Since $I\left(x_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$ and $I\left(a x_{1}\right) \cap \Delta=\left\{3^{\prime}, 4^{\prime}\right\},\langle a, u\rangle$ has at least four orbits $\left\{1^{\prime}, 2^{\prime}\right\},\left\{3^{\prime}, 4^{\prime}\right\},\left\{5^{\prime}, 6^{\prime}\right\}$ and $\left\{7^{\prime}, 8^{\prime}\right\}$ of length two in Δ. Since $C(a)^{l(a)}=S_{t},\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ has a subgroup $\left\langle a, u^{\prime}\right\rangle$ which is conjugate to $\langle a, u\rangle$ in $C(a)$. This is a contradiction since $\left\langle a, u^{\prime}\right\rangle$ has exactly two orbits $\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left\{3^{\prime}, 4^{\prime}\right\}$ of length two in Δ. Thus $C(Q)^{I(Q)}$ $\neq S_{t}$.
(ii) Suppose that $C(Q)^{I(Q)}=A_{t}$.
(ii.i) We show that x fixes exactly one Q-orbit in Δ. Since $|I(x) \cap \Delta|=2$, x fixes at least one Q-orbit in Δ. On the other hand by (2.8) x fixes at most two Q-orbits. Suppose that x fixes exactly two Q-orbits Δ_{1} and Δ_{2} in Δ. Let u be
any element of Q. Then by (2.8) $u x$ is an involution having fixed points in Δ_{1} or Δ_{2}. Since $u x$ consists of one 2-cycle on $I(Q), u x$ fixes two points and these two points are contained in either Δ_{1} or Δ_{2}. Hence $\langle Q, x\rangle$ is semiregular on $\Delta-\left(\Delta_{1} \cup \Delta_{2}\right)$. Since $(u x)^{2}=1, u^{x}=u^{-1}$. In particular if u is an involution, then x commutes with u. On the other hand since $|I(x) \cap \Delta|=2, x$ commutes with exactly one involution of Q. Hence Q has exactly one involution and so Q is a cyclic or generalized quaternion group. Let u and u^{\prime} be any two elements of Q. Then $\left(u u^{\prime}\right)^{x}=\left(u u^{\prime}\right)^{-1}$, and $\left(u u^{\prime}\right)^{x}=u^{x} u^{\prime x}=u^{-1} u^{\prime-1}=\left(u^{\prime} u\right)^{-1}$. Hence $u u^{\prime}=u^{\prime} u$ and so Q is a cyclic group. Furthermore since $C(Q)^{I(Q)}=A_{t}$, any 2-element of $N(Q)$ whose restriction on $I(Q)$ is an even permutation belongs to $C(Q)$.
$N(Q)$ has the 2-group $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$ as in (2.4). Since $\left\langle Q, x_{1}\right\rangle$ is conjugate to $\langle Q, x\rangle$, we may assume that $x_{1}=x$,

$$
x_{1}=(12)(3)(4) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots
$$

and $\left\{1^{\prime}, 2^{\prime}\right\} \subset \Delta_{1}$. Since x_{2} normalizes $\left\langle Q, x_{1}\right\rangle$ and $\left\langle Q, x_{1}\right\rangle$ has exactly two orbits Δ_{1} and Δ_{2} of length $|Q|, \Delta_{1}^{x_{2}}=\Delta_{1}$ or Δ_{2}. First assume that $\Delta_{1}{ }^{x_{2}}=\Delta_{1}$. Since $\left\langle Q, x_{1}, x_{3}\right\rangle$ is conjugate to $\left\langle Q, x_{1}, x_{2}\right\rangle$ in $N(Q), \Delta_{1}^{x_{3}}=\Delta_{1}$. Hence $\Delta_{1}^{x_{2} x_{3}}=\Delta_{1}$. Next assume that $\Delta_{1}{ }^{x_{2}}=\Delta_{2}$. Then similarly $\Delta_{1}{ }^{x_{3}}=\Delta_{2}$. Hence $\Delta_{1}{ }^{x_{2} x_{3}}=\Delta_{1}$. Thus in either case $\Delta_{1}{ }_{1}{ }_{2} x_{3}=\Delta_{1}$. Hence there is an element y in $Q x_{2} x_{3}$ such that $\left|I(y) \cap \Delta_{1}\right| \neq 0$. Since $y^{I(Q)}=(34)(56),\left|I(y) \cap \Delta_{1}\right|=2$ or 4. Furthermore as we have seen above $y \in C(Q)$. Hence $|Q|=2$ or 4 . However we assumed that $N(Q) \neq C(Q)$. Hence $|Q|=4$. Let $Q=\langle b\rangle$. Since $b^{x}{ }_{1}=b^{-1}$, we may assume that

$$
b=(1)(2) \cdots(t)\left(1^{\prime} 3^{\prime} 2^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime} 6^{\prime} 8^{\prime}\right) \cdots
$$

$\Delta_{1}=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and $\Delta_{2}=\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Then

$$
y=(1)(2)(34)(56)(7)(8) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots
$$

On the other hand $C(Q)$ has a 2-element

$$
y^{\prime}=(1)(2)(35)(46)(7)(8) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle Q, x_{1}, y, y^{\prime}\right\rangle$ is a 2 -group. Since $\left\langle Q, x_{1}, y^{\prime}\right\rangle$ is conjugate to $\left\langle Q, x_{1}, y\right\rangle$ in $N(Q), \Delta_{1}^{y^{\prime}}=\Delta_{1}$ and $\Delta_{2}^{y^{\prime}}=\Delta_{2}$. Then $Q y^{\prime}$ has an element

$$
y^{\prime \prime}=(1)(2)(35)(46)(7)(8) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots
$$

Then $y y^{\prime \prime}$ is of even order and $I\left(y y^{\prime \prime}\right)$ contains $(I(Q)-\{3,4,5,6\}) \cup \Delta_{1} \cup \Delta_{2}$ of length $t+4$, contrary to the assumption (*). Thus x_{1} fixes exactly one Q-orbit in Δ.
(ii.ii) We show that $|Q|=4$. Since $N(Q)^{I(Q)} \neq C(Q)^{I(Q)},|Q| \neq 2$. Suppose by way of contradiction that $|Q| \geq 8$. By (2.4) $N(Q)$ has the 2-group $\left\langle Q, x_{1}, x_{2}\right.$,
$\left.x_{3}\right\rangle$. Since $\left\langle Q, x_{1}\right\rangle$ is conjugate to $\langle Q, x\rangle$, we may assume that $x_{1}=x$ and

$$
x_{1}=(12)(3)(4) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots
$$

Then there is exactly one involution a in Q commuting with x_{1}. Then we may assume that

$$
a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots(n-1 n)
$$

By (ii.i) there is exactly one Q-orbit Δ_{1} in Δ fixed by x_{1}. Since $\left|\Delta_{1}\right|=|Q| \geq 8$, we may assume that $\Delta_{1} \supseteq\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$. Since x_{2} and x_{3} normalizes $\left\langle Q, x_{1}\right\rangle, x_{2}$ and x_{3} fix Δ_{1}. Thus $Q x_{2}$ and $Q x_{3}$ have elements fixing 1^{\prime} of Δ_{1}. We may assume that x_{2} and x_{3} fix 1^{\prime}. Then $I\left(x_{i}{ }_{j} \cdot x_{i}\right) \supseteq I(a) \cup\left\{1^{\prime}\right\}, 1 \leq i, j \leq 3$. Hence $x_{2}{ }^{2}=x_{3}{ }^{2}=1$ and x_{i} commutes with x_{j}. Since $I\left(x_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left|I\left(x_{i}\right)\right| \leq t, i=2,3$, $I\left(x_{i}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$. This implies that x_{2} and x_{3} commute with a. Thus $\left\langle a, x_{1}\right.$, $\left.x_{2}, x_{3}\right\rangle$ is elementary abelian. Furthermore $I\left(a x_{1}\right) \cap \Delta=\left\{3^{\prime}, 4^{\prime}\right\}$. Hence x_{2} and $x_{3}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. On the other hand $\left|\Delta_{1}-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}\right| \equiv 4$ $(\bmod 8)$. Hence $\left\langle a, x_{1}, x_{2}, x_{3}\right\rangle$ has an orbit of length four in $\Delta_{1}-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence we may assume that $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ is the $\left\langle a, x_{1}, x_{2}, x_{3}\right\rangle$-orbit of length four. Since $\mid\left\langle a, x_{1}, x_{i}\right\rangle=8, i=2,3$, there is an involution $x_{i}{ }^{\prime}$ in $\left\langle a, x_{1}, x_{i}\right\rangle$ fixing $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ pointwise. Since $\left|I\left(x_{i}^{\prime}\right)\right| \leq t, x_{i}^{\prime}=x_{1} x_{i}$ or $a x_{1} x_{i}$. If $x_{i}^{\prime}=x_{1} x_{i}$, then $I\left(x_{1} x_{i}\right) \cap \Delta \supseteq\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$ and so $\left|I\left(x_{1} x_{i}\right)\right| \geq t+4$, contrary to the assumption (*). Thus $x_{i}{ }^{\prime}=a x_{1} x_{i}$. Hence $I\left(a x_{1} x_{2} \cdot a x_{1} x_{3}\right)=I\left(x_{2} x_{3}\right)$ contains $(I(a)-$ $\{3,4,5,6\}) \cup\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$ of length $t+4$, contrary to the assumption $(*)$. Thus $|Q|=4$.
(ii.iii) We show that $|Q|=4$ implies a contradiction. $N(Q)$ has the 2-group $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ as in (2.4). Since $\left\langle Q, x_{1}\right\rangle$ is conjugate to $\langle Q, x\rangle$, we may assume that $x_{1}=x$ and

$$
x_{1}=(12)(3)(4) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots
$$

Let a be an involution of Q commuting with x_{1}. Then we may assume that

$$
a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots(n-1 n) .
$$

Then by (ii.i) and (ii.ii) $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ is a $\left\langle Q, x_{1}\right\rangle$-orbit and $\left\langle Q, x_{1}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since x_{i} normalizes $\left\langle Q, x_{1}\right\rangle, 2 \leq i \leq k, x_{i}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence $Q x_{i}$ has an element fixing 1^{\prime}. We may assume that x_{i} fixes 1^{\prime}. Then $I\left(x_{i}{ }^{x}{ }_{j} \cdot x_{i}\right), 1 \leq i, j \leq k$, contains $I(Q) \cup\left\{1^{\prime}\right\}$ of length $t+1$. Hence $x_{i}^{x_{j}} \cdot x_{i}=1$. Thus $x_{i}^{2}=1$ and $x_{i} x_{j}=x_{j} x_{i}$. Furthermore $I\left(x_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$. Hence $I\left(x_{i}\right) \cap \Delta$ $=\left\{1^{\prime}, 2^{\prime}\right\}, i \geq 2$. This implies that x_{i} commutes with a. Thus $\left\langle a, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is elementary abelian and $x_{i}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, 1 \leq i \leq k$. Furthermore since $x_{i} x_{j}, 1 \leq i, j \leq k$, fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise, $\left\langle a, x_{i} x_{j}\right\rangle<Z$ $\left(\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle\right)$.

Now we show that $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

Suppose that $\left\langle Q, x_{1}, x_{2}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then there is a $\left\langle Q, x_{1}, x_{2}\right\rangle$-orbit Δ^{\prime} of length eight. Since $\left\langle Q, x_{1}\right\rangle$ and $\left\langle Q, x_{2}\right\rangle$ are semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, there is an element u in Q such that $u x_{1} x_{2}$ has fixed points in Δ^{\prime}. If $u=1$ or a, then $u x_{1} x_{2} \in Z\left(\left\langle Q, x_{1}, x_{2}\right\rangle\right)$. Thus $u x_{1} x_{2}$ fixes Δ^{\prime} pointwise and so $\left|I\left(u x_{1} x_{2}\right)\right| \geq t+4$, contrary to the assumption (*). Thus $u \neq 1, a$. Since $0<\left|I\left(u x_{1} x_{2}\right) \cap \Delta^{\prime}\right| \leq 4$ and $u x_{1} x_{2} \in C(Q), u x_{1} x_{2}$ fixes exactly four points of Δ^{\prime}. Since $\left|\Delta^{\prime}\right|=8$, there is an element u^{\prime} in Q such that $u^{\prime} x_{1} x_{2}$ fixes exactly four points of Δ^{\prime} which are not fixed by $u x_{1} x_{2}$. By the same reason as above $u^{\prime} \neq 1, a$. Hence $u^{\prime}=u a$. Furthermore this shows that $\left\langle Q, x_{1}, x_{2}\right\rangle$ is semiregular on $\Delta-$ $\left(\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\} \cup \Delta^{\prime}\right)$. By (2.4) $N(Q)$ has x_{3}. Then x_{3} normalizes $\left\langle Q, x_{1}, x_{2}\right\rangle$ and so fixes Δ^{\prime}. Hence by the same argument as above $u^{\prime \prime} x_{1} x_{3}$, where $u^{\prime \prime}=u$ or $u a$, fixes the same points of Δ^{\prime} that $u x_{1} x_{2}$ fixes. Then $u x_{1} x_{2} \cdot u^{\prime \prime} x_{1} x_{3}=u u^{\prime \prime} x_{2} x_{3}$ has fixed points in Δ^{\prime}. Since $u u^{\prime \prime}=u^{2}$ or $u^{2} a$ and $u^{2}=1$ or a, $u u^{\prime \prime}=1$ or a. Hence $u u^{\prime \prime} x_{2} x_{3} \in C\left(\left\langle Q, x_{1}, x_{2}\right\rangle\right)$ and so $u u^{\prime \prime} x_{2} x_{3}$ fixes Δ^{\prime} pointwise. Thus $\left|I\left(u u^{\prime \prime} x_{2} x_{3}\right)\right|$ $\geq t+4$, contrary to the assumption (*). Thus $\left\langle Q, x_{1}, x_{2}\right\rangle$ is semiregular on $\Delta-$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

Suppose that $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then there is a $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$-orbit Δ^{\prime} of length sixteen. Since $\left\langle Q, x_{1}, x_{3}\right\rangle$ and $\left\langle Q, x_{2}\right.$, $\left.x_{3}\right\rangle$ are conjugate to $\left\langle Q, x_{1}, x_{2}\right\rangle$ in $N(Q),\left\langle Q, x_{1}, x_{3}\right\rangle$ and $\left\langle Q, x_{2}, x_{3}\right\rangle$ are semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence there is an elemenet x^{\prime} in $Q x_{1} x_{2} x_{3}$ such that x^{\prime} has fixed points in Δ^{\prime}. Since $\left\langle a, x_{1} x_{2}, x_{1} x_{3}\right\rangle<Z\left(\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle\right), x^{\prime} \in C\left(\left\langle a, x_{1} x_{2}, x_{1} x_{3}\right\rangle\right)$. On the other hand $\left\langle Q, x_{1}, x_{2}\right\rangle,\left\langle Q, x_{1}, x_{3}\right\rangle$ and $\left\langle Q, x_{2}, x_{3}\right\rangle$ are semiregular on Δ^{\prime}. Hence $\left\langle a, x_{1} x_{2}, x_{1} x_{3}\right\rangle$ is semiregular on Δ^{\prime}. Since x^{\prime} has fixed points in Δ^{\prime} and $\left|\left\langle a, x_{1} x_{2}, x_{1} x_{3}\right\rangle\right|=8, x^{\prime}$ fixes at least eight points of Δ^{\prime}. Thus $\left|I\left(x^{\prime}\right)\right| \geq t-6+8$ $=t+2$, contrary to the assumption (*). Thus $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

Suppose that $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ has an orbit Δ^{\prime} of length 2^{5}. Since $\left\langle Q, x_{2}, x_{3}, x_{4}\right\rangle$, $\left\langle Q, x_{1}, x_{2}, x_{4}\right\rangle$ and $\left\langle Q, x_{1}, x_{3}, x_{4}\right\rangle$ ar conjugate to $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$ in $N(Q)$, these groups are semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence there is an element x^{\prime} in $Q x_{1} x_{2} x_{3} x_{4}$ such that x^{\prime} has fixed points in Δ^{\prime}. Since $\left\langle Q, x_{1} x_{2}, x_{3} x_{4}\right\rangle<C(Q)$, $x^{\prime} \in C(Q)$. Furthermore since $x_{1} x_{2}$ and $x_{3} x_{4} \in Z\left(\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle\right), x_{1} x_{2}$ and $x_{1} x_{3}$ commute with x^{\prime}. Thus $x^{\prime} \in C\left(\left\langle Q, x_{1} x_{2}, x_{1} x_{3}\right\rangle\right)$. Since $\left\langle Q, x_{1} x_{2}, x_{1} x_{3}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and of order $2^{4}, x^{\prime}$ fixes at least 2^{4} points in Δ^{\prime}. Then $\left|I\left(x^{\prime}\right)\right| \geq t-2 \cdot 4+2^{4}=t+8$, contrary to the assumption (*). Thus $\left\langle Q, x_{1}\right.$, $\left.x_{2}, x_{3}, x_{4}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence by (2.9) $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

On the other hand $\left\langle a, x_{1}\right\rangle$ normalizes $G_{5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime} 8^{\prime}}$, which is even order. Hence a and x_{1} commute with an involution u of $G_{5^{\prime} \sigma^{\prime} \tau^{\prime} \varepsilon^{\prime}}$. Then $\left\langle a, x_{1}, u\right\rangle$ normalizes $G_{I(Q)}$. Hence there is a Sylow 2-subgroup Q^{\prime} of $G_{I(Q)}$ such that $\left\langle a, x_{1}, u\right\rangle$ normalizes Q^{\prime}. Since Q^{\prime} is conjugate to Q in $G_{I(Q)}$ and $N(Q)^{I(Q)}=S_{t},\left\langle Q^{\prime}, a, x_{1}, u\right\rangle$
is conjugate to a subgroup of $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ in $N\left(G_{I(Q)}\right)$. Then $\left\langle Q^{\prime}, a, x_{1}, u\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ since $I\left(x_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$ and $I\left(a x_{1}\right) \cap \Delta=$ $\left\{3^{\prime}, 4^{\prime}\right\}$. This is a contradiction since $I(u) \cap \Delta \supseteq\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Thus $C(Q)^{I(Q)}$ $\neq A_{t}$ and so we complete the proof of (2.13)
2.14. Let y be a 2-element of $N(Q)$. If $y^{I(Q)}$ is an involution consisting of exactly two 2-cycles, then $|I(y) \cap \Delta| \neq 2$.

Proof. Suppose by way of contradiction that $y^{I(Q)}$ is an involution consisting of exactly two 2-cycles and $|I(y) \cap \Delta|=2$. Then $\left|I\left(y^{2}\right)\right| \geq t+2$. Hence $y^{2}=1$. We may assume that

$$
y=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots
$$

Then by (2.12) $C(Q)^{I(Q)}=S_{t}$ or A_{t}. Then since $y^{I(Q)}$ is an even permutation, $y^{I(Q)} \in C(Q)^{I(Q)}$. Thus there is an element a of Q such that $a y \in C(Q)$. Hence ay commutes with a and so y commutes with a. On the other hand y commutes with exactly one involution of Q, which is a central involution of Q. Hence $a \in Z(Q)$ and so $y \in C(Q)$. Thus $|Q|=2$ and so $Q=\langle a\rangle$. Since $I(y) \cap \Delta=$ $\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left|\Delta-\left\{1^{\prime}, 2^{\prime}\right\}\right| \equiv 2(\bmod 4),|I(a y) \cap \Delta| \equiv 2(\bmod 4)$. Hence $\mid I(a y)$ $\cap \Delta \mid=2$. Thus we may assume that

$$
a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots(n-1 n) .
$$

Then $\langle a, y\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $C(a)^{I(a)} \geq A_{t}$, there is an element z in $C(Q)$ of the form

$$
z=\left(\begin{array}{lll}
1 & 3 & 4
\end{array}\right)(56) \cdots(t) \cdots
$$

By (2.3) we may assume that $\langle a, y, z\rangle$ is a 2 -group. Then $z^{2}=y$ or $a y$, and so $I\left(z^{2}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}\right\}$ or $\left\{3^{\prime}, 4^{\prime}\right\}$. Thus z consists of 4 -cycles on $\Delta-\left\{1^{\prime}, 2^{\prime}\right\}$ or $\Delta-\left\{3^{\prime}, 4^{\prime}\right\}$. Hence $|\Delta| \equiv 2(\bmod 4)$, contrary to (2.7). Thus we complete the proof.
2.15. Let y be a 2-element of $N(Q)$. If $y^{I(Q)}$ is an involution consisting of exactly two 2-cycles, then $|I(y) \cap \Delta|=0$.

Proof. Since $|I(y) \cap I(Q)|=t-4,|I(y) \cap \Delta|=0,2$ or $4 . \quad$ By (2.14) $\mid I(y)$ $\cap \Delta \mid \neq 2$. Hence suppose by way of contradiction that $|I(y) \cap \Delta|=4$. By (2.4) $N(Q)$ has the 2-group $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$. Since $\left\langle Q, y_{1}\right\rangle$ is conjugate to $\langle Q, y\rangle$, we may assume that $y_{1}=y$.

First we show that y_{1} fixes at least two Q-orbits in Δ. Suppose by way of contradiction that y_{1} fixes exactly one Q-orbit Δ_{1} in Δ. Then $\left|I\left(y_{1}\right) \cap \Delta_{1}\right|=4$, so $|Q|=\left|\Delta_{1}\right| \geq 4$.

Since $N(Q)^{I(Q)}=S_{t}$ or A_{t}, first assume that $N(Q)^{I(Q)}=S_{t}$. Then $N(Q)$ has
a 2-element

$$
x=\left(\begin{array}{ll}
1 & 2
\end{array}\right)(3)(4) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle Q, y_{1}, x\right\rangle$ is a 2 -group. Then x normalizes $\left\langle Q, y_{1}\right\rangle$. Hence x fixes Δ_{1}, contrary to (2.13). Thus $N(Q)^{I(Q)} \neq S_{t}$.

Hence $N(Q)^{I(Q)}=A_{t}$. First we show that $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ fixes Δ_{1} and is semiregular on $\Delta-\Delta_{1}$. Since $y_{1}{ }^{\prime}$ normalizes $\left\langle Q, y_{1}\right\rangle, y_{1}{ }^{\prime}$ fixes Δ_{1}. Since $\left\langle Q, y_{1}{ }^{\prime}\right\rangle$ and $\left\langle Q, y_{1} y_{1}{ }^{\prime}\right\rangle$ are conjugate to $\left\langle Q, y_{1}\right\rangle$ in $N(Q),\left\langle Q, y_{1}{ }^{\prime}\right\rangle$ and $\left\langle Q, y_{1} y_{1}{ }^{\prime}\right\rangle$ are semiregular on $\Delta-\Delta_{1}$. Thus $\left\langle Q, y_{1}, y_{1}{ }^{\prime}\right\rangle$ are semiregular on $\Delta-\Delta_{1}$.

Since $\left(y_{i} y_{j}\right)^{I(Q)}=\left(y_{j} y_{i}\right)^{I(Q)}, 1 \leq i, j \leq k, \bar{y}_{i} \bar{y}_{j}=\bar{y}_{j} \bar{y}_{i}$. Thus $\left\langle\bar{y}_{1}, \bar{y}_{2}, \cdots, \bar{y}_{k}\right\rangle$ is elementary abelian. Similarly since $\left(y_{1} y_{1}{ }^{\prime}\right)^{I(Q)}=\left(y_{1}{ }^{\prime} y_{1}\right)^{I(Q)}$ and $\left(y_{i} y_{j} \cdot y_{1}{ }^{\prime}\right)^{I(Q)}=$ $\left(y_{1}{ }^{\prime} \cdot y_{i} y_{j}\right)^{I(Q)}, 2 \leq i, j \leq k,\left\langle\bar{y}_{1}, \bar{y}_{1}{ }^{\prime}, \bar{y}_{i} \bar{y}_{j}\right\rangle$ is elementary abelian. Since \bar{y}_{1} fixes exactly one Q-orbit Δ_{1} in $\bar{\Delta},\left\langle\bar{y}_{1}, \bar{y}_{2}, \cdots, \bar{y}_{k}, \bar{y}_{1}\right\rangle$ fixes Δ_{1}. Thus Δ_{1} is the $\left\langle Q, y_{1}\right.$, $\left.y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$-orbit.

Suppose that $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle$ is not semiregular on $\Delta-\Delta_{1}$. Then there is an element y^{\prime} in $\left\langle Q, y_{1}, y_{1}\right\rangle y_{2}$ such that \bar{y}^{\prime} has fixed points in $\bar{\Delta}-\left\{\Delta_{1}\right\}$. Then $y^{\prime I(Q)}$ is of order two or four. If $y^{\prime \prime(Q)}$ is of order two, then $y^{\prime I(Q)}$ consists of two 2-cycles. Thus $\left\langle Q, y^{\prime}\right\rangle$ is conjugate to $\left\langle Q, y_{1}\right\rangle$ which fixes exactly one Q-orbit Δ_{1}. This is a contradiction. Thus $y^{\prime I(Q)}$ is of order four and consists of one 4cycle and one 2-cycle. Then $y^{\prime 2}$ consists of two 2-cycles on $I(Q)$ and fixes at least two Q-orbits in Δ, which is also a contradiction. Thus $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on $\Delta-\Delta_{1}$.

Suppose that $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\rangle$ is not semiregular on $\Delta-\Delta_{1}$. Then there is an element y^{\prime} in $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle y_{3}$ such that \bar{y}^{\prime} has fixed points in $\bar{\Delta}-\left\{\Delta_{1}\right\}$. Then $\left\langle Q, y^{\prime}\right\rangle$ is not conjugate to any subgroup of $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle$. Hence $y^{\prime I(Q)}$ $=\left(y_{1} y_{2} y_{3}\right)^{I(Q)},\left(y_{1}^{\prime} y_{2} y_{3}\right)^{I(Q)}$ or $\left(y_{1} y_{1}^{\prime} y_{2} y_{3}\right)^{I(Q)}$. Suppose that $y^{\prime I(Q)}=\left(y_{1} y_{2} y_{3}\right)^{I(Q)}$. Then $\bar{y}^{\prime}=\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ commutes with \bar{y}_{1}, \bar{y}_{2} and $\bar{y}_{1}{ }^{\prime}$. Since $\left\langle\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{1}\right\rangle$ is semiregular on $\bar{\Delta}-\left\{\Delta_{1}\right\}, \bar{y}^{\prime}$ fixes at least eight Q-orbits in $\bar{\Delta}-\left\{\Delta_{1}\right\}$. Thus y^{\prime} fixes at least eight Q-orbits other than Δ_{1}. However since $y^{\prime I(Q)}$ consists of four 2-cycles, y^{\prime} fixes at most eight Q-orbits in Δ by (2.8). Thus we have a contradiction. Hence $y^{\prime I(Q)} \neq\left(y_{1} y_{2} y_{3}\right)^{I(Q)}$. Suppose that $y^{\prime I(Q)}=\left(y_{1}{ }^{\prime} y_{2} y_{3}\right)^{I(Q)}$ or $\left(y_{1} y_{1}{ }^{\prime} y_{2} y_{3}\right)^{I(Q)}$. Then $\left\langle Q, y^{\prime}\right\rangle$ is conjugate to $\left\langle Q, y_{1} y_{2} y_{3}\right\rangle$ in $N(Q)$ and so semiregular on $\Delta-\Delta_{1}$, which is a contradiction. Thus $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on $\Delta-\Delta_{1}$.

Suppose that $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{4}, y_{1}^{\prime}\right\rangle$ is not semiregular on $\Delta-\Delta_{1}$. Then there is an element y^{\prime} in $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{1}{ }^{\prime}\right\rangle y_{4}$ such that \bar{y}^{\prime} has fixed points in $\bar{\Delta}-\left\{\Delta_{1}\right\}$. Then $\left\langle Q, y^{\prime}\right\rangle$ is not conjugate to any subgroup of $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{1}{ }^{\prime}\right\rangle$. Hence y^{\prime} consists of one 4 -cycle and three 2 -cycles on $I(Q)$. Then $\left\langle Q, y^{\prime 2}\right\rangle=\left\langle Q, y_{1}\right\rangle$, which is semiregular on $\Delta-\Delta_{1}$. Thus we have a contradiction. Hence $\left\langle Q, y_{1}\right.$, $\left.y_{2}, y_{3}, y_{4}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on $\Delta-\Delta_{1}$. Hence by (2.10) $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on $\Delta-\Delta_{1}$.

Let a be an involution of Q commuting with y_{1} and $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ be any
$\left\langle a, y_{1}\right\rangle$-orbit in $\Delta-\Delta_{1}$. Then $\left\langle a, y_{1}\right\rangle$ normalizes $G_{i_{1} i_{2} i_{3} i_{4}}$, which is of even order. Hence a and y_{1} commute with an involution u of $G_{i_{1} i_{2} i_{3} i_{4}}$. Then the 2-group $\left\langle y_{1}, u\right\rangle$ normalizes $G_{I(Q)}$. Hence $\left\langle y_{1}, u\right\rangle$ normalizes a Sylow 2-subgroup Q^{\prime} of $G_{I(Q)}$. Since Q^{\prime} is conjugate to Q in $G_{I(Q)}$ and $N(Q)^{I(Q)}=A_{t},\left\langle Q^{\prime}, y_{1}, u\right\rangle$ is conjugate to a subgroup of $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ in $N\left(G_{I(Q)}\right)$. Hence $I\left(y_{1}\right) \cap \Delta$ and $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ are contained in the same Q^{\prime}-orbit. Since $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ is any $\left\langle a, y_{1}\right\rangle$-orbit in $\Delta-\Delta_{1}, G_{I(Q)}$ is transitive on Δ. Hence G_{1234} is transitive or has two orbits $\{5,6, \cdots, t\}$ and Δ on $\Omega-\{1,2,3,4\}$. If G_{1234} is transitive on $\Omega-\{1,2,3,4\}$, then G is 5 -fold transitive on Ω, contrary to (2.11). Hence G_{1234} has two orbits $\{5,6, \cdots, t\}$ and Δ on $\Omega-\{1,2,3,4\}$. Since $N(Q)^{I(Q)}=A_{t}$, for any four points $j_{1}, j_{2}, j_{3}, j_{4}$ of $I(Q)$ the $G_{j_{1} j_{2} j_{3} j_{4}}$-orbits on $\Omega-\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}$ consist of two orbits $I(Q)-\left\{j_{1}, j_{2}, j_{3}, j_{4}\right\}$ and Δ. Furthermore since G is 4-fold transitive, for any four points $k_{1}, k_{2}, k_{3}, k_{4}$ of $\Omega G_{k_{1} k_{2} k_{3} k_{4}}$ has two orbits Γ_{1} and Γ_{2}, where $\left|\Gamma_{1}\right|=t-4,\left|\Gamma_{2}\right|=|\Delta|$. By a theorem of W. A. Manning [5] $\left|\Gamma_{2}\right|>$ $\left|\Gamma_{1}\right|$. Set $\Gamma\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\Gamma_{1} \cup\left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$. Since $\left|I\left(y_{1}\right) \cap \Delta\right|=4$ and y_{1} commutes with a, we may assume that

$$
\begin{aligned}
& a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots \\
& y_{1}=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots
\end{aligned}
$$

Let i, j be any two points of $I(Q)-\{1,2,3,4\}$. Then $y_{1} \in G_{1^{\prime} 2^{\prime} i j}$ and a normalizes $G_{1^{\prime} 2^{\prime} i j}$. Since $\left|\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)-\left\{1^{\prime}, 2^{\prime}, i, j\right\}\right| \neq\left|\Omega-\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)\right|$, a fixes $\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)$. Suppose that $\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)$ contains $\{1,2\}$. Then as we have seen above $\Gamma(1,2, i, j)$ contains $\left\{1^{\prime}, 2^{\prime}\right\}$. This is a contradiction since $\Gamma(1,2, i, j)=$ $I(Q)$. Similarly $\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)$ does not contain $\{3,4\}$. On the other hand since $N\left(G_{\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)}\right)^{\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)}=A_{t}, a$ and y_{1} are even permutations on $\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)$. Hence $\Gamma\left(1^{\prime}, 2^{\prime}, i, j\right)$ contains $\left\{3^{\prime}, 4^{\prime}\right\}$. Hence $\Gamma\left(1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right)$ contains $\{i, j\}$. Since i, j are any two points of $I(Q)-\{1,2,3,4\}, \Gamma\left(1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right)$ contains $I(Q)-$ $\{1,2,3,4\}$. By $(2.1)|I(Q)| \geq 8$. Hence $I(Q)-\{1,2,3,4\}$ contains $\{5,6,7,8\}$, which is contained in $\Gamma\left(1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right)$. Hence $\Gamma(5,6,7,8)$ contains $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. This is a contradiction since $\Gamma(5,6,7,8)=I(Q)$. Thus y_{1} fixes at least two Q orbits in Δ.

Since $C(Q)^{I(Q)}=S_{t}, A_{t}$ or 1 , we treat the following two cases separately:
Case 1. $C(Q)^{I(Q)}=S_{t}$ or A_{t}.
Case 2. $\quad C(Q)^{I(Q)}=1$.
Case 1. $C(Q)^{I(Q)}=S_{t}$ or A_{t}. Then we may assume that

$$
\begin{aligned}
& y_{1}=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots, \\
& a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots(n-1 n)
\end{aligned}
$$

where a is a central involution of Q commuting with y_{1}.
(i) Assume that $y_{1} \notin C(Q)$. Since $C(Q)^{I(Q)} \geq A_{t}$, there is an element b in Q such that $b y_{1} \in C(Q)$. Then $b y_{1}$ commutes with b, so y_{1} commutes with b.

Since $y_{1} \notin C(Q), b \notin Z(Q)$. Thus Q is non-abelian and so $|Q|>4$. Since b fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and commutes with a, b is an involution or $b^{2}=a$. Furthermore $Z\left(\left\langle Q, y_{1}\right\rangle\right) \geq\left\langle a, b y_{1}\right\rangle$. Let y^{\prime} be any element of $Z\left(\left\langle Q, y_{1}\right\rangle\right)$. Since $I\left(y_{1}\right) \cap \Delta=$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, y^{\prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Furthermore since $\langle a, b\rangle$ is regular on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, y^{\prime\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}} \in\langle a, b\rangle^{\left[1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}}$. Hence there is an element u in $\langle a, b\rangle$ such that $u y^{\prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Thus $u y^{\prime} \in\left\langle y_{1}\right\rangle$ because $\left\langle Q, y_{1}\right\rangle_{1^{\prime}}=$ $\left\langle y_{1}\right\rangle$. Hence $u y^{\prime}=1$ or y_{1}. If $u y^{\prime}=1$, then $y^{\prime} \in\langle a, b\rangle \cap Z\left(\left\langle Q, y_{1}\right\rangle\right)$ since $y^{\prime} \in$ $Z\left(\left\langle Q, y_{\mathrm{i}}\right\rangle\right)$ and $u \in\langle a, b\rangle$. Hence $y^{\prime}=a$ or 1. Next suppose that $u y^{\prime}=y_{1}$. If $u=a$ or 1 , then $y_{1}=u y^{\prime} \in C(Q)$ since $y^{\prime} \in C(Q)$. This is a contrdiction since $y_{1} \notin C(Q)$. Thus $u=b$ or $a b$. Hence $y^{\prime}=b y_{1}$ or $a b y_{1}$. Thus in either case $y^{\prime} \in$ $\left\langle a, b y_{1}\right\rangle$. Hence $Z\left(\left\langle Q, y_{1}\right\rangle\right)=\left\langle a, b y_{1}\right\rangle$.

Since $C(Q)^{I(Q)} \geq A_{t}, Q y_{2}$ has an element which belongs to $C(Q)$. Hence we may assume that $y_{2} \in C(Q)$. Since y_{2} normalizes $\left\langle Q, y_{1}\right\rangle, y_{2}$ normalizes the center $\left\langle a, b y_{1}\right\rangle$ of $\left\langle Q, y_{1}\right\rangle$. Hence $\left(b y_{1}\right)^{y_{2}}=b y_{1}$ or a $a b y_{1}$. First assume that $\left(b y_{1}\right)^{y_{2}}=b y_{1}$. Since y_{2} commutes with b, y_{2} commutes with y_{1}. Hence y_{2} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $\left\langle a, b y_{1}, y_{2}\right\rangle$ is an abelian group of order eight and $\left\langle a, b y_{1}\right\rangle$ is regular on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, there is an element u in $\left\langle a, b y_{1}\right\rangle y_{2}$ which fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Thus u consists of exactly two 2 -cycles on $I(Q)$ and so $I(u) \cap \Delta=$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ by the assumption (*). On the other hand $\left\langle a, b y_{1}, y_{2}\right\rangle \leq C(Q)$. Hence $u \in C(Q)$. Thus $|Q| \leq 4$, which is a contradiction. Next suppose that $\left(b y_{1}\right)^{y_{2}}=a b y_{1}$. Then by the same argument as is used for y_{2} we may assume that $y_{1}{ }^{\prime} \in C(Q)$ and $\left(b y_{1}\right)^{y_{1}{ }^{\prime}=}=a b y_{1}$. Hence $\left(b y_{1}\right)^{y_{2} y_{1}^{\prime}}=b y_{1}$. Since $y_{2} y_{1}{ }^{\prime} \in C(Q), y_{2} y_{1}{ }^{\prime}$ commutes with b. Hence $y_{2} y_{1}{ }^{\prime}$ commutes with y_{1}. Thus $y_{2} y_{1}{ }^{\prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Thus $\left\langle a, b y_{1}, y_{2} y_{1}^{\prime}\right\rangle$ is an abelian group fixing $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence there is an element $u(\neq 1)$ in $\left\langle a, b y_{1}, y_{2} y_{1}{ }^{\prime}\right\rangle$ which fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Thus u consists of two 2-cycles or one 4-cycle and one 2-cycle on $I(Q)$. Hence $\mid I(u) \cap$ $\Delta \mid \leq 6$ by the assumption $(*)$. On the other hand $u \in C(Q)$ and $|Q|>4$. Hence $|I(u) \cap \Delta| \geq 8$, which is a contradiction. Thus $y_{1} \in C(Q)$. Hence $|Q|=4$ or 2.
(ii) Assume that $|Q|=4$. Then Q is elementary abelian or cyclic.
(ii.i) Assume that Q is elementary abelian. Then we may assume that $Q=\langle a, b\rangle$ and

$$
\begin{aligned}
& a=(1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots \\
& b=(1)(2) \cdots(t)\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots
\end{aligned}
$$

As we have proved above, y_{1} fixes at least two Q-orbits in Δ. Hence we may assume that

$$
y_{1}=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots
$$

Since $\left\langle Q, y_{2}\right\rangle$ and $\left\langle Q, y_{1} y_{2}\right\rangle$ are conjugate to $\left\langle Q, y_{1}\right\rangle$, both groups are elementary abelian. Hence $\left\langle Q, y_{1}, y_{2}\right\rangle$ is elementary abelian. Thus y_{2} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Hence $Q y_{2}$ has an element which fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ point-
wise. We may assume that y_{2} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Thus $I\left(y_{2}\right)=(I(Q)$ $-\{1,2,5,6\}) \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ since $\left|(I(Q)-\{1,2,5,6\},) \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}\right|=t$. Furthermore since $\left|I\left(y_{1} y_{2}\right)\right| \leq t, y_{2}=\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right)$ or ($\left.5^{\prime} 8^{\prime}\right)\left(6^{\prime} 7^{\prime}\right)$ on $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}\right.$, $\left.8^{\prime}\right\}$. Since $\left\langle Q, y_{1}{ }^{\prime}\right\rangle$ and $\left\langle Q, y_{1} y_{1}{ }^{\prime}\right\rangle$ are conjugate to $\left\langle Q, y_{1}\right\rangle,\left\langle Q, y_{1}, y_{1}{ }^{\prime}\right\rangle$ is elementary abelian and by the similar argument as above we may assume that $y_{1}^{\prime}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right)$ or $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 8^{\prime}\right)\left(6^{\prime} 7^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, \cdots\right.$, $\left.8^{\prime}\right\}$. Then in either case the order of $\left(y_{2} y_{1}{ }^{\prime}\right)^{2}$ is even and $\left|I\left(\left(y_{2} y_{1}{ }^{\prime}\right)^{2}\right)\right| \geq t+4$, contrary to the assumption (*). Thus Q is not an elementary abelian group.
(ii.ii) Assume that Q is cyclic. Then we may assume that $Q=\langle b\rangle, b^{2}=a$ and

$$
b=(1)(2) \cdots(t)\left(1^{\prime} 3^{\prime} 2^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime} 6^{\prime} 8^{\prime}\right) \cdots .
$$

As we have proved above, y_{1} fixes at least two Q-orbits in Δ. Hence we may assume that

$$
y_{1}=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots .
$$

Then $I\left(a y_{1}\right) \cap \Delta=\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Hence $\left\langle Q, y_{1}\right\rangle$ is semiregular on $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$. Since y_{2} normalizes $\left\langle Q, y_{1}\right\rangle, y_{1} y_{2}=y_{1}$ or $a y_{1}$. Suppose that $y_{1} y_{2}=y_{1}$. Then y_{2} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Furthermore since $\left\langle Q, y_{2}\right\rangle$ is abelian, $\left\langle Q, y_{2}\right\rangle$ has an element

$$
y_{2}^{\prime}=(12)(3)(4)(56)(7)(8) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots
$$

Then $\left|I\left(y_{1} y_{2}{ }^{\prime}\right)\right| \geq t+4$, contrary to the assumption (*). Thus $y_{1}{ }^{y_{2}}=a y_{1}$. Since $\left\langle Q, y_{2}\right\rangle$ is conjugate to $\left\langle Q, y_{1}\right\rangle, Q y_{2}$ has an involution. Hence we may assume that y_{2} is an involution. Furthermore by the same argument as is used for y_{2}, $y_{1}{ }^{y^{\prime}}=a y_{1}$. Thus $y_{1} y_{2} y_{1}{ }^{\prime}=y_{1}$. Hence $y_{2} y_{1}{ }^{\prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Hence $Q y_{2} y_{1}{ }^{\prime}$ has an element u fixing $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Then $I\left(u^{2}\right)$ contains $(I(Q)-\{1,2,3,4\}) \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ of length t. Hence $I\left(u^{2}\right)=(I(Q)-$ $\{1,2,3,4\}) \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ by the assumption (*). Hence u is a 4 -cycle on $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Since $u \in C(Q), u=b$ or b^{-1} on $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Furthermore since $y_{1}{ }^{y_{2}}=a y_{1}, y_{2}$ interchanges $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ as a set. Hence $u^{y_{2}} u$ $=b$ or b^{-1}. This means that $\left(y_{2} u\right)^{2}=b$ or b^{-1}. Thus $y_{2} u$ is of order eight. On the other hand since $\left(y_{2} u\right)^{I(a)}=y_{1}{ }^{\prime \prime(a)},\left\langle Q, y_{2} u\right\rangle=\left\langle Q, y_{1}{ }^{\prime}\right\rangle$. Thus we have a contradiction since $\left\langle Q, y_{1}{ }^{\prime}\right\rangle$ is conjugate to $\left\langle Q, y_{1}\right\rangle$ which has no element of order eight. Thus Q is not cyclic. Hence $|Q| \neq 4$.
(iii) Assume that $|Q|=2$. Then $Q=\langle a\rangle$. Since $C(a)^{I(a)}=S_{t}$ or A_{t}, we treat these cases separately.
(iii.i) Assume that $C(a)^{I(a)}=S_{t}$. Then $C(a)$ has a 2-element

$$
x_{t}=(12)(3)(4) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ is a 2-group. Then x_{1}
normalizes $\left\langle a, y_{1}\right\rangle$. Hence $y_{1}{ }^{x_{1}}=a y_{1}$ or y_{1}.
First suppose that $y_{1}{ }^{x_{1}}=a y_{1}$. Since $x_{1}{ }^{2} \in\langle a\rangle, x_{1}{ }^{2}=1$ or a. Suppose that $x_{1}{ }^{2}=1$. Then $\left\langle a, x_{1}\right\rangle$ is an elementary abelian group of order four. On the other hand since $y_{1}^{x_{1}}=a y_{1},\left(x_{1} y_{1}\right)^{2}=a$. Thus $\left\langle x_{1} y_{1}\right\rangle$ is a cyclic group of order four. This is a contradiction since $\left\langle x_{1} y_{1}\right\rangle$ is conjugate to $\left\langle a, x_{1}\right\rangle$. Suppose that $x_{1}{ }^{2}=a$. Then $\left\langle x_{1}\right\rangle$ is a cyclic group of order four. On the other hand since $y_{1}{ }^{x_{1}}=a y_{1}$, $\left(x_{1} y_{1}\right)^{2}=1$. Thus $\left\langle a, x_{1} y_{1}\right\rangle$ is an elementary abelian group of order four. This is a contradiction since $\left\langle a, x_{1} y_{1}\right\rangle$ is conjugate to $\left\langle a, x_{1}\right\rangle$. Thus $y_{1}{ }^{x_{1}} \neq a y_{1}$.

Next suppose that $y_{1}{ }^{x_{1}}=y_{1}$. Then $\left\langle a, x_{1}, y_{1}\right\rangle$ is an abelian group of order eight. By (2.14) $\left|I\left(a y_{1}\right) \cap \Delta\right|=0$ or 4. Assume that $\left|I\left(a y_{1}\right) \cap \Delta\right|=4$. Then we may assume that $I\left(a y_{1}\right) \cap \Delta=\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ and

$$
y_{1}=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots
$$

Then $\left\langle a, y_{1}\right\rangle$ is semiregular on $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$. By (2.13) $\left\langle a, x_{1}\right\rangle$ and $\left\langle a, x_{1} y_{1}\right\rangle$ are semiregular on Δ. Hence $\left\langle a, x_{1}, y_{1}\right\rangle$ is semiregular on $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$. Since $\left\langle a, y_{2}\right\rangle$ and $\left\langle a, y_{1} y_{2}\right\rangle$ are conjugate to $\left\langle a, y_{1}\right\rangle,\left\langle a, y_{2}\right\rangle$ and $\left\langle a, y_{1} y_{2}\right\rangle$ are elementary abelian. Hence $\left\langle a, y_{1}, y_{2}\right\rangle$ is elementary abelian. Furthermore since $\left\langle a, y_{2}, x_{1}\right\rangle$ is conjugate to $\left\langle a, y_{1}, x_{1}\right\rangle,\left\langle a, y_{2}, x_{1}\right\rangle$ is also abelian. Hence $\left\langle a, x_{1}, y_{1}, y_{2}\right\rangle$ is abelian. Since $\left\langle a, y_{2}\right\rangle$ is conjugate to $\left\langle a, y_{1}\right\rangle$ in $C(a),\left|I\left(y_{2}\right) \cap \Delta\right|=\left|I\left(a y_{2}\right) \cap \Delta\right|=4$. If y_{2} has fixed points in $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$, then since $y_{2} \in C\left(\left\langle a, x_{1}, y_{1}\right\rangle\right) y_{2}$ fixes at least eight points in $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$, contrary to the assumption (*). Similarly $a y_{2}$ has no fixed point in $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$. Thus y_{2} or $a y_{2}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Hence y_{2} or $a y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$. Thus $\left|I\left(y_{1} y_{2}\right)\right|$ or $\left|I\left(a y_{1} y_{2}\right)\right| \geq t+4$, contrary to the assumption (*).

Hence $\left|I\left(a y_{1}\right) \cap \Delta\right|=0$. Then $\left\langle a, x_{1}, y_{1}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $\left\langle a, y_{i}\right\rangle$ and $\left\langle a, y_{i} y_{j}\right\rangle, i \neq j$ and $1 \leq i, j \leq k$, are conjugate to $\left\langle a, y_{1}\right\rangle,\left\langle a, y_{i}\right\rangle$ and $\left\langle a, y_{i} y_{j}\right\rangle$ are elementary abelian. Hence $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is elementary abelian. Furthermore since $\left\langle a, x_{1}, y_{i}\right\rangle, 2 \leq i \leq k$, is conjugate to $\left\langle a, x_{1}, y_{1}\right\rangle$, $\left\langle a, x_{1}, y_{i}\right\rangle$ is abelian. Thus $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is abelian. Hence y_{i} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, 1 \leq i \leq k$. Since $\left\langle a, y_{i}\right\rangle, 2 \leq i \leq k$, is conjugate to $\left\langle a, y_{1}\right\rangle, y_{i}$ or $a y_{i}$ has fixed points in Δ. Hence we may assume that y_{i} has fixed points in Δ. Since $y_{i} \in C\left(\left\langle a, x_{1}, y_{1}\right\rangle\right)$ and $\left\langle a, x_{1}, y_{1}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, if y_{i} has fixed points in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, then y_{i} fixes at least eight points of $\Delta-$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, contrary to the assumption (*). Hence y_{i} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise.

Assume that $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{i}\right\rangle, i \geq 1$, is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. If $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{i+1}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, then $\left\langle a, x_{1}, y_{1}\right.$, $\left.y_{2}, \cdots, y_{i+1}\right\rangle$ has an element $y^{\prime}(\neq 1)$ fixing a $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{i}\right\rangle$-orbit of length 2^{i+2} pointwise. Then since y^{\prime} consists of at most $i+2$ 2-cycles on $I(a)$ and $i \geq 1$, $\left|I\left(y^{\prime}\right)\right| \geq t-2(i+1)+2^{i+2}>t$, contrary to the assumption (*). Thus $\left\langle a, x_{1}, y_{1}, y_{2}\right.$, $\left.\cdots, y_{i+1}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and this implies by induction that
$\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.
Furthermore $y_{1}{ }^{\prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Suppose that $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then there is an element y^{\prime} in $\left\langle a, x_{1}\right.$, $\left.y_{1}, y_{2}, \cdots, y_{k}\right\rangle y_{1}{ }^{\prime}$ which has fixed points in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then $y^{\prime I(a)}$ is of order four or two. If $y^{\prime \prime(a)}$ is of order four, then $\left\langle a, y^{\prime 2}\right\rangle=\left\langle a, y_{1}\right\rangle$ and $y^{\prime 2}$ has fixed points in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, which is a contradiction. Thus $y^{\prime \prime(a)}$ is of order two. Then y^{\prime} is (13) (24) or (14) (23) on $\{1,2,3,4\}$. Hence $y^{\prime} \in\langle a$, $\left.y_{1}{ }^{\prime}, x_{1} y_{2}, x_{1} y_{3}, \cdots, x_{1} y_{k}\right\rangle$ or $\left\langle a, y_{1} y_{1}{ }^{\prime}, x_{1} y_{2}, x_{1} y_{2}, \cdots, x_{1} y_{k}\right\rangle$. Thus $\left\langle a, y_{1}{ }^{\prime}, x_{1} y_{2}, x_{1} y_{3}\right.$, $\left.\cdots, x_{1} y_{k}\right\rangle$ or $\left\langle a, y_{1} y_{1}^{\prime}, x_{1} y_{2}, x_{1} y_{3}, \cdots, x_{1} y_{k}\right\rangle$ is semiregular on neither $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ nor $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. This is a contradiction since $\left\langle a, y_{1}{ }^{\prime}, x_{1} y_{2}, x_{1} y_{3}, \cdots, x_{1} y_{k}\right\rangle$ and $\left\langle a, y_{1} y_{1}{ }^{\prime}, x_{1} y_{2}, x_{1} y_{3}, \cdots, x_{1} y_{k}\right\rangle$ are conjugate to $\left\langle a, y_{1}, x_{1} y_{2}, x_{1} y_{3}, \cdots, x_{1} y_{k}\right\rangle$ in $C(a)$ which is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Thus $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

On the other hand $\left\langle a, y_{1}\right\rangle$ normalizes $G_{5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}}$, which is even order. Hence there is an involution u in $G_{5^{\prime} 6^{\prime} \tau^{\prime} 8^{\prime}}$ commuting with a and y_{1}. Since $C(a)^{I(a)}=S_{t}$, $\left\langle a, y_{1}, u\right\rangle$ is conjugate to a subgroup of $\left\langle a, x_{1}, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ in $C(a)$. This is a contradiction since for any point of $\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$ of length eight $\left\langle a, y_{1}, u\right\rangle$ has an element ($\neq 1$) fixing this point. Thus $C(a)^{I(a)} \neq S_{t}$.
(iii.ii) Assume that $C(a)^{I(a)}=A_{t}$. Since $\left\langle a, y_{1} y_{2}\right\rangle,\left\langle a, y_{1} y_{3}\right\rangle$ and $\left\langle a, y_{2} y_{3}\right\rangle$ are conjugate to $\left\langle a, y_{1}\right\rangle$, these groups are elementary abelian. Hence $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is elementary abelian. Since $I\left(y_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, y_{2}$ and y_{3} fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Thus y_{2} and y_{3} are $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right),\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right),\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right),\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right)$, $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)$ or $\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Furthermore by (2.14) $\left|I\left(a y_{1}\right) \cap \Delta\right|=0$ or 4 .

Assume that $\left|I\left(a y_{1}\right) \cap \Delta\right|=4$. Then we may assume that

$$
\begin{aligned}
a= & (1)(2) \cdots(t)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots(n-1 n), \\
y_{1}= & (12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right)\left(9^{\prime} 11^{\prime}\right) \\
& \left(10^{\prime} 12^{\prime}\right)\left(13^{\prime} 15^{\prime}\right)\left(14^{\prime} 16^{\prime}\right) \cdots .
\end{aligned}
$$

Suppose that $y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. The proof in the case $y_{2}=$ $\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$ is similar since if $y_{2}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$ then $a y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$. Since $\left\langle a, y_{2}\right\rangle$ and $\left\langle a, y_{1} y_{2}\right\rangle$ are conjugate to $\left\langle a, y_{1}\right\rangle$, any element of $\left\langle a, y_{1} y_{2}\right\rangle-\langle a\rangle$ has four fixed points in Δ. Hence we may assume that

$$
\begin{aligned}
y_{2}= & (12)(3)(4)(56)(7)(8) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right)\left(9^{\prime} 10^{\prime}\right) \\
& \left(11^{\prime} 12^{\prime}\right)\left(13^{\prime} 16^{\prime}\right)\left(14^{\prime} 15^{\prime}\right) \cdots .
\end{aligned}
$$

Thus $\left\langle a, y_{1}, y_{2}\right\rangle$ has two orbits of length two and three orbits of length four in Δ. The remaining $\left\langle a, y_{1}, y_{2}\right\rangle$-orbits are of length eight in Δ. Since $\left\langle a, y_{3}\right\rangle$ is conjugate to $\left\langle a, y_{1}\right\rangle, y_{3}$ has four fixed points in Δ. Since $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is abelian, y_{3} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ or one of the $\left\langle a, y_{1}, y_{2}\right\rangle$-orbits of length four pointwise. Moreover y_{3} fixes the $\left\langle a, y_{1}, y_{2}\right\rangle$-orbits of length four setwise. Thus y_{3} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise or has no fixed point in $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. First suppose
that y_{3} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Then $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise, and $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ and $\left\{9^{\prime}, 10^{\prime} 11^{\prime}, 12^{\prime}\right\}$ are $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$-orbits of length four. Hence $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ has exactly one element $y^{\prime}(\neq 1)$ fixing $\left\{5^{\prime}, 6^{\prime}\right.$, $\left.7^{\prime}, 8^{\prime}\right\}$ pointwise. Thus $I\left(y^{\prime}\right) \cap \Delta \supseteq\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$. Hence $y^{\prime}=y_{1} y_{2} y_{3}$ by the assumption (*). Similarly $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ has exactly one element ($\neq 1$) fixing $\left\{9^{\prime}\right.$, $\left.10^{\prime}, 11^{\prime}, 12^{\prime}\right\}$ pointwise, which is also $y_{1} y_{2} y_{3}$. Thus $\left|I\left(y_{1} y_{2} y_{3}\right)\right| \geq t+4$, contrary to the assumption (*). Thus y_{3} does not fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Similarly $y_{3} \neq\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$ since if $y_{3}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$ then $a y_{3}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$. Next suppose that $y_{3}=\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right) \cdots$ or $\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right) \cdots$. Since $\left\langle a, y_{1}, y_{3}\right\rangle$ is conjugate to $\left\langle a, y_{1}, y_{2}\right\rangle,\left\langle a, y_{1}, y_{3}\right\rangle$ has exactly two orbits of length two in Δ. Hence y_{3} fixes $\left\{5^{\prime}, 6^{\prime}\right\}$ and $\left\{7^{\prime}, 8^{\prime}\right\}$. Then $\left\langle a, y_{1}, y_{2} y_{3}\right\rangle$ has no orbit of length two in Δ. On the other hand $C(a)$ has a 2-element

$$
y^{\prime}=(1)(2)(3)(4)(57)(68)(9)(10) \cdots(t) \cdots .
$$

By (2.3) we may assume that $\left\langle a, y_{1}, y_{2} y_{3}, y^{\prime}\right\rangle$ is a 2 -group. Since $\left\langle a, y_{1}, y^{\prime}\right\rangle$ is conjugate to $\left\langle a, y_{1}, y_{2} y_{3}\right\rangle$ in $C(a),\left\langle a, y_{1}, y^{\prime}\right\rangle$ has no orbit of length two in Δ. Hence $y^{\prime}=\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)$ or $\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then $\left\langle a, y_{1}, y_{2} y_{3} y^{\prime}\right\rangle$ has two orbits $\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left\{3^{\prime}, 4^{\prime}\right\}$ of length two in Δ. This is a contradiction since $\left\langle a, y_{1}, y_{2} y_{3} y^{\prime}\right\rangle$ is conjugate to $\left\langle a, y_{1}, y_{2} y_{3}\right\rangle$ in $C(a)$. Thus $y_{2} \neq\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)$ $\left(4^{\prime}\right) \cdots$ and so $y_{2} \neq\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$.

Suppose that $y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. The proof in the case $y_{2}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ is similar since if $y_{2}=\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$ then $a y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots . \quad$ Since $\left\langle a, y_{1} y_{2}\right\rangle$ is elementary abelian and $\left|I\left(y_{2}\right) \cap \Delta\right|=$ 4 , we may assume that

$$
y_{2}=(12)(3)(4)(56)(7)(8) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime}\right)\left(6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots
$$

Since $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is elementary abelian, y_{3} fixes $\left\{1^{\prime}, 2^{\prime}\right\} .\left\{3^{\prime}, 4^{\prime}\right\} .\left\{5^{\prime}, 6^{\prime}\right\}$ and $\left\{7^{\prime}, 8^{\prime}\right\}$. Furthermore $\left|I\left(y_{3}\right) \cap \Delta\right|=4$ and $\left|I\left(y_{2} y_{3}\right) \cap \Delta\right|=4$. Hence we may assume that

$$
\begin{aligned}
& y_{3}=(12)(3)(4)(5)(6)(78)(9)(10) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime}\right) \\
& \left(8^{\prime}\right) \cdots .
\end{aligned}
$$

Then

$$
y_{1} y_{2} y_{3}=(12)(34)(56)(78)(9)(10) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right) \cdots\left(8^{\prime}\right) \cdots .
$$

Thus $\left\langle a, y_{1}, y_{2} y_{3}\right\rangle$ has exactly one involution $y_{1} y_{2} y_{3}$ fixing four $\left\langle a, y_{1}\right\rangle$-orbits of length two pointwise. On the other hand $C(a)$ has a 2-element

$$
y^{\prime}=(1)(2)(3)(4)(57)(68)(9)(10) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle a, y_{1}, y_{2} y_{3}, y^{\prime}\right\rangle$ is a 2 -group. Since $\left\langle a, y_{1}, y^{\prime}\right\rangle$ is conjugate to $\left\langle a, y_{1}, y_{2} y_{3}\right\rangle$ in $C(a),\left\langle a, y_{1}, y^{\prime}\right\rangle$ has exactly one element $y^{\prime \prime}(\neq 1)$ fixing four $\left\langle a, y_{1}\right\rangle$-orbits of length two pointwise.

Then

$$
y^{\prime \prime}=(12)(34)(57)(68)(9)(10) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right) \cdots\left(8^{\prime}\right) \cdots
$$

Thus $\left|I\left(y_{1} y_{2} y_{3} y^{\prime \prime}\right)\right| \geq t+4$, contrary to the assumption $(*)$. Hence $y_{2} \neq\left(1^{\prime}\right)\left(2^{\prime}\right)$ $\left(3^{\prime} 4^{\prime}\right) \cdots$ and so $y_{2} \neq\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$.

Suppose that $y_{2}=\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. The proof in the case $y_{2}=\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ is similar since if $y_{2}=\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right) \cdots$ then $a y_{2}=$ $\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right) \cdots$. Since $I\left(a y_{1}\right) \cap \Delta=\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$, if y_{2} or y_{3} has fixed points in $\left\{5^{\prime}, 6^{\prime}, 7^{\prime} .8^{\prime}\right\}$, then by the same argument as above we have a contradiction. Hence we may assume that

$$
y_{2}=(12)(3)(4)(56)(7)(8) \cdots(t)\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots
$$

Similarly y_{3} or $a y_{3}$ is $\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence we may assume that $y_{3}=\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Furthermore y_{3} is $\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right)$ or $\left(5^{\prime} 8^{\prime}\right)$ $\left(6^{\prime} 7^{\prime}\right)$ on $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Since $\left|I\left(y_{2} y_{3}\right)\right| \leq t$,

$$
y_{3}=(12)(3)(4)(5)(6)(78)(9)(10) \cdots(t)\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)\left(5^{\prime} 8^{\prime}\right)\left(6^{\prime} 7^{\prime}\right) \cdots,
$$

and so

$$
y_{1} y_{2} y_{3}=(12)(34)(56)(78)(9)(10) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right) \cdots\left(8^{\prime}\right) \cdots
$$

Hence by the same argument as in the case $y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots$, we have a contradiction. Thus $y_{2} \neq\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right) \cdots$ and so $y_{2} \neq\left(1^{\prime} 4^{\prime}\right)\left(2^{\prime} 3^{\prime}\right) \cdots$. Hence $\left|I\left(a y_{1}\right) \cap \Delta\right| \neq 4$.

Thus $\left|I\left(a y_{1}\right) \cap \Delta\right|=0$. Then we may assume that

$$
y_{1}=(12)(34)(5)(6) \cdots(t)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots
$$

Since $\left\langle a, y_{2}\right\rangle$ is conjugate to $\left\langle a, y_{1}\right\rangle$ in $C(a)$, either y_{2} or $a y_{2}$ has four fixed points in Δ. Hence we may assume that y_{2} has four fixed points in Δ. Then y_{2} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ or one of the $\left\langle a, y_{1}\right\rangle$-orbits of length four pointwise.

First suppose that y_{2} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Since $\left\langle a, y_{2}\right\rangle$ and $\left\langle a, y_{1} y_{2}\right\rangle$ are conjugate to $\left\langle a, y_{1}\right\rangle$ in $C(a),\left\langle a, y_{2}\right\rangle$ and $\left\langle a, y_{1} y_{2}\right\rangle$ are semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence $\left\langle a, y_{1}, y_{2}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $\left\langle a, y_{i}\right\rangle$ and $\left\langle a, y_{i} y_{j}\right\rangle . i \neq i$ and $1 \leq i, j \leq k$, are conjugate to $\left\langle a, y_{1}\right\rangle,\left\langle a, y_{i}\right\rangle$ and $\left\langle a, y_{i} y_{j}\right\rangle$ are elementary abelian. Hence $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is elementary abelian. Moreover y_{i} or $a y_{i}, 3 \leq i \leq k$, has four fixed points in Δ. Hence we may assume that y_{i} has fixed points in Δ. Since $y_{i} \in C\left(\left\langle a, y_{1}, y_{2}\right\rangle\right)$ and $\left\langle a, y_{1}, y_{2}\right\rangle$ is of order eight and semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, y_{i}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise.

Now we show that $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Suppose that $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then there is exactly one element $y^{\prime}(\neq 1)$ in $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ fixing a $\left\langle a, y_{1}, y_{2}\right\rangle$-orbit Δ^{\prime} in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Since $\left|\Delta^{\prime}\right|=8,\left|I\left(y^{\prime}\right) \cap I(a)\right| \leq t-8$. Hence
$y^{\prime}=y_{1} y_{2} y_{3}$ or $a y_{1} y_{2} y_{3}$. If $y^{\prime}=y_{1} y_{2} y_{3}$, then $I\left(y^{\prime}\right)$ contains $(I(a)-\{1,2, \cdots, 8\}) \cup$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\} \cup \Delta^{\prime}$ of length $t+4$, contrary to the assumption (*). Thus $y^{\prime}=$ $a y_{1} y_{2} y_{3}$ and $I\left(y^{\prime}\right)=(I(a)-\{1,2, \cdots, 8\}) \cup \Delta^{\prime}$ since $\left|(I(a)-\{1,2, \cdots, 8\}) \cup \Delta^{\prime}\right|=t$. Furthermore this shows that $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is semiregular on $\Delta-\left(\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\} \cup\right.$ $\left.\Delta^{\prime}\right)$. Hence $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ has two orbits $\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left\{3^{\prime}, 4^{\prime}\right\}$ of length two and two orbits of length four whose uion is Δ^{\prime} in Δ, and the remaining orbits in Δ are of length eight. On the other hand $C(a)$ has a 2-element

$$
y^{\prime \prime}=(1)(2)(3)(4)(57)(68)(9)(10) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle a, y_{1}, y_{2}, y_{3}, y^{\prime \prime}\right\rangle$ is a 2-group. Then $y^{\prime \prime}$ normalizes $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ and so $y^{\prime \prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and Δ^{\prime}. Since $\left\langle a, y_{1}, y^{\prime \prime}\right\rangle$ is conjugate to $\left\langle a, y_{1}, y_{2} y_{3}\right\rangle$ in $C(a),\left\langle a, y_{1}, y^{\prime \prime}\right\rangle$ is elementary abelian and has two orbits $\left\{1^{\prime}, 2^{\prime}\right\}$ and $\left\{3^{\prime}, 4^{\prime}\right\}$ of length two and two orbtis of length four in Δ. Hence we may assume that $y^{\prime \prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise and $a y_{1} y^{\prime \prime}$ has eight fixed points in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Furthermore since $y^{\prime \prime}$ fixes $\Delta^{\prime}, a y_{1} y^{\prime \prime}$ fixes Δ^{\prime} pointwise or $\left\langle a, y_{1}, y^{\prime \prime}\right\rangle$ is regular on Δ^{\prime}. If $a y_{1} y^{\prime \prime}$ fixes Δ^{\prime} pointwise, then $I\left(a y_{1} y_{2} y_{3} \cdot a y_{1} y^{\prime \prime}\right)=I\left(y_{2} y_{3} y^{\prime \prime}\right)$ contains $(I(a)-\{5,6,7,8\}) \cup\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\} \cup \Delta^{\prime}$ of length $t+8$, contrary to the assumption (*). Thus $\left\langle a, y_{1}, y^{\prime \prime}\right\rangle$ is regular on Δ^{\prime}. On the other hand $\left\langle a, y_{2}, y_{3}\right\rangle$ is elementary abelian and regular on Δ^{\prime}. Hence $\left\langle a, y_{2}, y_{3}\right\rangle$ has an element u such that $u^{\Delta^{\prime}}=y^{\prime \prime \Delta^{\prime}}$. Thus $u y^{\prime \prime} \in\left\langle a, y_{2}, y_{3}, y^{\prime \prime}\right\rangle$ and $I\left(u y^{\prime \prime}\right)$ contains Δ^{\prime} of length eight. Hence $\left|I\left(u y^{\prime \prime}\right) \cap I(a)\right| \leq t-8$. This is a contradiction since any element of $\left\langle a, y_{2}, y_{3}, y^{\prime \prime}\right\rangle$ fixes at least $t-6$ points of $I(a)$. Thus $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence by (2.6) $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

Since y_{1}^{\prime} normalizes $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}\right\rangle, y_{1}^{\prime}$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Suppose that $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}, y_{1}^{\prime}\right\rangle$ is not semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then there is an element y^{\prime} in $\left\langle a, y_{1}, \mathrm{y}_{2}, \cdots, y_{k}\right\rangle y_{1}{ }^{\prime}$ which has fixed points in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then $y^{\prime I(a)}$ is of order four or two. If $y^{\prime I(a)}$ is of order four, then $\left\langle a, y^{\prime 2}\right\rangle=$ $\left\langle\mathrm{a}, y_{1}\right\rangle$ and $y^{\prime 2}$ has fixed points in $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, which is a contradiction. Hence $y^{\prime I(a)}$ is of order two. Thus y^{\prime} is (13) (24) or (14) (23) on $\{1,2,3,4\}$. Hence $y^{\prime} \in\left\langle a, y_{1}{ }^{\prime}, y_{2} y_{3}, y_{2} y_{4}, \cdots, y_{2} y_{k}\right\rangle$ or $\left\langle a, y_{1} y_{1}{ }^{\prime}, y_{2} y_{3}, y_{2} y_{4}, \cdots, y_{2} y_{k}\right\rangle$. Thus $\left\langle a, y_{1}{ }^{\prime}, y_{2} y_{3}, y_{2} y_{4}, \cdots, y_{2} y_{k}\right\rangle$ or $\left\langle a, y_{1} y_{1}{ }^{\prime}, y_{2} y_{3}, y_{2} y_{4}, \cdots, y_{2} y_{k}\right\rangle$ is semiregular on neither the orbit $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ of length four nor $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. This is a contradiction since these groups are conjugate to $\left\langle a, y_{1}, y_{2} y_{3}, y_{2} y_{4}, \cdots, y_{2} y_{k}\right\rangle$ in $C(a)$ which is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Thus $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}, y_{1}^{\prime}\right\rangle$ is semiregular on $\Delta-\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

On the other hand $\left\langle a, y_{1}\right\rangle$ normalizes $G_{5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}}$, which is of even order. Hence there is an involution u in $G_{5^{\prime} 6^{\prime} 7^{\prime} 8^{\prime}}$ commuting with a and y_{1}. Then $\left\langle a, y_{1}, u\right\rangle$ is conjugate to a subgroup of $\left\langle a, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ in $C(a)$. This is a contradiction since for any point of $\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$ of length eight $\left\langle a, y_{1}, u\right\rangle$ has an element $(\neq 1)$ fixing this point. Thus $y_{2} \neq\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$.

Next suppose that y_{2} fixes a $\left\langle a, y_{1}\right\rangle$-orbit of length four pointwise. Then we may assume that y_{2} fixes $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ pointwise and

$$
y_{2}=(12)(3)(4)(56)(7)(8) \cdots(t)\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)\left(5^{\prime}\right)\left(6^{\prime}\right)\left(7^{\prime}\right)\left(8^{\prime}\right) \cdots
$$

Sinee $\left\langle a, y_{1}, y_{3}\right\rangle$ is conjugate to $\left\langle a, y_{1}, y_{2}\right\rangle, y_{3}$ or $a y_{3}$ is $\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence we may assume that $y_{3}=\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right) \cdots$. Since $\left\langle a, y_{2}, y_{3}\right\rangle$ is conjugate to $\left\langle a, y_{1}, y_{2}\right\rangle, \mathrm{y}_{3}$ is $\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right)$ or $\left(5^{\prime} 8^{\prime}\right)\left(6^{\prime} 7^{\prime}\right)$ on $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. On the other hand $C(a)$ has a 2-element

$$
y_{2}^{\prime}=(1)(2)(3)(4)(57)(68)(9)(10) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle a, y_{1}, y_{2}, y_{3}, y_{1}{ }^{\prime}, y_{2}{ }^{\prime}\right\rangle$ is a 2-group. Since $\left\langle a, y_{1}{ }^{\prime}\right\rangle$ and $\left\langle a, y_{2}{ }^{\prime}\right\rangle$ are conjugate to $\left\langle a, y_{1}\right\rangle,\left\langle a, y_{1}{ }^{\prime}\right\rangle$ and $\left\langle a, y_{2}{ }^{\prime}\right\rangle$ are elementary abelian. Since $\left\langle a, y_{2} y_{3}, y_{1}{ }^{\prime}\right\rangle$ and $\left\langle a, y_{1}, y_{2}{ }_{2}\right\rangle$ are conjugate to $\left\langle a, y_{1}, y_{2} y_{3}\right\rangle$ and $I\left(y_{1}\right) \cap \Delta=$ $I\left(y_{2} y_{3}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, y_{i}^{\prime}$ or $a y_{i}^{\prime}, i=1,2$, fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Hence we may assume that y_{1}^{\prime} and y_{2}^{\prime} fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Thus $y_{1}, y_{2} y_{3}, y_{1}^{\prime}$ and $y_{2}{ }^{\prime}$ fix $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Hence $\left\langle a, y_{1}, y_{2} y_{3}, y_{1}{ }^{\prime}, y_{2}{ }^{\prime}\right\rangle$ is elementary abelian.

If y_{1}^{\prime} or y_{2}^{\prime} fixes $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$, then $\left(y_{2} y_{1}{ }^{\prime}\right)^{2}$ or $\left(y_{2} y_{2}\right)^{2}$ is of order two and fixes $(I(a)-\{1,2,3,4\}) \cup\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$ of length $t+4$ pointwise, contrary to the assumption (*). Thus $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}^{y_{i}^{\prime}} \neq\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}, i=1,2$.

Since $y_{3}=\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots$ or $\left(5^{\prime} 8^{\prime}\right)\left(6^{\prime} 7^{\prime}\right) \cdots$, first suppose that $y_{3}=\left(5^{\prime} 7^{\prime}\right)$ $\left(6^{\prime} 8^{\prime}\right) \cdots$. Then $I\left(y_{1} y_{2} y_{3}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}, \cdots, 8^{\prime}\right\}$. Since $I\left(y_{1}^{\prime}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and $y_{1}{ }^{\prime}$ commutes with $y_{1} y_{2} y_{3}, y_{1}{ }^{\prime}$ fixes $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$, which is a contradiction. Next suppose that $y_{3}=\left(5^{\prime} 8^{\prime}\right)\left(6^{\prime} 77^{\prime}\right) \cdots$. Since $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}^{y_{1}} \neq\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$, we may assume that $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}^{y_{1}^{\prime}}=\left\{9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}\right\}$, where $\left\{9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}\right\}$ is a $\left\langle a, y_{1}\right\rangle$-orbit. Since $a y_{1} y_{2} y_{3}$ fixes $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ pointwise and commutes with $y_{1}^{\prime}, a y_{1} y_{1} y_{2}$ fixes $\left\{9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}\right\}$ pointwise. Then $I\left(a y_{1} y_{2} y_{3}\right) \cap \Delta=$ $\left\{5^{\prime}, 6^{\prime}, \cdots, 12^{\prime}\right\}$ since $\left|I\left(a y_{1} y_{2} y_{3}\right)\right| \leq t$. Furthermore $y_{2}{ }^{\prime}$ commutes with $a y_{1} y_{2} y_{3}$. Hence $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}^{y_{2}^{\prime}}=\left\{9^{\prime}, 10^{\prime}, 11^{\prime}, 12^{\prime}\right\}$. Thus $\left\{5^{\prime}, 6^{\prime}, \cdots, 12^{\prime}\right\}$ is a $\left\langle y_{1}, y_{2} y_{3}, y_{1}{ }^{\prime}, y_{2}{ }^{\prime}\right\rangle$-orbit of length eight. Since the order of $\left\langle y_{1}, y_{2} y_{3}, y_{1}{ }^{\prime}, y_{2}{ }^{\prime}\right\rangle$ is sixteen, there is an element $y^{\prime}(\neq 1)$ in $\left\langle y_{1}, y_{2} y_{3}, y_{1}^{\prime}, y_{2}^{\prime}\right\rangle$ fixing $\left\{5^{\prime}, 6^{\prime}, \cdots, 12^{\prime}\right\}$ pointwsie. Moreover since $I\left(\left\langle y_{1}, y_{2} y_{3}, y_{1}^{\prime}, y_{2}^{\prime}\right\rangle\right) \supseteq\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}, I\left(y^{\prime}\right) \supseteq$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ and so $\left|I\left(y^{\prime}\right) \cap \Delta\right| \geq 12$. This contradicts the assumption (*) since $y^{\prime I(a)}$ is an involution consisting of at most four 2-cycles. Thus $C(Q)^{I(Q)} \nexists A_{t}$.

Case 2. $\quad C(Q)^{I(Q)}=1 .{ }^{1)}$
(i) Since $\left|I\left(y_{1}\right) \cap \Delta\right|=4, I\left(y_{1}\right) \cap \Delta$ is contained in one or two Q-orbits in Δ. If $I\left(y_{1}\right) \cap \Delta$ is contained in two Q-orbits, then y_{1} fixes exactly two points of a Q-orbit. Then by (2.12) $C(Q)^{I(Q)} \geq A_{t}$, which is a contradiction. Thus $I\left(y_{1}\right) \cap \Delta$ is contained in one Q-orbit.

1) The proof in this case is due to the suggestion of Dr. E. Bannai. The proof was first more complicated.
(ii) Let $\Phi(Q)$ be the Frattini subgroup of Q. Then since y_{1} is an automorphism of Q and $\Phi(Q)$ by conjugation, y_{1} induces an automorphism of $Q / \Phi(Q)$, which we denote by $y_{1}{ }^{*}$. For an element a of $Q, a^{-1} a^{y_{1}}$ is in $\Phi(Q)$ if and only if the image in $Q / \Phi(Q)$ of a is in $C_{Q / \Phi(Q)}\left(y_{1}{ }^{*}\right)$. Hence the number of elements a in Q such that $a^{-1} a^{y_{1}}$ is in $\Phi(Q)$ is $\left|C_{Q / \Phi(Q)}\left(y_{1}^{*}\right)\right| \cdot|\Phi(Q)|$. On the other hand for elements a and b of $Q, a b^{-1}$ is in $C_{Q}\left(\mathrm{y}_{1}\right)$ if and only if $a^{-1} a^{y_{1}}=b^{-1} b^{y_{1}}$. Hence the number of elemenets a in Q such that $a^{-1} a^{y_{1}}$ is in $\Phi(Q)$ is at most $\left|C_{Q}\left(y_{1}\right)\right| \cdot|\Phi(Q)|=4 \cdot|\Phi(Q)|$. Thus $4 \cdot|\Phi(Q)| \geqq\left|C_{Q / \Phi(Q)}\left(y_{1}{ }^{*}\right)\right| \cdot|\Phi(Q)|$ and so $4 \geqq\left|C_{Q / \Phi(Q)}\left(y_{1}{ }^{*}\right)\right|$. Since $Q / \Phi(Q)$ is elemtary abelian, $|Q / \Phi(Q)| \leqq\left(2^{2}\right)^{2}=2^{4}$ by Lemma of [6]. Thus the automorphism group of $Q / \Phi(Q)$ is contained in $G L(4,2)$. Furthermore if an element of odd order in $N(Q)$ acts trivially on $Q / \Phi(Q)$ by conjugation, then this element belongs to $C(Q)$ ([1], Theorem 5.1.4). Since $C(Q)^{I(Q)}=1$ and $N(Q)^{I(Q)}=S_{t}$ or $A_{t}, N(Q)^{I(Q)}$ is involved in the automorphism group of $Q / \Phi(Q)$ and so in $G L(4,2)$. Thus $N(Q)^{I(Q)}=S_{6}$ or A_{8}.
(iii) Suppose that $N(Q)^{I(Q)}=S_{6}$. Let H be the normal subgroup of G consisting of all even permutations of G. Then for any point i of Ω, H_{i} is normal in G_{i}. Since G_{i} is 3-fold transitive on $\Omega-\{i\}$ and $|\Omega-\{i\}|$ is odd, H_{i} is 3 -fold transitive on $\Omega-\{i\}$ by a theorem of Wagner [15]. Hence H is 4-fold transitive on Ω. Let x be a 2-element of $N_{G}(Q)$ such that

$$
x=(1)(2)(3)(4)(56) \cdots .
$$

Then x has no fixed point in Δ by (2.13). Hence the number of Q-orbits in Δ is even and so $Q \leq H$. If x is an odd permutation, then $x \notin N_{H}(Q)$. Hence Q is a Sylow 2-subgroup of H_{1234} and $|I(Q)|=6$, which is a contradiction by [12]. Thus x is an even per- mutation. Hence x^{Δ} is an odd permutation. On the other hand since x has no fixed point in Δ and $x^{2} \in Q$, every cycle of x in Δ has the same length and \bar{x} consists of 2 -cycles. Thus x consists of cycles of length $2|Q|$ in Δ since x^{Δ} is an odd permutation. Thus $|x|=2|Q|$. Hence $\left|x^{2}\right|=|Q|$. Since $x^{2} \in Q, Q=\left\langle x^{2}\right\rangle$. Hence the automorphism group of Q is a 2-group. This is a con-tradiction since $N(Q)^{I(Q)}=S$ and $N(Q)^{I(Q)}$ is involved in the automorphism group of Q. Thus $N(Q)^{I(Q)} \neq S_{6}$.
(v) Suppose that $N(Q)^{I(Q)}=A_{8}$.
(v. i) $y_{1}^{I(Q)}$ is an involution consisting of exactly two 2-cycles. Hence by (2.8) y_{1} fixes at most four Q-orbits in Δ. Furthermore we have proved that y_{1} fixes at least two Q-orhits in Δ. Thus y_{1} fixes two, three or four Q-orbits in Δ.
(v. ii) Suppose that y_{1} fixes exactly four Q-orbits in Δ. Then by (2.8) every element of $Q y_{1}$ is an involution. Since $\left\langle Q, y_{2}\right\rangle$ and $\left\langle Q, y_{1} y_{2}\right\rangle$ are conjugate to $\left\langle Q, y_{1}\right\rangle$, every element of $Q y_{2}$ and $Q y_{1} y_{2}$ is an involution. In particular y_{1}, y_{2} and $y_{1} y_{2}$ are involutions. Hence y_{1} and y_{2} commute. Let u be any element of Q. Then $u y_{1}$ and $u y_{1} \cdot y_{2}$ are also involutions. Hence y_{2} commutes with $u y_{1}$ and
so commutes with u. Thus $y_{1} \in C(Q)$, which is a contradiction since $C(Q)^{I(Q)}=1$.
(v. iii) Suppose that y_{1} fixes exactly three Q-orbits in Δ. Then by (2.8) there are at least $\frac{3}{4}|Q|$ involutions in $Q y_{1}$. Since y_{2} normalizes $\left\langle Q, y_{1}\right\rangle, y_{2}$ fixes at least one $\left\langle Q, y_{1}\right\rangle$-orbit of length $|Q|$. Then for a point i of the $\left\langle Q, y_{1}, y_{2}\right\rangle$-orbit of length $|Q| Q y_{1}$ and $Q y_{2}$ have elements fixing i. Hence we may assume that y_{1} and y_{2} fix i. Then $y_{1}^{2}=y_{2}{ }^{2}=1$ and $y_{1} y_{2}=y_{2} y_{1}$. Let T be a set of elements u in Q such that both $u y_{1}$ and $u y_{1} y_{2}$ are involutions. Since $\left\langle Q, y_{1} y_{2}\right\rangle$ is conjugate to $\left\langle Q, y_{1}\right\rangle$, there are at least $\frac{3}{4}|Q|$ involutions in $Q y_{1} y_{2}$. Hence $|T| \geq \frac{1}{2}|Q|$. Since y_{2} is an involution, y_{2} commutes with $u y_{1}$, where $u \in T$. Furthermore y_{2} commutes with y_{1}. Hence y_{2} commutes with u. On the other hand $\left|I\left(y_{2}\right) \cap \Delta\right|=4$. Hence y_{2} commutes with exactly four elements of Q. Thus $|T| \leq 4$. Hence $4 \geq|T| \geq \frac{1}{2}|Q|$ and so $8 \geq|Q|$. Then the automorphism group of Q is a 2-group, S_{3}, S_{4} or $S L(3,2)$ (see [3]). Since $N(Q)^{I(Q)}=A_{8}$ and $N(Q)^{I(Q)}$ is involved in the automorphism group of Q, we have a contradiction.
(v. iv) Thus y_{1} fixes exactly two Q-orbits in Δ. Then any 2 -element of $N(Q)$ which is an involution consisting of exactly two 2-cycles on $I(Q)$ fixes two Q-orbits in Δ. Set $\bar{\Delta}=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{r}\right\}$, where $\Delta=\Delta_{1} \cup \Delta_{2} \cdots \cup \Delta_{r}$ and $\Delta_{i}, 1 \leq i \leq r$, is a Q-orbit. Then we may assume that

$$
\bar{y}_{1}=\left(\Delta_{1}\right)\left(\Delta_{2}\right)\left(\Delta_{3} \Delta_{4}\right)\left(\Delta_{5} \Delta_{6}\right) \cdots
$$

and y_{1} fixes four points $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$ of Δ_{1}.
(v. v) Since y_{2} normalizes $\left\langle Q, y_{1}\right\rangle, \bar{y}_{2}$ fixes $\left\{\Delta_{1}, \Delta_{2}\right\}$, Assume that $\bar{y}_{2}=\left(\Delta_{1} \Delta_{2}\right) \cdots$. Since $\left\langle Q, y_{2}\right\rangle$ and $\left\langle Q, y_{1} y_{2}\right\rangle$ are conjugate to $\left\langle Q, y_{1}\right\rangle, y_{2}$ and $y_{1} y_{2}$ fix exactly two Q-orbits in Δ. Since $\bar{y}_{1}=\left(\Delta_{1}\right)\left(\Delta_{2}\right)\left(\Delta_{3} \Delta_{4}\right)\left(\Delta_{5} \Delta_{6}\right) \cdots$ and \bar{y}_{2} commutes with \bar{y}_{1}, we may assume that

$$
\bar{y}_{2}=\left(\Delta_{1} \Delta_{2}\right)\left(\Delta_{3}\right)\left(\Delta_{4}\right)\left(\Delta_{5} \Delta_{6}\right) \cdots .
$$

Then $\left\langle\bar{y}_{1}, \bar{y}_{2}\right\rangle$ is semiregular on $\left\{\Delta_{7}, \Delta_{8} \cdots\right\}$. Since $\left\langle\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}\right\rangle$ is elementary abelian, \bar{y}_{3} fixes $\left\{\Delta_{1}, \Delta_{2}\right\},\left\{\Delta_{3}, \Delta_{4}\right\}$ and $\left\{\Delta_{5}, \Delta_{6}\right\}$. Furthermore since $\left\langle Q, y_{1} y_{3}\right\rangle$ and $\left\langle Q, y_{2} y_{3}\right\rangle$ are conjugate to $\left\langle Q, y_{1}\right\rangle, y_{1} y_{3}$ and $y_{2} y_{3}$ fix exactly two Q-orbits in Δ. Hence

$$
\bar{y}_{3}=\left(\Delta_{1} \Delta_{2}\right)\left(\Delta_{3} \Delta_{4}\right)\left(\Delta_{5}\right)\left(\Delta_{6}\right) \cdots .
$$

Since $\bar{y}_{2} \bar{y}_{3}$ fixes Δ_{1}, there is an element in $Q y_{2} y_{3}$ fixing 1^{\prime} of Δ_{1}. Hence we may assume that $y_{2} y_{3}$ fixes 1^{\prime}. Then $I\left(\left(y_{2} y_{3}\right)^{2}\right)$ and $I\left(\left(y_{2} y_{3}\right)^{y_{1}} \cdot y_{2} y_{3}\right)$ contains $I(Q) \cup$ $\left\{1^{\prime}\right\}$ of length $t+1$. Hence by the assumption $(*)\left(y_{2} y_{3}\right)^{2}=1$ and $y_{1} \cdot y_{2} y_{3}=$ $y_{2} y_{3} \cdot y_{1}$. Let T be a set of elements u of Q such that both $y_{2} y_{3} u$ and $y_{1} y_{2} y_{3} u$ are involutions. Since $\bar{y}_{2} \bar{y}_{3}$ fixes Δ_{1} and Δ_{2}, by (2.8) there are at least $\frac{|Q|}{2}$ involu-
tions in $y_{2} y_{3} Q$ having fixed points in Δ. Furthermore since $\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ fixes $\left\{\Delta_{1}, \Delta_{2}, \ldots, \Delta_{6}\right\}$ pointwise and $y_{1} y_{2} y_{3}$ consists of four 2-cycles on $I(Q)$, by (2.8) at least $\frac{3}{4}|Q|$ involutions of $y_{1} y_{2} y_{3} Q$ have fixed points in Δ. Hence $|T| \geq$ $\frac{1}{4}|Q|$. Since for any element u of $T y_{2} y_{3} u$ and $y_{1} \cdot y_{2} y_{3} u$ are involutions, y_{1} commutes with $y_{2} y_{3} u$. Furthermore y_{1} commutes with $y_{2} y_{3}$. Hence y_{1} commutes with u. Since $\left|I\left(y_{1}\right) \cap \Delta\right|=4, y_{1}$ commutes with exactly four elemenets of Q. Hence $|T| \leq 4$. Thus $\frac{1}{4}|Q| \leq 4$ and so $|Q| \leq 16$. Since $C(Q)^{I(Q)}=1$, $N(Q)^{I(Q)}=A_{t}$ is involutved in the automorphism group of Q. Hence Q is an elementary abelian group of order sixteen (see [3]). As we have seen above, at least $\frac{3}{4}|Q|$ elements of $y_{1} y_{2} y_{3} Q$ are involutions. Then since $y_{1} y_{2} y_{3}$ is an involution and Q is elementary abelian, $y_{1} y_{2} y_{3}$ commutes with at least $\frac{3}{4}|Q|$ elements of Q. Hence $y_{1} y_{2} y_{3}$ centralizes Q. This is a contradiction since $C(Q)^{I(Q)}=1$. Thus we may assume that $\bar{y}_{2}=\left(\Delta_{1}\right)\left(\Delta_{2}\right)\left(\Delta_{3} \Delta_{5}\right)\left(\Delta_{4} \Delta_{6}\right) \cdots$. Similarly \bar{y}_{3} fixes $\left\{\Delta_{1}, \Delta_{2}\right\}$ pointwise.

Suppose that $\left\langle\bar{v}_{1}, \bar{y}_{2}, \bar{y}_{3}\right\rangle$ is not semiregular on $\bar{\Delta}-\left\{\Delta_{1}, \Delta_{2}\right\}$. Then we may assume that \bar{y}_{3} fixes $\left\{\Delta_{3}, \Delta_{4}, \Delta_{5}, \Delta_{6}\right\}$. Then $\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ fixes $\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{6}\right\}$ pointwise. Hence by the same argument as above we have a contradiction. Thus $\left\langle\bar{y}_{1}, \bar{\nu}_{2}, \bar{\nu}_{3}\right\rangle$ is semiregular on $\bar{\Delta}-\left\{\Delta_{1}, \Delta_{2}\right\}$.

Since $\left\langle Q, y_{1}{ }^{\prime}\right\rangle$ is conjugate to $\left\langle Q, y_{1}\right\rangle, y_{1}{ }^{\prime}$ fixes exactly two Q-orbits in Δ. Since $\left\langle\bar{y}_{1}, \bar{y}_{2} \bar{y}_{3}, \bar{y}_{1}^{\prime}\right\rangle$ is abelian and $\left\langle\bar{y}_{1}, \bar{y}_{2} \bar{y}_{3}\right\rangle$ is semiregular on $\bar{\Delta}-\left\{\Delta_{1}, \Delta_{2}\right\}, \bar{y}_{1}^{\prime}$ fixes Δ_{1} and Δ_{2}.

Suppose that $\left\langle\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}, \bar{y}_{1}\right\rangle$ is not semiregular on $\bar{\Delta}-\left\{\Delta_{1}, \Delta_{2}\right\}$. Then there is an element y^{\prime} in $\left\langle Q, y_{1}, y_{2}, y_{3}\right\rangle y_{1}{ }^{\prime}$ such that \bar{y}^{\prime} has fixed points in $\bar{\Delta}$ other than Δ_{1} and Δ_{2}. Then $y^{\prime \prime(Q)}$ is of order four or two. If $y^{\prime(Q)}$ is of order four, then $\bar{y}^{\prime 2}=\bar{y}_{1}$. This is a contradiction since \bar{y}_{1} has no fixed point in $\bar{\Delta}-\left\{\Delta_{1} . \Delta_{2}\right\}$. If $y^{\prime I(Q)}$ is of order two, then $y^{\prime I(Q)}$ has exactly two or four 2-cycles. Hence $\left\langle Q, y^{\prime}\right\rangle$ is conjugate to $\left\langle Q, y_{1}\right\rangle$ or $\left\langle Q, y_{1} y_{2} y_{3}\right\rangle$. This is a contradiction since \bar{y}_{1} and $\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ have exactly two fixed points Δ_{1} and Δ_{2}. Thus $\left\langle\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}, \bar{y}_{1}\right\rangle$ is semiregular on $\bar{\Delta}-\left\{\Delta_{1}, \Delta_{2}\right\}$.

Since \bar{y}_{2}, \bar{y}_{3} and \bar{y}_{1}^{\prime} fix $\Delta_{1}, Q y_{2}, Q y_{3}$ and $Q y_{1}^{\prime}$ have elements fixing 1^{\prime} of Δ_{1}. Hence we may assume that y_{2}, y_{3} and $y_{1}{ }^{\prime}$ fix 1^{\prime}. Then $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ and $\left\langle y_{1}, y_{2} y_{3}, y_{1}^{\prime}\right\rangle$ are elementary abelian. Since $I\left(y_{1}\right) \cap \Delta=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, $\left\langle y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\rangle$ fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Set $R=C_{Q}\left(y_{1}\right)$. Then R is of order four and has an orbit $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Hence $\left\langle y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\rangle$ normalizes R. Since $y_{1} \notin C(Q),|Q|>4$. Hence the number of the R-orbit in Δ_{1} is even. Since $\left\langle y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\rangle$ fixes the R-orbit $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ in Δ_{1}, we may assume that $\left\langle y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\rangle$ fixes one more R-orbit $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ in Δ_{1}.
(v. vi) Let a be an involution R commuting with y_{1}, y_{2} and y_{3}. Then $\left\langle a, y_{1}\right\rangle$-orbits in $\Delta-\left(\Delta_{1} \cup \Delta_{2}\right)$ are of length four. Let $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ be any $\left\langle a, y_{1}\right\rangle-$ orbit in $\Delta-\left(\Delta_{1} \cup \Delta_{2}\right)$. Then $\left\langle a, y_{1}\right\rangle$ normalizes $G_{i_{1} i_{2} i_{3} i_{4}}$. Hence there is an involution u in $G_{i_{1} i_{2} i_{3} i_{4}}$ commuting with a and y_{1}. Then $\left\langle y_{1}, u\right\rangle$ normalizes $G_{I(Q)}$ and so a Sylow 2-subgroup Q^{\prime} of $G_{I(Q)}$. Since $N(Q)^{I(Q)}=A_{8},\left\langle Q^{\prime}, y_{1}, u\right\rangle$ is conjugate to a subgroup of $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{1}{ }^{\prime}\right\rangle$ in $N\left(G_{I(Q))}\right)$. Hence y_{1} fixes exactly two Q^{\prime}-orbits Δ_{1}^{\prime} and Δ_{2}^{\prime} in Δ and $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ is contained in Δ_{1}^{\prime} or Δ_{2}^{\prime}. Furthermore since $\left\langle Q^{\prime}, y_{1}\right\rangle$ is conjugate to $\left\langle Q, y_{1}\right\rangle$ in $\left\langle Q, Q^{\prime}, y_{1}\right\rangle$, there is an element v in $\left\langle Q, Q^{\prime}, y^{\prime}\right\rangle$ such that $\left\langle Q^{\prime}, y_{1}\right\rangle^{v}=\left\langle Q, y_{1}\right\rangle$. Then $\left(\Delta_{1}^{\prime} \cup \Delta_{2}^{\prime}\right)^{v}=$ $\Delta_{1} \cup \Delta_{2}$. Since $v^{I(Q)}$ or $\left(y_{1} v\right)^{I(Q)}=1$ and $\left\langle Q^{\prime}, y_{1}\right\rangle^{y_{1} v}=\left\langle Q, y_{1}\right\rangle$, we may assume that $v^{I(Q)}=1$. Then $v \in G_{I(Q)}$ and $\left(\Delta_{1}^{\prime} \cup \Delta_{2}^{\prime}\right)^{v}=\Delta_{1} \cup \Delta_{2}$. Thus $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ is
 $\left\langle a, y_{1}\right\rangle$-orbit in $\Delta-\left(\Delta_{1} \cup \Delta_{2}\right)$, any $\left\langle a, y_{1}\right\rangle$-orbit in $\Delta-\left(\Delta_{1} \cup \Delta_{2}\right)$ is contained in the
 Γ_{1} and Γ_{2} on Δ, where $\Gamma_{1} \supseteq \Delta_{1}$ and $\Gamma_{2} \supseteq \Delta_{2}$.

Since y_{1} fixes exactly two Q-robits in Δ, the number of Q-orbits in Δ is even. Hence $|\Delta|$ is divisible by $2\left|\Delta_{1}\right|=2|Q|$. If $G_{I(Q)}$ is transitive on Δ, then the order of $G_{I(Q)}$ is divisible by $2|Q|$. This is a contradiction since Q is a Sylow 2-subgroup of $G_{I(Q)}$. Hence $G_{I(Q)}$ has two orbits Γ_{1} and Γ_{2} on Δ.

Since $y_{1} \notin C(Q),|Q|>4$. Hence $\left\langle Q, y_{1}, y_{1}^{\prime}\right\rangle$ is a Sylow 2-subgroup of G_{5678}. Since G is 4-fold transitive, any Sylow 2-subgroup P of a stabilizer of four points in G is conjugate to $\left\langle Q, y_{1}, y_{1}^{\prime}\right\rangle$ and so has exactly one orbit of length four. Furthermore a stabilizer of a point of this orbit of length four in P is conjugate to Q.

We may assume that

$$
\begin{aligned}
& y_{1}=(12)(34)(5)(6)(7)(8)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots, \\
& a=(1)(2) \cdots(8)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right) \cdots .
\end{aligned}
$$

Since y_{2} and y_{3} fix 1^{\prime} and commute with a and y_{1}, y_{2} and y_{3} are $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)$ or $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$.

Assume that $y_{2}=\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $\left|I\left(y_{1} y_{2}\right)\right| \leq t$, we may assume that

$$
y_{2}=(12)(3)(4)(56)(7)(8)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 7^{\prime}\right)\left(6^{\prime} 8^{\prime}\right) \cdots .
$$

Thus $\left\langle y_{1}, y_{2}\right\rangle$ is semiregular on $\left\{5^{\prime}, 6^{\prime}, \cdots, n\right\}$. Suppose that y_{3} has fixed points in $\left\{5^{\prime}, 6^{\prime}, \cdots, n\right\}$. Since $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ is abelian, y_{3} has at least four fixed points in $\left\{5^{\prime}, 6^{\prime}, \cdots, n\right\}$. This is a contradiction since $I\left(y_{3}\right) \supset\left\{1^{\prime}\right\}$ and $\left|I\left(y_{3}\right)\right| \leq 8$. Hence y_{3} fixes $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ pointwise. Since $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ fixes the R-orbit $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$, there is an element $(\neq 1)$ in $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ fixing $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$ pointwise. Since $I\left(\left\langle y_{1}, y_{2}, y_{3}\right\rangle\right) \supseteq\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$, this element is $y_{1} y_{2} y_{3}$. Hence

$$
y_{3}=(12)(3)(4)(5)(6)(78)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right)\left(5^{\prime} 8^{\prime}\right)\left(6^{\prime} 7^{\prime}\right) \cdots .
$$

Then $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ normalizes $G_{121^{\prime} 2^{\prime}}$. Hence as we have seen above, $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ normalizes a 2-subgroup $Q^{\prime \prime}$ of $G_{11^{\prime} 1^{\prime} 2^{\prime}}$ which is conjugate to Q. Then $\left|I\left(Q^{\prime \prime}\right)\right|$ $=8$ and $N\left(Q^{\prime \prime}\right)^{I\left(Q^{\prime \prime}\right)}=A_{8}$. Hence $y_{1}^{I\left(Q^{\prime \prime}\right)}, y_{2}^{I\left(Q^{\prime \prime}\right)}$ and $y_{3}^{I\left(Q^{\prime \prime}\right)}$ are even permutations. Since y_{1}, y_{2} and y_{3} are (12)(1')(2') on $\left\{1,2,1^{\prime}, 2^{\prime}\right\}, y_{1}, y_{2}$ and y_{3} have exactly one more 2 -cycle other than (12) in $I\left(Q^{\prime \prime}\right)$. This is impossible. Hence $y_{2} \neq$ $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots . \quad$ Similarly $y_{3} \neq\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime}\right)\left(4^{\prime}\right) \cdots$.

Thus y_{2} and y_{3} are $\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)$ on $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Since $|R|=4, R$ is cyclic or elementary abelian. First assume that R is cyclic. Then $R=\langle b\rangle$ and

$$
b=(1)(2) \cdots(8)\left(1^{\prime} 3^{\prime} 2^{\prime} 4^{\prime}\right)\left(5^{\prime} 7^{\prime} 6^{\prime} 8^{\prime}\right) \cdots
$$

Then $\left\langle R, y_{1}\right\rangle$ is semiregular on $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$. Since $\left\langle a, y_{1}, y_{2}\right\rangle$ is abelian, if y_{2} has fixed points in $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$, then y_{2} fixes at least four points of $\left\{9^{\prime}, 10^{\prime}\right.$, $\cdots, n\}$. This is a contradiction since $I\left(y_{2}\right)$ contains $\{3,4,7,8\} \cup\left\{1^{\prime}\right\}$ of length five. Thus y_{2} has no fixed points in $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$. Similalry y_{3} has no fixed points in $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$. Hence y_{2} and y_{3} have exactly two fixed points in $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Next assume that R is elementary abeliain. Then $R=\left\langle a, b^{\prime}\right\rangle$ and

$$
b^{\prime}=(1)(2) \cdots(8)\left(1^{\prime} 3^{\prime}\right)\left(2^{\prime} 4^{\prime}\right) \cdots .
$$

Then $b^{\prime} y_{2}$ and $b^{\prime} y_{3}$ are of order four and so 4-cycle on $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Hence y_{2} and y_{3} have exactly two fixed points in $\left\{5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}\right\}$. Thus in both cases we may assume that

$$
\begin{aligned}
& a=(1)(2) \cdots(8)\left(1^{\prime} 2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots \\
& y_{2}=(12)(3)(4)(56)(7)(8)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime}\right)\left(6^{\prime}\right)\left(7^{\prime} 8^{\prime}\right) \cdots, \\
& y_{3}=(12)(3)(4)(5)(6)(78)\left(1^{\prime}\right)\left(2^{\prime}\right)\left(3^{\prime} 4^{\prime}\right)\left(5^{\prime} 6^{\prime}\right)\left(7^{\prime}\right)\left(8^{\prime}\right) \cdots
\end{aligned}
$$

Since $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ normalizes $G_{121^{\prime} 2^{\prime}}$, as we have seen above $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$ normalizes a 2-subgroup $Q^{\prime \prime}$ of $G_{121^{\prime} 2^{\prime}}$ which is conjugate to Q. Then $\left|I\left(Q^{\prime \prime}\right)\right|=8$ and $N\left(Q^{\prime \prime}\right)^{I\left(Q^{\prime \prime}\right)}=A_{8}$. Hence $a^{I\left(Q^{\prime \prime}\right)}, y_{1}^{I\left(Q^{\prime \prime}\right)}, y_{2}^{I\left(Q^{\prime \prime}\right)}$ and $y_{3}^{I\left(Q^{\prime \prime}\right)}$ are even permutations. Since $a=(1)(2)\left(1^{\prime} 2^{\prime}\right)$ and $y_{i}=(12)\left(1^{\prime}\right)\left(2^{\prime}\right), i=1,2,3$, on $\left\{1,2,1^{\prime}, 2^{\prime}\right\}$, a and y_{i} have exactly one more 2 -cycle other than ($1^{\prime} 2^{\prime}$) and (12) respectively in $I\left(Q^{\prime \prime}\right)$. Since the lengths of $\left\langle a, y_{1}, y_{2}, y_{3}\right\rangle$-orbits in $\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}$ are at elast eight, $\left|I\left(Q^{\prime \prime}\right) \cap\left\{9^{\prime}, 10^{\prime}, \cdots, n\right\}\right|=0$. Hence $I\left(Q^{\prime \prime}\right)=\left\{1,2,3,4,1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\},\{1,2$, $\left.5,6,1^{\prime}, 2^{\prime}, 5^{\prime}, 6^{\prime}\right\}$, or $\left\{1,2,7,8,1^{\prime}, 2^{\prime}, 7^{\prime}, 8^{\prime}\right\}$.

First assume that $I\left(Q^{\prime \prime}\right)=\left\{1,2,3,4,1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$. Then a Sylow 2-subgroup of G_{1234} containing Q or $Q^{\prime \prime}$ has exactly one orbit $\{5,6,7,8\}$ or $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ of lengh four respectively. Since Sylow 2-subgroups of G_{1234} are conjugate, $\{5,6,7,8\}$ and $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\}$ are contained in th same G_{1234}-orbit. Since $\Gamma_{1} \supset$ $\left\{1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}\right\},\{5,6,7,8\}$ and Γ_{1} are contained in the same $G_{1234^{4}}$-orbit. By (2.11) G is not 5 -fold transitive. Hence $G_{123_{4}}$ has two orbits $\{5,6,7,8\} \cup \Gamma_{1}$ and Γ_{2} on $\Omega-\{1,2,3,4\}$.

Next assume that $I\left(Q^{\prime \prime}\right)=\left\{1,2,5,6,1^{\prime}, 2^{\prime}, 5^{\prime}, 6^{\prime}\right\}$. Then by the same
argument as above G_{1256} has two orbits $\{3,4,7,8\} \cup \Gamma_{1}$ and Γ_{2}. Since $N(Q)^{I(Q)}$ $=A_{8}$, there is an element $z=(1)(2)(35)(46)(7)(8) \cdots$. Then $G_{1234}=\left(G_{1256}\right)^{z}$ has two orbits $\{5,6,7,8\} \cup \Gamma_{1}{ }^{z}$ and $\Gamma_{2}{ }^{z}$. Since Γ_{1} and Γ_{2} are $G_{I(Q)}$-robits, $\Gamma_{1}{ }^{z}$ $=\Gamma_{1}$ or Γ_{2}. On the other hand G is 4-fold transitive on Ω. Hence G_{1278} has two orbits $\{3,4,5,6\} \cup \Gamma_{i}$ and Γ_{j}, where $\{i, j\}=\{1,2\}$. Since $z \in G_{1278}, z$ fixes Γ_{1} and Γ_{2}. Hence G_{1234} has two orbits $\{5,6,7,8\} \cup \Gamma_{1}$ and Γ_{2}. Similarly if $I\left(Q^{\prime \prime}\right)=\left\{1,2,7,8,1^{\prime}, 2^{\prime}, 7^{\prime}, 8^{\prime}\right\}$, then G_{1234} has two orbits $\{5,6,7,8\} \cup \Gamma_{1}$ and Γ_{2}. Thus in any case G_{1234} has the two orbits $\{5,6,7,8\} \cup \Gamma_{1}$ and Γ_{2}.

On the other hand Δ_{2} is contained in Γ_{2} and fixed by y_{1}. Hence there is an element in $Q y_{1}$ fixing four points of Δ_{2}. Then by the same argument as above $\{5,6,7,8\}$ and Γ_{2} are contained in the same G_{1234}-orbit. Thus G_{1234} is transitive on $\Omega-\{1,2,3,4\}$, contrary to (2.11). Thus $N(Q)^{I(Q)} \neq A_{8}$. Hence we complete the proof of (2.15).

2.16. $N(Q)^{I(Q)} \neq S_{t}$.

Proof. Suppose by way of contradiction that $N(Q)^{I(Q)}=S_{t}$. Then by (2.4) $N(Q)$ has the 2-group $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$. Now we show that $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on Δ. $\quad \mathrm{By}(2.13)$ and (2.15) $\left\langle Q, x_{1}, x_{2}\right\rangle$ is semiregular on Δ.

Suppose that $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$ is not semiregular on Δ. Then x_{3} fixes $a\left\langle Q, x_{1}\right.$, $\left.x_{2}\right\rangle$-orbit Δ^{\prime} of length $4|Q|$ in Δ. Then by (2.13) and (2.15) $\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ fixes Q-orbits in Δ^{\prime}. Furthermore $\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle$ is abelian and $\left\langle\bar{x}_{1}, \bar{x}_{2}\right\rangle$ is semiregular on $\bar{\Delta}$. Hence $\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ fixes four Q-orbits in Δ^{\prime}. By (2.8) $\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ fixes at most six Q-orbits in $\bar{\Delta}$. Hence $\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$ does not fix any Q-orbit in $\Delta-\Delta^{\prime}$. Hence $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$ is semiregular on $\Delta-\Delta^{\prime}$. Since $N(Q)^{I(Q)}=S_{t}, N(Q)$ has a 2-element

$$
y_{1}^{\prime}=(13)(24)(5)(6) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle Q, x_{1}, x_{2}, x_{3}, y_{1}{ }^{\prime}\right\rangle$ is a 2-group. Then $y_{1}{ }^{\prime}$ normalizes $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$. Hence y_{1}^{\prime} fixes the $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$-orbit Δ^{\prime}. Thus Δ^{\prime} is $a\left\langle Q, x_{1}\right.$, $\left.x_{2}, y_{1}^{\prime}\right\rangle$-orbit. Hence $\left\langle Q, x_{1}, x_{2}, y_{1}^{\prime}\right\rangle$ has an element $x(\neq 1)$ fixing a point of Δ^{\prime}. Then by $(2,13)$ and $(2.15) x^{I(Q)}$ is of order four and has exactly one 4-cycle (13 24) or (1423). Hence $\left(x^{2}\right)^{I(Q)}=(12)(34)$ and has fixed points in Δ, contrary to (2.15). Thus $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$ is semiregular on Δ.

Suppose that $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ is not semiregular on Δ. Then x_{4} fixes a $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle$-orbit Δ^{\prime} of length $8|Q|$ in Δ. Since $\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}, \bar{x}_{4}\right\rangle$ is abelian and $\left\langle\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right\rangle$ is semiregular on $\bar{\Delta}$, by (2.8) $\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{4}$ fixes exactly eight Q-orbits in Δ, whose union is Δ^{\prime}. Thus $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ is semiregular on $\Delta-\Delta^{\prime}$. Since $N(Q)^{I(Q)}=S_{t}, N(Q)$ has a 2-element

$$
y_{1}^{\prime}=(13)(24)(5)(6) \cdots(t) \cdots
$$

By (2.3) we may assume that $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}, y_{1}{ }^{\prime}\right\rangle$ is a 2-group. Then $y_{1}{ }^{\prime}$ normalizes $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$. Hence y_{1}^{\prime} fixes Δ^{\prime}. Then Δ^{\prime} is $a\left\langle Q, x_{1}, x_{2}, x_{3}, y_{1}^{\prime}\right\rangle$ -
orbit. Hence there is an element x in $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle y_{1}^{\prime}$ fixing a point of Δ^{\prime}. Since $\langle Q, x\rangle$ is not conjugate to any subgroup of $\left\langle Q, x_{1}, x_{2}, x_{3}\right\rangle, x^{I(Q)}$ is of order four and has exactly one 4-cycle (1 324) or (1423). Hence $\left(x^{2}\right)^{I(Q)}=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$ and x^{2} has fixed points in Δ, contrary to (2.15). Thus $\left\langle Q, x_{1}, x_{2}, x_{3}, x_{4}\right\rangle$ is semiregular on Δ. Hence by (2.9) $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ is semiregular on Δ.

On the other hand Q has an involution $a=(1)(2) \cdots(t)(i j) \cdots$. Then a normalizes $G_{12 i j}$ and so commutes with an involution u of $G_{12 i j}$. Then u normalizes $G_{I(Q)}$. Hence u normalizes a Sylow 2-subgroup Q^{\prime} of $G_{I(Q)}$. Since Q^{\prime} is conjugate to Q in $G_{I(Q)}$ and $N(Q)^{I(Q)}=S_{t},\left\langle Q^{\prime}, u\right\rangle$ is conjugate to a subgroup of $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ in $N\left(G_{I(Q)}\right)$. Hence $\left\langle Q, x_{1}, x_{2}, \cdots, x_{k}\right\rangle$ has an element $(\neq 1)$ which has fixed points in Δ. This is a contradiction. Thus $N(Q)^{I(Q)} \neq S_{t}$.

2.17. We show that $N(Q)^{I(Q)} \neq A_{t}$ and complete the proof of the theorem.

Proof. Suppose by way of contradiction that $N(Q)^{I(Q)}=A_{t}$. First suppose that $t=8$ or 9 . Let $a=(1)(2) \cdots(t)(i j) \cdots$ be an involution of Q. Then a normalizes $G_{12 i j}$ and so commutes with an involution u of $G_{12 i j}$. Since $N(Q)^{I(Q)}=N\left(G_{I(Q)}\right)^{I(Q)}=A_{8}$ or A_{9} and $|I(u)| \leq t, u^{I(Q)}$ consists of exactly two 2-cycles. This contradicts (2.15) since $|I(u) \cap \Delta| \neq 0$.

Thus $t \geq 10$. Then by (2.4) $N(Q)$ has the 2 -group $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$, $k \geq 4$. Now we show that $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}^{\prime}\right\rangle$ is semiregular on Δ. By (2.15) $\left\langle Q, y_{1}, y_{2}\right\rangle$ is semiregular on Δ.

Let y be any element of $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle-Q$. Then $y^{I(Q)}$ is of order two or four. If $y^{I(Q)}$ is of order two, then $y^{I(Q)}$ consists of exactly two 2 -cycles. Hence by (2.15) y is semiregular on Δ. If $y^{I(Q)}$ is of order four, then $\left(y^{2}\right)^{I(Q)}=y_{1}^{I(Q)}$. Hence y is semiregular on Δ. Thus $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on Δ.

Suppose that $\left\langle Q, y_{1}, y_{2}, y_{3}\right\rangle$ is not semiregular on Δ. Then by (2.15) $\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ has fixed points in $\bar{\Delta}$. Since $\left(y_{1} y_{2} y_{3}\right)^{I(Q)}$ is an involution consisting of exactly four 2 -cycles $\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ fixes at most eight Q-orbits by (2.8). On the other hand $\left\langle\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}\right\rangle$ is abelian and $\left\langle\bar{y}_{1}, \bar{y}_{2}\right\rangle$ is a semiregular group of order four. Hence $\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ fixes four or eight Q-orbits. Thus y_{3} fixes one or two $\left\langle Q, y_{1}, y_{2}\right\rangle$-orbits in Δ.

Assume that y_{3} fixes exctly one $\left\langle Q, y_{1}, y_{2}\right\rangle$-orbit Γ in Δ. Then since y_{1}^{\prime} normalizes $\left\langle Q, y_{1}, y_{2}, y_{3}\right\rangle, y_{1}{ }^{\prime}$ fixes Γ. Hence Γ is also a $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle$-orbit. This is a contradiction since $\left\langle Q, y_{1}, y_{2}, y_{1}^{\prime}\right\rangle$ is semiregular on Δ. Thus y_{3} fixes exactly two $\left\langle Q, y_{1}, y_{2}\right\rangle$-orbits in Δ, say Γ_{1} and Γ_{2}. Hence by (2.8) any element of $Q y_{1} y_{2} y_{3}$ is an involution and has exactly eight fixed points in Δ.

Suppose that $\Gamma_{1}=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3} \cup \Delta_{4}$ and $\Gamma_{2}=\Delta_{5} \cup \Delta_{6} \cup \Delta_{7} \cup \Delta_{8}$, where Δ_{i}, $1 \leq i \leq 8$, is a Q-orbit. Set $\bar{\Gamma}_{1}=\left\{\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}\right\}$ and $\bar{\Gamma}_{2}=\left\{\Delta_{5}, \Delta_{6}, \Delta_{7}, \Delta_{8}\right\}$. Then we may assume that

$$
\begin{aligned}
& \bar{y}_{1}=\left(\Delta_{1} \Delta_{2}\right)\left(\Delta_{3} \Delta_{4}\right)\left(\Delta_{5} \Delta_{6}\right)\left(\Delta_{7} \Delta_{8}\right) \cdots, \\
& \bar{y}_{2}=\left(\Delta_{1} \Delta_{3}\right)\left(\Delta_{2} \Delta_{4}\right)\left(\Delta_{5} \Delta_{7}\right)\left(\Delta_{6} \Delta_{8}\right) \cdots, \\
& \bar{y}_{3}=\left(\Delta_{1} \Delta_{4}\right)\left(\Delta_{2} \Delta_{3}\right)\left(\Delta_{5} \Delta_{8}\right)\left(\Delta_{6} \Delta_{7}\right) \cdots .
\end{aligned}
$$

Since $y_{i}, i \geq 4$, normalizes $\left\langle Q, y_{1}, y_{2}, y_{3}\right\rangle, \Gamma_{1}^{y_{i}}=\Gamma_{1}$ or Γ_{2}. Suppose that $\Gamma_{1}{ }^{y_{i}}=\Gamma_{1}$. Then Γ_{1} is a $\left\langle Q, y_{1}, y_{2}, y_{i}\right\rangle$-orbit. Hence $y_{1} y_{2} y_{i}$ fixes a Q-orbit in Γ_{1} by (2.15). Since $\bar{y}_{1} \bar{y}_{2} \bar{y}_{3}$ is the identity on $\bar{\Gamma}_{1}, \bar{y}_{1} \bar{y}_{2} \bar{y}_{3} . \bar{y}_{1} \bar{y}_{2} \bar{y}_{i}=\bar{y}_{3} \bar{y}_{i}$ fixes a Q-orbit in Γ_{1}, contrary to (2.15). Thus $\Gamma_{1}^{y_{i}=\Gamma_{2}}$.

Suppose that $t \geq 12$. Then $N(Q)$ has y_{4} and y_{5}. Since $\left\langle\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{4}\right\rangle$ is elementary abelian and $\Gamma_{1}{ }^{y_{4}}=\Gamma_{2}$, we may assume that

$$
\bar{y}_{4}=\left(\Delta_{1} \Delta_{5}\right)\left(\Delta_{2} \Delta_{6}\right)\left(\Delta_{3} \Delta_{7}\right)\left(\Delta_{4} \Delta_{8}\right) \cdots .
$$

Furthemore since $\Gamma_{1}^{y_{5}}=\Gamma_{2}, \bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}$ is a $\left\langle\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{4}, \bar{y}_{5}\right\rangle$-orbit of length eight. Hence $\left\langle\bar{y}_{1}, \bar{y}_{2}\right\rangle \bar{y}_{4} \bar{y}_{5}$ has an element fixing $\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}$ pointwise. Thus we may assume that $\bar{y}_{1} \bar{y}_{4} \bar{y}_{5}$ fixes $\bar{\Gamma}_{1} \cup \bar{\Gamma}_{2}$ pointwise and so

$$
\bar{y}_{5}=\left(\Delta_{1} \Delta_{6}\right)\left(\Delta_{2} \Delta_{5}\right)\left(\Delta_{3} \Delta_{8}\right)\left(\Delta_{4} \Delta_{7}\right) \cdots .
$$

On the other hand $N(Q)$ has 2-elements

$$
\begin{aligned}
& y_{4}^{\prime}=(1)(2)(34)(5)(6)(7)(8)(911)(10)(12)(13) \cdots(t) \cdots, \\
& y_{5}^{\prime}=(1)(2)(34)(5)(6)(7)(8)(9)(11)(1012)(13)(14) \cdots(t) \cdots .
\end{aligned}
$$

By (2.3) we may assume that $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{4}^{\prime}, y_{5}^{\prime}\right\rangle$ is a 2 -group. Then by the same argument as above $\Gamma_{1}^{y_{4}^{\prime}}=\Gamma_{1}^{y_{5}{ }^{\prime}}=\Gamma_{2}$. If $\bar{y}_{i}{ }^{\prime}=\left(\Delta_{1} \Delta_{5}\right) \cdots, i=4,5$, then $\left(y_{4} y_{i}^{\prime}\right)^{3}$ has the same form as y_{1} on $I(Q)$ and fixes Δ_{1}, which is a contradiction. Similarly $\bar{y}_{i}{ }^{\prime} \neq\left(\Delta_{1} \Delta_{6}\right) \cdots, i=4,5$, since $\left(\bar{y}_{5} \bar{y}_{i}{ }^{\prime}\right)^{3}=\bar{y}_{1}$. Hence we may assume that

$$
\begin{aligned}
& \bar{y}_{4}^{\prime}=\left(\Delta_{1} \Delta_{7}\right)\left(\Delta_{2} \Delta_{8}\right)\left(\Delta_{3} \Delta_{5}\right)\left(\Delta_{4} \Delta_{6}\right) \cdots, \\
& \bar{y}_{5}^{\prime}=\left(\Delta_{1} \Delta_{8}\right)\left(\Delta_{2} \Delta_{7}\right)\left(\Delta_{3} \Delta_{6}\right)\left(\Delta_{4} \Delta_{5}\right) \cdots .
\end{aligned}
$$

Then $y_{4} y_{5} y_{4}{ }^{\prime} y_{5}^{\prime}$ consists of exactly two 2 -cycles on $I(Q)$ and fixes Δ_{1}, contrary to (2.15).

Thus $t=10$ or 11. Assume that $t=10$. The proof in the case $t=11$ is similar. Since $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on Δ, the lengths of $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle-$ orbits on Δ are $8|Q|$. On the other hand $\left\langle Q, y_{1}, y_{2}, y_{1}^{\prime}\right\rangle$ fixes $7,8,9,10$ and has two orbits $\{1,2,3,4\}$ and $\{5,6\}$ on $I(Q)$. Hence $\left\langle Q, y_{1}, y_{2}, y_{1}{ }^{\prime}\right\rangle$ is a Sylow 2-group of G_{78910}. Furthemore in $\left\langle Q, y_{1}, y_{2}, y_{1}^{\prime}\right\rangle$ any element fixing ten points belongs to Q. Since G is 4 -fold transitive, this shows that any element fixing ten points is conjugate to an element of Q. Set $z_{1}=y_{1} y_{2} y_{3}$. By what we have proved above every element of $Q z_{1}$ is an involution. Hence for any element u of $Q u^{z_{1}}=u^{-1}$. Furthermore $N(Q)$ has a 2-element

$$
z_{2}=(13)(24)(57)(68)(9)(10) \cdots .
$$

By (2.3) we may assume that $\left\langle Q, z_{1}, z_{2}\right\rangle$ is a 2-group. Since $\left\langle Q, z_{2}\right\rangle$ and $\left\langle Q, z_{1} z_{2}\right\rangle$ are conujgate to $\left\langle Q, z_{1}\right\rangle$, every element of $Q z_{2}$ and $Q z_{1} z_{2}$ is an
involution. Hence for any element u of $Q u^{z_{2}=u^{-1}}$ and $u^{z_{1} z_{2}}=u^{-1}$. On the other hand $\left(u^{z_{1}}\right)^{z_{2}}=\left(u^{-1}\right)^{z_{2}}=u$. Hence $u=u^{-1}$. Thus Q is elementary abelian and $z_{1}, z_{2} \in C(Q)$. Then since $N(Q)^{I(Q)}=A_{10}$ and $C(Q)^{I(Q)}$ is a normal subgroup $(\neq 1), N(Q)^{I(Q)}=C(Q)^{I(Q)}$. In particular since Q is abelian, every 2-element of $N(Q)$ belongs to $C(Q)$.

Since $y_{1}{ }^{2} \in Q$, the order of y_{1} is two or four. Suppose that y_{1} is of order two. Then for any 2-cycle ($i j$) of y_{1} in Δy_{1} normalizes $G_{12 i j}$. Hence y_{1} normalizes a 2-subgroup Q^{\prime} of $G_{12 i j}$ which is conjugate to Q. Since $N\left(Q^{\prime}\right)^{1\left(Q^{\prime}\right)}=$ A_{10}, y_{1} consist of exactly two or four 2-cycles on $I\left(Q^{\prime}\right)$. Suppose that y_{1} consists of exactly four 2 -cycles on $I\left(Q^{\prime}\right)$. Then $\left\langle Q^{\prime}, y_{1}\right\rangle$ is conjugate to $\left\langle Q, z_{1}\right\rangle$. Then $\left|I\left(y_{1}\right)\right|=10$, which is a contradiction. Thus y_{1} consists of exactly two 2 -cycles on $I\left(Q^{\prime}\right)$. Then $I\left(Q^{\prime}\right)=\{i, j, 1,2,5,6, \cdots, 10\}$. Then Q and Q^{\prime} are contained in G_{78910} and so conjugate in G_{78910}. Thus G_{78910} has an element which takes $\{1,2, i, j\}$ into $\{1,2, \cdots, 6\}$. Since $\{1,2, \cdots, 6\}$ is contained in a G_{78910}-orbit and $(i j)$ is any 2 -cycle of y_{1} in $\Delta, \mathrm{G}_{78910}$ is transitive on $\Omega-\{7,8,9,10\}$, contrary to (2.11). Thus y_{1} is of order four. Hence every involution of $N(Q)-Q$ consists of exactly four 2-cycles on $I(Q)$ and every involution of G fixes exactly ten points.
$C(Q)$ has an involution

$$
z_{3}=(13)(24)(56)(7)(8)(910) \cdots
$$

By (2.3) we may assume that $\left\langle Q, z_{1}, z_{3}\right\rangle$ is a 2 -group. Then since $z_{1} z_{3}$ consists of exactly four 2 -cycles on $I(Q), z_{1} z_{3}$ is of order two. Hence $z_{1} z_{3}=z_{3} z_{1}$. Since $I\left(z_{1}\right) \neq I\left(z_{3}\right)$ and any Sylow 2-subgroup of $G_{I\left(z_{1}\right)}$ is conjugate to Q, z_{3} fixes exactly two points of $I\left(z_{1}\right)$. Hence $\left|I\left(z_{1}\right) \cap I\left(z_{3}\right) \cap \Delta\right|=2$. Then since Q is semiregular on Δ and $\left\langle z_{1}, z_{3}\right\rangle<C(Q),|Q|=2$. Set $Q=\langle a\rangle$.

Since $\left\langle a, y_{3} y_{4}\right\rangle$ is conjugate to $\left\langle a, y_{1}\right\rangle, y_{3} y_{4}$ is of order four and $\left(y_{3} y_{4}\right)^{2}=a$. Let ($i j k l$) be any 4 -cycle of $y_{3} y_{4}$ in Δ. Then $y_{3} y_{4}$ normalizes $G_{i j k l}$. Hence $y_{3} y_{4}$ commutes with an involution z of $G_{i j k l}$. Since z commutes with $\left(y_{3} y_{4}\right)^{2}$ $=a$, z fixes $I(a)$. Thus $y_{3} y_{4} z$ is of order four and $\left(y_{3} y_{4} z\right)^{I(a)}$ is of order two. Hence $y_{3} y_{4} z$ consists of exactly two 2 -cycles on $I(a)$. Then since $\left(y_{3} y_{4}\right)^{I(a)}=$ (78) (910) and $z^{I(a)}$ consists of exactly four 2-cycles, z has 2-cycles (78) and (910). Hence $y_{3} y_{4} z \in G_{78910}$. Furthermore $y_{3} y_{4} z$ is $(i j k l)$ on $\{i, j, k, l\}$. Hence $\{i, j, k, l\}$ is contained in a G_{78910}-orbit. Set $z_{4}=y_{1} y_{3} y_{4}$. Then z_{4} has 2-cycles (78) and (910). Since $C(a)^{I(a)}{ }_{78910}=A_{6}, C(a)$ has an involution z^{\prime} which is conjugate to z under $C(a)_{78910}$ and has the same form as z_{4} on $I(a)$. Then $\left\langle a, z^{\prime}\right\rangle$ and $\left\langle a, z_{4}\right\rangle$ are Sylow 2-subgroups of $\left\langle a, z_{4}, z^{\prime}\right\rangle$ and $\left\langle a, z_{4}\right\rangle^{I(a)}=$ $\left\langle a, z^{\prime}\right\rangle^{I(a)}$. Hence $\left\langle a, z^{\prime}\right\rangle$ is conjugate to $\left\langle a, z_{4}\right\rangle$ under $\left\langle a, z_{4}, z^{\prime}\right\rangle_{I(a)}$ and so z^{\prime} is conjugate to z_{4} or $a z_{4}$ under $\left\langle a, z_{4}, z^{\prime}\right\rangle_{I(a)}$. Thus z is conjugate to z_{4} or $a z_{4}$ under $C(a)_{78910}$. Since $I(z) \cap \Delta \subset\{i, j, k, l\}$, there is an element in $C(a)_{78910}$ which takes $\{i, j, k, l\}$ into $I\left(z_{4}\right) \cap \Delta$ or $I\left(a z_{4}\right) \cap \Delta$. On the other hand $z_{4}^{y_{1}^{\prime}}=z_{4} a$.

Hence $\left(I\left(z_{4}\right) \cap \Delta\right)^{y_{1}^{\prime}=}=I\left(a z_{4}\right) \cap \Delta$. Thus $C(a)_{78910}$ has an element taking $\{i, j, k, l\}$ into $I\left(z_{4}\right) \cap \Delta$. Furthermore $y_{1}{ }^{\prime} y_{2}$ is of order eight and commutes with z_{4}. Hence $y_{1}^{\prime} y_{2}$ consists of a 8 -cycle on $I\left(z_{4}\right) \cap \Delta$. Thus $I\left(z_{4}\right) \cap \Delta$ is contained in a $C(a)_{789}{ }_{10}$-orbit. Since ($i j k l$) is any 4-cycle of $y_{3} y_{4}$ in Δ, Δ is cntained in a $C(a)_{78910}$-orbit and so in a G_{78910}-orbit. By (2.11) G_{78910} is intransitive on $\Omega-\{7,8,9,10\}$. Hence G_{78910} has exactly two orbits $\{1,2, \cdots, 6\}$ and Δ on $\Omega-\{7,8,9,10\}$. Since G is 4 -fold transitive, any four points $i_{1}, i_{2}, i_{3}, i_{4}$ of Ω uniquely determine a subset $\Delta\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$ of Ω which is the $G_{i_{1} i_{2} i_{3} i_{4}}$-orbit of lengt six.

For a 2 -cycle (11 12) of a and any two points i_{1}, i_{2} of $\{1,2, \cdots, 10\}$ four points $11,12, i_{1}, i_{2}$ uniquenly determine $\Delta\left(11,12, i_{1}, i_{2}\right)$, on which a consists of exactly three 2 -cycles. Conversely for any 2 -cycle $\left(j_{1} j_{2}\right)$ of a in $\Delta-\{11,12\}$ four points $11,12, j_{1}, j_{2}$ uniquely determine $\Delta\left(11,12, j_{1}, j_{2}\right)$ and a fixes exactly two points of $\Delta\left(11,12, j_{1}, j_{2}\right)$ which are contained in $\{1,2, \cdots, 10\}$. Hence the number of 2cycles of a in $\Delta-\{11,12\}$ is $\binom{10}{2} \cdot 3=135$. Hence $n=12+135 \cdot 2=282$. On the other hand for any point i of $\Omega-\{1,2,3\}$ four points $1,2,3, i$ uniquely determine $\Delta(1,2,3, i)$. Hence $282-3 \equiv 0(\bmod 7)$, which is a contradiction. (In the case $t=11$ for any two points i_{1}, i_{2} of $\{1,2, \cdots, 11\} \mid\{1,2, \cdots, 11\} \cap \Delta$ $\left(11,12, i_{1}, i_{2}\right) \mid=3$. Hence $\binom{11}{2} \equiv 0(\bmod 3)$, which is a contradiction.) Thus $\left\langle Q, y_{1}, y_{2}, y_{3}\right\rangle$ is semiregular on Δ.

Let y^{\prime} be any element of $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{4}, y_{1}{ }^{\prime}\right\rangle-Q$. Then $y^{\prime I(Q)}$ is of order two or four. If $y^{\prime I(Q)}$ is of order two, then $y^{\prime I(Q)}$ consists of two or four 2-cycles. Hence $\left\langle Q, y^{\prime}\right\rangle$ is conjugate to a subgroup of $\left\langle Q, y_{1}, y_{2}, y_{3}\right\rangle$ in $N(Q)$. Hence y^{\prime} is semiregular on Δ. If $y^{\prime I(Q)}$ is of order four, then $\left(y^{\prime 2}\right)^{I(Q)}=y_{1}^{I(Q)}$. Hence y^{\prime} is semiregular on Δ. Thus $\left\langle Q, y_{1}, y_{2}, y_{3}, y_{4}, y_{1}{ }^{\prime}\right\rangle$ is semiregular on Δ. Hence by (2.10) $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}, y_{1}{ }^{\prime}\right\rangle$ is semireglar on Δ.

Let x be any 2 -element of $N\left(G_{I(Q)}\right)$. Then x normalizes a Sylow 2-subgroup Q^{\prime} of $G_{I(Q)}$. Since Q is a Sylow 2-subgroup of $G_{I(Q)}$ and $N(Q)^{I(Q)}=A_{t},\left\langle Q^{\prime}, x\right\rangle$ is cnjugate to a subgroup of $\left\langle Q, y_{1}, y_{2}, \cdots, y_{k}\right\rangle$. Hence x is semiregular on Δ. On the other hand Q has an involution $a=(1)(2) \cdots(t)(i j) \cdots$. Then a normalizes $G_{12 i j}$, and so commutes with an involution u of $G_{12 i j j}$. Then $u \in N\left(G_{I(Q)}\right)$ and $|I(u) \cap \Delta| \neq 0$, which is a contradiction. Thus $N(Q)^{I(Q)} \neq A_{t}$.

Thus we complete the proof of the theorem.

3. Proof of the lemma

In this section we assume that G is a permutation group as in Lemma. Suppose by way of contradiction that there is a 2 -group Q in G such that $|I(Q)|=12$ and $N(Q)^{I(Q)}=M_{12}$. Let \bar{Q} be a Sylow 2-subgroup of $G_{I(Q)}$. Since $N(\bar{Q})^{I(\bar{Q})}=N\left(G_{I(Q)}\right)^{I(Q)} \geq N(Q)^{I(Q)}=M_{12}, N(\bar{Q})^{I(\bar{Q})}=S_{12}, A_{12}$ or M_{12}. If $N(\bar{Q})^{I(\bar{Q})}$
$=S_{12}$, or A_{12}, then by Thereom $G=S_{14}$ or A_{16}. Hence $N(Q)^{I(Q)}=S_{12}$, which is a contradiction. Thus $N(\bar{Q})^{I(\bar{Q})}=M_{12}$. Hence we may assume that Q is a Sylow 2-subgroup of $G_{I(Q)}$.

Set $I(Q)=\{1,2, \cdots, 12\}$ and $\Delta=\Omega-I(Q) . \quad$ Then $n \geq 35([2], \mathrm{p} .80)$ and so $|\Delta| \geq 23$.

Since $N(Q)^{I(Q)}=M_{12}$, we may assume that $N(Q)$ has 2-element

$$
\begin{aligned}
& x_{1}=(1)(2)(3)(4)(56)(78)(910)(1112) \cdots, \\
& y_{1}=(1)(2)(3)(4)(5768)(9111012) \cdots \\
& y_{2}=(1)(2)(3)(4)(51069)(711812) \cdots
\end{aligned}
$$

and $\left\langle Q, x_{1}, y_{1}, y_{2}\right\rangle$ is a 2-group (see (2.3)). Then $\left\langle Q, y_{1}^{2}\right\rangle=\left\langle Q, y_{2}^{2}\right\rangle=\left\langle Q, y_{1}\right\rangle$. Since Q is a normal subgroup of $\left\langle Q, y_{1}, y_{2}\right\rangle, Q$ has a central involution a of $\left\langle Q, y_{1}, y_{2}\right\rangle$. Then we may assume that

$$
a=(1)(2) \cdots(12)(1314)(1516) \cdots(n-1 n) .
$$

3.1. First we show hat $\left\langle Q, y_{1}, y_{2}\right\rangle$ has at least one orbit of length eight in Δ on which $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a quaternion group.

Proof. Suppose by way of contradiction that $\left\langle Q, y_{1}, y_{2}\right\rangle$ has no orbit of length eight in Δ on which $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a quaternion group. Then $\{5,6, \cdots, 12\}$ is the unique $\left\langle Q, y_{1}, y_{2}\right\rangle$-orbit of length eight and on which $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a quaternion group.
(i) We show that $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a Sylow 2-subgroup of G_{1234} and Q is a characteristic subgroup of $\left\langle Q, y_{1}, y_{2}\right\rangle$. Let x be any 2-element of $N\left(\left\langle Q, y_{1}\right.\right.$, $\left.\left.y_{2}\right\rangle\right)_{1234}$. Then x fixes $\{5,6, \cdots, 12\}$ and so $I(Q)$. Hence $x \in N(Q)$. Since $\left(N(Q)_{1234}\right)^{I(Q)}=\left\langle y_{1}, y_{2}\right\rangle^{I(Q)}, x^{I(Q)} \in\left\langle y_{1}, y_{2}\right\rangle^{I(Q)}$. Hence there is an element x^{\prime} in $\left\langle Q, y_{1}, y_{2}\right\rangle$ such that $x^{\prime I(Q)}=x^{I(Q)}$. Hence $\left(x^{\prime-1} x\right)^{I(Q)}=1$ and so $x^{\prime-1} x \in Q$. Thus $x \in\left\langle Q, x^{\prime}\right\rangle \leq\left\langle Q, y_{1}, y_{2}\right\rangle$. This shows that $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a Sylow 2-subgroup of G_{1234}. Furthermore since any automorphism of $\left\langle Q, y_{1}, y_{2}\right\rangle$ fixes $I(Q)$ and $\left\langle Q, y_{1}, y_{2}\right\rangle_{I(Q)}=Q, Q$ is a characteristic subgroup of $\left\langle Q, y_{1}, y_{2}\right\rangle$.
(ii) Let i, j, k, l be any four points of Ω and X be a 2 -group such that $X \leq N\left(G_{i j k l}\right)$. Then we show that $G_{i j k l}$ has an involution x such that $X \leq C(x),|I(x)|=12$ and $C(x)^{I(x)} \leq M_{12}$. Since $X \leq N\left(G_{i j k}\right), X$ normalizes a Sylow 2-subgroup P^{\prime} of $G_{i j k l}$. Since G is 4-fold transitive, P^{\prime} is conjugate to $\left\langle Q y_{1}, y_{2}\right\rangle$. Hence P^{\prime} has a characteristic subgroup Q^{\prime} which is conjugate to Q. Then $X \leq N\left(Q^{\prime}\right)$. Hence there is an involution x in Q^{\prime} such that $X \leq C(x)$. Since $\left|I\left(Q^{\prime}\right)\right|=12$ and $N\left(Q^{\prime}\right)^{I\left(Q^{\prime}\right)}=M_{12},\left|I\left(x^{\prime}\right)\right|=12$ and $C(x)^{I(x)} \leq M_{12}$. We remark that if x is the unique involution of Q^{\prime} then $C(x)^{I(x)}=M_{12}$.
(iii) We show that Q is a cyclic or generalized quaternion group and $C(Q)^{I(Q)}=N(Q)^{I(Q)}$. Suppose by way of contradiction that Q has an involution b other than a. Then since a is a central involution of Q, we may assume that

$$
b=(1)(2) \cdots(12)(1315)(1416)(1719)(1820)(2123)(2224) \cdots .
$$

Then $\langle a, b\rangle \leq N\left(G_{13141516}\right)$. Hence by (ii) $G_{13141516}$ has an involution u such that $\langle a, b\rangle \leq C(u),|I(u)|=12$ and $C(u)^{I(u)} \leq M_{12}$. Then $|I(a) \cap I(u)|=0$ or 4 . If $|I(a) \cap I(u)|=4$, then $b^{I(u)}$ fixes the same four points that a fixes and commutes with $a^{I(u)}$. This is a contradiction since $C(u)^{I(u)} \leq M_{12}$. Hence $|I(a) \cap I(u)|=0$. Then we may assume that

$$
u=(13)(24)(57)(68)(911)(1012)(13)(14) \cdots(24) \cdots .
$$

Since $\langle a, u\rangle \leq N\left(G_{131314}\right)$, by (ii) G_{131314} has an involution v such that $\langle a, u\rangle \leq$ $C(v),|I(v)|=12$ and $C(v)^{I(v)} \leq M_{12}$. Let R be a Sylow 2-subgroup of $\langle a, b, u, v\rangle$ containing $\langle a, b, u\rangle$. Then $R^{I(Q)}=\langle u, v\rangle^{I(Q)}$. Hence R has an element v^{\prime} such tha $v^{\prime I(Q)}=v^{I(Q)}$ and v^{\prime} is conjugate to v. Since $u \in Z(\langle a, b, u, v\rangle)$, v^{\prime} fixes $I(u)$. Since v^{\prime} fixes 1,3 which are not contained in $I(u)$ and $\left|I\left(v^{\prime}\right)\right|=12$, v^{\prime} does not fix $I(u)$ pointwise. Furthermore $I(u)$ is a union of of $\langle a, b, u, v\rangle$-orbits and v^{\prime} is conjugate to v which has fixed points in $I(u)$. Hence v^{\prime} has fixed points in $I(u)$ and so v^{\prime} fixes exctly four points of $I(u)$. Since $\left(b v^{\prime}\right)^{I(u)}$ is a 2-element of $C(u)^{I(u)} \leq M_{12},\left(b v^{\prime}\right)^{I(u)}$ is of order two, four or eight. If $\left(b v^{\prime}\right)^{I(u)}$ is of order two, then b commutes with v^{\prime}. Hence $\langle a, b\rangle^{I\left(v^{\prime}\right)}$ is a four group and $\left|I\left(\langle a, b\rangle^{I\left(v^{\prime}\right)}\right)\right|$ $=4$. This is a contradiction since M_{12} has no such subgroup. If $\left(b v^{\prime}\right)^{I(u)}$ is of order four or eight, then $\left(\left(b v^{\prime}\right)^{I(u)}\right)^{2}$ or $\left(\left(b v^{\prime}\right)^{I(u)}\right)^{4}$ is an invlution fixing four points and so $I\left(\left(b v^{\prime}\right)^{2}\right)$ or $I\left(\left(b v^{\prime}\right)^{4}\right)$ contains $\{1,2, \cdots, 12\}$ and four points of $I(u)$, contrary to the assumption. Thus Q has exactly one involution and so Q is a cyclic or generalized quaternion group. Hence the automorphism group of Q is a 2-group or S_{4}. Since $N(Q)^{I(Q)}=M_{12}$ and $N(Q)^{I(Q)} / C(Q)^{I(Q)}$ is involuved in the automorphism grup of $Q, C(Q)^{I(Q)}=N(Q)^{I(Q)}$.
(iv) Thus a is the unique involution of Q. Since $a \in N\left(G_{121314}\right), G_{121314}$ has an involution x such that $a x=x a,|I(x)|=12$ and $C(x)^{I(x)}=M_{12}$ by (ii). Then we may assume that $x=x_{1}$ and

$$
x_{1}=(1)(2)(3)(4)(56)(78)(910)(1112)(13)(14) \cdots(20) \cdots .
$$

Since $\left\langle a, x_{1}\right\rangle \leq N\left(G_{561314}\right), G_{561314}$ has an involution x_{2} such that $\left\langle a, x_{1}\right\rangle \leq C\left(x_{2}\right)$, $\left|I\left(x_{2}\right)\right|=12$ and $C\left(x_{2}\right)^{I\left(x_{2}\right)}=M_{12}$ by (ii). Then $\left\langle x_{1}, x_{2}\right\rangle$ normalizes a Sylow 2-subgroup of $G_{I(Q)}$ containing a. Hence we may assume that $\left\langle x_{1}, x_{2}\right\rangle$ normalizes Q. Furthermoe since $N(Q)^{I(Q)}=M_{12}$ and $C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12}$, we may assume that

$$
\begin{aligned}
x_{2}= & (12)(34)(5)(6)(7)(8)(910)(1112)(13)(14)(15)(16)(1718) \\
& (1920) \cdots
\end{aligned}
$$

or

$$
\begin{aligned}
x_{2}= & (1)(2)(34)(5)(6)(78)(911)(1012)(13)(14)(1516)(1719) \\
& (1820) \cdots .
\end{aligned}
$$

(v) We show that $x_{1}, x_{2} \notin C(Q)$. Suppose by way of contradiction that $x_{1} \in C(Q)$. Since $\left\langle Q, x_{2}\right\rangle$ is conjugate to $\left\langle Q, x_{1}\right\rangle$ in $N(Q)$, there is an element
u in Q such that $x_{2} u$ is conjugate to x_{1} in $N(Q)$. Then $x_{2} u \in C(Q)$ and $\left|I\left(x_{2} u\right)\right|$ $=12$. Hence $x_{2} u$ commutes with u and so x_{2} commutes with u. Since x_{2} and $x_{2} u$ are of order two, $u^{2}=1$. Hence $u=a$ or 1 . Thus $x_{2} \in C(Q)$. Since $\left\langle x_{1}, x_{2}\right\rangle<C(Q)$ and $\left|I\left(x_{1}\right) \cap I\left(x_{2}\right) \cap \Delta\right|=2$ or $4, Q$ is of order two or four. Thus Q is abelian. Then since $N(Q)^{I(Q)}=C(Q)^{I(Q)}$ by (iii), $y_{i} \in C(Q), i=1,2$. Since $y_{i}{ }^{2} \in\left\langle Q, x_{1}\right\rangle$, there is an element u_{i} in Q such that $y_{i}{ }^{2}=u_{i} x_{1}$. Then y_{i} commutes with $u_{i} x_{1}$. Since y_{i} commutes with u_{i}, y_{i} commutes with x_{1}. Hence y_{i} fixes $I\left(x_{1}\right) \cap \Delta$. Furthermore since $x_{1} \in C(Q), Q$ fixes $I\left(x_{1}\right) \cap \Delta$. Thus $I\left(x_{1}\right) \cap \Delta$ is a union of $\left\langle Q,, y_{1}, y_{2}\right\rangle$-orbits.

Suppose that Q is of order four. Since $\left\langle Q, y_{1}, y_{2}\right\rangle^{I\left(x_{1}\right) \cap \Delta}$ is not a quaternion group and $C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12},\left\langle Q, y_{1}, y_{2}\right\rangle^{I\left(x_{1}\right) \cap \Delta}=Q^{I\left(x_{1}\right) \cap \Delta}$. Hence $\left|\left\langle Q, y_{1}, y_{2}\right\rangle_{I\left(x_{1} \cap \Delta\right)}\right|=8$ and so $Q y_{i}, i=1,2$, has an element y_{i}^{\prime} fixing $I\left(x_{1}\right) \cap \Delta$ pointwise. Then $I\left(\left\langle y_{1}{ }^{\prime}, y_{2}{ }^{\prime}\right\rangle\right)=I\left(x_{1}\right)$. Since $N\left(G_{I\left(x_{1}\right)}\right)^{I\left(x_{1}\right)} \geq C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12}$, for the four points $1,2,3,4$ of $I\left(x_{1}\right)$ a Sylow 2-subgroup of G_{1234} cotaining $\left\langle y_{1}{ }^{\prime}, y_{2}{ }^{\prime}\right\rangle$ is of order at least $8 \cdot 8$. This is a contradiction since $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a Sylow 2-subgroup of G_{1234} and of order 8.4.

Next suppose that Q is of order two. Then by the same reason as above $\left\langle Q, y_{1}, y_{2}\right\rangle^{I\left(x_{1}\right) \cap \Delta}$ is a cyclic group of order two or four. Hence $\left\langle Q, y_{1}, y_{2}\right\rangle$ has an element y which is of order four and fixes $I\left(x_{1}\right) \cap \Delta$ pointwise. Then by the same argument as above G_{1234} has a Sylow 2-subgroup containing y and of order at least 8.4. This is a contradiction since $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a Sylow 2-subgroup of G_{1234} and of order 8.2. Thus $x_{1} \notin C(Q)$. Similarly $x_{2} \notin C(Q)$.
(vi) Since $C(Q)^{I(Q)}=N(Q)^{I(Q)}$ and $x_{1} \notin C(Q), Q$ is nonabelian. Hence by (iii) Q is a generalized quaternion group. Moreover there are elements b_{1} and b_{2} in Q such that $b_{1} x_{1}$ and $b_{2} x_{2}$ belong to $C(Q)$. Then $b_{i} x_{i}$ commutes with b_{i}, $i=1,2$. Hence x_{i} commutes with b_{i}. Thus b_{i} fixes $I\left(x_{i}\right)$. Since $\left|I\left(x_{i}\right) \cap I(Q)\right|$ $=4$ and $C\left(x_{i}\right)^{I\left(x_{i}\right)}=M_{12}, b_{i}$ fixes exactly four points of $I\left(x_{i}\right)$ and so b_{i} is of order two or four. If b_{i} is of order two, then $b_{i}=a$ since a is the unique involution of Q. This is a contradiction since $x_{i} \notin C(Q)$. Thus b_{i} is of order four. Furthermore this shows that $\left\langle Q, y_{1}, y_{2}\right\rangle$ has exactly one central involution a.

Suppose that Q is of order at least sixteen. Then we may assume that $Q=\langle c, d\rangle$, where $c^{4}=d^{2 r}=1$ and $r \geq 3$. Suppose that $b_{1} \in\langle d\rangle$. Then since d commutes with $b_{1} x_{1}, d$ commutes with x_{1}. Then d fixes $I\left(x_{1}\right) \cap \Delta$ of length eight. since d is of order at least eight, d is of order eight. Thus $d^{I\left(x_{1}\right)}$ has four fixed points and one 8 -cycle, which is a contradiction since $C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12}$. Thus $b_{1} \notin\langle d\rangle$ and so $Q=\left\langle b_{1}, d\right\rangle$. Similarly $Q=\left\langle b_{2}, d\right\rangle$. Hence $d^{b_{i}}=d^{-1}, i=1,2$, and so $d^{b_{i} x_{i}}=\left(d^{-1}\right)^{x_{i}}$. On the other hand since $b_{i} x_{i} \in C(Q)$. Hence $d^{b_{i} x_{i}}=d$. Thus $d^{x_{i}}=d^{-1}$ and so $d^{x_{1} x_{2}}=d$. Since $\left|I\left(x_{1} x_{2}\right)\right| \leq 12,\left|I\left(x_{1} x_{2}\right) \cap I(Q)\right|=4$ and $I\left(x_{1} x_{2}\right) \cap \Delta \supseteq\{13,14\}, 2 \leq\left|I\left(x_{1} x_{2}\right) \cap \Delta\right| \leq 8$. Then since d is of order at least eight, $\left|I\left(x_{1} x_{2}\right) \cap \Delta\right|=8$ and d is of order eight. Thus $\left|I\left(x_{1} x_{2}\right)\right|=12$ and $d^{I\left(x_{1} x_{2}\right)}$ has four fixed points and one 8-cycle. This implies that $C\left(x_{1} x_{2}\right)^{I\left(x_{1} x_{2}\right)} \neq M_{12}$.

On the other hand for any four points i, j, k, l of $I\left(x_{1} x_{2}\right)$ let P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing $x_{1} x_{2}$. Then since G is 4 -fold transitive, P^{\prime} is conjugate to $\left\langle Q, y_{1}, y_{2}\right\rangle$. Hence P^{\prime} has the unique central involution a^{\prime} which is conjugate to a. Then $P_{I\left(a^{\prime}\right)}^{\prime}$ is conjugate to Q and $C\left(a^{\prime}\right)^{I\left(a^{\prime}\right)}=M_{12}$. If $x_{1} x_{2}=a^{\prime}$, then $C\left(x_{1} x_{2}\right)^{I\left(x_{1} x_{2}\right)}=M_{12}$, which is a contradiction. Hence $x_{1} x_{2} \neq a^{\prime}$. Then since $P_{I\left(a^{\prime}\right)}^{\prime}$ has exactly one involution $a^{\prime}, x_{1} x_{2} \notin P^{\prime}{ }_{I\left(a^{\prime}\right)}$. Hence $I\left(x_{1} x_{2}\right) \cap$ $I\left(a^{\prime}\right)=\{i, j, k, l\}$ because $C\left(a^{\prime}\right)^{I\left(a^{\prime}\right)}=M_{12}$. Thus $a^{I\left(x_{1} x_{2}\right)}$ fixes exactly four points i, j, k, l. Then by a lemma of Livingstone and Wanger [4] $C\left(x_{1} x_{2}\right)^{I\left(x_{1} x_{2}\right)}$ is 4 -fold transitive on $I\left(x_{1} x_{2}\right)$. Since $C\left(x_{1} x_{2}\right)^{I\left(x_{1} x_{2}\right)} \neq M_{12}, C\left(x_{1} x_{2}\right)^{I\left(x_{1} x_{2}\right)} \geq A_{12}$. Then by Theorem $G=S_{14}$ or A_{16}, which is a contradiction.

Thus Q is a quaternion group. Since $C(Q)^{I(Q)}=N(Q)^{I(Q)}, Q y_{1}$ has an element which belongs to $C(Q)$. Hence we may assume that $y_{1} \in C(Q)$. Hence $y_{1}{ }^{2}\left(b_{1} x_{1}\right)^{-1} \in C(Q) \cap Q=\langle a\rangle$. Thus $y_{1}^{2}=b_{1} x_{1}$ or $a b_{1} x_{1}$ and so y_{1} is of order eight. Furthermore y_{1} commutes with a and b_{1}. Hence y_{1} commutes with x_{1}. Thus y_{1} fixes $I\left(x_{1}\right)$ and so $y_{1}{ }^{I\left(x_{1}\right)}$ has four fixed points and one 8 -cycle. This is a contradiction since $C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12}$. Thus we complete the proof of (3.1).
3.2. Next we show tht Q is of order two and $Q x_{1}$ has an involution $x_{1}{ }^{\prime}$ such that $\left|I\left(x_{1}{ }^{\prime}\right)\right|=12$ and $C\left(x_{1}{ }^{\prime}\right)^{I\left(x_{1}^{\prime}\right)}=M_{12}$.

Proof. By (3.1) $\left\langle Q, y_{1}, y_{2}\right\rangle$ has an orbit Γ in Δ such that $|\Gamma|=8$ and $\left\langle Q, y_{1}, y_{2}\right\rangle^{\Gamma}$ is a quaternion group. Then Q is a quaternion group or a cyclic group of order four or two. Hence the automorphism group of Q is S_{4} or a 2-group. Furthermore $N(Q)^{I(Q)}=M_{12}$ and $N(Q)^{I(Q)} / C(Q)^{I(Q)}$ is involved in the automorphism group of Q. Hence $N(Q)^{I(Q)}=C(Q)^{I(Q)}$.

Suppose that Q is a cyclic group of order four. Then since $N(Q)^{I(Q)}=$ $C(Q)^{I(Q)}$ and Q is abelian, any 2-element of $N(Q)$ is contained in $C(Q)$. Thus $Z\left(\left\langle Q, y_{1}, y_{2}\right\rangle\right) \geq Q$. On the other hand $\left\langle Q, y_{1}, y_{2}\right\rangle^{\Gamma}$ is a quaternion group. Hence Q has an element b of order four and $b^{\Gamma} \notin Z\left(\left\langle Q, y_{1}, y_{2}\right\rangle^{\Gamma}\right)$, which is a contradiction. Thus the order of Q is not four.

Since $\left\langle Q, y_{1}, y_{2}\right\rangle^{\Gamma}$ is a quaternion group and $\left\langle Q, y_{1}, y_{2}\right\rangle$ is of order at least 8.2, $\left\langle Q, y_{1}, y_{2}\right\rangle_{\Gamma}$ has an involution, which is contained in $Q x_{1}$. Hence we may assume that $x_{1} \in\left\langle Q, y_{1}, y_{2}\right\rangle_{\Gamma}$. Then $x_{1} \in Z\left(\left\langle Q, y_{1}, y_{2}\right\rangle\right)$ and $\left|I\left(x_{1}\right)\right|=12$. Let x be any involution of $\left\langle Q, y_{1}, y_{2}\right\rangle$ other than a and x_{1}. Since Q has exactly one involution $a, x \notin Q$. Hence $x \in Q x_{1}$. Thus $x^{I(Q)}=x_{1}^{I(Q)}$ and so $x x_{1}$ is an involution of Q. Hence $x x_{1}=a$ and so $x=a x_{1}$. Thus $\left\langle Q, y_{1}, y_{2}\right\rangle$ has exactly three involution a, x_{1}, and $a x_{1}$, which are contained in $Z\left(\left\langle Q, y_{1}, y_{2}\right\rangle\right)$.

Assume that $\left\langle Q, y_{1}, y_{2}\right\rangle$ is a Sylow 2-subgroup of G_{1234}. For any four points, i, j, k, l of $I\left(x_{1}\right)$ let P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing x_{1}. Since G is 4 -fold transitive, P^{\prime} is conjugate to $\left\langle Q, y_{1}, y_{2}\right\rangle$. Since any involution of $\left\langle Q, y_{1}, y_{2}\right\rangle$ is contained in the center of $\left\langle Q, y_{1}, y_{2}\right\rangle, x_{1}$ is contained in the center of P^{\prime}. Thus $P^{\prime I\left(x_{1}\right)} \leq C\left(x_{1}\right)^{I\left(x_{1}\right)}$ and $P^{\prime I\left(x_{1}\right)}$ fixes exactly four points i, j,
k, l. Then by a lemma of Livingstone and Wagner [4] $C\left(x_{1}\right)^{I\left(x_{1}\right)}$ is 4-fold transitive. Since $\left|I\left(x_{1}\right)\right|=12, C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12}$ by Theorem.

Assume that $\left\langle Q, y_{1}, y_{2}\right\rangle$ is not a Sylow 2-subgroup of G_{1234}. Then $N\left(\left\langle Q, y_{1}, y_{2}\right\rangle\right)_{1234}$ has a 2-element x^{\prime} such that $x^{\prime} \notin\left\langle Q, y_{1}, y_{2}\right\rangle$. If x^{\prime} fixes $I(Q)$, then $x^{\prime I(Q)} \in\left\langle y_{1}, y_{2}\right\rangle^{I(Q)}$ since $N\left(G_{I(Q)}\right)^{I(Q)}=M_{12}$. Hence there is an element $x^{\prime \prime}$ in $\left\langle Q, y_{1}, y_{2}\right\rangle$ such that $x^{\prime I(Q)}=x^{\prime \prime I(Q)}$. Thus $x^{\prime} x^{\prime \prime-1} \in Q$ and so $x^{\prime} \in\left\langle Q, y_{1}, y_{2}\right\rangle$, which is a contradiction. Thus x^{\prime} does not fix $I(Q)$. Then $a^{x^{\prime}} \neq a$. Hence $a^{x^{\prime}}=x_{1}$ or $a x_{1}$. Since $C(a)^{I(a)}=M_{12}, C\left(x_{1}\right)^{I\left(x_{1}\right)}$ or $C\left(a x_{1}\right)^{I\left(a x_{1}\right)}=M_{12}$. Thus $Q x_{1}$ has an element x_{1}^{\prime}, where $x_{1}^{\prime}=x_{1}$ or $a x_{1}$, such that $\left|I\left(x_{1}^{\prime}\right)\right|=12$ and $C\left(x_{1}^{\prime}\right)^{I\left(x_{1}^{\prime}\right)}=M_{12}$.

Since $N(Q)^{I(Q)}=M_{12}$, we may assume that $N(Q)$ has a 2-element

$$
x_{2}=(1)(2)(34)(5)(6)(78)(912)(1011) \cdots
$$

and $\left\langle Q, y_{1}, y_{2}, x_{2}\right\rangle$ is a 2-group. Then $\left\langle Q, x_{2}\right\rangle$ is conjugate to $\left\langle Q, x_{1}\right\rangle$. Hence we may assume that $\left|I\left(x_{2}\right)\right|=12, x_{2} \in C(Q),\left|I\left(x_{2}{ }^{\prime}\right)\right|=12$ and $C\left(x_{2}{ }^{\prime}\right)^{I\left(x_{2}^{\prime}\right)}=M_{12}$, where $x_{2}{ }^{\prime}=x_{2}$ or $a x_{2}$.

Since $x_{2} \in N\left(\left\langle Q, y_{1}, y_{2}\right\rangle\right), x_{1}^{x_{2}}=x_{1}$ or $a_{1} x$. Suppose that $x_{1}{ }^{x_{2}}=a x_{1}$. If Q is of order two, then $\left\langle Q, x_{1}\right\rangle$ is an elementary abelian group of order four. On the other hand $\left\langle Q, x_{1} x_{2}\right\rangle$ is conjugate to $\left\langle Q, x_{1}\right\rangle$ and $x_{1} x_{2}$ is of order four, which is a contradiction. Thus Q is a quaternion group. Set $\Gamma^{\prime}=I\left(a x_{1}\right) \cap \Delta$. Then $\left(I\left(x_{1}\right) \cap \Delta\right)^{x_{2}}=I\left(a x_{1}\right) \cap \Delta$. Hence $\left|\Gamma^{\prime}\right|=8$ and $\left\langle Q, y_{1}, y_{2}\right\rangle^{\Gamma^{\prime}}$ is a quaternion group. Since $\left|\left\langle Q, y_{1}, y_{2}\right\rangle_{\Gamma}\right|=8, Q y_{1}$ has an element y_{1}^{\prime} fixing Γ pointwise. Then $y_{1}^{\prime} \in C(Q)$. Since $Q^{\Gamma^{\prime}}$ is a quaternion group, $y_{1}{ }^{\prime \Gamma^{\prime}}$ is the identity or an involution. Hence $y_{1}^{\prime 2}$ is not the identity and fixes $\{1,2,3,4\} \cup \Gamma \cup \Gamma^{\prime}$ pointwise. This is a contradiction since $\left|\{1,2,3,4\} \cup \Gamma \cup \Gamma^{\prime}\right|=20$. Thus $x_{1} x_{2}=x_{1}$.

Then $x_{1}{ }^{\prime}$ and $x_{2}{ }^{\prime}$ commute. Since $C\left(x_{1}{ }^{\prime}\right)^{I\left(x_{1}{ }^{\prime}\right)}=M_{12}, I\left(x_{2}{ }^{\prime}\right) \cap I\left(x_{1}{ }^{\prime}\right)=\{1,2, i, j\}$, where $\{i, j\} \subset \Delta$. Thus $\left\langle x_{1}{ }^{\prime}, x_{2}{ }^{\prime}\right\rangle$ fixes exactly two points i, j of Δ. Then since $\left\langle x_{1}{ }^{\prime}, x_{2}{ }^{\prime}\right\rangle \leq C(Q), Q$ is of order two.

3.3. Finally we show that $|Q| \neq 2$ and complete the proof.

Proof. By (3.2) $|Q|=2$, and so $Q=\langle a\rangle$ and $\left\langle a, x_{1}\right\rangle$ is an elementary abelian group of order four. Furthermore we may assume that $C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12}$ and $I\left(x_{1}\right)=\{1,2,3,4,13,14, \cdots, 20\}$. Since $N(Q)^{I(Q)}=C(a)^{I(a)}=M_{12}$ and $C(a)^{I(a)}$ $>\left\langle y_{1}, y_{2}\right\rangle, C(a)$ has 2-elements

$$
\begin{aligned}
& x_{2}=(1)(2)(34)(5)(6)(78)(911)(1012) \cdots \\
& x_{3}=(12)(34)(5)(6)(7)(8)(910)(1112) \cdots
\end{aligned}
$$

Then we may assume that $\left\langle a, y_{1}, y_{2}, x_{2}, x_{3}\right\rangle$ is a 2 -group (see (2.3)). Since $\left\langle a, x_{i}\right\rangle$ is conjuagte to $\left\langle a, x_{1}\right\rangle$ in $C(a), i=2,3$, we may assume that $\left|I\left(x_{i}\right)\right|=12$ and $C\left(x_{i}\right)^{I\left(x_{i}\right)}=M_{12}$. Furthermore since $\left\langle a, x_{i} x_{j}\right\rangle, i \neq j$ and $1 \leq i, j \leq 3$, is conjugate to $\left\langle a, x_{1}\right\rangle x_{i} x_{j}$ is of order two. Thus x_{i} and x_{j} commute and so $\left\langle a, x_{1}, x_{2}, x_{3}\right\rangle$ is elementary ableian.

Since $a^{I\left(x_{1}\right)}=(1)(2)(3)(4)(1314)(1516)(1718)(1920)$ and $C\left(x_{1}\right)^{I\left(x_{1}\right)}=M_{12}$, we may assume that $x_{2}^{I\left(x_{1}\right)}=(1)(2)(34)(13)(14)(1516)(1719)(1820)$ and $x_{3}{ }^{I\left(x_{1}\right)}=(12)(34)(13)(14)(15)(16)(1718)(1920) . \quad$ Since $\left|I\left(x_{2}\right)\right|=12$, we may assume that $I\left(x_{2}\right)=\{1,2,5,6,13,14,21,22, \cdots, 26\}$. Then since $a^{I\left(x_{2}\right)}=(1)(2)$ (5) (6) (13 14) (21 22) (23 24) (25 26) and $C\left(x_{2}\right)^{I\left(x_{2}\right)}=M_{12}$, we may assume that $x_{1}^{I\left(x_{2}\right)}=(1)(2)(56)(13)(14)(2122)(2325)(2426)$ and $x_{3}{ }^{I\left(x_{2}\right)}=(12)(5)(6)(13)$ (14) (21 22) (23 26) (25 24). Since $\left|I\left(x_{3}\right)\right|=12$, we may assume that $I\left(x_{3}\right)=$ $\{5,6,7,8,13,14,15,16,27,28,29,30\}$. Then since $a^{I\left(x_{3}\right)}=(5)(6)(7)(8)(1314)$ (15 16) (27 28) (29 30) and $C\left(x_{3}\right)^{I\left(x_{3}\right)}=M_{12}$, we may assume that $x_{2}^{I I\left(x_{3}\right)}=(5)$ (6) (78) (13) (14) (15 16) (27 29) (28 30) and $x_{1}^{I\left(x_{3}\right)}=(56)(78)(13)(14)(15)(16)(2728)$ (29 30). Then $a x_{1} x_{3}$ is of order two and $I\left(a x_{1} x_{3}\right)$ contains $\{9,10,11,12,17,18$, $19,20,23,24, \cdots, 30\}$ of length sixteen, which is a contradiction. Thus we complete the proof of the lemma.

4. Proof of Corollary 1

In this section we assume that G is a 4 -fold transitive group on $\Omega=$ $\{1,2, \cdots, n\}$ and n is even. Let P be a Sylow 2 -subgroup of a stabilizer of four points in G. Then $|I(P)|=4$ by Corollary of [13].

Proof of (1) of Corollary 1. We proceed by way of contradiction. We assume that G is a counter-example to (1) of Corollary 1 of the least possible degree. Then $n \geq 35([2], \mathrm{p} .80)$. Set $I(P)=\{1,2,3,4\}$. Let t be the maximal number of fixed points of involutions of G and Q be a Sylow 2-subgroup of $G_{I(Q)}$ such that $|I(Q)|=t$. For any four points i, j, k, l of $I(Q)$ let P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing Q. Since G is 4 -fold transitive, P^{\prime} is conjugate to P. Hence by the assumption $I\left(P^{\prime}\right)=I\left(Z\left(P^{\prime}\right)\right)=\{i, j, k, l\}$. Thus $C(Q)^{I(Q)} \geq Z\left(P^{\prime}\right)^{I(Q)}$ and $I\left(Z\left(P^{\prime}\right)^{I(Q)}\right)=\{i, j, k, l\}$. Hence by a lemma of Livingstone and Wagner [4], $C(Q)^{I(Q)}$ is 4-fold transitive on $I(Q)$. If $\left(C(Q)^{I(Q)}\right)_{i j k l}$ is of odd order, then $|I(Q)|=4$. Hence by a theorem of H. Nagao [10] $G=S_{6}$, A_{8} or M_{12}, which is a contradiction since $n \geq 35$. Hence $\left(C(Q)^{I(Q)}\right)_{i j k l}$ is of even order. Then $C(Q)^{I(Q)}$ satisfies the assumption of (1) of Corollary 1. Hence by the minimal nature of the degree of $G, C(Q)^{I(Q)}=S_{t}, A_{t}$ or M_{12}. By Lemma $C(Q)^{I(Q)} \neq M_{12}$. If $C(Q)^{I(Q)}=S_{t}$ or A_{t}, then by Theorem $G \geq A_{n}$, which is a contradiction. Thus we complete the proof.

Proof of (2) of Corollary 1. If $P_{i}=1$, then by a theorem of H. Nagao [10] $G=S_{6}, A_{8}$ or M_{12}. Suppose that there is a point i of $\Omega-I(P)$ such that $P_{i} \neq 1$. Let t be the maximal number of fixed points of involutions of G. Since P_{i} is semiregular $(\neq 1)$, we may assume that $\left|I\left(P_{i}\right)\right|=t$. For any four points $i_{1}, i_{2}, i_{3}, i_{4}$ of $I\left(P_{i}\right)$ let P^{\prime} be a Sylow 2 -subgroup of $G_{i_{1} i_{2} i_{3} i_{4}}$ containing P_{i}. Then $N_{P^{\prime}}\left(P_{i}\right)^{I\left(P_{i}\right)}$ is semiregular $(\neq 1)$ and fixes exactly four points $i_{1}, i_{2}, i_{3}, i_{4}$. Hence by a lemma of Livingstone and Wagner [4] $N\left(P_{i}\right)^{I\left(P_{i}\right)}$ is 4-fold transitive on $I\left(P_{i}\right)$
and by a theorem of H. Nagao [10] $N\left(P_{i}\right)^{I\left(P_{i}\right)}=S_{6}, A_{8}$ or M_{12}. Hence by Theorem and Lemma, $G=S_{8}$ or A_{10}. Thus we complete the proof.

5. Proof of Corollary 2

In this section we assume that G is a permutation group as in Corollary 2. We may assume that P is a Sylow 2-subgroup of G_{1234}. Then by a corollary of $[13]|I(P)|=4,5$ or 7 .

Suppose that $|I(P)|=4$. Then n is even. Furthermore since P is transitive on $\Omega-I(P), I(P)=I(Z(P))$. Hence by Corollary $1, G=S_{2^{k}+4}(k \geq 1), A_{2^{k}+4}$ $(k \geq 2)$ or M_{12}.

Next suppose that $|I(P)|=5$. Since P is transitive on $\Omega-I(P)$, by a theorem of H. Nagao [9] $G_{12{ }_{34}}$ is doubly transitive on $\Omega-\{1,2,3,4\}$. Then G_{1} satisfies the assumption of Corollary 2 and $|I(P)-\{1\}|=4$. Hence by what we have proved above, G_{1} is one of the groups listed above. Hence $G=S_{2^{k}+5}$ ($k \geq 1$) or $A_{2^{k}+5}(k \geq 2)$.

Finally suppose that $|I(P)|=7$. Then by a theorem of [12] $G=M_{23}$. Thus we complete the proof.

Osaka Kyoiku University

References

[1] D. Gorenstein: Finite Groups, Harper and Row, New York, 1968.
[2] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
[3] M. Hall and J.K. Senior: The Groups of Order $2^{n}(n \leq 6)$, Macmillan, New York, 1964.
[4] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
[5] W.A. Manning: The degree and class of multiply transitive groups, Trans. Amer. Math. Soc. 35 (1933), 585-599.
[6] H. Nagao: On multiply transitive groups I, Nagoya Math. J. 27 (1966), 15-19.
[7] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math. 2 (1965), 129-136.
[8] H. Nagao and T. Oyama: On multiply transitive groups III, Osaka J. Math. 2 (1965), 319-326.
[9] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
[11] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 319-326
[12] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
[13] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
[14] T. Oyama: On multiply transitive groups XI, Osaka J. Math. 10 (1973), 379-439.
[15] A. Wagner: Normal subgroups of triply transitive permutation groups of odd order, Math. Z. 94 (1966), 219-222.
[16] H. Zassenhaus: Kenzeichnung endlicher linear Gruppen als Permutation Gruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 17-40.
[17] H. Zassenhaus: The theory of Groups, second edition; Chesea Publishing Company, New York, 1958.

