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1. Introduction

The known 4-fold transitive groups are the symmetric groups Sn (w
the alternating groups An(n>6) and Mathieu groups Mn(n=ll, 12,23,24).
The main purpose of this paper is to characterize these known 4-fold transitive
groups. The result is as follows.

Theorem. Let G be a 4-fold transitive group on Ω={1, 2, •••, n}. Assume
that

(*) t is the maximal number of fixed points of involutions of G.
Furthermore assume that G contains a 2-subgroup Q which satisfies the following
conditions:

(1) I I(Q) \=t andQ is a Sylow 2-subgroup of G / ( ζ ? ),
(2) N(QY^=StorAt.

Then G is one of the following groups Sn (n>4), An (n>6) or Mn (n=l l , 12, 23,
24).

This theorem is a generalization of theorems of M. Hall ([2], Theorem 5.8.1),
H. Nagao [10] and the author [11]: the case t<4 has been proved by M. Hall,
the case t=4 or 5 by H. Nagao and the case t=6 or 7 and N(Q)HQ^=At by the
author.

The followings are corollaries.

Corollary 1. Let G be a 4-fold transitive group on Ω={1, 2, •••,«}, and P
a Sylow 2-subgroup of a stabilizer of four points in G. Assume that n is even and

(1) // I(P)=I(Z(P))y where Z(P) is the center of P, then G is one of the
following groups] Sn (w>6), An (n>8 and n = 0 (mod 4)) or M12.

(2) For any point i of Cί—I(P) if' P. is semiregular ( φ l ) on Ω—/(P,) or 1,
then G is one of the following groups; S6, S8, As, A10y Mί2 or M24.

Corollary 2. Let G be a 4-fold transitive group on Ω={1, 2, ••-, n} and P
a Sylow 2-subgroup of a stabilizer of four points in G. If P is a transitive group
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(Φ1) on d—I(P), then G is one of the following groups; S2*+4 (k> 1), S2*+B (k> 1),

Λ2k+4 {k>2\ A2k+5 (k>2), M12 or M2 3.

Corollary 2 is a generalization of Theorem 1 and Theorem 2 in [7] and

Theorem in [8], In the proof of Corollary 1 we make use of the following

L e m m a , Let G be a 4-fold transitive group on Ω = { 1 , 2, •••, n}. Assume

that the maximal number of fixed points of involutions of G is twelve. Then for any

2-subgroup Q fixing exactly twelve points N(Q)I(Q^ =j=M12.

We shall use the same notations in [12].

2. Proof of the theorem

We proceed by way of contradiction. From now on we assume that G is a

counter-example to our theorem of the least possible degree. Since there is no

4-fold transitive group of degree less than thirty-five except known ones ([2], P.

80), the degree n of G is not less than thirty-five. Set I(Q)={1, 2, •••, t}

and Δ=Ω—I(Q) For any point t-\-i of Δ set i'=t-\-i> \<i<n—t.

2.1. t>6. In particular if N{QY^=At, then t>8.

Proof. If *<4, then by a theorem of M. Hall ([2], Theorem 5.8.1) G = 5 4 ,

S5J A6, A7 or M119 which is a contradiction since n>35. If t=4 or 5, then by a

theorem of H. Nagao [10] G = 5 6 , S7> A8> A9 or M12, which is also a contradiction.

Thus t>6.

Suppose that N(Q)ICQ^=At, t=6 or 7. Since Q is a Sylow 2-subgrouρ of

G7 ( Q ), Q is a Sylow 2-subgroup of a stabilizer of four points of I(Q) in G. Hence

by a theorem of [11] G=M23y which is also a contradiction. Thus if N(Q)ICQ:>

=At, then t>8.

2.2. | Δ | > 1 7 .

Proof. G is a 4-fold transitive group and n>35. Hence by a theorem of

W. A. Manning [5]

2.3. Let R be a 2-subgroup of N(Q) containing Q, and X a 2-subgroup of
N(Q)- !f <̂ > Xyw is a 2-group, then there is a 2-subgroup X1 in N(Q) such that

χΊ(Q>9 <Rf χ>> ύ a 2-group and <Q, X'> is conjugate to <£, X> in N(Q).

Proof. Let P be a Sylow 2-subgrouρ of <7?, Xy containing R. Since

<#, Xy^ is a 2-group, P/ C Q )=<i?, X>I(Q\ Then P contains a 2-group X1 such

that X*<&=X'™\ Then <i?, X'> is a 2-subgroup of P. Since Q is a Sylow

2-subgroup of G / w and <QyX>ICQ'=<Q,XycQ\ both <ρ,X> and <£>,X'> are
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Sylow 2-subgrouρs of ζQy Xy X'y. Hence ζQ, X'y is conjugate to ζQy X> in

<ρ, Xy X'> Thus <g, X'> is conjugate to <ρ, X> in iV(ζ)).

2.4. IfN(Q)Icς»=Sty then N(Q) has a 2-group < ρ , xiy x2y

*, = (1) (2). (2ί-2) ( 2 ί - l 20 (2ί+l)...(ί)... ,

, A = — /Jί i ί ez ew <mrf k= —^— w

Furthermore since N(Q)ICQ^=St or At, N(Q) has a 2-group ζQ9yl9y2> •"> J>*>

yt'>> where

y, = (1 2) (3) (4) (2f) (2ί+l 2ί+2) (2ί+3) (f)- ,

Λ ' = ( 1 3 ) ( 2 4)(S)(6) . (ί) ,

^ 2 ^ 3
1 <i<k, k = z/ ί w «yβw and k= if t is odd.

In either case k>3.

Proof. Since N(Q)ICQ^=St or Aty this follows immediately from (2.1) and

(2.3).

From now on we denote that ζQ9x19x2, •••,#*> and ζQ9yί9y29 • *>3'*>3Ί/>
are the groups in (2.4).

2.5. Suppose that N(Q) has the 2-group < ρ , xιy x2, ••-, xk> in (2.4), which is

abelian and fixes a subset A' of Δ. If < ρ , xly #2> is semiregular on A\ then ζQ, xly

χ2> ••"> χk) is semiregular on Δ7.

Proof. Suppose that <Q9x19x29 ~9xi>9 i>2y is semiregular on Δ ; and

<(ρ, ΛX, ΛJ2, •••, Λ?ί+1> is not semiregular on Δ7. Then ζQ, xiy x2y •••, x^xi+x has an

element x fixing a <ρ, ΛX, X2, , #f>-orbit of length 2*' | ρ | ( > 2 ί + 1 ) in A; pointwise

since ζQ, xly x2y •••, xi+iy is abelian and <Q, xly x2y •••, Λ, > is semiregular on Δ r .

Then since x has at most i + 1 2-cycles in I(Q) and z > 2 , \I(x)\>t—2(i+l)+

2i+1>t, contrary to the assumption (*). Thus if ζQ, xly x2y •• ,^ t >, i>2y is semi-

regular on A'y then ζQy xly x2y "y xi+iy is semiregular on A'. Then since ζQ, xly

x2y is semiregular on A'y this implies by induction that ζQ, xiy x2y •••, xky is semi-

regular on A'.

2.6. JV(ρ) Λβί ^ 2-grσup ζQy y19y29 »9 yky in (2.4). Suppose that ζQy yίy

y2> "^yk) w abelian and fixes a subset A' of A. If ζQy yιy y2y y3y is semiregular on

A'y then ζQ,y1,y2> "•> J^> w semiregular on Δ r .

Proof. Suppose that ζQ9y19y29 •••,}',•>, i>3, is semiregular on A' and

<£?> JΊ> Λ» * > J , +ι> i s n o t semiregular on Δ r . Then ζQy yly y2y- y yt^yi+λ has an

elementy fixing a ζQ,yiy yzy-~y j ^ - o r b i t of length 2ι | Q \ ( > 2 t + 1 ) in A' pointwise
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since ζQ,y19y29 •••,yί+1> is abelian and <Q9yX9y29 — 9yϊ> is semiregular on Δ7.
Then since y has at most i+2 2-cycles in I(Q) and i>3, \I(y)\ >t—2(i+2)+
2i+1>t, contrary to the assumption (*). Thus if ζQ9y19y29 • *,3;

t >, i>3, is semi-
regular on Δ7, then KQ9yX9y29 •"> J^ +i^ is semiregular on Δ7. Then since KQ9y19

y2->yz? is semiregular on Δ7, this implies by induction that ζQ,yiyy2y •••>,?*> is
semiregular on Δ7.

2.7. |Δ|=0(mo</4).

Proof. Since £) is semiregular (Φ1) on Δ, | Δ | is even, i.e., | Δ | = 0 or 2
(mod 4). Suppose by way of contradiction that | Δ | =2 (mod 4). Then | Q \ =2.
Hence we may assume that Q—(ay and

Then N(Q)=C(Q)= C(a) and C(α) / f α )= 5, or At. We treat these cases separately.
(i) Suppose that C(a)I(a^=St. Then C(ά) has the 2-group <α, xly x2, , #*>

in (2.4). First we show that ζay xιy x2y • ••, xky has exactly one orbit Γ of length
two in Δ and is semiregular on Δ - Γ .

Since | Δ | = 2 (mod 4) and Δ is a union of <βy x19 x29 •••, ^>-orbits, ζay x19
X2> •••>#*> has at least one orbit of length two in Δ. Hence we may assume that
{I7, 2'} is the ζa9 x19 x2y •••, ^>-orbit of length two. Then x{ or axiy l<ί<k>
fixes {V, 2'} pointwise. Hence we may assume that x{ fixes {1', 2'} pointwise.
Then I(χ.) contains (I(a)-{2i-l, 2i})U{V, 2'} of length t. Hence by the
assumption (*) | I{x^) \ =t and I{xt) Π Δ = { Γ , 2r}. Since Iζxfj Xi) contains I(a)
Uίl 7 , 27} of length ί + 2 , ί<ij<ky xfj-x — l by the assumption (*). Thus

Λ?/=1 and xiXj=XjXi. Hence ζay xί9 x2, •••, xky is elementary abelian.

Since a and *,., l<z<Λ, has no fixed point in Δ—{V, 2'} and | Δ—{1', 2'}
I = 0 (mod 4), I/(a*,-) Π(Δ—{I', 2/})| = 0 (mod 4). On the other hand since
I I{ax?) Π I{a) I =t—2y \ I{ax^) Π Δ | =2 or 0 by the assumption (*). Hence | I(ax£)
Π (Δ—{1', 2/})| = 0 . Thus <ay x>> is semiregular on Δ—{1', 2'}.

Suppose that ζay x19 x2y is not semiregular on Δ—{1', 27}. Then <α, Λ?X, x2y
has an orbit Δ7 of length four in Δ—{Γ, 27}. Since <α, xx, Λ:2> is an elementary
abelian group of order eight, there is exactly one element ( φ l ) in ζa9 x19 x2y
fixing A' pointwise. Since ζa9 x^ and <α, xzy are semiregular on Δ—{1', 2'},
xxx2 or αXj^ fixes A' pointwise. Since I(x1x2) contains (/(#)—{1, 2, 3, 4)} U
{1', 27} of length t—2, xx^2 does not fix Δ r pointwise by the assumption (*).
Hence ax1x2 fixes A' pointwise. Then \I(ax1x2)\ =t and so ax1x2 has no fixed
point in Δ—({I7, 27} U Δ7). This shows that <α, ̂ , x2> is semiregular on Δ—
({I7, 27} U Δ7). By (2.4) k>3 and so C(α) has Λ;3 in (2.4). Since x3 normalizes
(ay xly x2yy xz fixes Δ7. Then by the same argument as above ax1x3 fixes Δ7

pointwise. Thus I(ax1x2 ax1x3)=I(x2x3) contains (I(a)—{3, 4, 5, 6})U{1/, 27}
U Δ7 of length ί + 2 , contrary to the assumption (*). Thus <βy xly x2y is semire-
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gular on Δ—{1', 2'}. Hence by (2.5) ζa, xly x2, •••, xky is semiregular on Δ—

{!', 2'}.
On the other hand a normalizes Gx,2,3r±,, which is even order. Hence a

commutes with an involution u of Gx,2,zU,. Since C(a)Ica^=St9 ζa, x19 x2, •••, xfcy
has a subgroup which is conjugate to ζa, w> in C(a). Since u fixes at least four
points of Δ, ζa, x17 x2, •••, #£> has an element (4= 1) fixing at least four points in
Δ, which is a contradiction. Thus C(α)/ c β )ΦS,.

(ii) Suppose that C(a)I(a^=Ai. Let y be a 2-element such that j>/CΛ) is an
involution consisting two 2-cycles. Since | I(y) \ < t, \ I(y) (Ί Δ | = 0 , 2 or 4.

(ii.i) First assume that |/(y)Γ!Δ|=4. By (2.4) C(a) has the 2-group
ζa> Vi> y2, Jzϊ- Since ζa, y^> is conjugate to ζa, yy in C(α), y1 or α^ is conjugate
to y. Hence we may assume that y1 is conjugate to y and

y ι = (1 2) (3 4) (5) (6).. (ί) (10 (20 (30 ( 4 0 - .

Since | Δ-{1 ' , 2', 3', 4'}| = 2 (mod 4) and Δ - { 1 ' , 2', 3', 4'} is a union of
<A jΊ>-orbits, the number of ζa, ^-orbits of length two in Δ—{V, 2', 3/, 4r}
is odd. Hence we may assume that {57, 6^ is the orbit of length two. Then
y1=(5/ 60 on {5/, 6'}, and ζa, y^ is semiregular on Δ—{V, 2', •••, 6'} since
I I(ay^ I ̂  ί. Furthermore C(a) has a 2-element

j / = (l)(2)(3 4)(5 7)(6)(8)(9)...(ί) .

By (2.3) we may assume that ζa, yλ, y2

ry is a 2-grouρ. Then y2, yz and y2

normalize ζa,y^. Since |I{y^)\ Φ |I{ay^)\,y*2=y>z=y*2=y1. Thusjy2,y3 and
y2 centralize ζa, y^}, and so fix {1', 2', V, A'} and {$', 6'}. Since y{ or ^yt ,
/=2, 3, and y2 or <τy2

/ fix {5', 67} pointwise, we may assume that y2, y3 and y2

fix {5r, 6r} pointwise. Since/(jj/y ^ ) contains / ( ^ U ί S 7 , 67} of length ί + 2 ,
2<z,7<3, J 2

2 = J 3

2 = 1 andy2y3=y3y2 by the assumption (*). Similarly y2 is of
order two. Thus ζa,yλ, y2, j 3> and ζa, yλ, y2y are elementary abelian. Since
y2, y3 and y/ fix {1', 2', 3', 4'}, yt, y3 zndy/ are (1') (2') (3') (4'), (1' 2') (3') (4'),
(1') (2') (3' 4'), (1' 2') (3' 4'), (1' 3') (2' 4') or (1' 4') (2' 3') on {1', 2', 3', 4'}.
Since 7(j2) contains (/(«)—{1, 2, 5, 6}) U {5', 6'} of length t—2, j 2 does not fix
{1', 2', 3', 4'} pointwise. Similarly y3 and y2' do not fix {1', 2', 3', 4'} pointwise.
I f > 2 = Q ' 2') (3' 4 0 - , then /(βy l Λ ) contains (7(«)-{3,4,5,6})U{l', 2', - , 6'}
of length ί + 2 , contrary to the assumption (*). Thus ^ 2 Φ ( Γ 20 (3 '40" .
Similarly y3 a n d y / φ ( l ' 20 (3' 4 0 - . Next suppose that y2=(V 2') (30 (4') .
The proof in the case yz=(ί') (2') (3' 40— is similar. Since y3 commutes with
yt, yMV 20 (30 ( 4 0 - or (10 (20 (3' 4 0 - . If J 3 = ( l ' 20 (30 ( 4 0 - , then
I(y2y3) contains (I(a)—{5, 6, 7, 8})U{1/, 2', •••, 6'} of length <+2, contrary to
the assumption (*). Thus J3=(1O (20 (3' 40— On the other hand as we have
seen above y,'=(V 2') (30 (40 (50 (60, (10 (20 (3' 40 (50 (60, (1' 30 (2' 40 (50
(60 or (1' 40 (2' 30 (50 (60 on {!', 2', - , 6'}. If y/ is of the first form, then
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0*2ΛO8 is of even order and |I((y2y/f)| >t+2y contrary to the assumption (*).
If y2' is of the second form, then (y3y2')

3 is of even order and | I((y3y2'Y) I >̂ ~|—2,
contrary to the assumption (*). If y2' is of the third or fourth form, then (y2y2')

6

is of even order and | I((y2y2')
6) | >t-\-2y contrary to the assumption (*). Thus

y2φ(ί/ 2') (30 (4/) and so jy2Φ(l') (20 (3' 40 . Finally suppose that y2=
(V 30 (2' 4')--. The proof in the case y2=(V 47) (2' 30— is similar. Then by
the same argument as is used for y2y y3 and y2' are {V V) (2' 40 or (1' 40 (2' 30
on {1', 2', 3', 4'}. If y3 or y/=(V 30 {2' 4 0 - , then | % 2 y . ) | or |I{{y2y2J)\
>t-\-2 respectively, contrary to the assumption (*). Thus y3 and y2'=(V 40
(2' 30—. Then ( j ^ / ) 3 i s o f e v e n o r d e r a n d I Kiy^Y) I >t+2, contrary to the
assumption (*). Thus if y is a 2-element of C(a) such that yκa^ is an involution
consisting of two 2-cycles, then | I(y) Π Δ | Φ4.

(ii.ii) By (ii.i) for any 2-element j ; of C(a) such that yI(a:> is an involution
consisting of two 2-cycles, \I(y)f]A\=0 or 2. By (2.4) C{a) has the 2-grouρ
<α, yly y2, —, j^>. First we show that <Λ, j j , y2, •••, jyΛ> has exactly one orbit Γ
of length two in Δ and is semiregular on Δ—Γ.

Since | Δ | =2 (mod 4) and Δ is a union of <«, y19 y2, •••, j ^-orbits, ζa, yiy

y2> "myyk> has at least one orbit of length two in Δ. We may assume that {Γ, 2'}
is the ζa,ylyy2> —, j^-orbit of length two. Then yt or ayiy ί<i<ky fixes {I7,27}
pointwise. Hence we may assume that yt fixes {Vy 2'} pointwise. Since | / ( j , )
Π Δ | = 0 or 2, /Cv ί)nΔ={l /, 2'}. Since I{yt

y^yt) contains I(a)\J{V, 2'} of
length ί + 2 , l<i, j<ky yi

yj y£=l by the assumption (*). Hence <y, 2==l and
yjyi Thus <α, y l f y2y •••, j;^) is an elementary abelian group.

Since tf and yx has no fixed point in Δ—{Γ, 2'} and | Δ—{1', 2'} | = 0 (mod
4), |/(α 3 ; 1 )n(Δ-{l / ,2 / }) |Ξθ(mod4). Hence by (ii.i) I A«yO Π (Δ--[1%2'})|
= 0 . Thus ζay yxy is semiregular on Δ—{1/, 2r}.

Suppose that <(α, j 1 ? j 2> is not semiregular on Δ—{Vy 2/}. Then <ay y19 j>2>
has an orbit Δ r of length four in Δ—{1', 2'}. Since <α, j x , y2y is an abelian
group, there is an involution j / in ζa> y^)y2 fixing A' pointwise. Thenjy/J(α) is
an involution consisting of two 2-cycles and I(y') ( Ί Δ ^ Δ ' , contrary to (ii.i).
Thus ζay yiy y2y is semiregular on Δ—{1', 2'}.

Suppose that ζay yly y2y j 3 > is not semiregular on Δ—{I7, 2r}. Then ζay yiy

y2y ys> has an orbit A' of length eight in Δ—{1', 2/}. Since <α, J Ί , ^2, j>3> is an
abelian group of order sixteen, there is exactly one involution yr in <α, yly y2y y3y
fixing A' pointwise. Since | Δx | = 8 , jyr has at least four 2-cycles on I{a). Thus
y=Ji^2^3 o r «yi J2^3 If /=3Ί^2Λ» t h e n % 0 contains (/(«)—{1, 2, •••, 8}) U
{I7, 27} U Δ7 of length ί+2, contrary to the assumption (*). Thus y'=ay1y2y3.
T h e n / ( β y ι Λ Λ ) = ( / ( α ) - { l , 2 > . .,8})UΔ/since | (I(a)-{ίy 2, - , 8}) UΔ' | = t .
Furthermore this shows that <α, y^ J2> Ja^ has no orbit of length eight in Δ—
({lr, 2'} U Δ0 On the other hand C(a) has a 2-element
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By (2.3) we may assume that ζay yιy y2y yzy y/y is a 2-grouρ. Then y/ normalizes
O> 3Ί> y2, Λ> a n d s o Vx fixes V'y 2'} a n d Δ'. Set R=<ay yiy y2, y3y j /X , where
/ G Δ 7 . Then the order of i? is four and so R is cyclic or elementary abelian.
Since ζay y^ is contained in the center of ζay yly y2y y3y y/y and semiregular on
Δ', any element of R fixes at least four points of Δ. Suppose that R is a cyclic
group generated by an element z. Then since ay1 y2 y3 is the involution of Ry

z2=ay1y2y3. Thus zκa^ has two 4-cycles since (ay1y2y3)
na^={\ 2) (3 4) (5 6)

(7 8). However this is impossible since ζay yiy y2y y3y y/ylca:> has no such element.
Next suppose that R is elementary abelian. Since RICa^=ly i?/CΛ) is also an
elementary abelian group of order four. Furthermore since any element of R
fixes at least four points of Δ, every element ( φ l ) of i?/CΛ) has at least three 2-
cycles by the assumption (*) and (ϋ.i). This is a contradiction since <α, yly y2y

y3> y/yica^ has no such group. Thus ζay yiy y2y ysy is semiregular on Δ—{Γ, 2'}.
Hence by (2.6) <α, yly y2y •••, yky is semiregular on Δ—{I7, 2'}.

On the other hand a normalizes Gy2/3/4/, which is of even order. Hence a
commutes with an involution u of Gx,2,3/4/. Since C(a)Ica^=Aty ζayyiyy2y •• •,,)>&>
has a subgroup which is conjugate to ζay ίi} in C(a). Since u fixes at least four
points of Δ, <ayyιyy2y -~yyky has an element ( φ l ) fixing at least four points of
Δ, which is a contradiction. Thus C(a)Ica^At. Hence | Δ | = 0 (mod 4).

2.8. Let x be a 2-element of N(Q) such that xICΦ is an involution consisting

of m 2-cycles. If x fixes r Q-orbits in Δ, then r^2m and Qx has at least -̂ — | Q \
2m

involutions which have fixed points in Δ.

Proof. Assume that x fixes r £)-orbits Aly Δ2, •••, Δ r in Δ. Set Γ ^ Δ i U

Δ 2 U U Δ r . Then

r \<Q,x>\= Σ \I(uΓ)\ .
«e<ρ,*>

Since <Q, x>=Q+Qx and | Q\ = | ΔJ = •••= | Δ r | ,

r-2 \Q\ = Σ I / ( « Γ ) I +
u(=Q «

Hence

Σ I / ( M Γ ) I =r \Q\ .

On the other hand | I(x) Π I(Q) \ =t—2m. Hence for any element u of Q \ I(ux)
Π ΔI < 2m by the assumption (*). Hence | I((ux)Γ) \ < 2m. Suppose that Qx has
s elements which have fixed points in Γ. Then

Σ \I((ux)Γ)\^2ms.
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H e n c e r | Q \ ̂ 2ms. T h u s J—.\Q\^s. F u r t h e r m o r e since s^\Q\y —-\Q\

^ i ρ | . Hence £
Let x' be any element of Qx such that | I{x') ΓΊ Δ | Φθ. Then | I(x'2) \ >t.

Hence xr2=-\ by theassumption (*).

We use the following notations: Assume that the ζ)-orbits on Δ consist of

Aly Δ2, •••, Ar. For any element x^N(Q) let x be the permutation on {Δ^ Δ2,

•••, Ar} induced by xy

W
Δ2 . . . Δ

A* Δ

T h e n x form a permutation group N(Q) on S = { Δ X , Δ 2 , •••, Ar}.

2.9. Suppose that N(Q) has the 2-group ζQ, xίy x2y •••, xky as in (2.4), and

ζβy xιy x2, •••, xky fixes a subset A' 0/ Δ . //" <£), xly x29 x3, x4y is semiregular on Δ r ,

then ζQy xly x2y •••, xky is semiregular on Δ r .

Proof. Suppose that ζQy xiy x2y •••, x>>, z > 4 , is semiregular on A' and

<\Qy χn χ2> *"> xi+i} is n ° t semiregular on Δ ' . T h e n <^Q, Λ:1? x2y •••, x^Xi+i has an

element ΛJ having fixed points in Δ r . Since < ^ , ^c2, •••, %i+iy is abelian and <Λt,

*?> •••> *»•> is semiregular on the set of the ^-orbi t s contained in Δ r , X fixes at

least 2* <2-°rt>its in Δ ; . On the other hand since x^ζQ, xiy x2y •••, Λ?ί+1>, Λ has

at most ί + 1 2-cycles on I(Q). Hence by (2.8) 2 f " < 2 ( ί + l ) , so i<3y which is a

contradiction. T h u s if <£), Λ?X, «̂ 2, •••, Λ?,->, ί > 4 , is semiregular on Δ x , then <Q, xιy
χ2> ##> ̂ ί+i^ is semiregular on Δ 7 . Since <(O, xly x2, xzy x^> is semiregular on Δ 7,

this implies by induction that <£), ̂ , x2y ••-, Λ:Λ> is semiregular on Δ 7 .

2.10. Suppose that ζQ, y19 y2y --y yky y/y as in (2A) fixes a subset Δ r of Δ.

V <P>y»y2>y»y»y\r> i s semiregular on Δ', then <Q, yly y2y — , ^ Λ , ̂ /> w

semiregular on A'.

Proof. Suppose that ζQy yly y2y ••-, jy, , ^/>, z>4, is semiregular on A' and

^ δ * Ji> Vv *••> Jί+i> ̂ / ^ is n o t semiregular on Δ r. Then there is an element y

(Φ1) in <£), yίy y2y ••-, yi+iy j / > such that j? fixes g-orbits in A'. Then j / C Q ) is

of order four or two. If yICQ^ is of order four, then <y7CQ) consists of exactly one

4-cycle (1 3 2 4) or (1 4 2 3) and some 2-cycles. Hence (yγ^=y/^ and so

yi=y1. This is a contradiction since yx has no fixed point in the set of the Q-

orbits in Af. Thus yICQ^ is of order two and consists of at most i-\-2 2-cycles.

Then y centralizes ζyiy y2yzy y2y4y ~ yy2yiy y/y or <y i y y2y •• ,^ ί >, which is

semiregular on the set of ^-orbits in A' and of order 2 *. Hence y fixes at least

2ι ζ)-orbits in Δ' and so by (2.8) 2 "<2(ί+2). Hence / < 3 , which is a contradic-

tion. Thus if <g,y i y y 2 y ••-, J f , ^ / > , ί > 4 , is semiregular on Δ', then KQjyi9y2y
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— > y. +i, y/> is semiregular on A'. Since <£>, j ^ , y2, y3, y4, y/> is semiregular on
Δ', this implies by induction that ζQ,yiyy2j * > JVA> Jv/> is semiregular on Δ'.

2.11. G is not 5-fold transitive on Ω.

Proof. If G is 5-fold transitive on Ω, then Gx is 4-fold transitive on Ω—
{1} and satisfies the assumptions of the theorem. Hence by the minimal nature
of the degree of G, Gx contains An_ly so G contains An. This is a contradiction.
Thus G is not 5-fold transitive.

2.12. Let x be an involution of N(Q). If there is a Q-orbit Δ' in Δ such that
I I(x) π Δ' I = 2 , then C(Q)im=At or St.

Proof. Since x is an involution and | I(x) Γl Δ' | =2y x induces an involutory
automorphism of O which fixes exactly two elements. By a theorem of H.
Zassenhaus ([16], Satz 5) Q contains a cyclic group of index two. Then the
automorphism group of O is S3, S4 or a 2-group (cf. H. Zassenhaus [17], IV, §3,
Exercise 4). Since N(Q)ICQ'=At or St, t>6 and N(Q)ICQηC(QY^ is involved
in the automorphism group of Q, C(Q)ICQ^ contains At.

2.13. Let x be a 2-element of N(Q). If # / C Q ) is an involution consisting of
exactly one 2-cycley then \ I(x) Π Δ | = 0 .

Proof. Since | I(x) \ < t, \ I(x) Π Δ | = 0 or 2. Suppose by way of contradic-
tion that xICΦ is an involution consisting of exactly one 2-cycle and | I(x) Π Δ | =
2. Then | / ( * 2 ) | > * + 2 . Hence x2=l. Since xICQ^ is an odd permutation,
N(Q)i(Q>=St. Furthermore by (2.12) C(QY^=St or At. We treat these cases
separately.

(i) Suppose that C(QYCQy=St. Then C(O) has a 2-element xf such that

χmς»=xKQ\ s i n c e Q i s a Sylow 2-subgroup of G / w , <Q, x> and <£, Λ?'> are
Sylow 2-subgroups of <£), x> x'y. Hence ζQ, xy is conjugate to <£), x'y. Thus
x is conjugate to x'cy where c^Q, and so | I(x'c) n Δ | = 2 . Hence x'c commutes
with exactly one element of Q other than 1, which is a central involution of Q.
On the other hand since x'^C(Q), xr commutes with c. Hence x'c commutes
with c. Thus c is 1 or a central involution of Q. Hence x'c^C(Q) and so Q is
of order two. Set Q=ζay. Then we may assume that

α = (l)(2) . . ( ί ) ( l / 20(3 / 40 («-«ln).

Since | Δ | = 0 (mod 4) and | I(x) Π Δ | - 2 , | I(ax) Π Δ | = 2 (mod 4). Hence
|7(oΛ?)nΔ|=2 because \I(ax)\<t. Since C(α)/CΛ)=5 ί,C(α) has the 2-group
<β, xiy x2i •••, xky as in (2.4). Since ζa, x{y, \<i<k, is conjugate to ζa> xy in
C(a), ζay x>> is elementary abelian and | /(x,) (Ί Δ | = | I(ax{) n Δ | = 2 . Hence we
may assume that
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xx = (1 2) (3) (4)-.(ί) (10 (20 (3/ 40 (5' T) (6' 8 0 - .

Then ζa9 Λ?!> is semiregular on Δ—{Γ, 2', 3', 4'}.
Now we show that ζay x19 x2, •••, Λ:̂ )> is elementary abelian and semiregular

on Δ—{1', 2', 3', 4'}, where {I7, 2'} and {3', 4'} are <a9 #„ #2, , ̂ >-orbits of
length two. Since x2 normalizes ζay Λ?J>, ^ 2 = ^ or axx. Suppose that x1

x2=ax1.
Then (x1 x2)

2=a. Hence ζx1 x2y is a cyclic group of order four and contains a.
On the other hand since C(a)I<:a^=St, ζμy xiy #3> is conjugate to ζay xly x2y in
C(a). Hence x1

xs=axί. Thus χ1*2*a=χ1 and so x2 x3 centralizes ζay x^. Further-
more since /(* 1 )ίlΔ={l / , 2'} and I{ax1)[\A={3\ 4'}, *2 *3 fixes {1', 2'} and
{3', 4'}. Thus I((x2 x3)

2) contains I{d) Π {I7, 2', 3', 4'} of length t+4. Hence
(Λ?2Λ?3)

2=1. This is a contradiction since <#, x2x3y is conjugate to the cyclic
group <X x2X Thus x2 commutes with xx and so ζay xly x2y is elementary abelian.
Furthermore ζa, xu x2y is conjugate to ζa9 xi9 ^ > , iφj and l < ί , j<k. Hence
ζay xiy xϊy is also elementary abelian. Thus ζay xly x2 •••, ΛĴ )> is elementary
abelian. Since 7(^)0 Δ={1' , 27} a n d / ( α ^ Π Δ={3 / , 4'}, {Γ, 2'} and {3r, 4r}
are ζay xly x2y •••, ΛJfe>-orbits of length two. Since Λ?, or axiy 2<i<kf fixes {I7,2r}
pointwise, we may assume that x{ fixes {lr, 27} pointwise.

Suppose that ζay xly x2y is not semiregular on Δ—{1', 2'y 3', 4'}. Then
<0, Xj, ^2> has an orbit Δ7 of length four in Δ—{V, 2', 3r, 47}. Since <<2, ̂ , Λ:2>
is an elementary abelian group of order eight, there is exactly one involution x/

in ζay xly x2y fixing A' pointwise. Since | Δ r | = 4 , xr has at least two 2-cycles in
I(a). Hence x'=^xλx2 or ax1x2. If x/=x1 x2y then I(x') contains (/(Λ)—{1,2,3,4})
U {I7, 2'} U Δ' of length ί + 2 , contrary to the assumption (*). Thus Λ?'=αΛi1 x2-

Then I(ax1 x2)=(I(a)~{l, 2, 3,4}) U Δ7 since | ( / ( Λ ) - { 1 , 2, 3,4}) U Δ71 =t. This
shows that <Λ, Λ?X, Λ:2> is semiregular on Δ—({I7, 27, 37, 47} U Δ7). By (2.4) C(α)
has xz. Then x3 normalizes </z, xiy x2y and so fixes Δr. Hence by the same
argument as above axxx3 fixes A' pointwise. Thus I(ax1x2'ax1x3)=I(x2x3)
contains (I(a)—{3, 4, 5, 6}) U {1', 2', 3r, 4'} U Δ' of length ί+4, contrary to the
assumption (*). Thus ζay xίy x2y is semiregular on Δ—{V, 2', V, 47}. Hence
by (2.5) ζa, xχy x2y •••, %> is semiregular on Δ—{I7, 2\ 3\ 47}.

On the other hand ζay xx> normalizes G5/6/7/8/, which is even order. Hence
β and Xj commute with an involution u of G5/6/7/8/. Since /(^) Π Δ={1 7 , 27} and
/(flΛjn Δ={3', 47}, <β, uy has at least four orbits {I7, 27}, {37, 47}, {57, 67} and
{77, 87} of length two in Δ. Since C(α) ' c β ) =S ί , <α, Λ?n x2, •••, xky has a subgroup
ζay ury which is conjugate to ζay w> in C(ά). This is a contradiction since ζay ury
has exactly two orbits {lr, 27} and {37, 47} of length two in Δ. Thus C(Q)ICΦ

(ii) Suppose that C(Q)ICQ'=At.
(ii.i) We show that x fixes exactly one £)-orbit in Δ. Since | I(x) Π Δ | = 2 ,

x fixes at least one ζ)-orbit in Δ. On the other hand by (2.8) x fixes at most two
g-orbits. Suppose that x fixes exactly two Q-orbits Δx and Δ2 in Δ. Let u be
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any element of Q. Then by (2.8) ux is an involution having fixed points in Δx

or Δ2. Since ux consists of one 2-cycle on I(Q)> ux fixes two points and these
two points are contained in either A1 or Δ2. Hence <£), #> is semiregular on
Δ—(Δx U Δ2). Since (ux)2=l> ux=u~λ. In particular if u is an involution, then
x commutes with u. On the other hand since | I(x) Π Δ | = 2 , x commutes with
exactly one involution of Q. Hence Q has exactly one involution and so Q is a
cyclic or generalized quaternion group. Let u and ur be any two elements of Q.
Then (uuf)x=(uu'Y\ and (uu/)x=uxu/x=u-1u/-1=(u/u)-\ Hence uu'=ufu and
so Q is a cyclic group. Furthermore since C(Q)ICQ^=At, any 2-element of N(Q)
whose restriction on I(Q) is an even permutation belongs to C(Q).

N(Q) has the 2-grouρ ζQy xιy x2y #3)> as in (2.4). Since <£), x^> is conjugate
to <(£), x>, we may assume that x1=xy

*1 = (12)(3)(4)-(i)(10(20(3/40-

and {V, 2 /}cΔ 1. Since x2 normalizes ζQy x^> and ζQ> x^} has exactly two orbits
Δx and Δ2 of length \Q\> Δ1

Λr2=Δ1 or Δ2. First assume that Δ1*2=Δ1. Since
<£), x19 x3y is conjugate to <£), xly x2> in N(Q), Δ1*s=Δ1. Hence Δι

ΛΓ2Λr

3=Δ1.
Next assume that Δ1*2=Δ2. Then similarly Δ1

Λ3=Δ2. Hence Δ1*2*3=Δι. Thus
in either case Δ1*2*3=Δ1. Hence there is an element y in Qx2x3 such that
II(y) Π ΔxI Φ0. Sincey I ( Q '=(3 4) (5 6), |I(y) f]Aί\=2 or 4. Furthermore as
we have seen above y^C(Q). Hence | Q \ = 2 or 4. However we assumed that
JV(O)φC(ρ). Hence | Q\ = 4 . Letg=<ft>. Since bxι=b~\ we may assume that

b = (1) (2)...(ί) ( r 3' 2' 40 (5r 7' 6' 8 0 - ,

^ = { 1 ' , 27, 3r, 47} and Δ 2-{5 /, 6r, 77, 8^. Then

y = (1) (2) (3 4) (5 6) (7) (8).. (0 (10 (20 (30 (40 (5' 60 (7' 8 0 - .

On the other hand C{Q) has a 2-element

y = (l)(2)(3 5)(4 6)(7)(8) . ( 0 -

By (2.3) we may assume that <£), xiyy, yfS) is a 2-grouρ. Since ζQ, xiyy'y is
conjugate to ζQyX^yy in N(Q), Δ/ '^Δj and Δ / = Δ 2 . Then gy7 has an
element

/ ' = (1) (2) (3 5) (4 6) (7) (8).-(ί) (10 (20 (30 (40 (5' 60 (7' 8 0 - .

Then yy" is of even order and I(yy") contains (I(Q)—{3, 4, 5, 6}) UΔ 1 UΔ 2 of
length ί+4, contrary to the assumption (*). Thus x1 fixes exactly one £)-orbit
in Δ.

(ii.ii) We show that | Q \ = 4 . Since N(Q)KQ^ C(Q)ICQ\ \ Q \ φ2 . Suppose
by way of contradiction that \Q\ > 8 . By (2.4) N(Q) has the 2-group <^Q, xL> x2y
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x3y. Since ζQ, xτy is conjugate to ζQ, xy, we may assume that xx=x and

Xl = (1 2) (3) (4)-(ί) (10 (20 (3' 40 (5' 7') (6' 8 0 - .

Then there is exactly one involution a in Q commuting with xx. Then we may
assume that

a = (1) (2)-(ί) (1' 20 (3' 40 (5' 60 (7' 8 ' ) - ( n - l n).

By (ii.i) there is exactly one Q-orbit A1 in Δ fixed by xλ. Since | ΔJ = | Q\ >8,
we may assume that ΔxΏ.{Vj 2', •••, 8'}. Since #2 and x3 normalizes ζQ, x^}, x2

and x3 fix Δj. Thus Qx2 and <2#3 have elements fixing Y of Δ lβ We may assume
that x2 and x3 fix I7. Then 7(*/f/ *ί)37(Λ) U {I7}, 1<*, j < 3 . Hence x2

2=x3

2=ϊ
and #,. commutes with Xj. Since 7(#1)ΓIΔ={1/, 2'} and |7(#f )| <t, z=2, 3,
7(#z ) Π Δ={1/, 2'}. This implies that x> and x3 commute with a. Thus ζa, x19

x2y x3y is elementary abelian. Furthermore I(axv) Π Δ :={3/, 4'}. Hence x2 and
Λ? 8=(10 (27) (3' 40 on {l/,2/,3/,4/}. On the other hand | Δ 1-{l /,2 /, 3',4'}| Ξ 4

(mod 8). Hence ζa, x19 x2y x3y has an orbit of length four in Δx—{I7, 2', 3', 47}.
Hence we may assume that {5', 67, 7r, 87} is the ζa, xιy x2y Λ:3̂ -orbit of length
four. Since \ζa, xiy x{y\ = 8 , i=2, 3, there is an involution x/ in ζa, xιy x^}
fixing {57, 6', 7', 87} pointwise. Since | I(x/) \ <t, x/=x1xi or ax1xi. If x/=x1xi9

then I(x1xi) Π Δ2{ l r , 2r, •••, 8r} and so | I(x1xi) \ > ί + 4 , contrary to the assump-
tion (*). Thus x/=ax1xi. Hence I(ax1x2 ax1x3)=I(x2x3) contains (I(a)—
{3, 4, 5, ό D U ί l ' , 2', •••, 8'} of length t+4, contrary to the assumption (*).
Thus | 0 | = 4 .

(ii.iii) We show that | Q \ =4- implies a contradiction. N(Q) has the 2-group
ζQyX19x2j

 %"yXkϊ as in (2.4). Since ζQ,xxy is conjugate to ζjQ9xy, we may
assume that xx=x and

*, = (1 2) (3) (4)-(ί) (10 (20 (3' 40 (5' T) (6' 8 0 -

Let a be an involution of Q commuting with xx. Then we may assume that

Then by (ii.i) and (ϋ.ϋ) {V, 2r, V, 47} is a ζQ, x^-orbit and ζQ, xλy is semiregular
on Δ—{Γ, 2', V, 4'}. Since xt normalizes ζQ, x,y, 2<i<k, x{ fixes {V, 2', V, 47}.
Hence Qx{ has an element fixing V, We may assume that x{ fixes V. Then
I{XiXj-xt),l<ί,j<k, contains /(<2)U{1'} of length t+l. Hence xi

Xj'-xi=ί.
Thus x?=\ and x^^xjx^ Furthermore /(x,) Γl Δ = { Γ , 2'}. Hence 7(Λ?,.) Π Δ
^{l^ 2'}, ί>2. This implies that x{ commutes with a. Thus ζa, x19 x2, •••, xky
is elementary abelian and x~(V) (2X) (3r 47) on {Γ, 2r, 3r, 4'}, l<i<k. Fur-
thermore since Λ:,^., ί<iyj<k, fixes {I7, 2r, 37, 4'} pointwise, ζa, x{x^
(ζQ,χ1Jx2, •••,%».

Now we show that ζQ, x19 x2, •••, x ^ is semiregular on Δ—{I7, 2', 3',
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Suppose that ζQ, xiy x2y is not semiregular on Δ—{I7, 27, 37, 47}. Then there

is a <£), x19 #2>-orbit Δ7 of length eight. Since ζQ> xx> and <£), #2> are semiregular

on Δ—{I7, 27, 37,47}, there is an element u in Q such that WΛ̂ Λ̂  has fixed points

in Δ7. If u=\ or α, then ux1x2^Z(ζQ, xX9 x2y). Thus WΛ?^ fixes Δ7 pointwise

and so \I(ux1x2)\ >£+4, contrary to the assumption (*). Thus Mφl, α. Since

0<|/(ί/Λ;1Λ;2)nΔ/|<4 and ux1x2&C(Q), uxxx2 fixes exactly four points of A',

Since | Δ ' | = 8 , there is an element u' in Q such that u/x1x2 fixes exactly four

points of A' which are not fixed by uxι x2. By the same reason as above w'Φ 1, α.

Hence uf=ua. Furthermore this shows that ζQ9 xiy

 χ

2y is semiregular on Δ—

({1', 2', 37, 47} U Δ7). By (2.4) N(Q) has x3. Then * 3 normalizes <ρ, x19 x2> and

so fixes A'. Hence by the same argument as above u//x1x3, where u"=u or ua,

fixes the same points of Δ7 that uxλx2 fixes. Then ux1x2 u"xίx3=uu"x2x3 has

fixed points in A'. Since uu"=u2 or zΛz and w2=l or a, uu"=\ or α. Hence

M Λ 2 X 3 G C « 5 , Λ?I, Λ?2̂ )
 a n < i so uu"x2x3 fixes Δ7 pointwise. Thus | l(uu"x2 x3) \

> ί + 4 , contrary to the assumption (*). Thus (Q, x19 x2y is semiregular on Δ—

{v, i\ y, 4'}.

Suppose that ζQ, xiy x2, x3y is not semiregular on Δ—{I7, 2r, 3 r, 4 r}. Then

there is a ^ζ), ̂ , ̂ 2> #3^-orbit Δ 7 of length sixteen. Since <(£), ̂ , Λ?3)> and (Q> x2,

x3y are conjugate to ζQ9 x19 x2y in N(Q)y ζQ, x19 x3y and ζQ9 x29 x3y are semiregular

on Δ—{V, 2\ 3', 4 r}. Hence there is an elemenet xf in Qx1x2x3 such that ^ r has

fixed points in Δ r . Since <Λ, XXX29 xλx3y<Z((Q> x19 x2, x 3 », x'^C«α, ^ic2, ΛI^J)) .

On the other hand <̂ £), x19 x2y, <^Q, x19 xzy and (Q, x2J x3y are semiregular on Δ r .

Hence <(Λ, XXX29 xxx3y is semiregular on Ar. Since x' has fixed points in A' and

I ζa9 xLx2, xLx3y | = 8 , Λ?7 fixes at least eight points of Δ7. Thus | I(x') \ >t— 6 + 8

= t-\-29 contrary to the assumption (*). Thus <£), xl9 x29 x3y is semiregular on

Δ - { 1 ' , 2 ' , 37,47}.

Suppose that <£), ̂ , x2, x3, x4y is not semiregular on Δ—{I7, 27, 3 r, 47}.

Then <£), ̂ , x29 x3, x4> has an orbit Δ7 of length 25. Since <(£), x2, ΛJ3, X4>,

<ζ), Λ?X, Λ?2, Λ:4> and ζQ9 x19 x39 ΛJ4> ar conjugate to ζQ9 xί9 x29 x3> in N(Q), these

groups are semiregular on Δ—{V, 2', 3', 47}. Hence there is an element x' in

Qx1x2x3x4 such that Λ/ has fixed points in A'. Since <ζ), ̂  #2, ̂ 3 ^ 4 > < C ( 0 ,

/ G C ( 0 . Furthermore since xλ x2 and x3 Λ ; 4 G Z « 2 > Λ?I, <̂2> ̂ 3> χ4/)y χi χ2 a n ( l ^i xz

commute with xf. Thus xf^C(ζQ, xxx2, x1x3y). Since (Q, x1x2, xλx3y is

semiregular on Δ—{I7, 2', 37, 47} and of order 24, Λ:7 fixes at least 24 points in Δ'.

Then I /(^) | >t—2 4 + 2 4 = ί + 8 , contrary to the assumption (*). Thus <ρ, ̂ ,

x2y x39 x^y is semiregular on A—{V, 2r, 37, 47}. Hence by (2.9) <£), Λ?t, x29 •••, xfe>

is semiregular on Δ—{l r, 27, 37, 47}.

On the other hand <«, xx> normalizes G?5/6/7/8/, which is even order. Hence

tf and tfj commute with an involution u of Gy6/7/8/. Then <α, Λ?X, W> normalizes

G7 ( ζ ?). Hence there is a Sylow 2-subgrouρ Qr of G / ( Q ) such that <Λ, X1? W>

normalizes g 7 . Since g 7 is conjugate to Q in G/(€?) and
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is conjugate to a subgroup of ζQ, xiy x2> •••, xky in N(Gnςp). Then ζQ', a> xiy u}
is semiregular on Δ—{1', 2', 3', 4'} since I(x1)f)A={V, 2'} and I(ax1)f]A=
{3', 4'}. This is a contradiction since I(u) Π Δ^{5', 6', 7', 8'}. Thus

, and so we complete the proof of (2.13)

2.14. Let y be a 2-element of N(Q). If yI(φ is an involution consisting of
exactly two 2-cycles y then \ I(y) Π Δ | Φ2.

Proof. Suppose by way of contradiction that ynQ:> is an involution consist-
ing of exactly two 2-cycles and \I{y)Γ\A\=2. Then \I(y2)\>t+2. Hencey=l.
We may assume that

Then by (2.12) C(Q)UQ^St or At. Then since yIW is an even permutation,
/ ί Q ) E C ( 0 7 c ρ ) . Thus there is an element a of Q such that ay(= C(Q). Hence
ay commutes with a and so y commutes with a. On the other hand y commutes
with exactly one involution of Q, which is a central involution of Q. Hence
a(=Z{Q) and so y^C(Q). Thus \Q\=2 and so Q=-<a). Since I(y)f]A=
{V, 2'} and |Δ-{1', 27}| =2 (mod 4), |/(έiy)nΔ| =2 (mod 4). Hence \I(ay)
(Π AI =2. Thus we may assume that

Λ = ( l ) ( 2 ) - . (ί)(l '20(3'40 ( n - l ι ι ) .

Then <Λ, y> is semiregular on Δ—{V, 2', V, 4'}. Since C(a)Ica^>Aty there is
an element z in C(Q) of the form

* = (13 2 4)(5 6). (f) .

By (2.3) we may assume that ζa9 y> %y is a 2-group. Then z2=y or ayy and so
/(/)ΠΔ={1 /, 27} or {3', 4'}. Thus z consists of 4-cycles on Δ-{l r, 27} or
Δ—{37, 4/}. Hence | Δ| =2 (mod 4), contrary to (2.7). Thus we complete the
proof.

2.15. Let y be a 2-element of N(Q). If ynφ is an involution consisting of
exactly two 2-cycles, then | I(y) n Δ | =0.

Proof. Since | I(y) n I(Q) \ = ί - 4 , | % ) ΓΊ Δ | - 0 , 2 or 4. By (2.14) | /(y)
Π ΔI Φ2. Hence suppose by way of contradiction that | I(y) (Ί Δ | =4. By (2.4)
N(Q) has the 2-group <g, y19 y2, ~ , yk, y/> Since <Q, y^ is conjugate to
(Q, yy, we may assume that yλ=y.

First we show that yx fixes at least two ^-orbits in Δ. Suppose by way of
contradiction that y1 fixes exactly one g-orbit Ax in Δ. Then | I(y^) Π Δx | =4,
so 161 = 1^1^4.

Since N(Q)im=St or ^ / f first assume that N(Q)nQ'=St. Then JV(g) has
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a 2-element

* = (12)(3)(4) . (ί) .

By (2.3) we may assume that ζQ, y19 Xs) is a 2-group. Then x normalizes <£),jθ>.
Hence x fixes Δ1? contrary to (2.13). Thus N(Q)ICQ^St.

Hence N(Q)TCQ:>=At. First we show that ζQ, yx, y2, , y*, J\'> fixes Δi
and is semiregular on Δ - Δ Γ Since yλ' normalizes ζQ, y^}, yx' fixes Δ t. Since
ζQ, y/> and ζQ, y.y/y are conjugate to <Q,yJ> in iV(£), <Q,y/> and <ρ, j ^ y/)
are semiregular on Δ—Δx. Thus ζQjy^y/y are semiregular on Δ—Δj.

Since 0^y)/ c β )=(yyy f.)
/ c<», l < M < & , Λ J ^ J y J V T h u s <Λ>Λ> ->Λ>

is elementary abelian. Similarly since (y1y1')
TCQ:>=(y1

/yι)ICQ^ and (3>tJ>y.yi/)/<:G)—
OV J ί ^ / ) 7 ^ ' 2<ί, j<k, ζy^y/, Λ j ^ )* is elementary abelian. Since y1 fixes
exactly one ζ)-orbit Δx in Δ, ζy19 y2, -- ,yk> jv/)> fixes Δx. Thus Δx is the ζQ,y19

/ > b i

Suppose that ζQ,y1,y2jyi'y is not semiregular on Δ—A x. Then there is
an element y' in <^Q, yly y/y y2 such that y' has fixed points in Δ—{Δi}. Then
y / C O ) is of order two or four. If y'lcQ:> is of order two, then y/ c < 3 ) consists of two
2-cycles. Thus ζQ> y'y is conjugate to ζQ, y^y which fixes exactly one £)-orbit
Δx. This is a contradiction. Thus y/ c < ? ) is of order four and consists of one 4-
cycle and one 2-cycle. Then y'2 consists of two 2-cycles on I(Q) and fixes at
least two £)-orbits in Δ, which is also a contradiction. Thus ζQ, y19 y2, y/y is
semiregular on Δ—Δx.

Suppose that ζQ, y19 y2, y3, y/y is not semiregular on Δ—Δ l β Then there is
an element yr in ζQ, y19 y2,y^yyz such that yf has fixed points in A—{Δj}.
Then ζQ, y'y is not conjugate to any subgroup of ζQ, y19 y2, y/y. Hence y'ICQ:>

=(y,y2ysYCQ\ ( y / Λ Λ Γ or (yιyi'y2y9γ«>\ Suppose that ymQ'=(yiy2y3)
ICQ\

Then y'=y1y2y3 commutes with yx, y2 and y/. Since ζyλ, y2,y/y is semiregular
on S —{Δj, yr fixes at least eight (J-orbits in Δ —{Δx}. Thus yr fixes at least
eight £)-orbits other than Δx. However since y / C Q ) consists of four 2-cycles, y'
fixes at most eight ^-orbits in Δ by (2.8). Thus we have a contradiction. Hence
/ / ( < ? ) Φ ( J J J 3 ) / ( Q ) . Suppose t h a t / / C Q ) = ( J / J 2 J 3 ) / C Q ) or (yxyx'y2yz)

I(Q\ Then
ζQ, y'y is conjugate to ζQ, yλy2yzy in N(Q) and so semiregular on Δ—Δx, which
is a contradiction. Thus ζQ, y19y2, y3, y/y is semiregular on Δ—Δx.

Suppose that ζQ, y19 y29 y3, y49 y/y is not semiregular on Δ—Δx. Then there
is an element y' in ζQ, y19 y2, y3, y/yyA such that y' has fixed points in 5—{Δj}.
Then ζQ, y'y is not conjugate to any subgroup of ζQ, y19 y2, y3, y/y. Hence y'
consists of one 4-cycle and three 2-cycles on I(Q). Then ζQ, y'2y=ζQ, y±y,
which is semiregular on Δ—Δ^ Thus we have a contradiction. Hence ζQ>yx,
yz>yvy»yί> i s semiregular on Δ—Δx. Hence by (2.10) <Q,y19 y2, •• , ^ , ^ / > is
semiregular on Δ - Δ ^

Let a be an involution of Q commuting with y1 and {iλ, i2, i3, i4} be any



610 T. OYAMA

in Δ—ΔA. Then ζayy^ normalizes Gh i2 , 3 , 4, which is of even order.
Hence a and 3^ commute with an involution u of G f l i2 f 3 f 4. Then the 2-group
^jΊ, z/> normalizes G/(<?). Hence ζyiy w> normalizes a Sylow 2-subgrouρ Q' of
G / ( Q ) . Since Q' is conjugate to Q in G/c<?) and N(Q)κφ=At, <jQ\y19 u) is
conjugate to a subgroup of <£), j ^ , y2, — ,yk, yx*> in iV(G/(Q)). Hence /(yj Π Δ
and {z\, z2, ί3, /4} are contained in the same jj'-orbit. Since {iiy i2, ί3, z4} is any
<\a> j\>-orbit in Δ—A i y G/ C Q ) is transitive on Δ. Hence G 1 2 3 4 is transitive or
has two orbits {5, 6, •••, t} and Δ on Ω—{1, 2, 3, 4}. If G 1 2 3 4 is transitive on
Ω—{1,2, 3, 4}, then G is 5-fold transitive on Ω, contrary to (2.11). Hence
G 1 2 3 4 has two orbits {5,6, —,*} and Δ on Ω—{1, 2, 3,4}. SinceN(Q)ICQ:>=At9

for any four points j 1 9 j 2 , j*> j * of I(Q) the GJl j2 u i Γ o r b i t s on Ω.— {j19j21j99jA}

consist of two orbits I(Q)—{jvj2ijz>jι} a n d A. Furthermore since G is 4-fold
transitive, for any four points kly k2y k3, k± of Ω Gklk2kzkA has two orbits Γ\ and
Γ2, where | Tx \ = ί — 4 , | Γ21 = | Δ | . By a theorem of W. A. Manning [5] | Γ21 >
| Γ J . Set T{Kk2ykzyk^TxV]{kiyk2ykzyk,}. Since 1/CV1)ΠΔ|=4 and yx

commutes with 0, we may assume that

e = (l)(2)...(f)(l '20(3'4/)...,

Vl = (1 2) (3 4) (5) (6) .(ί) (10 (20 (30 ( 4 0 -

Let ί, j be any two points of I(Q)—{ί, 2, 3, 4}. Theny λ ^G V 2 , i 5 and a norma-
lizes GlWiJ. Since |Γ(17, 2r, i,j)-{l\ 2\ i9j}\ Φ | Ω - Γ ( r , 2', i,j)\, a fixes
Γ(l r, 2r, /, j). Suppose that Γ(l', T, i,j) contains {1,2}. Then as we have seen
above Γ(l, 2, i,j) contains {1', 2r}. This is a contradiction since Γ(l, 2, i,j)=
7 ( 0 . Similarly Γίl7, 2r, i,j) does not contain {3, 4}. On the other hand since

^(Gfrci/

f2
/

f/fi))Γcl/'2/fl''y)==^ί> a a n c l JVi a r e e v e n permutations on Γ(Γ, 2r, i,j).
Hence Γ(l ;, 2r, i, j) contains {3', 47}. Hence Γίl7, 2', 3', 4r) contains {/,;}. Since
ί,j are any two points of I(Q)—{1, 2, 3, 4}, Γ(l7, 2r, 37, A') contains I(Q)—
{1, 2, 3, 4}. By (2.1) \I(Q)\ > 8 . Hence I(Q)-{1, 2, 3, 4} contains {5, 6, 7, 8},
which is contained in Γ(l r, 2', 3', 4'). Hence Γ(5, 6, 7, 8) contains {V, 2', 3r, 47}.
This is a contradiction since Γ(5, 6, 7, 8)=/(£)). Thus j ^ fixes at least two Q-
orbits in Δ.

Since C(Q)I<:Q^=St, At or 1, we treat the following two cases separately:
Casel. C(Q)lcQ'=St or At.
Case 2. C(Q)IW=1.
Case 1. q g ) 7 ^ ^ ^ or Av Then we may assume that

yx = (1 2) (3 4) (5) (6).«(/) (10 (20 (30 ( 4 0 - ,

where a is a central involution of Q commuting with yλ.
(i) Assume t h a t ^ φ ^ g ) . Since C(Q)ICQy>At, there is an element b in

ζ) such that by1^C(Q). Then byx commutes with b, so yx commutes with b.
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Sincey1^C(Q)y b^Z(Q). Thus Q is non-abelian and so | Q\ >4 . Since b fixes
{1/, 2', 3', 4'} and commutes with ay b is an involution or b2=a. Furthermore
ZKQ>yi»><"> *yi> Let / be any element of Z « ρ , ^ » . Since I{yv) n Δ =
{1', 2', 3', 4 ' } , / fixes {1', 2', 3', 4'}. Furthermore since <ayby is regular on
{1', 2', 3/, 4'}, /ί1''2'*3''4'* e<α, A>ί1' ί ' 8' 4'>. Hence there is an element u in <ay ft>
such that uyf fixes {1', 2', 3', 4'} pointwise. Thus uy'^ζy^ because ζQ> y^=
<JΊ> Hence uy'=l or yx. If uy'=l, then / E < α , byΓ\Z(ζQ>yxy) since j>'e
Z«£), j t » and «G<β, δ>. Hence j>'— α or 1. Next suppose that uy/=y1. If
z/=α or 1, then y1=uy/^C(Q) since y'^C{Q). This is a contrdiction since
y1$C(Q). Thus #=& or ab. Hencey'=byλ or βiy^ Thus in either case j ' e
<α, ̂ ! > Hence Z « ρ , y i » = < a , iy^.

Since C ( 0 K Θ ) > J^, gy2 has an element which belongs to C(Q). Hence we
may assume that y2 e C(jQ). Since y2 normalizes <Q, y^, j 2 normalizes the center
<α, by^) of (Qyy^>- Hence (by1)

y2=by1 or a α i ^ . First assume that (by1)
y2=by1.

Since ̂ 2 commutes with b, y2 commutes with y±. Hence y2 fixes {V, 2', 3'y 4
7}.

Since ζa, byiy y2y is an abelian group of order eight and <#, fryx> is regular on
{V, 2', 3', 4'}, there is an element z/ in <α, by^y2 which fixes {I7, 2r, V, 4'}
pointwise. Thus # consists of exactly two 2-cycles on I(Q) and so I(u) Π Δ =
{lr, 27, 3', 4'} by the assumption (*). On the other hand <Λ, byiyy2y<C(Q).
Hence M G C ( 0 . Thus | Q\ <4, which is a contradiction. Next suppose that
(byι)

y2=aby1. Then by the same argument as is used for y2 we may assume that
y/^C(Q) and (bytfi'^aby,. Hence (byjW^by^ Since y2y/eC(Q), Λ y/
commutes with ό. Hence ̂ j / commutes with^. Thus 3̂ 2̂ / fiχ^s {I7,2', 37,4r}.
Thus <β, bylJy2y1

/y is an abelian group fixing {1', 2', 3r, 4r}. Hence there is an
element u ( φ l ) in ζa, byϊyy2y/y which fixes {1', 2', 3', 4r} pointwise. Thus u
consists of two 2-cycles or one 4-cycle and one 2-cycle on I(Q). Hence | I(u) Π
Δ| < 6 by the assumption (*). On the other hand u^C(Q) and \Q\ >4 . Hence
I I(u) Π ΔI > 8, which is a contradiction. Thus yλ <= C(Q). Hence | Q | =4 or 2.

(ii) Assume that | Q\ =4-. Then Q is elementary abelian or cyclic.
(ii.i) Assume that Q is elementary abelian. Then we may assume that

Q=<ay by and

a = (1) (2). (ί) (1' 20 (3' 40 (5' 60 (T 8 0 - ,
b = (1) (2). (ί) (1' 30 (2' 40 (5/ 70 (67 8 0 - .

As we have proved above, yλ fixes at least two ^-orbits in Δ. Hence we may
assume that

yx = (1 2) (3 4) (5) (6). (ί) (1') (2') (3') (4') (5' 6') (7' 8 ' ) - .

Since <£), y2y and (Q, yγy2y are conjugate to ζQ, yxy, both groups are elementary
abelian. Hence ζQ9 yiy y2y is elementary abelian. Thus^ 2 fixes {Vy 2r

y 3', 4r}
and {5', 6', 7', 8'}. Hence £>y2 has an element which fixes {!', 27, 3r, 4'} point-
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wise. We may assume that j>2 fixes {1', 2', 3', 4'} pointwise. Thus I(y2)=(I(Q)
- { 1 , 2, 5, 6})U{1', 2', 3', 4 1 since | ( / ( 0 - { l , 2, 5, 6,})U{1/, 2', 3', 4'}|=f.
Furthermore since | / ( ^ ^ 2 ) | < ί , J>2=(5 ' 70 (6' 80 or (5' 8') (6' 7') on {5', 6', 7',
8'}. Since <£>, y/> and <ρ, j ^ / ) are conjugate to <ρ, ̂ > , <£>, ̂ , j>/> is
elementary abelian and by the similar argument as above we may assume that
^ ' = ( 1 0 (20 (30 (40 (5' 70 (6' 80 or (V) (20 (30 (40 (5' 80 (6' 70 on {V, 2', •-,
8'}. Then in either case the order of {y2yx

f)2 is even and \I{(y2y/)2)\ >*+4,
contrary to the assumption (*). Thus Q is not an elementary abelian group.

(ii.ii) Assume that Q is cyclic. Then we may assume that £?=<&>, b2=a
and

b = (1) (2).-(ί) (1' 3' 2' 40 (5' 7' 6' 8 0 - .

As we have proved above, y1 fixes at least two ρ-orbits in Δ. Hence we may
assume that

yx = (1 2) (3 4) (5) (6)-(f) (10 (20 (30 (40 (5' 60 {Ψ 8 0 - .

Then /(βyj Π Δ-{5 /, 67, 7', 87}. Hence <Q,y^ is semiregular on {9/, 107, ..., n}.
Since j 2 normalizes <£?, JΊ>,y1

y 2=y1 or βyj. Suppose that y1

y*=yL. Then j ; 2 fixes
{V, 2', 3r, 4r} and {5', 6', 7', 8r}. Furthermore since <ρ, j 2> is abelian, <O, j/2>
has an element

y/ = (1 2) (3) (4) (5 6) (7) (8). (ί) (1') (2') (3') (4') (5' 6') (7' 8 ' ) - .

Then \I(y1y2')\ >*+4, contrary to the assumption (*). Thusy?*= ayx. Since
ζQ,y2y is conjugate to <ρ, y^, Qy2 has an involution. Hence we may assume
that y2 is an involution. Furthermore by the same argument as is used for y2,
y*ί=ayx. Thus yy^=y,. Hence y2y/ fixes {I7, 2', 3r, 4r} and {5r, 6r, 77, 8'}.
Hence Qy2y/ has an element « fixing {I7, 27, 3', 4'} pointwise. Then I(u2)
contains (J(£)-{1, 2, 3, 4}) U {I7, 27, 37, 4'} of length t. Hence /(wO^WS)-
{1,2, 3, 4})U{1/, 2\ 3', 4'} by the assumption (*). Hence u is a 4-cycle on
{5', 6r, 7', 87}. Since u^C(Q)y u=b or δ"1 on {5', 6', 7', δ7}. Furthermore since
yiy2=ayli y2 interchanges {1', 2', 3', 47} and {5', ό7, 77, 87} as a set. Hence ίΛi/
= 6 or b'1. This means that {y2tCf=b or ft"1. Thus j2w is of order eight. On
the other hand since (y2u)κa^=y1

/κa\ ζQ,yjι>=ζQ,y1'>- Thus we have a
contradiction since <ρ, j/)> is conjugate to <ρ, 3;^ which has no element of
order eight. Thus Q is not cyclic. Hence \Q\ Φ4.

(iii) Assume that | Q\ = 2 . Then £>=<». Since C(a)Ica^=St or .4,, we
treat these cases separately.

(iii.i) Assume that C(a)IC">=St. Then C(a) has a 2-element

By (2.3) we may assume that </*, x19 y19 y2J •••, j A , j / > is a 2-group. Then ^
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normalizes ζa, y±y. Hence y1*
1=ayι or yx.

First suppose that y*i=ayx. Since xx

2G<(α>, x*=l or a. Suppose that
x1

2= 1. Then ζa, x^> is an elementary abelian group of order four. On the other
hand since y**=ayiy (x1y1)

2=a. Thus ζxxyxy is a cyclic group of order four.
This is a contradiction since ζx1 yxy is conjugate to ζay Λ?X>. Suppose that x1

2=a.
Then <#x> is a cyclic group of order four. On the other hand since y1

Xl=cιyly

(x1y1)
2= 1. Thus <α, Λ ^ ^ is an elementary abelian group of order four. This

is a contradiction since ζa9 xxyxy is conjugate to ζay xty. Thus jV^φtfJV
Next suppose that y1

xi=y1. Then (ay x19 y^> is an abelian group of order
eight. By (2.14) | I{ay^ Π Δ | = 0 or 4. Assume that | I{ayx) (Ί Δ | = 4 . Then we
may assume that I{ay^) Π A={5', 6', 7', 8'} and

yx = (1 2) (3 4) (5) (6)••.(*) (10 (20 (30 (40 (5' 60 (7' 8 0 - .

Then ζa9yxy is semiregular on {9', 10', •••, n}. By (2.13) <α, xxy and <<z, tfjjO
are semiregular on Δ. Hence ζay ̂ j ,^) is semiregular on {9', 10', •••, n}. Since
<α, y2y and <α, j!^2!>

 a r e conjugate to <α, y^, <α, jy2> and <«, >Ί J2> are elementary
abelian. Hence ζa, y19 J2> is elementary abelian. Furthermore since <#, y2, x^
is conjugate to ζa,y19 ^>, <α,jy2, x^> is also abelian. Hence <α, xl9y19yzy is abelian.
Since <α, J2> is conjugate to <α, ̂ > in C(α), | J(y2) ΠΔ| = | /(αy2) Π Δ | = 4 . If y
has fixed points in {9r, 107, •••, w}, then since y2GC«fl, ^ I J J Ί ^ ) J2 fixes a t l e a s t

eight points in {9', 107, •••, w}, contrary to the assumption (*). Similarly ay2 has
no fixed point in {9', 107, •••, w}. Thus^ 2 or ay2 fixes {F, 2', 37, 4'} pointwise.
Hence y2 or αy2=(10 (20 (30 (40 (5' 60 (7' 80 on {V, 2',-, 8'}. Thus | I{yλy2) \
or 1/(03^^2)! >*+4, contrary to the assumption (*).

Hence | I(ayt) n Δ | = 0 . Then <Λ, ̂ ,3;,) is semiregular on A-{Vy 2', V, 47}.
Since <a,y>> and <o,j;t jy>, / φ j and l<i,j<k, are conjugate to ζa,y^, (p*yi>
and <o, yiy$y are elementary abelian. Hence (ayyiyy2> •• ,<y*> is elementary
abelian. Furthermore since ζay x19 y{y> 2<i<k> is conjugate to ζa, x19 y^,
ζa9xX9y^ is abelian. Thus ζayX19y19y2y'"9yky is abelian. Hence yf fixes
{I7, 2r, 3', 4'}, l < z < * . Since <Λ,y, >, 2<i<ky is conjugate to <a,y£>, y{ or αy,
has fixed points in Δ. Hence we may assume that yt has fixed points in Δ.
Since j;,.eC«α, x^y^) and </z, x19y^ is semiregular on Δ—{I7, 2', 37, 47}, if y{

has fixed points in Δ—{V, 2', 3', 4'}, then yt fixes at least eight points of Δ—
{Γ, 2', 3', 47}, contrary to the assumption (*). Hence yg fixes {Γ, 2r, 3', 4'}
pointwise.

Assume that <α, x19yiyy29 •••, J f >, / > 1 , is semiregular on Δ—{lr, 2r, 3r, 4/}.
If <o, Λ?x, ji,y2 9 "-yyi+iy is not semiregular on Δ—{Vy 2'y 3

r

y 4
/}, then ζay xlyyiy

y2y * ,3;

ί+i> has an element/ ( φ l ) fixing a <α, x19y19y29 ,y f>orbit of length
2*+2 pointwise. Then since yf consists of at most i + 2 2-cycles on /(o) and i> 1,
I /CvO I > ί — 2 ( / + l ) + 2 ί + 2 > ί , contrary to the assumption (*). Thus <ay xly yly y2y

•"> JΊ +i> i s semiregular on Δ—{Γ, 2r, 3r, 47} and this implies by induction that
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ζa, xλ, yiy y2, • ••, yky is semiregular on Δ—{1', 2', 3', 4'}.

Furthermore j>/ fixes {V, 2'', 3', 4'}. Suppose that <α, #!,>>!, j>2

is not semiregular on Δ—{I7, 2', 3', 4 /}. Then there is an element^' in ζa, xiy

yi>y2, —,yk>yi which has fixed points in Δ - { 1 ' , 2', 3', 4'}. Then / / C Λ ) is of

order four or two. If y'1^ is of order four, then ζa, yny=ζa, y^ and y'2 has

fixed points in Δ—{V, 2f, 3', 4/}, which is a contradiction. Thus y / c ύ E ) is of

order two. Then y' is (1 3) (2 4) or (1 4) (2 3) on {1, 2, 3, 4}. Hence / G < Λ ,

j>/, ^ j 2 , Λ I ^ , •••, ^ ^ > or <Λ, 3;^/, x,y2, xxy2, ••-, a y ^ . Thus ζa, 3;/, Λ ^ , #^3,

— 1 îJife> o r O> JΊJΊ', ^ Λ , xiy*> "', ^Jjfe> is semiregular on neither {1', 2', 3', 4'}

nor Δ—{1', 2', 3', 4'}. This is a contradiction since ζa, yx\ xxy2, xxyz, •••, Λ?IJΛ>

and <β9yxyt\ xxy2, xty3, •••, Λ ? ^ ^ are conjugate to <Λ, jylf ^xy2, xxy^ •••, ^ ^ > in

C(β) which is semiregular on Δ—{V, 2', 37, 4 /}. Thus </z, x1? jyx, jy2, •••, yk, y/y

is semiregular on Δ—{Γ, 27, 37, 47}.

On the other hand ζa, y^} normalizes Gy6/7v, which is even order. Hence

there is an involution u in G 5 V / 8 / commuting with a and j>x. Since C(a)Ica^=Sty

ζa, yiy uy is conjugate to a subgroup of ζa, xλ,yλ,y2, -~,yk, j / > in C(α). This is

a contradiction since for any point of {V, 2', •••, 8'} of length eight ζa,yx, z/> has

an element (Φ1) fixing this point. Thus C ( α ) 7 ( Λ ) φ S , .

(iii.ii) Assume that C(a)w=At. Since ζa, yxy2y, ζa, yxy^ and ζa, y2y3y

are conjugate to ζa, y^y, these groups are elementary abelian. Hence ζa, y19 y2, y3y

is elementary abelian. Since I(yx) Π Δ={V, 2f, V, 47}, j 2 andj/3 fix {V, 2f, V, 4r}.

Thus y2 and y3 are (1') (20 (30 (40, (V 2>) (3' 40, (l r 30 (2' 40, (I7 40 (2' 30,

(10 (20 (3r 40 or (V 2') (30 (40 on {V, 2', 3r, 4r}. Furthermore by (2.14)

|7(αy 1 )nΔ |=0or4 .

Assume that [I(ay^ Π Δ | = 4 . Then we may assume that

β = ( l)(2). . .( ί)( l '20(3 '40 ( » - l n ) ,

y,= (1 2) (3 4) (5) (6) (ί) (1') (2') (3') (4') (5' 6') {T 8') (9' 11')

(10' 12') (13' 15') (14' 16')- .

Suppose that y2=(V) (2') (3') (4') on {1', 2', 3', 4'}. The proof in the case y2=

(V 2') (3' 4 0 - is similar since if y2=(V 2') (3' 4 ' ) - then ay2={V) (2') (3') ( 4 0 - .

Since ζa, y^> and ζa, y^^> are conjugate to ζa, y^, any element of ζa, y1 J2>—<«>

has four fixed points in Δ. Hence we may assume that

y2= (1 2) (3) (4) (5 6) (7) (8). (ί) (V) (20 (30 (40 (5' 7') (6' 80 (9' 100

(11' 12') (13' 160(14' 1 5 ' ) - .

Thus ζa, y19 y2y has two orbits of length two and three orbits of length four in

Δ. The remaining ζa, yiy j2>-orbits are of length eight in Δ. Since ζa, y3y is

conjugate to ζa, y^}, y3 has four fixed points in Δ. Since ζa, y19 y2, yzy is abelian,

y3 fixes {1', 2', 3', 4'} or one of the ζa, yλ, j2>-orbits of length four pointwise.

Moreover yz fixes the <β,j1,j2>-orbits of length four setwise. Thus y3 fixes

{Γ, 2', 3', 4'} pointwise or has no fixed point in {Γ, 2', 3', 4'}. First suppose
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that y3 fixes {1', 2', 3', 4'} pointwise. Then <y19 y29 yzy fixes {1', 2', 3', 4'}
pointwise, and {5/, 6', 7', 8'} and {9', 10' 11', 12'} are <^, y29 ^-orbi t s of
length four. Hence ζyiy y2y yzy has exactly one element y' ( φ l ) fixing {5', 6',
7', 8'} pointwise. Thus / ( / ) n Δ 2 { l ; , 2', •••, 8'}. Hence / ^ J ^ B by the
assumption (*). Similarly ζy19y29y£> has exactly one element ( φ l ) fixing {9',
10', 1Γ, 12'} pointwise, which is alsoy1 y2y3. Thus \I(yxy2y^\ >*+4, contrary
to the assumption (*). Thus y3 does not fix {1', 2', 3', 4'} pointwise. Similarly
Λ Φ ( l ' 2 0 ( 3 ' 4 0 since if y3=(V 2') (3' 4/) then αy8=(l /) (2') (3') ( 4 ' ) - .
Next suppose that y3=(V 3') (27 4/) or (1' 4') {2' 3') — . Since <Λ, y19 jy3> is
conjugate to ζa9y19y2y9 <ayylyyzy has exactly two orbits of length two in Δ.
Hence y3 fixes {5', 6'} and {7', 8'}. Then ζa9y19y2y3y has no orbit of length
two in Δ. On the other hand C{a) has a 2-element

y = (1) (2) (3) (4) (5 7) (6 8) (9) (10) (ί)

By (2.3) we may assume that (μ9ylyy2y3yy
ry is a 2-group. Since ζa9y19y

fy is
conjugate to ζa> yiy y2y3y in C(a), (a,ylyy

fy has no orbit of length two in Δ.
Hence / = ( ! ' 3') (2' 4') or (1' 4') (2' 3') on {1', 2', 3', 4'}. Then <α, * , ^ ^ Z )
has two orbits {Γ, 2'} and {3', 4'} of length two in Δ. This is a contradiction
since <a, y19 y2y3y*y is conjugate to <a9y19y2y3y in C(α). Thus ;y2Φ(Γ) (2') (3')
( 4 0 - andsoj ; 2 Φ(r2 / )(3 / 4 / ) .

Suppose that ^ 2 = ( r ) (2r) (3' 4') on {1', 2'9 3\ 4'}. The proof in the case
y2=(V 2') (30 (4') on {I7, 2', 3r, 4'} is similar since if y2=(V 2') {3') ( 4 0 - then
ay2=(Y) (20 (3r 40 . Since <α, ̂  y2y is elementary abelian and | I(y2) Π Δ | =
4, we may assume that

y2 = (1 2) (3) (4) (5 6) (7) (8)-(ί) (1') (2') (3' 4') (5') (6') (7 8 ' ) - .

Since <a9ylyy2Jy^ is elementary abelian, y3 fixes {Γ, 2'}. {3^ 4'}. {5', 6'} and
{7', 8r}. Furthermore | I(y3) Π Δ | =4 and | /(j2jy3) Π Δ | = 4 . Hence we may
assume that

y3 = (1 2) (3) (4) (5) (6) (7 8) (9) (10)-(ί) (1') (2') (3' 4') (5' 6') (7')
(8') .

Then

J Λ J s = (1 2) (3 4) (5 6) (7 8) (9) (10)-(ί) (1') (2') (8') .

Thus ζa9 y19 y2y3y has exactly one involution yLy2y3 fixing four ζa9 jy^-orbits of
length two pointwise. On the other hand C(a) has a 2-element

y' = (1) (2) (3) (4) (5 7) (6 8) (9) (lθ) ( ί ) - .

By (2.3) we may assume that <α, y19 y2y3y y'y is a 2-grouρ. Since ζa9 y19 y'y is
conjugate to (ay yly y2y3y in C(a)y <α, yly y'y has exactly one element y" ( φ l )
fixing four ζay j^-orbits of length two pointwise.
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Then

/ ' = (12) (34) (57) (68) (9) (10)-(f) (1') ( 2 ' ) - ( 8 ' ) - .

Thus I / O Ί ^ J W " ) I ̂ * + 4 , contrary to the assumption (*). Hence y 2Φ(Γ) (2')
(3'4') and s o Λ Φ ( r 2 ' ) (3') (4') .

Suppose that y2=(V3') {2!\') on {!/, 2', 3', 4'}. The proof in the case
jV=(l'4') (2'3') on {1', 2', 3', 4'} is similar since if y2=(l'4') (2/3/) then ay2=
(1'3') (2'4') . Since I(ay,) n Δ={5', 6', 7', 8'}, if y2 or y3 has fixed points in
{5', 6', 7'. 8'}, then by the same argument as above we have a contradiction.
Hence we may assume that

y2 = (12) (3) (4) (56) (7) (8) (ί) (1'3') (2'4') (5'7) (6'8') - .

Similarly y3 or ay% is (1'3') (2'4') on {Γ, 2', 3', 4'}. Hence we may assume that
Λ=(1'3') (2'4') on {1', 2', 3', 4'}. Furthermore y3 is (5'7) (6'8') or (5'8')
(6'7) on {5', 6', 7, 8'}. Since | I(y2y3)| < ί ,

j 3 = (12) (3) (4) (5) (6) (78) (9) (10)-(ί) (1'3') (2'4') (5'8') (6'7) ,

and so

JΊΛΛ = (12) (34) (56) (78) (9) (10) (ί) (1') (2')-(8') .

Hence by the same argument as in the casejv=(Γ) (2') (3'4') , we have a con-
tradiction. Thus y 1Φ(l'3')(2'4 /) and so j 2 φ ( l ' 4 ' ) (2'3') - . Hence
|/(βy,)nΔ|Φ4.

Thus I /(αjj) Π ΔI = 0 . Then we may assume that

yx = (12) (34) (5) (6). (ί) (1') (2') (3') (4') (5'7) (6'8') .

Since <#, y2y is conjugate to <<z, y^> in C(α), either y2 or βy2 has four fixed points
in Δ. Hence we may assume that y2 has four fixed points in Δ. Then y2 fixes
{Γ, 2', 3', 47} or one of the <«, j ^-orbits of length four pointwise.

First suppose that y2 fixes {Γ, 2', 3', 47} pointwise. Since <Λ, J;2> and
<α, 3Ίjy2̂

 a r e conjugate to ζa> y^> in C(a), (a, yzy and <α, yλy2^ are semiregular
on Δ —{Γ, 2', 3', 47}. Hence ζa9 yly y2y is semiregular on Δ — {Γ, 2', 3', 4'}.
Since <#, j f >

 a n d <̂ » IVt̂ ŷ  z^=7 a n d l<i,j<k> are conjugate to <Λ, ^ > , <α, j ,>
and (β>yiyj> are elementary abelian. Hence <«, y19 y2y •• ,<y*)> is elementary
abelian. Moreover j;,. or αyt , 2<i<k, has four fixed points in Δ. Hence we
may assume that^ has fixed points in Δ. Since y^ C«α, yly y2y) and ζa, yly y2y
is of order eight and semiregular on Δ — {¥> 2', 3', 4'}, y{ fixes {Γ, 2', 3', 4'}
pointwise.

Now we show that ζa, y19 y2y "',yky is semiregular on Δ —{Γ, 2', 3', 4'}.
Suppose that ζa> yly y2, y3y is not semiregular on Δ — {1/, 2', 3', 4'}. Then there
is exactly one element y (Φ1) in ^α, yly y2y y^> fixing a ζay yly 3;2/

>-°rbit Δ' in
Δ-{1 ' , 2\ 3', 4'} pointwise. Since | Δ ' | = 8 , | /(/)Π/(β) | < ί - 8 . Hence
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o r oyxy2yz. If /=y1y2y9, then /(/) contains (I(a)-{ίy 2, • ••, 8}) U
{Γ, 2', 3', 4'}UΔ' of length t+4y contrary to the assumption (*). Thus y'=
ayxy2y3 and /(/)=(/(«)-{1, 2, .-, 8}) UΔ' since | (/(*)-{1, 2, •-, 8}) UΔ' | = ί .
Furthermore this shows that ζay J Ί , J2> JV3> is semiregular on Δ — ({Γ, 2', 3', 4'} U
Δ'). Hence ζay y\y y2y y3y has two orbits {Γ, 2'} and {3', 4'} of length two and
two orbits of length four whose uion is Δ' in Δ, and the remaining orbits in Δ
are of length eight. On the other hand C(a) has a 2-element

/ ' = (1) (2) (3) (4) (57) (68) (9) (10)-.(i)-

By (2.3) we may assume that ζay yly y2y y3, y"y is a 2-group. Then y" nor-
malizes <β, y19 y2y yzy and so y" fixes {Γ, 2', 3', 4'} and Δ'. Since <α, y19 y"y
is conjugate to ζay yly y2y3y in C(a)y ζay yly y'fy is elementary abelian and has
two orbits {Γ, 2'} and {3', 4'} of length two and two orbtis of length four in Δ.
Hence we may assume that j / ' fixes {1', 2', 3', 4'} pointwise and ayxy" has eight
fixed points in Δ — {1', 2'y 3', 4'}. Furthermore since y" fixes Δ', ayxy" fixes Δ'
pointwise or ζay yly y/fy is regular on Δ'. If oyλy" fixes Δ' pointwise, then
A^y^ayiy")=I{y2yzy

f/) contains (/(«)-{5, 6, 7, 8})U{r, 2', 3', 4 ' } U ^ of
length ί + 8 , contrary to the assumption (*). Thus ζay yly yny is regular on Δ'.
On the other hand ζay y2, y3y is elementary abelian and regular on Δ' Hence
<β> y2, y3y has an element u such that M Δ / =y Δ / . Thus uy"^ζay y2y yzy y"y and
I(uy") contains Δ' of length eight. Hence \I(uy")[\I{a)\ <t— 8. This is a
contradiction since any element of ζay y2y y3y y"y fixes at least t—6 points of I(a).
Thus ζay yly y2y j 3 > is semiregular on Δ — {Γ, 2'y 3', 4'}. Hence by (2.6)
<fi> yi> y2, "'yyky is semiregular on Δ-{1 ' , 2', 3', 4'}.

Since jy/ normalizes ζμy yly y2y '- yyk),yλ' fixes {Γ, 2r, 3', 47}. Suppose
that ζμy yly y2y •• ,<yΛ, j / > is not semiregular on Δ —{Γ, 2', 3r, 4'}. Then there
is an element y' in ζayylyy2, "',ykyyi which has fixed points in Δ —{Γ, 27, 3\ 47}.
Then y / c β ) is of order four or two. If / J C Λ ) is of order four, then ζa, y'2y=
<(a, jj)> and yn has fixed points in Δ — {!/, 27, 37, 4'}, which is a contradiction.
Hence/ / c α ) is of order two. T h u s / is (13) (24) or (14) (23) on {1, 2, 3, 4}.
Hence / e <α, j / , J 2 J a , ^ ^ , —, ̂ ^ or O> J Ί ^ / J 2̂Λ» ^2^4, ", ̂ ik>- Thus
<«, 3Ί', J ^ ^2^4, —, J2Jife> or <ay yλy(y y2y3y y2y4, •••, y2yk> is semiregular on
neither the orbit {Vy 2', 3', 4'} of length four nor Δ-{1 ' , 2', 3', 4'}. This is a
contradiction since these groups are conjugate to ζay yly y2y3y y2y4y ~,y2yky m

C(a) which is semiregular on Δ —{Γ, 2', 3', 4'}. Thus <<z, j ^ , j 2 , ~ yyk, j / > is
semiregular on Δ - ^ , 2'y 3', 4'}.

On the other hand <α, yx> normalizes G5/6/7/8/, which is of even order.
Hence there is an involution u in G5/6/7/8/ commuting with β and jy^ Then
<Λ, ji, w> is conjugate to a subgroup of ζayyly y2y --,yk, yίy in C(a). This is a
contradiction since for any point of {Γ, 2', •••, 8'} of length eight ζay yίy w> has
an element (Φl) fixing this point. Thus J>2Φ(1') (27) (3') (4')— .
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Next suppose that y2 fixes a <α, 3^-orbit of length four pointwise. Then
we may assume that y2 fixes {5', 67, 77, 87} pointwise and

y2 = (12) (3) (4) (5 6) (7) (8) (ί) (1'3') (2'4') (5') (6') (7') (8')

Sinee <a, ylt j 3> is conjugate to <a, y» J2>, y3 or ay3 is (1'3') (2'4') on
{1', 2', 3', 4'}. Hence we may assume that y3=(l'3') (2'4')— Since
<<t,y»yj> is conjugate to <«, j i ; j>2> , y3 is (5'7') (6'8') or (5'8') (6'7') on
{5', 6', 7', 8'}. On the other hand C(a) has a 2-element

* ' = (1) (2) (3) (4) (57) (68) (9) (10)-(f)- .

By (2.3) we may assume that <β, y19 y29 y3y yί, y2'y is a 2-group. Since <α, y/y
and <α, y2

7> are conjugate to ζa9 j x>, <«, j>/)> and <«, 3λ/> are elementary abelian.
Since <α, j;2jy3, j / > and <α, JΊ, 3 O are conjugate to <Λ, J^, j23/3> and /(j^) (Ί Δ =
/(ΛΛ)nΔ={l / , 2', 37, 4 'hy/ or fly/, ί = l , 2, fixes {Γ, 2', 3', 4'} pointwise.
Hence we may assume that 3// and y2' fix {I7, 2r, 3', 4'} pointwise. Thus
Ji, 3^3, j / and 3;/ fix {r, 2', 3r, 4r} pointwise. Hence O, j 1 ? j2<y3, y/, j / > is
elementary abelian.

If yί or y2' fixes {5', 67, 7, 8r}, then (^j;/)2 or (y2y2')
2 is of order two and

fixes (I(a) — {1, 2, 3, 4})U{1/, 2\ •••, 8'} of length ί + 4 pointwise, contrary to
the assumption (*). Thus {5', 6', 7, δ ' ^ / φ f S ' , 6', 7, 8'}, i = l , 2.

Since y s=(5 /7 /) (ό'δ')— or (5'8') (ό7?7)—, first suppose that jy=(5'7)
(678') . Then I(yiy2y3)ΠA={1\ 2', - , 8'}. Since % / ) n Δ = { l ' , 2', 37, 47}
and jy/ commutes with y1y2y3y yί fixes {5', ό7, 7r, 8'}, which is a contradiction.
Next suppose that y8=(5 /8 /) (ό^O . Since {5', 6', 7, 8'}V + {5', 67, 7, 87},
we may assume that {5', 6', 7, 8/}jri/={9/, 10', II 7, 127}, where {97, 107, II 7, 127}
is a <α, ̂ -orbi t . Since ayxy2yz fixes {57, 6', 77, 8'} pointwise and commutes
with 3;/, ayxyxy2 fixes {9r, 107, 1Γ, 12'} pointwise. Then I(ayλy2y^ Π Δ—
{57, 67, •••, 127} since | I(ayγy2y^ \ <t. Furthermore y2 commutes with ayxy2y3.
Hence {57, 67, 7, δ 7 } ^ ^ 7 , 107, II 7, 127}. Thus {57, 67, •••, 127} is a
<JΊ> 3;

23
;3> JΊ', ̂ ^-orbit of length eight. Since the order of <y19 y2y3y 3;/, 3>2

7> is
sixteen, there is an element 3/ ( φ l ) in ζyly y2y3, y/, y2

/s} fixing {5', 67, •••, 127}
pointwsie. Moreover since I(<y19 y2y3, 3;/, 3;2

7»^{r, 27, 37, 47}, 7 ( / ) 3
{I7, 27, 37, 47} and so | / ( / ) Π Δ | > 1 2 . This contradicts the assumption (*)
sincey/CΛ) is an involution consisting of at most four 2-cycles. Thus C(Q)ICQ^At.

Case 2. C(Q)ICQ>=l.Ό

(i) Since | I(yί) Π Δ | = 4 , I{yί) (Ί Δ is contained in one or two (J-orbits in
Δ. If /(y^ Π Δ is contained in two ̂ -orbits, then y1 fixes exactly two points of
a ρ-orbit. Then by (2.12) C(Q)ICQ:>>At, which is a contradiction. Thus
I(yί) Π Δ is contained in one Q-orbit.

1) The proof in this case is due to the suggestion of Dr. E. Bannai. The proof was first
more complicated.
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(ii) Let Φ(Q) be the Frattini subgroup of Q. Then since yx is an automor-
phism of Q and Φ(Q) by conjugation, y1 induces an automorphism of Q/Φ(Q)y
which we denote by y{*. For an element a of Q, a~xay^ is in Φ(Q) if and only
if the image in Q/Φ(Q) of a is in CQ/ΦiQ^{y^). Hence the number of elements
a in Q such that a~λay^ is in Φ{Q) is | CQmQ>(y*) | |Φ(Q)| . On the other
hand for elements a and b of Q, ab"1 is in CQ(y1) if and only if a~xayi~b~^byi.
Hence the number of elemenets a in Q such that a~xay^ is in Φ(Q) is at most
I CQ(yi) I I Φ(ρ) | - 4 . | Φ(Q) | . Thus 4 | Φ(ρ) I ̂  I CQ/ΦW(y*) I I Φ(ρ) I and
so 4 ^ I CQ/*w(y*) I. Since ρ/Φ(ρ) is elemtary abelian, | Q/Φ(Q) I ̂  (22)2=24

by Lemma of [6]. Thus the automorphism group of Q/Φ(Q) is contained in
GL(4, 2). Furthermore if an element of odd order in N{Q) acts trivially on
QjΦ(Q) by conjugation, then this element belongs to C(Q) ([1], Theorem 5.1.4).
Since C(Q)ICQ'=l and N(Q)IζQ:>=St or At9 N(Q)KQ" is involved in the automor-
phism group of ρ/Φ(ρ) and so in GL(4, 2). Thus N(Q)r™=Sβ or As.

(iii) Suppose that N(Q)ICQ}=S6. Let H be the normal subgroup of G
consisting of all even permutations of G. Then for any point i of Ω, ϋf, is
normal in G{. Since G{ is 3-fold transitive on Ω — {i} and |Ω — {/'}l is odd, H{

is 3-fold transitive on Ω — {i} by a theorem of Wagner [15]. Hence H is 4-fold
transitive on Ω. Let x be a 2-element of NG(Q) such that

Then x has no fixed point in Δ by (2.13). Hence the number of Q-orbits in
Δ is even and so Q<H. If x is an odd permutation, then x$.NH{Q). Hence Q
is a Sylow 2-subgroup of H1Z34 and | I{Q) \ =6, which is a contradiction by [12].
Thus x is an even per- mutation. Hence x* is an odd permutation. On the
other hand since x has no fixed point in Δ and xz^Qy every cycle of x in Δ
has the same length and x consists of 2-cycles. Thus x consists of cycles of
length 2 | ρ | in Δ since xΔ is an odd permutation. Thus | a c | = 2 | ρ | . Hence
| # 2 | = |<2|. Since x2^Q, Q=<V>. Hence the automorphism group of Q is
a 2-group. This is a con-tradiction since N(Q)ICQ^=S and N(Q)I(Φ is involved
in the automorphism group of Q. Thus N(Q)ICQ^S6.

(v) Suppose that N(Q)KQ'=A8.

( v i) 3;i/CQ) is an involution consisting of exactly two 2-cycles. Hence by
(2.8) yλ fixes at most four £)-orbits in Δ. Furthermore we have proved that yx

fixes at least two Q-orhits in Δ. Thus yx fixes two, three or four £)-orbits in Δ.
(v. ii) Suppose that yλ fixes exactly four ^-orbits in Δ. Then by (2.8)

every element of Qyx is an involution. Since <ρ, y2y and <ρ, yλy^> are conjugate
to <ρ, J/JX every element of Qy2 and Qyxy2 is an involution. In particular y19 y2

and yxy2 are involutions. Hence yλ and y2 commute. Let u be any element of
Q. Then uy1 and uyx*y2 are also involutions. Hence y2 commutes with uyλ and
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so commutes with u. Thusyx e C(Q), which is a contradiction since C(Q)ICQ:>= 1.
(v. iii) Suppose that J Ί fixes exactly three ^-orbits in Δ. Then by (2.8)

3
there are at least -j-1 0 | involutions in Qy^ Since y2 normalizes ζQy y^}y y2

fixes at least one ζQy j^-orbit of length \Q\. Then for a point i of the
<ζ), yly j;2>-orbit of length | Q \ Qyr and Qy2 have elements fixing i. Hence we
may assume thatyx andy2 fix i. Then y1

2=y2

2==\ a n dJΊ^^JVyi Let Γ be a
set of elements u in Q such that both uy1 and wy^ are involutions. Since

<£), J Ί J ^ is conjugate to <£), jOs there are at least -j-1Q \ involutions in

Qyxy2- Hence \T\ >^-\Q\. Since y2 is an involution, y2 commutes with uyίy

where u^T. Furthermore^ commutes withyx. Hence y2 commutes with u.
On the other hand | / ( j 2 ) Π Δ | = 4 . Hence y2 commutes with exactly four

elements of Q. Thus | Γ| <4. Hence 4 > | T\ > ^ - | Q\ and so 8> \Q\. Then

the automorphism group of Q is a 2-group, S3, S4 or SL(3,2) (see [3]). Since
N(Q)ICΦ=A8 and N(Q)ICQy is involved in the automorphism group of Q, we have
a contradiction.

(v. iv) Thus j \ fixes exactly two Q-orbits in Δ. Then any 2-element of
N(Q) which is an involution consisting of exactly two 2-cycles on I(Q) fixes two
^-orbits in Δ. Set Δ={Δ 1 ? Δ2, •••, Ar}9 where Δ = Δ 1 U Δ 2 UΔ r and
Δ, , l<i<r9 is a Q-orbit. Then we may assume that

Λ = (Δ 1)(Δ 2)(Δ,Δ0(ΔBΔβ) .

andjj fixes four points 1\ 2\ 3\ \r of Δx.
(v. v) Since y2 normalizes (Q, y^}, y2 fixes {Δ1? Δ2}, Assume that

^ 2 =(Δ 1 Δ 2 ) . Since <Q,^2> and <g, yτy2> are conjugate to <£, yλ\ y2znάy1y2

fix exactly two ^-orbits in Δ. Since y1=(A1) (Δ2) (Δ3Δ4) (Δ5Δ6) and y2

commutes with y19 we may assume that

Λ = (Δ 1Δ a)(Δ 8)(Δ 4)(ΔBΔβ) .

Then <jVj, y2y is semiregular on {Δ7, Δ8 }. Since (y19 y2y jy3> is elementary
abelian, y3 fixes {Aly Δ2}, {Δ3, Δ4} and {Δ5, Δ6}. Furthermore since <g, yxy^
and <£), y2y^) are conjugate to ζQ, yty, yxy3 and y2y3 fix exactly two Q-orbits in
Δ. Hence

Λ = (Δ 1Δ 8)(Δ,Δ 4)(Δ 5)(Δβ) .

Since y2y3 fixes Aly there is an element in Qy2y$ fixing V of Ax. Hence we may
assume that y2y3 fixes Γ. Then I{{y2y^f) and /((^Ja)^ 1-^^) contains I(Q) U
{Γ} of length t-\-l. Hence by the assumption (*) (y2y3)

2=l and y1 y2y*:=
y2y^yt. Let T be a set of elements u oί Q such that both j>2j>3tt and yxy2yzu are

involutions. Since jv2 j ; 3 fixes Ax and Δ2, by (2.8) there are at least -^p- involu-
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tions in y2y3Q having fixed points in Δ. Furthermore since yxy2y3 fixes
{Δj, Δ2, ..., Δ6} pointwise ^ndy1y2y3 consists of four 2-cycles on I(Q)y by (2.8)

at least -^-|0| involutions of y1 y2y3Q have fixed points in Δ. Hence | Γ | >

-χ | j9 | . Since for any element u of T y2y3u and yλ y2y3u
 a r e involutions, yx

commutes with y2yzu. Furthermore yx commutes with y2y3. Hence y1 com-
mutes with u. Since | I(yί) Π Δ| —4, yx commutes with exactly four elemenets

of ρ. Hence | Γ | < 4 . Thus -j-| Q\ < 4 and so \Q\<16. Since C(Q)JW=1,

N(Q)ICQ^=At is involutved in the automorphism group of Q. Hence Q is an
elementary abelian group of order sixteen (see [3]). As we have seen above, at

least — \Q\ elements of y1 y2y3Q are involutions. Then since yxy2yz is an in-

3
volution and Q is elementary abelian, yλy2y3 commutes with at least -j-1 Q \

elements of O. Hence yxy2y3 centralizes Q. This is a contradiction since
C(Q)I(Q>=1. Thus we may assume that . j?2=(Δ1) (Δ2) (Δ3Δ5) (Δ4Δ6) .
Similarly y3 fixes {Aly Δ2} pointwise.

Suppose that ζvlyy2, JV3)> is not semiregular on 5 — {Δ^ Δ2}. Then we may
assume that y3 fixes {Δ3, Δ4, Δ5, Δ6}. Then yλy2y3 fixes {Δ1? Δ2, •••, Δ6} point-
wise. Hence by the same argument as above we have a contradiction. Thus
<j>i, V2y V3> is semiregular on Δ-{Alf Δ2}.

Since <Q, j / > is conjugate to ζQy jj>, yί fixes exactly two ^-orbits in Δ.
Since <j?x, y2y3> jy/> is abelian and <vn j;2v3> is semiregular on Δ — {Aly Δ2}, j ; /
fixes Δx and Δ2.

Suppose that ^y^y2yy^yίy is not semiregular on Δ — {Alt Δ2}. Then there
is an element y' in ζQy y19 y2y y£>yί such that j ; ' has fixed points in Δ other than
Δx and Δ2. Theny / C Q ) is of order four or two. If y'uφ is of order four, then
j;/2=jy1. This is a contradiction since yx has no fixed point in Δ —{Δ^ Δ2}. If
yuQϊ j s of order two, thenj//<:<3) has exactly two or four 2-cycles. Hence <£), y'y
is conjugate to ζQy y^} or (Q, yλy2yzy. This is a contradiction since y1 and
yxy2yz have exactly two fixed points A1 and Δ2. Thus (y19 y2, y3J jv/> is semi-
regular on 5 — {Δx, Δ2}.

Since j;2,jv3 and jp/ fix Δ^ Qy2, Qyz and Qyx have elements fixing Γ of Δ^
Hence we may assume that y2, y3 and yί fix Γ. Then ^ j ^ y2y y3y and
<Ji> ̂ 2^3, yίy are elementary abelian. Since I(y^) (Ί Δ={Γ, 2', 3r, 4'},
<yi> y2y y*> yί> fixes {1', 2\ 3', 47}. Set Λ=C< ?(^1). Then i? is of order four
and has an orbit {lr, 2', 3', 4'}. Hence (yly y2y y3, yίy normalizes R. Since
yλ^C{Q)y \Q\ >4. Hence the number of the i?-orbit in Ax is even. Since
(yiy y2, y3, yίy fixes the i?-orbit {1', 2', 3', 4'} in Aly we may assume that
ĴΊ> J2> J's) j / ^ fixes one more i?-orbit {57, 6', 7', 8'} in At.
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(v. vi) Let a be an involution R commuting with y19 y2 and y3. Then
ζa9 j ^-orbits in Δ — (Δx U Δ2) are of length four. Let {ily ί29 *3,i4} be any ζa9 y^>-
orbit in Δ — (ΔjUΔ.,). Then ζa9 y^> normalizes Gili2i3h. Hence there is an
involution u in Gili2iziA commuting with a and yλ. Then (y19 u) normalizes
G Π Q ) and so a Sylow 2-subgroup Q' of G / w . Since N(Q)nQ'=A89 <ρ', JΊ, u)
is conjugate to a subgroup of (Q, yly y2, y3, y^y in iV(G/c<3λ). Hence y1 fixes
exactly two ρ'-orbits Δ/ and Δ2' in Δ and {i19 z2, z3, /4} is contained in Δ/ or Δ2'.
Furthermore since <ρ', y^} is conjugate to <ρ, y^} in <ρ, ρ', jj>, there is an
element v in <ρ, ρ r , / > such that <ρ', y1>

f>=<ρ, ^ > . Then (Δ/ U Δ 2 ' y=
Δ1UΔ2. Since ?/CQ) or ( j ^ ) 7 ^ ^ ! and <ρ', yiy^v=<Q9 >Ί>, we may assume
that ?; / C Q )=l. Then !JGG / ( ρ ) and (Δ/ U Δ2

/) I '=Δ1 U Δ2. Thus {/„ t2, /8, /4} is
contained in a G/(Q)-orbit which contains Δx or Δ2. Since {zΊ, i2, i3, i4} is any
<tf,>\)>-orbitin Δ — (Δx U Δ2), any <α,jy^-orbit in Δ —(Δx U Δ2) is contained in the
G7(Q)-orbit which contains Δx or Δ2. Hence GICQ) is transitive or has two orbits
Γx and Γ2 on Δ, where Γ ^ Δ i and Γ 2 ^Δ 2 .

Since yx fixes exactly two ρ~robits in Δ, the number of ρ-orbits in Δ is
even. Hence | Δ | is divisible by 2 | Δ 1 | = 2 | ρ | . If GKQ) is transitive on Δ,
then the order of GJiQ^ is divisible by 21 Q \. This is a contradiction since Q is
a Sylow 2-subgroup of G / ( Q > Hence GIcς» has two orbits I\ and Γ2 on Δ.

Since y1^C(Q)y | ρ | > 4 . Hence <ρ, y19 y/y is a Sylow 2-subgroup of
G 5 6 7 8 . Since G is 4-fold transitive, any Sylow 2-subgroup P of a stabilizer of
four points in G is conjugate to <ρ, y19 y/y and so has exactly one orbit of
length four. Furthermore a stabilizer of a point of this orbit of length four in P
is conjugate to Q.

We may assume that

y1= (1 2) (3 4) (5) (6) (7) (8) (1') (2') (3') (4') (5' 6') (7 8 ' ) - ,
β = (l)(2) . .(8)(l '2 ')(3'4') .

Since y2 and y3 fix Γ and commute with a and 3 ,̂ y2 and y3 are (Γ) (2') (3') (4')
or (I') (2') (3' 4') on {1', 2', 3', 4'}.

Assume that j 2 = ( l ' ) (2') (3') (4') on {1', 2', 3', 4'}. Since \I(y1y2)\<t, we
may assume that

yz= (1 2) (3) (4) (5 6) (7) (8) (1') (2') (3') (4') (5' 7) (6' 8 ' ) - .

Thus ζy19y2y is semiregular on {5', 6', •••, rc}. Suppose that y3 has fixed points
in {5', 6', •••, n}. Since ^j^, j 2 , jy3)> is abelian, y3 has at least four fixed points
in {5', 6', •••, n}. This is a contradiction since / ( ^ ^ { l ' } and |/(j>3)|<8.
Hence yz fixes {Γ, 27, 3', 4'} pointwise. Since <j 1 , j ^ 2 , J3> fixes the i?-orbit
{5', 6r, 7, 87}, there is an element (Φ1) in <y19 y2, J3> fixing {5', 6'9 7, 87} point-
wise. Since I(ζy19 y2y J 3 » 3 {Γ, 2', 3'9 4'}, this element is y1y2y3- Hence

yz= (1 2) (3) (4) (5) (6) (7 8) (1') (2') (3') (4') (5' 8') (6' 7 ' ) - .
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Then ζy19y29y3y normalizes G121/2/. Hence as we have seen above, ζy19y29y£>
normalizes a 2-subgroup Q" of G12 ^2/ which is conjugate to Q. Then | I(Q") \
= 8 and N(Q")KQ">=A8. Hence y/(Q//\ y2

KQ^ and y3

K^ are even permutations.
Since y19y2 and y3 are (1 2) (V) (2!) on {1, 2, 1', 2'}, y19 y2 and y3 have exactly
one more 2-cycle other than (1 2) in I(Q"). This is impossible. Hence j>2Φ
(1') (20 (30 ( 4 0 - . Similarly Λ Φ ( 1 ' ) (20 (30 ( 4 ' ) - .

Thus y2 and y3 are (V) (20 (3' 40 on {1', 2', 3', 4'}. Since \R\ = 4 , i? is
cyclic or elementary abelian. First assume that R is cyclic. Then R=ζby and

έ - (1) (2) (8) (1' 3' 2' 40 (5' 7' 6' 8 ' ) - .

Then (Ryy^ is semiregular on {9', 10', •••, /z}. Since ζa9 j x , j;2> is abelian, if
3;2 has fixed points in {9', 10', •••, n}, then j>2 fixes at least four points of {9', 10',
•••, n}. This is a contradiction since I(y2) contains {3, 4, 7, 8} U {1'} of length
five. Thus y2 has no fixed points in {9', 10', •••, n}. Similalry yz has no fixed
points in {9', 10", ••-,//}. Hence y2 and y3 have exactly two fixed points in
{5', 6', 7', 8'}. Next assume that i? is elementary abeliain. Then R=<ay J7>
and

δ' = (l)(2) (8)( l '3 ' )(2 '4 ') .

Then 2>'j>2 and δ'jy3 are of order four and so 4-cycle on {5', 6', 7', 8'}. Hence j 2

and 3>3 have exactly two fixed points in {5', 6', 7', 8'}. Thus in both cases we
may assume that

a = (1) (2) (8) (1' 2') (3' 4') (5' 6') (7 8 ' ) - .

j 2 = (1 2) (3) (4) (5 6) (7) (8) (1') (2') (3' 4') (5') (6') (7' 8 ' ) - ,
yz= (1 2) (3) (4) (5) (6) (7 8) (1') (2') (3' 4') (5' 6') (7') (8') .

Since <α, JΊ, y2, y^} normalizes G121/2/, as we have seen above ζa9 yly y2J y3y nor-
malizes a 2-subgroup Q" of G12 x, 2, which is conjugate to Q. Then 11(0") \ = 8
and N(Q")nQ"'=A6. Hence aKQ"\ yλ

KQ"\ y2

UQ"" and y3

I(Q"> are even permuta-
tions. Since a=(ί) (2) (I7 20 andy f = ( l 2) (1') (20, i = l , 2, 3, on {1, 2, Γ, 2'},
a and j \ have exactly one more 2-cycle other than (Γ 20 and (1 2) respectively
in I(Q"). Since the lengths of <α,y19y2,^3>-orbits in {9', 10', •••, w} are at elast
eight, I I(Q") Π {9', 10', ..., n} I = 0 . Hence /(0")={1, 2, 3, 4, 1', 2', 3', 4'}, {1,2,
5, 6, 1', 2', 5', 6'}, or {1, 2, 7, 8, 1', 2', 7, 87}.

First assume that J(0")={1, 2, 3, 4, l r, 2', 3', 4'}. Then a Sylow 2-subgroup
of G1234 containing Q or Q" has exactly one orbit {5, 6, 7, 8} or {V, 2', 3', 47}
of lengh four respectively. Since Sylow 2-subgroups of G12 3 4 are conjugate,
{5, 6, 7, 8} and {Γ, 2', 3', 4'} are contained in th same G1234-orbit. Since Γ 2 3
{Γ, 2;, 3', 4'}, {5,6,7,8} and I\ are contained in the same G1234-orbit. By
(2.11) G is not 5-fold transitive. Hence G 1 2 3 4 has two orbits {5, 6, 7, 8} (JΓj
and Γ2 on Ω—{1,2,3,4}.

Next assume that J(0")={1, 2, 5, 6, 1', 2', 5r, 6'}. Then by the same
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argument as above G1256 has two orbits {3, 4, 7, 8} UΓ\ and Γ2. Since

=A8y there is an element z=(l) (2) (3 5) (4 6) (7) (8) . Then G 1 2 3 4 = ( G 1 2 5 6 ) 2

has two orbits {5, 6, 7, 8} UlY and Γ2*. Since ΓΊ and Γ2 are G / ( ( ? rrobits, Y*

= Γ 1 or Γ2. On the other hand G is 4-fold transitive on ίl. Hence G 1 2 7 8 has

two orbits {3, 4, 5, 6} UI\ and Yjy where {ij}={ίy 2}. Since # e G 1 2 7 8 , z fixes

Γx and Γ2. Hence G 1 2 3 4 has two orbits {5, 6, 7, 8}UΓΊ and Γ2. Similarly if

/(£")={ 1, 2, 7, 8, 1', 2', 7, 8'}, then G 1 2 3 4 has two orbits {5, 6, 7, 8} UΓ2 and

Γ2. Thus in any case G1234ι has the two orbits {5, 6, 7, 8} U I\ and Γ2.

On the other hand Δ2 is contained in Γ2 and fixed by yx. Hence there is an

element in Qyx fixing four points of Δ2. Then by the same argument as above

{5, 6, 7, 8} and Γ2 are contained in the same Gx 2 3 4-orbit. Thus G12 3 4 is transitive

on Ω - {1, 2, 3, 4}, contrary to (2.11). Thus N(Q)ICQ^ΦA8. Hence we complete

the proof of (2.15).

2.16. N(QY«»*St.

Proof. Suppose by way of contradiction that N(Q)KQ^=St. Then by (2.4)

N(Q) has the 2-group <£), xly x2y •••, xky. Now we show that ζQ> xly x2y •••, xky

is semiregular on Δ. By (2.13) and (2.15) <£), xly x2y is semiregular on Δ.

Suppose that <£), xly x2y x3y is not semiregular on Δ. Then x3 fixes a (Qy xly

Λ;2>-orbit Δ' of length 41 Q \ in Δ. Then by (2.13) and (2.15) xxx2xz fixes ^-orbits

in A'. Furthermore ζxly x2, x3y is abelian and ζx19 x2y is semiregular on S. Hence

x1x2x3 fixes four g-orbits in Δ'. By (2.8) xλx2%3 fixes at most six Q-orbits in Δ.

Hence ^ t ^ 2 ^ 3 does not fix any Q-orbit in Δ — A'. Hence ζQy xly x2y x3y is semi-

regular on Δ - Δ ' . Since N(Q)ICQ:>=St, N(O) has a 2-element

By (2.3) we may assume that <Q, xly x2y x3y j / > is a 2-group. Then yί normalizes

<<2, xly x2y x3y. Hence yl fixes the ζQy xu x2y x3>-orbit A'. Thus Δ' is a(Qy xly

x2y 3;/>-orbit. Hence ζQy xly x2y j>/> has an element x ( Φ l ) fixing a point of Δ'.

Then by (2,13) and (2.15) xI(Q^ is of order four and has exactly one 4-cycle ( 1 3

2 4) or (1 4 2 3). Hence (χ2)IC&=(l 2) (3 4) and has fixed points in Δ, contrary

to (2.15). Thus (jQy xly x2y x3y is semiregular on Δ.

Suppose that <£), xly x2y x3y x4y is not semiregular on Δ. Then x4 fixes a

<£), xly x2y #3>-orbit Δ' of length S\Q\ in Δ. Since ζxly x2y x3y x4y is abelian and

ζxly %2y x3y is semiregular on Δ, by (2.8) %1x2%3%4 fixes exactly eight Q-orbits in

Δ, whose union is Δ\ Thus ζQy xly x2y x3y ΛJ4> is semiregular on Δ—Δ'. Since

N(Q)ICΦ=Sty N(Q) has a 2-element

y/ = ( 1 3 ) ( 2 4)(5)(6) (ί) .

By (2.3) we may assume that ζQy xly x2y x3y x4y y/y is a 2-group. Then yx' nor-

malizes <£), xly x2y x3y x4y. Hence y( fixes Δ'. Then Δ' is a <Q, xly x2y x3y j / > -
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orbit. Hence there is an element x in ζQ9 x19 x29 x^>yί fixing a point of Δ'.

Since ζQ, x) is not conjugate to any subgroup of <£), xly x2, #3X # / c 0 ) is of order

four and has exactly one 4-cycle (1 3 2 4) or (1 4 2 3). Hence (x2)J^=(l 2) (3 4)

and x2 has fixed points in Δ, contrary to (2.15). Thus <£), x19 x2, xZ9 #4> is semi-

regular on Δ. Hence by (2.9) <£), xly x29 •••, xky is semiregular on Δ.

On the other hand Q has an involution a=(ί) (2) (£) (/,/)••'. Then a

normalizes Gτ 2 1 j and so commutes with an involution u of G12 , j . Then u

normalizes G / ( O > Hence u normalizes a Sylow 2-subgroup Q' of GICQ^. Since

Q' is conjugate to £) in GIcQ^ and N(Q)ICQ:>=St, ζQ\ tC} is conjugate to a subgroup

of ζQ9 #„ #2, •••, xky in N(GIcςD). Hence <£), #„ Λ?2, •••, ΛΛ> has an element (Φ1)

which has fixed points in Δ. This is a contradiction. Thus

2.17. We show that N(Q)IQΦ^At and complete the proof of the theorem.

Proof. Suppose by way of contradiction that N(Q)I(Q^=At. First suppose

that t=8 or 9. Let a={\) (2) (ί) (ij)~ be an involution of Q. Then a

normalizes G12ij and so commutes with an involution u of G12ij. Since

N(Qy(Q^N(GIiςDy(Q>=A8 or A9 and \I(u)\<ty u1^ consists of exactly two

2-cycles. This contradicts (2.15) since | I(u) Π Δ | Φθ.

Thus *>10. Then by (2.4) N(Q) has the 2-group <Q,y19y2, -,yk,y/>,

k>4. Now we show that (Q>ylyy2> "' >yk, y?) is semiregular on Δ. By (2.15)

(Qyyiyy2y is semiregular on Δ.

Let y be any element of <£), y19 y2J j / > — Q. Then yHQ:> is of order two or

four. If yκφ is of order two, t h e n j ; 7 ^ consists of exactly two 2-cycles. Hence

by (2.15) y is semiregular on Δ. If yICQ:> is of order four, then (y2)ICQ:>

Hence y is semiregular on Δ. Thus <£), yly y2, y/y is semiregular on Δ.

Suppose that <£), y19y2, y3y is not semiregular on Δ. Then by (2.1

has fixed points in Δ. Since {y1y2y^)I(iQ:> is an involution consisting of exactly

four 2-cycles yxy2y% fixes at most eight jj-orbits by (2.8). On the other hand

Oi»̂ 2»JV3̂  is abelian and ζylyy2y is a semiregular group of order four. Hence

yxy2yz fixes four or eight ^-orbits. Thus y3 fixes one or two ζQ, y19 j;2>-orbits

in Δ.

Assume that y3 fixes exctly one ζQ9 y19 j2>-orbit Γ in Δ. Then since y/

normalizes <Q, y19 y2f J3>, y( fixes Γ. Hence Γ is also a <£), y19 y29 jy/>-orbit.

This is a contradiction since ζQ9 yly y2, j / > is semiregular on Δ. Thus yz fixes

exactly two <^, j 1 , j2>-orbits in Δ, say I\ and Γ2. Hence by (2.8) any element

of Qyiy2y3 is an involution and has exactly eight fixed points in Δ.

Suppose that Γ 1 = Δ 1 U Δ 2 U Δ 8 U Δ 4 and Γ 2 =Δ 5 UΔ 6 UΔ 7 LJΔ 8 , where Δ t ,

1 <i<8, is a ρ-orbit. Set T^{^ Δ2, Δ3, Δ4} and Γ 2-{Δ 5, Δ6, Δ7, Δ8}. Then

we may assume that
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yx = (Δx Δ2) (Δ8 Δ4) (Δ5 Δ6) (Δ7 Δβ) ,
y2 = (Δ, Δ3) (Δ2 Δ4) (Δ5 Δ7) (Δ6 Δ8) - ,
y3 = (Δ, Δ4) (Δ2 Δ8) (Δ5 Δ8) (Δ6 Δ7) .

Since yiy i>4 , normalizes ζQyylyy2y j 3>, Γ1

<y«'=Γ1 or Γ2. Suppose that
T1

yi=T1. Then T1 is a <£), yly j 2 , j ; t >-orbit. Hence yxy2y£ fixes a £)-orbit in T1

by (2.15). Sinceyxy2yz is the identity on Tlyyj2y3. y1y2yi=yzyi fixes a g-orbit
in I\, contrary to (2.15). Thus iγ«=Γ 2 .

Suppose that £>12. Then N(Q) has y4 and y5. Since <^y19 y2, yAy is
elementary abelian and ΓY4=Γ2, we may assume that

y4 = (Δx Δ5) (Δ2 Δ.) (Δ, Δ7) (Δ4 Δβ) .

Furthemore since T1

y*=T2y Γ 1UΓ 2 is a <^yly y2y yAy jy5>-orbit of length eight.
Hence <j>i, y2yy4y5 has an element fixing Ϊ\UΓ 2 pointwise. Thus we may
assume that yλy^y5 fixes Γ\ U Γ2 pointwise and so

ys = (Δx Δ.) (Δ2 Δ.) (Δ, Δ.) (Δ4 Δ7) .

On the other hand N(Q) has 2-elements

yt = (1) (2) (3 4) (5) (6) (7) (8) (9 11) (10) (12) ( 1 3 ) - ( i ) - ,
yi = (1) (2) (3 4) (5) (6) (7) (8) (9) (11) (10 12) (13) (14) (f) .

By (2.3) we may assume that <£), yly y2y yzy y4y y5

fy is a 2-group. Then by the
same argument as above Γ/^ΓY^^ΓV If y/=(A1 Δ5) , ί=4, 5, then (y4y/Y
has the same form as yx on I(Q) and fixes Aiy which is a contradiction. Similarly
y/^=(A1 Δ6) , ί=4, 5, since (y5y/y=ylm Hence we may assume that

yl = (Δ, Δ7) (Δ2 Δ8) (Δ, Δ5) (Δ4 Δ6) . ,
yi = (Δ, Δ8) (Δ2 Δ7) (Δ, Δ.) (Δ4 ΔB) .

Then yAysy/ys' consists of exactly two 2-cycles on I(Q) and fixes Aly contrary to
(2.15).

Thus t=10 or 11. Assume that ί=10. The proof in the case t=ll is
similar. Since ζQy yly y2y y/)> is semiregular on Δ, the lengths of ζQy yly y2y j/)>-
orbits on Δ are 81 Q \. On the other hand <£>, y19 y2y j / > fixes 7, 8, 9, 10 and
has two orbits {1, 2, 3, 4} and {5, 6} on I{Q). Hence (Q,y1,y2>yiy is a Sylow
2-group of G 7 8 9 1 0 . Furthemore in (jQ,ylyy2>yίy a n y element fixing ten points
belongs to Q. Since G is 4-fold transitive, this shows that any element fixing
ten points is conjugate to an element of Q. Set z1=y1y2yz- By what we have
proved above every element of Qzx is an involution. Hence for any element u
of Q uzi=u~1. Furthermore N(Q) has a 2-element

*, = (13) (2 4) (5 7) (6 8) (9) ( 1 0 ) - .

By (2.3) we may assume that <£), zly z2y is a 2-group. Since <£), #2> and
<£?, #i#2> are conujgate to ζQy z^}y every element of Qz2 and Qzxz2 is an
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involution. Hence for any element u of Q uz2=u~1 and uzi*2=u~1. On the other
hand (uzi)z2=(u~1)z2=u. Hence u=u~1. Thus Q is elementary abelian and
zlyz2^C(Q). Then since N(Q)IW=A10 and C(Q)I(Φ is a normal subgroup
(Φl), N(Q)I(Φ=C(Q)ICQ\ In particular since Q is abelian, every 2-element of
N(Q) belongs to C(Q).

Since y*€~Qy the order of y1 is two or four. Suppose that yx is of order
two. Then for any 2-cycle (ij) of yx in Δ y1 normalizes G12ij . Hence y1

normalizes a 2-subgroup Qf of Gx 2 , 5 which is conjugate to Q. Since N(Q'ycQ'^=
Ao> J\ consist of exactly two or four 2-cycles on I(Q'). Suppose that y1 consists
of exactly four 2-cycles on I(Q'). Then <<2',JΊ> is conjugate to <£), z^. Then
|/(3>i)| =10, which is a contradiction. Thus y1 consists of exactly two 2-cycles
on /(£'). Then I(Q')={i,j, 1, 2, 5, 6, —, 10}. Then Q and Q' are contained
in G 7 8 9 1 0 and so conjugate in G 7 8 9 1 0 . Thus G 7 8 9 1 0 has an element which takes
{1, 2, i,j} into {1, 2, •••, 6}. Since {1, 2, •••, 6} is contained in a G78910-orbit
and (ij) is any 2-cycle of yx in Δ, G 7 8 9 1 0 is transitive on Ω—{7, 8, 9, 10},
contrary to (2.11). Thus y1 is of order four. Hence every involution of N(Q) — Q
consists of exactly four 2-cycles on I(Q) and every involution of G fixes exactly
ten points.

C(Q) has an involution

*, = (1 3) (2 4) (5 6) (7) (8) (9 1 0 ) - .

By (2.3) we may assume that <(ζ), zly z3y is a 2-group. Then since zxz3 consists
of exactly four 2-cycles on I(Q), z1z3 is of order two. Hence z1z3=zzz1. Since
/(^JΦ/^a) and any Sylow 2-subgroup of GIi2l) is conjugate to Q, z3 fixes exactly
two points of I(z^). Hence | I(zτ) Π I(z3) Γ) Δ | =2. Then since Q is semiregular
on Δ and <*„ zz><C(Q), \Q\=2. Set ρ=<«>.

Since (a>yzy^ is conjugate to ζa9y^>, yzy4 is of order four and (y^y^f—a-
Let (ij k ΐ) be any 4-cycle of yzy± in Δ. Then y3y4 normalizes G, Jkι. Hence
yzyA commutes with an involution z of G{ jki- Since z commutes with (y3y4)

2

=a, z fixes I(a). Thus y3y4z is of order four and (yzyAz)I(μ^ is of order two.
Hence y3y4z consists of exactly two 2-cycles on I(ά). Then since (yzy4)

I(a^=
(7 8) (9 10) and zI(a:> consists of exactly four 2-cycles, z has 2-cycles (7 8) and
(9 10). Hence ^3^4^^G 7 8 9 1 0 . Furthermore y3y4z is (ijkϊ) on {i,j, k, /}.
Hence {i,j9 k, 1} is contained in a G78910-orbit. Set z4=y1y3y4. Then z4 has
2-cycles (7 8) and (9 10). Since C(a)IQa\8910=A6, C(ά) has an involution zf

which is conjugate to z under C(α) 7 8 9 1 0 and has the same form as z4 on I(ά).
Then ζa, zfy and <α, ̂ 4> are Sylow 2-subgroups of <<2, z4, z'y and ζay z4y

Ica:>=
<α, z'y^. Hence ζa, zfy is conjugate to ζa, z4y under <α, zA, z'ynά) and so z'
is conjugate to z4 or az4 under <α, z4, zfyIia>. Thus z is conjugate to z4 or az4

under C(α)7 8 9 1 0. Since I(z)Γ\ Ad{i>j, ky /}, there is an element in C(α) 7 8 9 1 0

which takes {i,jy ky 1} into I(z4) Π Δ or I(azA) Π Δ. On the other hand z4

y^=z4a.
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Hence (I{z4) Π Δ)yi'=I(az4) (Ί Δ. Thus C(a)7 8 9 1 0 has an element taking {/,/, ky /}

into I(z4) Π Δ. Furthermore yίy2 is of order eight and commutes with z4. Hence

yίy2 consists of a 8-cycle on I(z4) Π Δ. Thus I{z4) ΠΔ is contained in a

C(α)78910-orbit. Since (ijk I) is any 4-cycle of yzy4 in Δ, Δ is cntained in a

C(a)78910-orbit and so in a G78910-orbit. By (2.11) G 7 8 9 1 0 is intransitive on

Ω — {7, 8, 9, 10}. Hence <? 7 8 9 1 0 has exactly two orbits {1, 2, •••, 6} and Δ on

Ω —{7, 8, 9, 10}. Since G is 4-fold transitive, any four points iiy i2y i3y ί4 of Ω

uniquely determine a subset Δ(ily i2y i3y i4) of Ω which is the Gh i2 h z 4-orbit of

lengt six.

For a 2-cycle (11 12) of a and any two points i19 i2 of {1,2, •••, 10} four points

11, 12, Yi, i2 uniquenly determine Δ (11, 12, ily i2)y on which a consists of exactly

three 2-cycles. Conversely for any 2-cycle (j\j2) of a in Δ — {11, 12} four points

11, 12, jlyj2 uniquely determine Δ (11, 12, jlyj2) and a fixes exactly two points of

Δ (11, 12y jlyj2) which are contained in {1, 2, •••, 10}. Hence the number of 2-

c y c l e s o f α i n Δ - { l l , 1 2 } i s ( ^ . 3 = 1 3 5 . Hence rc= 12+135-2=282. On

the other hand for any point i of Ω — {1, 2, 3} four points 1, 2, 3, i uniquely

determine Δ ( l , 2 , 3,/). Hence 282—3 — 0 (mod 7), which is a contradiction.

(In the case £=11 for any two points /„ i2 of {1, 2, •••, 11} | {1, 2, •••, 11} Π Δ

(11, 12, iu ι"2)| = 3 . Hence ( ^ ) = 0 (mod 3), which is a contradiction.) Thus

<£?> Λ> y™ y*> ̂ s semiregular on Δ.

Let yf be any element of <£), yly y2y y3y y4y y^y — Q. Then y / c ζ ? ) is of order

two or four. If j / / c < 3 ) is of order two, then y / c < ? ) consists of two or four 2-cycles.

Hence <£?,/> is conjugate to a subgroup of KQ9y19y29y£> in N(Q). Hence y'

is semiregular on Δ. If y / c < 3 ) is of order four, then (yf2)nQ^=y1

KQ\ Hence y'

is semiregular on Δ. Thus <£), yly y2y y3y y4y y/y is semiregular on Δ. Hence by

(2.10) <Q9y19y2, ~',yk>yίy is semireglar on Δ.

Let x be any 2-element of N(GκςD). Then x normalizes a Sylow 2-subgroup

Q' of GIiQ> Since Q is a Sylow 2-subgroup of GKQ) and N(Q)Icςn=Aty <Q'y xy

is cnjugate to a subgroup of <ζ),y l yy 2 y •••,>>*>. Hence Λ; is semiregular on Δ.

On the other hand Q has an involution #=(1) (2)•••(£) (ij)- . Then « normalizes

G i 2 1 jy and so commutes with an involution u of G12 {j. Then u^N(GKQ^) and

I /(«) Π ΔI φ 0, which is a contradiction. Thus N(Q)ICQ^At.

Thus we complete the proof of the theorem.

3. Proof of the lemma

In this section we assume that G is a permutation group as in Lemma.

Suppose by way of contradiction that there is a 2-group Q in G such that

I I(Q) I = 12 and N{QY^=M12. Let Q be a Sylow 2-subgroup of GnQ> Since

=S12y A12 or M12. If
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= S12> or A12, then by Thereom G=SU or A16. Hence N(Q)ICΦ = S12i which
is a contradiction. Thus N(Q)K^=M12. Hence we may assume that Q is a
Sylow 2-subgroup of GICQ:>.

Set /(C?)={1, 2, - , 12} and Δ=Ω-/(£)). Then H > 3 5 ([2], p. 80) and so
| Δ | > 2 3 .

Since N(Q)T(ςn=M12y we may assume that N(Q) has 2-element

x, = (1) (2) (3) (4) (5 6) (7 8) (9 10) (11 12)- ,
^ = (1) (2) (3) (4) (5 7 6 8) (9 11 10 1 2 ) - ,
y2 = (1) (2) (3) (4) (5 10 6 9) (7 11 8 12)- ,

and <ρ, *„ Λ , y2y is a 2-group (see (2.3)). Then <£, y1

r>=<Q9 J>2

2>=<£?, JΊ>.
Since (Q is a normal subgroup of <ζ), jy2, y2y, Q has a central involution a of
£̂?> JVi> J^X Then we may assume that

a = (1) (2). (12) (13 14) (15 16)-(n—l n).

3.1. First we show hat (Q, yly yzy has at least one orbit of length eight in Δ
on which ζQy yly y2yis a quaternion group.

Proof. Suppose by way of contradiction that ζQy yly y2y has no orbit of
length eight in Δ on which <ζ), yly y2y is a quaternion group. Then {5, 6, •••, 12}
is the unique ζQ, yly ^2>-orbit of length eight and on which <£?, yly y2y is a
quaternion group.

(i) We show that <£), yly jy2> is a Sylow 2-subgrouρ of G1234 and Q is a
characteristic subgroup of <ζ), yly j 2>. Let x be any 2-element of N((Q, yly

J 2»i2 34 Then x fixes {5, 6, •••, 12} and so I(Q). Hence x^N(Q). Since
(N(Q)1234y

cQy=<y1,y2y
ICQ\xICQ>^<y1,y2y

ICQ\ Hence there is an element x'
in <Q,ylyy2y such that xfI^=x^\ Hence {xf~1x)I^=\ and so ^ - ^ e g .
Thus x<=<Q, xry<<Qy y19 y2y. This shows that <£), ̂ , 3;2> is a Sylow 2-sub-
group of G12 3 4. Furthermore since any automorphism of <£}, J Ί , y2^ fiχes ̂ (δ)
and ζQy yly y^κς»=Qy Q is a characteristic subgroup of <£), 3 ,̂ j 2 >.

(ii) Let /, j , k, I be any four points of Ω and X be a 2-grouρ such that
X<N{Gijkι). Then we show that Gijkι has an involution # such that
X < C ( Λ : ) , |/(Λ?)| =12 and C{x)r^<M12. Since X<N{Gijkι)y X normalizes a
Sylow 2-subgroup P 7 of G£ j k ι . Since G is 4-fold transitive, Pr is conjugate to
<CQ yly y2y. Hence P' has a characteristic subgroup Qf which is conjugate to Q.
Then X<N(Q'). Hence there is an involution x in Q' such that X<C(x).
Since 1/(^)1=12 and N(Qγ^=Mw \I{pt)\=Yλ and C(x)IW<M12. We
remark that if x is the unique involution of Qf then C(ΛJ) / C Λ Γ )=M 1 2.

(iii) We show that Q is a cyclic or generalized quaternion group and
C(Q)ICQ:>=N(Q)ICQ\ Suppose by way of contradiction that Q has an involution b
other than a. Then since a is a central involution of Qy we may assume that

b = (1) (2) -(12) (13 15) (14 16) (17 19) (18 20) (21 23 ) (22 2 4 ) - .
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Then ζay by<N(G13141516). Hence by (ii) G 1 3 1 4 1 5 1 6 has an involution u such that
O, by<C{u\ \I(u)\=12 and C(«)/CW)<M12. Then |7(α)n/(^)| = 0 or 4. If
17(tf) Π I{u) I =4, then i/CW) fixes the same four points that a fixes and commutes
with aκu\ This is a contradiction since C(w)/(W)<M12. Hence | I(a) Π /(w) I = 0 .
Then we may assume that

u = (1 3) (2 4) (5 7) (6 8) (9 11) (10 12) (13) (14) (24) .

Since <α, *0><iV(G131314), by (ii) G 1 3 1 3 1 4 has an involution v such that <α, u}<
C(v)y 1/(*;) I = 12 and C(z;)/(ίί)< M12. Let R be a Sylow 2-subgroup of <a A u, v)
containing <α, #, z/>. Then RICQ^=zζuy vynQ\ Hence R has an element v' such
tha U/ΛQ)==U/C©) a n ( j ẑ j s conjugate to t;. Since z/eZ«α, ft, uy ϋ», ϋ' fixes /(M).

Since */ fixes 1,3 which are not contained in I(u) and |/(s/)l =12, ^' does not
fix I(u) pointwise. Furthermore I(u) is a union of of ζa> b, u, ^>-orbits and vf is
conjugate to v which has fixed points in I(u). Hence v' has fixed points in
I(u) and so v' fixes exctly four points of I(u). Since (te/)7CW) is a 2-element of
C(u)ICU)<M12y (bv')w is of order two, four or eight. If (k/) / c t t ) is of order two,
then b commutes with v'. Hence <α, £>/ci;/) is a four group and |/«#, i>/ct;/:>)|
= 4 . This is a contradiction since M12 has no such subgroup. If (fo/)/CM) is of
order four or eight, then {(bv')Icu^)2 or ((fo/)/CW))4 is an invlution fixing four points
and so I((bv')2) or I({bv')A) contains {1, 2, •••, 12} and four points of I(u),
contrary to the assumption. Thus Q has exactly one involution and so Q is a
cyclic or generalized quaternion group. Hence the automorphism group of Q is
a 2-group or S4. Since N(Q)ICQ'=M12 and N{Q)UQηC{Q)n& is involuved in
the automorphism grup of Qy C(Q)I(&=N(Q)ICQ\

(iv) Thus a is the unique involution of Q. Since αeiV(G1 2 1 3 1 4), G 1 2 1 3 1 4

has an involution x such that ax=xa, | J(#) |=12 and C(x)IW=M12 by (ii).
Then we may assume that x=xx and

xx = (1) (2) (3) (4) (5 6) (7 8) (9 10) (11 12) (13) (14)».(20)- .

Since <#, ̂ i><Λ^(G561314), G 5 6 1 3 1 4 has an involution x2 such that <α, xiy<C(x2)y

| / ( Λ 2 ) | = 1 2 and C ( Λ : 2 ) / C V = M 1 2 by (ii). Then <*„ x2> normalizes a Sylow
2-subgroup of GIiQ) containing a. Hence we may assume that <X, x2y normalizes
Q. Furthermoe since N(Q)IW=M12 and C(x1)

IC*i)=M12, we may assume that

x2 = (1 2) (3 4) (5) (6) (7) (8) (9 10) (11 12) (13) (14) (15) (16) (17 18)

(19 2 0 ) -

or

x2 = (1) (2) (3 4) (5) (6) (7 8) (9 11) (10 12) (13) (14) (15 16) (17 19)
(18 20)--.

(v) We show that xly x2φC(Q). Suppose by way of contradiction that
Since <g, x2y is conjugate to <Q, xλ> in N(Q)y there is an element
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u in Q such that x2u is conjugate to x1 in N(Q). Then x2u^C(Q) and \I(x2u)\
= 12. Hence x2u commutes with u and so x2 commutes with u. Since x2

and x2u are of order two, u2=l. Hence u—a or 1. Thus x2EίC(Q). Since
Oi, x2y< C(Q) and | ifo) Π I(X2) Π Δ | =2 or 4, £ is of order two or four. Thus
Q is abelian. Then since N(Q)KQ^=C(Q)IW by (iii), j . e C(Q), i= 1, 2. Since
y/^ζQ, #!>, there is an element w, in £) such that y^ufa. Then j , commutes
with Ufa. Since y, commutes with uiy y{ commutes with xx. Hence y{ fixes
I{x^) Π Δ. Furthermore since x^C(Q)y Q fixes I(x^ Π Δ. Thus I(x^ Π Δ is a
union of <£),, JΊ, y2y-orbits.

Suppose that Q is of order four. Since <£), yly y2>
lcx^n Δ is not a

quaternion group and C{xtfζX* = M12, <g, ^ , j 2 > / c ^ ) n Δ = ρ / c ^ n Δ . Hence
K^3;n3;2>/cΛ:1nΔ)l=8 and so gy,., ι = l , 2, has an element y/ fixing /(ΛTJΠΔ

pointwise. Then /(O/, J 2

/ » = / ( Λ ? 1 ) . Since N(GICxO)Icx^C(xι)
IC'^=M129 for

the four points 1,2, 3,4 of /(^J a Sylow 2-subgroup of G12 3 4 cotaining <3;/, ^ ' ^
is of order at least 8-8. This is a contradiction since ζjQ> yly y2> is a Sylow
2-subgroup of G 1 2 3 4 and of order 8 4.

Next suppose that Q is of order two. Then by the same reason as above
(Qy yi> y2y

cΛΓl)n Λ is a cyclic group of order two or four. Hence <ζ), yly y2^
 n a s

an element y which is of order four and fixes I(x^) Π Δ pointwise. Then by the
same argument as above G123A has a Sylow 2-subgrouρ containing y and of
order at least 8 4. This is a contradiction since <£), yly j 2 > is a Sylow 2-sub-
group of Gx 2 3 4 and of order 8 2. Thus xxφC(£). Similarly x 2 φ C(Q).

(vi) Since C(Q)UQ^=N{Q)1^ and ^$C(Q), Q is nonabelian. Hence by
(iii) Q is a generalized quaternion group. Moreover there are elements bx and
b2 in Q such that 6 ^ and b2x2 belong to C(Q). Then #,•#,. commutes with i, ,
/= 1, 2. Hence ^ commutes with bt. Thus δt fixes /(#,.). Since | 7(Λ?, ) Π I{Q) I
= 4 and C(x£)

I<:xi:>=M12y b£ fixes exactly four points of J(#t ) and so &t is of order
two or four. If b{ is of order two, then b~a since a is the unique involution
of Q. This is a contradiction since xt $C(Q). Thus έt is of order four. Fur-
thermore this shows that ζQ> yly y2y has exactly one central involution a.

Suppose that Q is of order at least sixteen. Then we may assume that
£)=<£, </>, where c4=d2r=l and r > 3 . Suppose that b^ζdy. Then since d
commutes with bλxly d commutes with Λ?1# Then d fixes I{x^) Π Δ of length eight.
Since d is of order at least eight, d is of order eight. Thus dIC*^ has four fixed
points and one 8-cycle, which is a contradiction since C(Λ? 1) / C* 1 >=M 1 2 . Thus
b&ζdy and so Q=<b19 d>. Similarly Q=<b2y rf>. Hence dbi=d-\ i = ly 2,
and so dbixi={d,-λ)xi. On the other hand since b^^CiQ). Hence dbixί=d.
Thus dxi=d~1 and so d*Λ=d. Since | / ( J C Λ ) | < 1 2 , | 7 ( X Λ ) fl I(Q) I = 4 and
/(ΛJΛ)nΔ2{13, 14}, 2<|/(^Λ: 2 )nΔ| < 8 . Then since d is of order at least
eight, I I(xxx2) Π Δ| = 8 and d is of order eight. Thus | I{xtx^ \ =12 and dκx^
has four fixed points and one 8-cycle. This implies that C(#1*2)

/C4W ̂  M12.
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On the other hand for any four points /, j , k, I of 7(#1Λ:2) let P' be a Sylow
2-subgroup of Gijkι containing xxx2. Then since G is 4-fold transitive, P' is
conjugate to <£), y19 j>2>. Hence P' has the unique central involution a! which
is conjugate to a. Then P'/Cαθ is conjugate to Q and C(a')Icμ':>==M12. If
x1x2=a\ then C(x1x2)

Icxix2>=M129 which is a contradiction. Hence xλx2^d.
Then since P'/Cβo has exactly one involution </, xxx2^Prκao- Hence 7(#1#2)Π
7(*')={*, i, *, /} because C(α')7 c β / )=M1 2. Thus α/c*iV fixes exactly four points
i,j, k, I. Then by a lemma of Livingstone and Wanger [4] C ^ a ^ ' W is 4-fold
transitive on 7(#1*2). Since C(^ic2)

/c*iV=t=Af12, C ( * Λ ) / ( Λ W > ^ 1 2 . Then by
Theorem G=SU or -4lβ, which is a contradiction.

Thus Q is a quaternion group. Since C(Q)I(Q:> =N(Q)HQ\ Qyx has an
element which belongs to C(Q). Hence we may assume that yx^C(Q). Hence
y1

2(b1x1)~1^C(Q)Γ\Q=<(.ay. Thus J 1

2 =6 1 Λ: 1 or abxxx and so yx is of order eight.
Furthermore y1 commutes with a and bt. Hence yx commutes with xx. Thus y1

fixes /(tfj) and so y^J has four fixed points and one 8-cycle. This is a con-
tradiction since C(x1)

Icx^=M12. Thus we complete the proof of (3.1).

3.2. Next we show tht Q is of order two and Qxx has an involution x/ such
that I /(*/) I = 12 and C«) / C V>=M 1 2 .

Proof. By (3.1) ζQ, y19 y2> has an orbit Γ in Δ such that | Γ | = 8 and
ζQ, yly y2y

Γ is a quaternion group. Then Q is a quaternion group or a cyclic
group of order four or two. Hence the automorphism group of Q is *S4 or a
2-group. Furthermore N(Q)Icς»=M12 and N(Q)IcQΊC(Q)I(φ is involved in the
automorphism group of Q. Hence N{Q)KQ^=C(Q)HQ\

Suppose that Q is a cyclic group of order four. Then since N{Q)UQ^ =
C(Q)IQQ:> and Q is abelian, any 2-element of N(Q) is contained in C(Q). Thus
Z((Q> yi> y2»>Q On the other hand ζQ>ylyy£>v is a quaternion group.
Hence Q has an element b of order four and bτι$Z(ζQ, yu jy2>

Γ)> which is a con-
tradiction. Thus the order of Q is not four.

Since <Q, 3 ,̂ j 2 > Γ is a quaternion group and <β> >Ί> j O is of order at least
8-2, <J2, j ! , J2>r has an involution, which is contained in Qxx. Hence we may
assume that xxta<Q, y19 J2>Γ. Then x1t=Z(<β9 yί9 y2>) and 17(^)1 = 12. Let
x be any involution of ζQ9 y19 y2y other than a and xx. Since Q has exactly one
involution a, xφQ. Hence x^Qx^ Thus χlQQ:>=χ1

ICQ:> and so ^ ^ is an involu-
tion of Q. Hence xx1~a and so x=ax1. Thus ζQ, y19 J2> has exactly three
involution a, x19 and ax19 which are contained in Z(ζQ9 y19 y^})-

Assume that <£), y19 y2y is a Sylow 2-subgroup of G 1 2 3 4 . For any four
points, ί, /, /J, / of 7(ΛJ!) let P' be a Sylow 2-subgrouρ of Gt y ̂  / containing xγ.
Since G is 4-fold transitive, P' is conjugate to <Q9 y19 J2>. Since any involu-
tion of ζQ9 y19 y2y is contained in the center of <£), yly J2>> 1̂ is contained in
the center of P'. Thus Ptnx^<ΛC{x1)

Hx^> and P ' 7 ^^ fixes exactly four points i, j ,
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k, I. Then by a lemma of Livingstone and Wagner [4] C{x^)I<ix^ is 4-fold tran-
sitive. Since | / ( ^ ) | =12, C{x^κx^=M12 by Theorem.

Assume that <Qy yly y2y is not a Sylow 2-subgrouρ of G 1 2 3 4 . Then
-̂ K£?> JΊί JV2̂ )i 2 3 4 has a 2-element #' such that x' φ <O, j 1 ? j>2>. If #' fixes /(£?),
then x'IW(=<yly j>2>

/c0) since N(Gκςp)
IcςD=M12. Hence there is an element x"

in <ρ, j , , j;2> such that xrI^=x;/I^\ Thus ^ ' ^ E β and so x'(=<Q> yly y2>,
which is a contradiction. Thus xr does not fix /(£?)• Then / φ α . Hence
0 ^ = ^ or axx. Since C(α)7CΛ)=M12, C ^ ) 7 ^ or C{ax^mx^=Mvι. Thus ρ ^ has
an element x/y where x1'=x1 or axly such that |/(#/)l =12 and C(x/YCXl^=M12.

Since N(Q)ICΦ=M12y we may assume that iV(ζ)) has a 2-element

*2 = (1) (2) (3 4) (5) (6) (7 8) (9 12) (10 11)...

and ζQ, 3/j, jy2, x2y is a 2-group. Then ζQ, x2y is conjugate to ζQy x^). Hence
we may assume that |/(* 2 ) |=12, x2^C(Q)y \I(x2')\=12 and C(x2)

I(x^ = M12y

where x2=x2 or ax2.
Since x2^N(ζQ, yly y2y)y xx2=χx or axx. Suppose that x1

x2=ax1. If Q is
of order two, then ζQ, x±y is an elementary abelian group of order four. On
the other hand <Q,_#i#2> i s conjugate to <£), x^} and Λ?JΛ;2 is of order four,
which is a contradiction. Thus Q is a quaternion group. Set Tr=I(ax1)f] Δ.
Then (/(tfj) Π A)xz=I(ax1) (Ί Δ. Hence | Γ71 = 8 and <£), j ^ j 2 > Γ / is a quaternion
group. Since |<ζ), yly y2yr \ = 8, O^ has an element j / / fixing Γ pointwise.
Then yί^C(Q). Since Qv' is a quaternion group, y/Γ/ is the identity or an in-
volution. Hence y(2 is not the identity and fixes {1, 2, 3, 4} U Γ U Γ' pointwise.
This is a contradiction since | {1, 2, 3, 4} U Γ U Γ' | =20. Thus xx2=xι.

Then x/ and x2' commute. Since C(x1

/)Icx^=M12y I(x2) Π I(Xi)={l, 2, /,/},
where {i9j}czA. Thus <Λ?/, x2y fixes exactly two points /, j of Δ. Then since
<Xι9 xz'y< C(Q), Q is of order two.

3.3. Finally we show that \ Q \ Φ2 and complete the proof.

Proof. By (3.2) | Q \ =2y and so Q=(jiy and <^ay x^} is an elementary abelian
group of order four. Furthermore we may assume that C(x1)

Hx^=M12 and
/ ( Λ 1 ) = { 1 , 2, 3, 4, 13, 14, - , 20}. Since N(QY^ = C(α) 7 w = M12 and <» 7 < Λ )

><3Ί, j^2>, C(«) has 2-elements

x2 = (1) (2) (3 4) (5) (6) (7 8) (9 11) (10 12)- ,
*3 = (1 2) (3 4) (5) (6) (7) (8) (9 10) (11 12)- .

Then we may assume that <ay yly y2y x2y #3> is a 2-group (see (2.3)). Since
<Λ, x{y is conjuagte to ζay x^y in C{ά)y i=2y 3, we may assume that |/(a?f ) | =12
and C(xt )

7cV = M12. Furthermore since <α, ̂ ; . > , i φ j and \<iy j<3y is
conjugate to ζay xty x£Xj is of order two. Thus x{ and Xj commute and so
<α, xly x2y x3y is elementary ableian.
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Since aΣ^={\) (2) (3) (4) (13 14) (15 16) (17 18) (19 20) and C{x1)
I^=M12>

we may assume that */<*> = (1) (2) (3 4) (13) (14) (15 16) (17 19) (18 20) and
*,™V=(1 2) (3 4) (13) (14) (15) (16) (17 18) (19 20). Since \I(x2) | = 12, we may
assume that 7(*a)={l, 2, 5, 6, 13, 14, 21, 22, •••, 26}. Then since α / c V=(l) (2)
(5) (6) (13 14) (21 22) (23 24) (25 26) and C(*2)

/CV = M12, we may assume that
*/(*,>=(!) (2) (5 6) (13) (14) (21 22) (23 25) (24 26) and xz

κ*J=(\ 2) (5) (6) (13)
(14) (21 22) (23 26) (25 24). Since |7(*8)l = 12, we may assume that 7(*8) =
{5, 6, 7, 8, 13,14, 15, 16, 27, 28, 29, 30}. Then since *'<V=(5) (6) (7) (8) (13 14)
(15 16) (27 28) (29 30) and C(x3)

ICXJ=M12, we may assume that */<*>=(5) (6)
(7 8) (13) (14) (15 16) (27 29) (28 30) and x/^^5 6) (7 8) (13) (14) (15) (16) (27 28)
(29 30). Then axxxz is of order two and I{axxx^ contains {9, 10, 11, 12, 17, 18,
19, 20, 23, 24, •••, 30} of length sixteen, which is a contradiction. Thus we
complete the proof of the lemma.

4. Proof of Corollary 1

In this section we assume that G is a 4-fold transitive group on Ω=
{1, 2, •••, n} and n is even. Let P be a Sylow 2-subgroup of a stabilizer of four
points in G. Then | I(P) | = 4 by Corollary of [13].

Proof of (1) of Corollary 1. We proceed by way of contradiction. We
assume that G is a counter-example to (1) of Corollary 1 of the least possible
degree. Then n>35 ([2],p.80). Set 7(P)={1, 2, 3, 4}. Let t be the maximal
number of fixed points of involutions of G and Q be a Sylow 2-subgroup of
G / w such that \I(Q)\=t. For any four points i,j, k, I of I(Q) let Pf be a
Sylow 2-subgroup of Gt j k ι containing Q. Since G is 4-fold transitive, P' is
conjugate to P. Hence by the assumption 7(P/)=7(Z(P'))={z, h k> l}- T n u s

C(QY^>Z(Pγ^ and I(Z(P')IW)={iy j , ky /}. Hence by a lemma of Living-
stone and Wagner [4], C(Q)ICQ' is 4-fold transitive on I(Q). If (C(Q)I(φ)ijkι

is of odd order, then | I(Q) | = 4 . Hence by a theorem of H. Nagao [10] G=S6y

A8 or M12, which is a contradiction since n>35. Hence (C{Q)I(Q^)i jkι is of
even order. Then C(Q)ICΦ satisfies the assumption of (1) of Corollary 1.
Hence by the minimal nature of the degree of G, C(Q)I(ςn=St, At or M12. By
Lemma C ( 0 W ) Φ M 1 2 . If C(Q)ICQ'=St or At, then by Theorem G>Any which
is a contradiction. Thus we complete the proof.

Proof of (2) of Corollary 1. If P, = l , then by a theorem of H. Nagao [10]
G=S6, A8 or M12. Suppose that there is a point i of Ω —7(P) such that P,Φ 1.
Let t be the maximal number of fixed points of involutions of G. Since P£

is semiregular ( φ l ) , we may assume that |7(P,.)| = ί. For any four points
h> h> 4» h of 7(P, ) let Pr be a Sylow 2-subgroup of Gh i2 h , 4 containing P{. Then
NP'(Pi)ICPP is semiregular ( φ l ) and fixes exactly four points i1912, i3y t4. Hence
by a lemma of Livingstone and Wagner [4] JN^P,-)7^*0 is 4-fold transitive on 7(P, )
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and by a theorem of H. Nagao [10] N(Pi)
ICP^ = S6J A8 or M12. Hence by

Theorem and Lemma, G=S8 or A10. Thus we complete the proof.

5. Proof of Corollary 2

In this section we assume that G is a permutation group as in Corollary 2.

We may assume that P is a Sylow 2-subgrouρ of G 1 2 3 4 . Then by a corollary

of [13] | / ( P ) | = 4 , 5 o r 7 .

Suppose that | I(P) \ =4. Then n is even. Furthermore since P is transi-

tive on Ω-/(P), I(P)=I(Z(P)). Hence by Corollary 1, G = 5 2 + 4 (&>1), Λ*+4

(&>2)orM1 2.

Next suppose that | / ( P ) | = 5 . Since P is transitive on Ω —/(P), by a

theorem of H. Nagao [9] G123i is doubly transitive on Ω — {1, 2, 3, 4}. Then

Gx satisfies the assumption of Corollary 2 and | /(P) — {1} | =4. Hence by what

we have proved above, G1 is one of the groups listed above. Hence G=S2k+5

(k>l)orA2*+5(k>2).

Finally suppose that |/(P)| = 7. Then by a theorem of [12] G=^M23.

Thus we complete the proof.
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