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1. Introduction

The known 4-fold transitive groups are the symmetric groups S, (n>4),
the alternating groups A4, (n>6) and Mathieu groups M, (n=11, 12, 23, 24).
The main purpose of this paper is to characterize these known 4-fold transitive
groups. The result is as follows.

Theorem. Let G be a 4-fold transitive group on Q={1, 2, ---, n}. Assume
that

() ¢ is the maximal number of fixed points of involutions of G.
Furthermore assume that G contains a 2-subgroup Q which satisfies the following
conditions:

(1) |I(Q)|=t and Q is a Sylow 2-subgroup of Gy,

(2) NQ)@=S, or A4,.
Then G is one of the following groups; S, (n>4), A, (n>6) or M, (n=11, 12, 23,
24).

This theorem is a generalization of theorems of M. Hall ([2], Theorem 5.8.1),
H. Nagao [10] and the author [11]: the case t<<4 has been proved by M. Hall,
the case t=4 or 5 by H. Nagao and the case =6 or 7 and N(Q)!“®=4, by the
author.

The followings are corollaries.

Corollary 1. Let G be a 4-fold transitive group on Q={1, 2, ---,n}, and P
a Sylow 2-subgroup of a stabilizer of four points in G. Assume that n is even and
P=1.

(1) If I(P)=I(Z(P)), where Z(P) is the center of P, then G is one of the
following groups; S, (n>6), A, (n>8 and n=0 (mod 4)) or M,,.

(2) For any point i of Q—I(P) if P, is semiregular (+1) on Q—I(P,) or 1,
then G 1is one of the following groups; S, S,, Ay, A,y M,, or M,,.

Corollary 2. Let G be a 4-fold transitive group on Q={1, 2, ---,n} and P
a Sylow 2-subgroup of a stabilizer of four points in G. If P is a transitive group
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(1) on Q—I(P), then G is one of the following groups; Sy, (k>1), Syeys (B>1),
Ageyy (k>2), Aspys (R>2), My, or M,,.

Corollary 2 is a generalization of Theorem 1 and Theorem 2 in [7] and
Theorem in [8]. In the proof of Corollary 1 we make use of the following

Lemma. Let G be a 4-fold transitive group on Q={1,2, ---,n}. Assume
that the maximal number of fixed points of involutions of G is twelve. Then for any
2-subgroup Q fixing exactly twelve points N(Q)'?® = M,,.

We shall use the same notations in [12].

2. Proof of the theorem

We proceed by way of contradiction. From now on we assume that G is a
counter-example to our theorem of the least possible degree. Since there is no
4-fold transitive group of degree less than thirty-five except known ones ([2], P.
80), the degree n of G is not less than thirty-five. Set I(Q)={l, 2, ---, t}
and A=0—1(Q). For any point #+17 of A set i'=t+1, 1<i<n—t.

2.1. t>6. In particular if N(Q)'©C=A,, then t>8.

Proof. If t<4, then by a theorem of M. Hall ([2], Theorem 5.8.1) G=3S,,
Sy, Ag, A, or M,,, which is a contradiction since n>>35. If =4 or 5, then by a
theorem of H. Nagao [10] G=S,, S,, 4,, 4, or M,,, which is also a contradiction.
Thus ¢>6.

Suppose that N(Q)!@=A4,, t=6 or 7. Since Q is a Sylow 2-subgroup of
G1@» O is a Sylow 2-subgroup of a stabilizer of four points of I(Q) in G. Hence
by a theorem of [11] G=M,;, which is also a contradiction. Thus if N(Q)’®
=A,, then t>8.

2.2. |A|>17.

Proof. G is a 4-fold transitive group and #>35. Hence by a theorem of
W. A. Manning [5]
n—1 _ 35-—1
=
2 2
2.3. Let R be a 2-subgroup of N(Q) containing Q, and X a 2-subgroup of

N(Q). If <R, X )I9 is a 2-group, then there is a 2-subgroup X' in N(Q) such that
XI@=X"TD (R, X"> is a 2-group and {Q, X") is conjugate to {Q, X in N(Q).

[A] > =17.

Proof. Let P be a Sylow 2-subgroup of <R, X> containing R. Since
(R, XY is a 2-group, PI@=(R, X>®. Then P contains a 2-group X’ such
that X/@=X"7®_ Then (R, X’> is a 2-subgroup of P. Since Q is a Sylow
2-subgroup of G, and <Q, X)IP={Q, X">I?, both <Q, X and <Q, X"> are
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Sylow 2-subgroups of <Q, X, X’>. Hence <Q, X”> is conjugate to <Q, X) in
<Q, X, X’>. Thus <Q, X’> is conjugate to <Q, X> in N(Q).

2.4. If N(Q)'@=S,, then N(Q) has a 2-group <Q, x,, x,, +++, X, where
%= (1) (2)-(2i—2) (2i—1 20) it 1)),

1—
2
Furthermore since N(Q)' =S, or A,, N(Q) has a 2-group <O, ¥1, Y2 ***» Yo
¥./>, where
yi=(12) (3) (4)++(2) (2i+1 20+2) (2i+3)-+(2)--,
/= (13) 2 4) () (6)(®)-~
t—2 t—3

1 it tis odd.

1<i<k, k:% if t is even and k=

1<i<k, k= if t is even and k= if tis odd.

In either case k>3.

Proof. Since N(Q)'®@=S, or 4,, this follows immediately from (2.1) and
(2.3).

From now on we denote that <Q, x,, x,, ---, 2> and <O, ¥, Vs ***» Vi Y1'>
are the groups in (2.4).

2.5. Suppose that N(Q) has the 2-group <Q, x,, x,, -+, x> in (2.4), which is
abelian and fixes a subset A’ of A. If <Q, x,, x,) is semiregular on A’, then {Q, x,,
Xy vy Xpy 15 Semiregular on A'.

Proof. Suppose that <Q, x,, x,, -+, x>, £>2, is semiregular on A’ and
<0, %,, %y, +++, X;1,> is not semiregular on A’. Then <Q, x,, x,, --+, ¥;>%;,, has an
element x fixing a {Q, x,, x,, ---, x,>-orbit of length 2¢. | Q| (=>2/*") in A’ pointwise
since <Q, %, X,, -+, X;,,> is abelian and <Q, x,, x,, --+, ¥,> is semiregular on A’.
Then since x has at most i+1 2-cycles in I(Q) and i>2, |I(x)| >t—2(:41)+
2i*1>¢, contrary to the assumption (*). Thus if <Q, x,, x,, +++, ¥,>, 1>>2, is semi-
regular on A’, then <Q, «x,, x,, -+, x,,,> is semiregular on A’. Then since <Q, x,,
x,> is semiregular on A’, this implies by induction that <Q, x,, x,, -**, x> is semi-
regular on A’.

2.6. N(Q) has the 2-group <Q, ¥., ¥y, -**, Y& in (2.4). Suppose that <O, y,,
Yo =**s Vi 15 abelian and fixes a subset A’ of A. If {Q, y,, ¥, Vs is semiregular on
A, then <O, Vi, Vs ***» Vi) 1S sSemiregular on A’.

Proof. Suppose that <Q,y, v, -*,y,>, >3, is semiregular on A’ and

<Oy Y15 Ya» **» Yixry 18 nOt semiregular on A’. Then <Q, y,, ¥,, +**, ¥:> ¥4+, has an
element y fixing a <Q, ,, ¥,, +++, ¥, >-orbit of length 2¢- | Q| (>2¢*") in A’ pointwise
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since <O, ¥, ¥, ***» ¥;4,> is abelian and <Q, y,, y,, -+, ¥,> is semiregular on A’.
Then since y has at most i+2 2-cycles in I(Q) and >3, |I(y)| >t—2(i42)+
2¢¥1>¢, contrary to the assumption (*). Thusif <Q,y,,, :=-,y>, 1 >3, is semi-
regular on A’, then <Q, ¥,, ¥,, -**, ¥;+,> is semiregular on A’. Then since <Q,y,,
Y. Y5y is semiregular on A’, this implies by induction that <Q,y,, y,, -*-, V&> is
semiregular on A’

2.7. |A|=0 (mod 4).

Proof. Since Q is semiregular (+1) on A, |A] is even, i.e., |A|=0o0r2
(mod 4). Suppose by way of contradiction that | A| =2 (mod 4). Then |Q|=2.
Hence we may assume that Q=<a> and

a= (1) (2)-~() (I' 2) (3 #)-(n—17).

Then N(Q)=C(Q)=C(a) and C(a)!®=S, or A,. We treat these cases separately.

(i) Suppose that C(a)?»=S,. Then C(a) has the 2-group <a, x,, &,, +**, ¥g>
in (2.4). First we show that <a, x,, x,, -+-, ;> has exactly one orbit T" of length
two in A and is semiregular on A—T..

Since |A| =2 (mod 4) and A is a union of {a, x,, x,, -+-, ¥ >-orbits, <a, x,,
X,, +=+, %> has at least one orbit of length two in A. Hence we may assume that
{1V, 2’} is the <a, x,, x,, +++, x,>-orbit of length two. Then x; or ax;, 1<i<k,
fixes {1/, 2’} pointwise. Hence we may assume that x; fixes {1/, 2’} pointwise.
Then I(x;) contains (I(a)—{2i—1, 2:})U {1/, 2’} of length z. Hence by the
assumption (%) |I(x;)| =¢ and I(x;)N A={1’, 2’}. Since I(x,*i-x;) contains I(a)
U{l’, 2’} of length #+2, 1<4, j<k, x%i-x,=1 by the assumption (%). Thus
%=1 and xx,=x;x,. Hence {(a, x,, x,, -, x5 is elementary abelian.

Since a and x;, 1<i<k, has no fixed point in A—{1/,2’} and |A—{1/, 2’}
| =0 (mod 4), | I(ax;)N(A—{1’, 2’})| =0 (mod 4). On the other hand since
| I(ax;) N I(a)| =t—2, |I(ax;)N A]| =2 or 0 by the assumption (). Hence |I(ax;)
N(A—{l, 2’})|=0. Thus <{a, x,> is semiregular on A—{1’, 2'}.

Suppose that {a, x,, x,> is not semiregular on A—{1’,2’}. Then {a, x,, x,>
has an orbit A’ of length four in A—{1/,2’}. Since <{q, ,, ¥,) is an elementary
abelian group of order eight, there is exactly one element (+1) in {a, x,, x,>
fixing A’ pointwise. Since <{a, x,> and <{a, x,> are semiregular on A—{1’, 2},
x,x, or ax,x, fixes A’ pointwise. Since I(x,x,) contains (I(a)—{1, 2, 3, 4)}U
{1/, 2’} of length ¢—2, x,x, does not fix A’ pointwise by the assumption (x).
Hence ax, x, fixes A’ pointwise. Then |I(ax,x,)| =t and so ax,x, has no fixed
point in A—({l’, 27} UA’). 'This shows that <{a, x,, x,> is semiregular on A—
({V, 2YUA’). By (2.4) k>3 and so C(a) has x, in (2.4). Since x, normalizes
{a, x,, x,>, %, fixes A’. Then by the same argument as above ax, x, fixes A’
pointwise. Thus I(ax, x,+ax, x;)=1I(x,x,) contains (I(a)—{3, 4, 5, 6}) U {1, 2’}
U A’ of length ¢+-2, contrary to the assumption (x). Thus <a, ¥,, x,) is semire-
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gular on A—{1’, 2’}. Hence by (2.5) <a, x,, x,, -+, %> is semiregular on A—
{V, 2}.

On the other hand a normalizes G,/ , 4 ,, which is even order. Hence a
commutes with an involution # of G,y y .. Since C(a)=S,, {a, %, %,, **, Xp>
has a subgroup which is conjugate to <{a, #)> in C(a). Since u fixes at least four
points of A, <a, x,, x,, -*-, x,> has an element (1) fixing at least four points in
A, which is a contradiction. Thus C(a)’® = S,.

(if) Suppose that C(a)!=A4,. Let y be a 2-element such that ' is an
involution consisting two 2-cycles. Since |I(y)| <t, |I(y)NA|=0, 2 or 4.

(ii.i) First assume that |I(y)NA|=4. By (2.4) C(a) has the 2-group
{a, y1, ¥» ¥s». Since <a, y,> is conjugate to {a, ¥> in C(a), y, or ay, is conjugate
toy. Hence we may assume that y, is conjugate to y and

¥ =(12)(34) () (6)---(1) (1) (2)) 3") (#)-

Since |A—{1’,2/,3,4}| =2 (mod 4) and A—{1/,2/, 3,4} is a union of
<a, y,>-orbits, the number of <a, y,>-orbits of length two in A—{1’, 2/, 3/, 4}
is odd. Hence we may assume that {5/, 6’} is the orbit of length two. Then
y,=(56") on {5, 6’'}, and <a, y,> is semiregular on A—{1’, 2/, ---, 6’} since
|I(ay,)| =t. Furthermore C(a) has a 2-element

¥ = (1) (2) 34) (57) (6) (8) (9)-+(8)-

By (2.3) we may assume that <{a, y,, y,/> is a 2-group. Then y,,y, and y,’
normalize {a,y,>. Since |I(y,)| = |l(ay,)|, y2=ys=y2?=y,. Thus y,, y, and
y, centralize {a, y,>, and so fix {1/, 2/, 3, 4} and {5/, 6’}. Since y; or ay,,
1=2, 3, and y,’ or ay,’ fix {5/, 6’} pointwise, we may assume that y,, ¥, and y,’
fix {5, 6’} pointwise. Since I(y?i-y,) contains I(a)U{5’, 6’} of length 42,
2<i, j<3, y,’=ys=1 and y,y,=y,¥, by the assumption (*). Similarly y,’ is of
order two. Thus <a, y,, ¥,, ¥5> and <a, ¥,, y,’> are elementary abelian. Since
¥ ¥s and y,’ fix {1/, 2/, 3, 4}, ,, y; and y,’ are (1) (2’) 3") @), (I’ 2) (3") (4),
N @)@B4),1'2)@34),1"3)(2'4) or (1’4)(2'3) on {1',2,3,4}.
Since I(y,) contains (I(a)—{1, 2, 5, 6}) U {5’, 6’} of length ¢—2, y, does not fix
{1/, 2, 3/, 4} pointwise. Similarly y, and y,’ do not fix {1/, 2/, 3/, 4} pointwise.
If y,=(1’ 2) (3’ 4)---, then I(ay, y,) contains (I(a)—{3,4,5,6})U{l’, 2/, ---, 6’}

of length 42, contrary to the assumption (%). Thus y,+(1’2’) (3’ 4)---.
Similarly y, and y,"= (1" 2’) (3’ 4)---. Next suppose that y,=(1" 2) (3’) (4')---
The proof in the case y,=(1’) (2’) (3’ 4)-:- is similar. Since y, commutes with
70 7=(172) () (#)= o (1) (2) (/). I yu=(l'2) (3) ¥, then
I(y,y,) contains (I(a)—{5, 6, 7, 8}) U{l’, 2/, ---, 6’} of length -2, contrary to
the assumption (x). Thus y,=(1") (2’) (3’ 4):--. On the other hand as we have
seen above y,/=(1' 2') (3') (#) (5") (6), (1) (2)) (3’ 4) (5) (6'), (1" 3) (2 4) (5)
(6) or (1" 4) (27 3") (5") (6') on {1”, 2/, .-+, 6'}. If ¥, is of the first form, then
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(9.3.') is of even order and |I((y,y,')?)| >t+2, contrary to the assumption ().
If y,’ is of the second form, then (y, y,’)* is of even order and |I((y;y,)’)| >t+2,
contrary to the assumption (x). If y,’ is of the third or fourth form, then (y,y,)°
is of even order and |I((y,y,))| >t+2, contrary to the assumption (x). Thus
¥, (1" 2) (3') (4)-+- and so y,%=(1") (2') (3’ 4)---. Finally suppose that y,=
(17 3") (2 4’)-++. The proof in the case y,=(1’ 4’) (2’ 3’)--- is similar. Then by
the same argument as is used for y,, ¥, and y,” are (1’ 3’) (2’ 4) or (1’ ) (2’ 3’)
on{l’, 2,3, 4}. 1If ¥s or y,/=(1"3) 2 4)s then |1(y,y,)| or lI((yzyzl)s)l
>t+-2 respectively, contrary to the assumption (). Thus y, and y,’=(1" 4)
(27 3)-+-. Then (y,9,)*is of even order and | I((y, y,')*)| >¢+2, contrary to the
assumption (*). Thus if y is a 2-element of C(a) such that y’*® is an involution
consisting of two 2-cycles, then [I(y)NA| +4.

(ii.ii) By (ii.i) for any 2-element y of C(a) such that y'“ is an involution
consisting of two 2-cycles, |I(y)NA|=0 or 2. By (2.4) C(a) has the 2-group
<@, Y1y Yoy ***» Y. First we show that {a, y,, ,, .-+, y&> has exactly one orbit T"
of length two in A and is semiregular on A—T".

Since | A| =2 (mod 4) and A is a union of <a, y,, ¥, -+, yp>-orbits, <a, y,,
Y2 -+, Ye> has at least one orbit of length two in A. We may assume that {1’,2'}
is the <a, y,, ,, -*, yp>-orbit of length two. Then y; or ay,, 1 <i<k, fixes {1/,2}
pointwise. Hence we may assume that y, fixes {1, 2’} pointwise. Since |I(y,)
NA|=0 or 2, I(y,)N A={1’, 2’}. Since I(y/i+y;) contains I(a)U{l’, 2’} of
length t+2, 1<4, j<k, y?i-y,=1 by the assumption (¥). Hence y =1 and
¥:Y;=y;¥:» Thus <a, y,, ¥, +*+, y&> is an elementary abelian group.

Since a and y, has no fixed point in A—{1’,2’} and | A—{1’,2’}| =0 (mod
4), [ I(ay,)N(A—{1’, 2'})| =0 (mod 4). Hence by (ii.i) |I(ay,) N(A—{1",2'})|
=0. Thus <a, y,> is semiregular on A—{1’, 2}.

Suppose that <a, ¥,, y,> is not semiregular on A—{1/,2’}. Then {a, y,, y.>
has an orbit A’ of length four in A—{1’, 2’}. Since {a, y,, ¥,> is an abelian
group, there is an involution y’ in <{a, y,> y, fixing A’ pointwise. Then y"7® is
an involution consisting of two 2-cycles and I(y’)N ADA’, contrary to (ii.i).
Thus <a, y,, ¥,> is semiregular on A—{1’, 2'}.

Suppose that <a, y,, ¥,, ¥5> is not semiregular on A—{1’, 2’}. Then <{a, y,,
¥» ¥s> has an orbit A’ of length eight in A—{1’, 2’}. Since <a, ¥, ¥, > is an
abelian group of order sixteen, there is exactly one involution y’ in <a, y,, ¥,, ¥5>
fixing A’ pointwise. Since |A’|=38, 3’ has at least four 2-cycles on I(a). Thus
Y'=%.9,9s Of ay, ¥, v,. If ¥=1, y,y,, then I(y’) contains (I(a)—{1, 2, ---, 8}) U
{1/, 2’} U A’ of length #+-2, contrary to the assumption (*). Thus y’'=ay, y,y,.
Then ay, y,y,)=(a)—{1,2, ---,8}) UA’ since |(I(a)—{1,2, -+, 8}) UA'|=t.
Furthermore this shows that <, y,, ¥,, ¥5> has no orbit of length eight in A—
({1”, 2’} UA’). On the other hand C(a) has a 2-element

v/ = (13)(24) (5) (6)-(2)* .
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By (2.3) we may assume that <{a, y,, ¥,, ¥5, ¥."> is a 2-group. Then y,’ normalizes
{a, y,, ¥, ¥5» and so y,” fixes {1, 2’} and A’. Set R=<a, ¥, V2 Vs Y.V, Where
i=A’. Then the order of R is four and so R is cyclic or elementary abelian.
Since <a, y,> is contained in the center of <a, y,, ¥,, ¥ ¥,> and semiregular on
A’, any element of R fixes at least four points of A. Suppose that R is a cyclic
group generated by an element 2. Then since ay, y, y, is the involution of R,
¥*=ay,y,y,. Thus 2/ has two 4-cycles since (ay, v, y,)*=(12) (3 4) (5 6)
(7 8). However this is impossible since <a, y,, ¥, V5 ¥./>' has no such element.
Next suppose that R is elementary abelian. Since R;,=1, R'® is also an
elementary abelian group of order four. Furthermore since any element of R
fixes at least four points of A, every element (1) of R“® has at least three 2-
cycles by the assumption (%) and (ii.i). This is a contradiction since {a, y;, ¥
Y5 ¥/ >1® has no such group. Thus <a, y,, ¥,, y,> is semiregular on A—{1’, 2}.
Hence by (2.6) <a, ¥,, ¥., ***, s> is semiregular on A—{1’, 2’}.

On the other hand a normalizes G,/ ,, which is of even order. Hence a
commutes with an involution u of G,/ 5. Since C(a)!®=A4,,<a, Y1, V2 ***» V&>
has a subgroup which is conjugate to <a, »> in C(a). Since u fixes at least four
points of A, <a, ¥,, ¥, **+, Vx> has an element (= 1) fixing at least four points of
A, which is a contradiction. Thus C(a)’®44,. Hence |A| =0 (mod 4).

2.8. Let x be a 2-element of N(Q) such that x'© is an involution consisting
of m 2-cycles. If x fixes r Q-orbits in A, then r <2m and Qx has at least ZL O]
m

involutions which have fixed points in A.

Proof. Assume that x fixes r Q-orbits A, A,, -+, A, in A. Set I'=A, U
A,U--UA,. Then

P10l = 31! .
Since <0, ¥>=0-+Qv and Q| =| A, ==,
r-2-101 = 3 1)+ 3 | (")
— 7101+ B 1 K@) -
Hence
2 (@) =101 -

On the other hand |I(x) N I(Q)| =¢t—2m. Hence for any element u of Q | I(ux)
N A| <2m by the assumption (*). Hence |I((ux)")| <2m. Suppose that Ox has
s elements which have fixed points in T". Then

> | I((un)") | <2ms.

T=1]
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Hence 7+ | Q| <2ms. Thus 2’ «| Q| <s. Furthermore since s<|Q|, Zr -1 0|
m m

=<|Q|. Hencer<2m.
Let &’ be any element of Qx such that [I(x')N\ A| 0. Then |I(x"*)| >t.
Hence #"*=1 by theassumption ().

We use the following notations: Assume that the Q-orbits on A consist of
Ay, A, -+, A,. For any element x= N(Q) let X be the permutation on {A}, A,,
-++, A,} induced by x,

x——(Al Az ...Ar)
\AS A A7

Then % form a permutation group N(Q) on A={A,, A,, -, A, }.

29. Suppose that N(Q) has the Z'gmup <Qa Xyy Xay **°y xk> as in (24')y and
KO, %, %, =+, x> fixes a subset A’ of A. If <Q, x,, x,, x,, x,> 15 semiregular on A,
then {Q, x,, x,, -+, x> is semiregular on A’.

Proof. Suppose that <Q, x,, x,, -, x;>, >4, is semiregular on A’ and
<O, x,, %, +++, X4, is not semiregular on A’. Then <Q, x,, x,, ---, x,>%,,, has an
element x having fixed points in A’. Since {&,, &,, -+, ®;,,> is abelian and {x,,
%,, -, X,> is semiregular on the set of the Q-orbits contained in A/, X fixes at
least 2¢ Q-orbits in A’. On the other hand since x=<Q, x,, &x,, -++, ¥;4,>, ¥ has
at most 7+ 1 2-cycles on I(Q). Hence by (2.8) 2:<2(i+1), so i<3, whichisa
contradiction. Thus if <Q, x,, x,, -+-, x,>, £ >4, is semiregular on A’, then <Q, x,,
Xy +++y %;4 > 1s semiregular on A’. Since <Q, x,, x,, %, x,> is semiregular on A/,
this implies by induction that <Q, x,, x,, ---, x,> is semiregular on A’.

2.10. Suppose that {Q, y,, Vo ***s Yo ¥,'> as in (2.4) fixes a subset A’ of A.

If O, Y15 Yo» Yor Vus ¥,/> U5 semiregular on N, then <Q, Y, Yo+ Vi Yi'V 18
semiregular on A’.

Proof. Suppose that <Q, y,, ¥,, -+, ¥:» ¥,">, 1 =>4, is semiregular on A’ and
O, Y1y Yos ***s Yirr» ¥)'> is not semiregular on A’. Then there is an element y
(F1)in <O, ¥y, Vay ***» Yir1» ¥/ such that 7 fixes Q-orbits in A’. Then y'?@ is
of order four or two. If /9 is of order four, then y’® consists of exactly one
4-cycle (1 324) or (1 42 3) and some 2-cycles. Hence (y*)’@=y,/“ and so
y°=3,. 'This is a contradiction since 7, has no fixed point in the set of the O-
orbits in A’. Thus y’® is of order two and consists of at most 42 2-cycles.
Then 7y centralizes s FoTss FoTur 05 TV y—1/> or {Fy, Joy **» I which is
semiregular on the set of Q-orbits in A’ and of order 2¢. Hence j fixes at least
2¢ Q-orbits in A’ and so by (2.8) 2/<2(:4-2). Hence <3, which is a contradic-
tion. Thus if <O, y,, ¥, ==+, ¥»» ¥,">, 1 >4, is semiregular on A/, then <Q, y,, y,,
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“o*, ¥irp ¥/ is semiregular on A’.  Since <Q, ¥,, ¥ ¥ Yo ¥,/> is semiregular on
A’, this implies by induction that <Q, y,, ¥,, *--, ¥4, ¥,"> is semiregular on A’.

2.11. G is not 5-fold transitive on Q.

Proof. If G is 5-fold transitive on , then G, is 4-fold transitive on Q—
{1} and satisfies the assumptions of the theorem. Hence by the minimal nature
of the degree of G, G, contains 4,_,, so G contains 4,. This is a contradiction.
Thus G is not 5-fold transitive.

2.12. Let x be an involution of N(Q). If thereis a Q-orbit A’ in A such that
[I(x) N A'| =2, then C(Q)!©@=A4, or S,.

Proof. Since x is an involution and | I(x) N A’| =2, x induces an involutory
automorphism of QO which fixes exactly two elements. By a theorem of H.
Zassenhaus ([16], Satz 5) O contains a cyclic group of index two. Then the
automorphism group of Q is S,, S, or a 2-group (cf. H. Zassenhaus [17], IV, §3,
Exercise 4). Since N(Q)!@=4, or S,, ¢>6 and N(Q)'®/C(Q)'? is involved
in the automorphism group of Q, C(Q)'® contains 4,.

2.13. Let x be a 2-element of N(Q). If x'® is an involution consisting of
exactly one 2-cycle, then |I(x)N A|=0.

Proof. Since |I(x)| <t, |I(x)N A|=0 or 2. Suppose by way of contradic-
tion that ' is an involution consisting of exactly one 2-cycle and |I(x)N A|=
2. Then |I(x®)| >t+2. Hence x*=1. Since %’ is an odd permutation,
N(Q)'@=S,. Furthermore by (2.12) C(Q)'®=S, or 4,. We treat these cases
separately.

(i) Suppose that C(Q)Y=S,. Then C(Q) has a 2-element &’ such that
2T @=xIQ_ Since Q is a Sylow 2-subgroup of G, <O, x> and <Q, &) are
Sylow 2-subgroups of <Q, x, ¥>. Hence <Q, x> is conjugate to <Q, x’>. Thus
x is conjugate to x’c, where c 0O, and so |I(x’c)N A|=2. Hence x’c commutes
with exactly one element of Q other than 1, which is a central involution of Q.
On the other hand since ¥’ C(Q), ¥’ commutes with ¢. Hence &’c commutes
with ¢. Thus ¢ is 1 or a central involution of Q. Hence ¥’ceC(Q) and so Q is
of order two. Set O=<a). Then we may assume that

a= (1) (2)-(t) (1 2) (3 4)~(n—1 ).

Since |A| =0 (mod 4) and |I(x)N A|=2, |I(ax)NA| =2 (mod 4). Hence
| I(ax) N A|=2 because |I(ax)| <t. Since C(a)!“’=S,,C(a) has the 2-group
la, %,y %,y +++, X as in (2.4). Since <a, x,;>, 1 <i<k, is conjugate to <{a, x> in
C(a), <{a, x,> is elementary abelian and |I(x;)N A|=|I(ax;)N A| =2. Hence we
may assume that
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2,=(12)@F) )@ 1) )B4 7) (6" 8)-.

Then <a, x,> is semiregular on A—{1’, 2/, 3/, 4'}.

Now we show that {a, x,, x,, -+, %> is elementary abelian and semiregular
on A—{1’, 2/, 3/, 4}, where {1/, 2’} and {3, 4’} are <a, x,, x,, --+, x,y-orbits of
length two. Since x, normalizes <{a, x,>, x,*>=x, or ax,. Suppose that x,"2=ax,.
Then (x, x,)’=a. Hence <{x, x,> is a cyclic group of order four and contains a.
On the other hand since C(a)!“’=S,, <a, x,, x,> is conjugate to <{a, x,, x,> in
C(a). Hence x,"s=ax,. Thus x,*2*s=x, and so «, x, centralizes {q, x,>. Further-
more since I(x,)N A={1’, 2’} and I(ax)N A={3’, 4}, x,x, fixes {1/, 2’} and
{3/, 4}. Thus I((x, x,)°) contains I(a)N {1, 2, 3/, 4} of length ¢44. Hence
(x, %,)’=1. This is a contradiction since {a, x,%,> is conjugate to the cyclic
group <{x, ¥,»>. Thus x, commutes with x, and so <a, x,, x,> is elementary abelian.
Furthermore {a, x,, x,» is conjugate to <a, ¥;, x;>, 1% j and 1<z, j<k. Hence
{a, x; x;> is also elementary abelian. Thus {a, x,, x, --+, x,> is elementary
abelian. Since I(x,)N A={1’, 2’} and I(ax,)N A={3’, 4}, {1, 2’} and {3/, 4’}
are <a, x,, X,, *-+, X, »-orbits of length two. Since x; or ax,, 2<i<k, fixes {1/,2/}
pointwise, we may assume that x; fixes {1/, 2’} pointwise.

Suppose that {a, x,, x,> is not semiregular on A—{1’, 2/, 3/, 4’}. Then
{a, x,, x,> has an orbit A’ of length four in A—{1’, 2/, 3’,4’}. Since <a, x,, X,)
is an elementary abelian group of order eight, there is exactly one involution x’
in <a, x,, x,> fixing A’ pointwise. Since | A’| =4, x’ has at least two 2-cycles in
I(a). Hence x'=x, x, or ax, x,. If ¥’=x, x,, then I(x’) contains (I(a)—{1,2,3,4})
U{1’, 2’} U A’ of length #+2, contrary to the assumption (*¥). Thus ¥’=ax, x,.
Then I(ax, x,)=(I(a)—{1, 2, 3,4}) U A’ since | (I(a)—{1, 2,3,4}) UA’|=t. This
shows that <{a, x,, ¥, is semiregular on A—({1’, 2/, 3/, 4} UA’). By (2.4) C(a)
has x,, Then x, normalizes {a, x,, x,> and so fixes A’. Hence by the same
argument as above ax, x, fixes A’ pointwise. Thus I(ax, x,-ax, x,)=1I(x, x,)
contains (I(a)—{3, 4, 5, 6}) U{l’, 2, 3/, 4’} UA’ of length ¢4, contrary to the
assumption (*). Thus <a, x,, x,> is semiregular on A—{1/,2,3’,4’}. Hence
by (2.5) <a, ®,, %,, -*+, %> is semiregular on A—{1’, 2/, 3/, 4'}.

On the other hand {a, > normalizes G ,/,, which is even order. Hence
a and x, commute with an involution u of Gy, . Since I(x,)N A={1’,2’} and
I(ax)N A={3’,4'}, <a, u> has at least four orbits {1/, 2}, {3/,4'}, {5/, 6’} and
{7/, 8’} of length two in A. Since C(a)'“*’=S,, <a, x,, %,, -+, x> has a subgroup
{a, u"> which is conjugate to <a, > in C(a). This is a contradiction since <a, #’)
has exactly two orbits {1/, 2’} and {3/, 4} of length two in A. Thus C(Q)'®
+5,.

(ii) Suppose that C(Q)!@=4,.

(ii.) We show that x fixes exactly one Q-orbit in A. Since [I(x) N A|=2,
x fixes at least one Q-orbit in A. On the other hand by (2.8) x fixes at most two
Q-orbits. Suppose that x fixes exactly two Q-orbits A, and A, in A. Let « be
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any element of Q. Then by (2.8) ux is an involution having fixed points in A,
or A,. Since ux consists of one 2-cycle on I(Q), ux fixes two points and these
two points are contained in either A, or A,. Hence {Q, x> is semiregular on
A—(A,UA,). Since (ux)’=1, u*=u"". In particular if « is an involution, then
x commutes with #. On the other hand since |I(x)N A|=2, x commutes with
exactly one involution of Q. Hence Q has exactly one involution and so Q is a
cyclic or generalized quaternion group. Let # and #’ be any two elements of Q.
Then (uw')*=(uw’)"", and (uw')*=v*u'*=u"'w'"'=(w'u)"'. Hence uw'=u'u and
so Q is a cyclic group. Furthermore since C(Q)/@=4,, any 2-element of N(Q)
whose restriction on I(Q) is an even permutation belongs to C(Q).

N(Q) has the 2-group <Q, x,, x,, ¥,> as in (2.4). Since <0, x,> is conjugate
to <Q, x)>, we may assume that x,=x,

%= (12)3) (#)-@) (1) (2) (" 4)-
and {1/,2’}CA,. Since x, normalizes <Q, x,> and <Q, x,> has exactly two orbits
A, and A, of length |Q|, A*2=A, or A,. First assume that A,*>=A,. Since
{0, x,, x> is conjugate to <0, x,,x,> in N(Q), A"s=A,. Hence A " =A,.
Next assume that A "s==A,. Then similarly A"s=A,. Hence A,*?"s=A,. Thus
in either case A ""»=A,. Hence there is an element y in Qx,x, such that
[I(y)N A, 0. Since y'@=(3 4) (5 6), |I(y)NA,|=2 or 4. Furthermore as
we have seen above ye C(Q). Hence |Q|=2 or 4. However we assumed that
N(Q)+=C(Q). Hence |Q|=4. Let Q=<b>. Since b"1=>b"", we may assume that

b= (1) (2)-(@) (I’ 3’ 2/ 4) (5" 7' 6’ 8)---
A={1",2,3, 4} and A,={5', 6/, 7, 8'}. 'Then

y=(1)(2) 3 4) (5 6)(7)@®)() (1) (2) (3) (¥) (5" 6) (7" 8)--- .
On the other hand C(Q) has a 2-element

¥y =1)(2) 3 3)#6)(7) ®)-@®).

By (2.3) we may assume that <Q, x,,y, y"> is a 2-group. Since <{Q, x,,y’> is
conjugate to <Q, x,,y> in N(Q), A=A, and A?=A,. Then Qy’ has an

element

y'=(1)(2) 35 *6)(7) (3)(1) (1) (2)3) (#) (5 6) (7" &)~ .

Then yy” is of even order and I(yy”) contains (I(Q)—{3,4,5,6})UA,UA, of
length ¢4, contrary to the assumption (). Thus x, fixes exactly one Q-orbit
in A.

(ii.i]) We show that |Q|=4. Since N(Q)'® 4 C(Q)'®, | Q| +2. Suppose
by way of contradiction that |Q| >8. By (2.4) N(Q) has the 2-group <Q, x,, x,,
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x,>. Since <0, x,> is conjugate to <0, x>, we may assume that x,—x and
% =(12)(3)(#)-@) (1) (2) (3" 4) (5" 7) (6/ &)--.

Then there is exactly one involution @ in Q commuting with x,. Then we may
assume that

a= (1) ()~(t) (I 2) (3 4) (5' 6) (7' 8)-++(n—11) .

By (ii.i) there is exactly one Q-orbit A, in A fixed by x,. Since |A,|=]| Q]| =38,
we may assume that A, D{1’, 2/, --+, 8}. Since x, and x, normalizes <Q, x,>, x,
and x, fix A,. Thus Qx, and Qw, have elements fixing 1’ of A,. We may assume
that x, and «x, fix 1. Then I(x%i-x,)21(a) U{1’}, 1<7, j<3. Hence x,’=x,"=1
and x; commutes with x;. Since I(x,)NA={l’, 2’} and [I(x;)| <t, =2, 3,
I(x;)Nn A={1’, 2’}. 'This implies that x, and x, commute with a. Thus {q, x,,
®,, X,> is elementary abelian. Furthermore I(ax,)N A={3’, 4}. Hence «x, and
x,=(1") (2) (3’ 4) on {1/,2/,3’,4’}. On the other hand |A,—{1/,2/,3,4'}| =4
(mod 8). Hence <a, ,, X,, x,> has an orbit of length four in A,—{1/,2/, 3/, 4'}.
Hence we may assume that {5/, 6%, 7/, 8’} is the <q, x,, x,, x,>-orbit of length
four. Since |<a, x,, x,>| =8, =2, 3, there is an involution x; in <a, x,, x,>
fixing {5/, 6/, 7/, 8’} pointwise. Since |I(x;)| <#, x/=x,x; or ax,x;. If x/=xx,,
then I(x,x;)NAD{1’,2/, -+, 8} and so | I(x,x;)| >¢-+4, contrary to the assump-
tion (¥). Thus x/=ax,x;, Hence I(ax,x,-ax x,)=1(x,%,) contains (I(a)—
{3,4,5,6})u{l’, 2, -+, 8} of length #+44, contrary to the assumption (x).
Thus |Q|=4.

O, %, %y, +++, %> as in (2.4). Since <Q, x,> is conjugate to <Q, x>, we may
assume that x,=x and

%= (12)3)#®) 1)(2) @ 4) (5 7) (6 8).
Let a be an involution of O commuting with »,. Then we may assume that
a= (1) 2)-(t) (' 2) (3 #)-(n—1 ).

Then by (ii.i) and (ii.ii) {1/, 2/, 3/,4'} is a <Q, x,>-orbit and <Q, x,> is semiregular
on A—{1/,2/,3’,4’}. Since x; normalizes <Q, x,>, 2<i<k, x, fixes {1/,2/,3",4'}.
Hence Qw; has an element fixing 1. We may assume that x; fixes 1. Then
I(x7i-%;), 1<i, j<k, contains I(Q)U {1’} of length z+41. Hence x;//-x,=1.
Thus =1 and x;x,=x;x,. Furthermore I(x,)N A={1’,2’}. Hence I(x,)N A
={1/,2'}, 1>2. This implies that x; commutes with a. Thus <{a, %, x,, ***, x>
is elementary abelian and x;—(1") (2’) (3’ 4) on {1, 2,3/, 4}, 1<i<k. Fur-
thermore since x,x;, 1<i, j<k, fixes {1,2/,3/,4'} pointwise, <a,x,;x,><Z
(<Q’ Xyy Xy ©*°y xk>)

Now we show that <Q, «x,, x,, -+, x,> is semiregular on A—{1’, 2/, 3/, 4'}.
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Suppose that <Q, x,, x,> is not semiregular on A—{1’, 2/, 3/, 4}. Then there
is a <Q, x,, x,>-orbit A’ of length eight. Since <Q, x,> and <Q, x,> are semiregular
on A—{1/,2/,3’,4’}, there is an element « in Q such that ux, x, has fixed points
in A’. If u=1 or a, then ux, x,= Z(<0Q, x,, x,>). Thus ux, x, fixes A’ pointwise
and so |I(ux, x,)| >t44, contrary to the assumption (x). Thus =1, a. Since
0<|I(ux,x,) N A’| <4 and ux, x,=C(Q), ux, x, fixes exactly four points of A’.
Since | A’| =8, there is an element #’ in Q such that «'x, x, fixes exactly four
points of A’ which are not fixed by ux, x,. By the same reason as above u’+1, a.
Hence w'=ua. Furthermore this shows that <Q, x,, x,> is semiregular on A—
{1, 2,3,4}UA"). By (2.4) N(Q) has x,. Then x, normalizes <Q, x,, x,> and
so fixes A’. Hence by the same argument as above u”’x, x,, where u’’=u or ua,
fixes the same points of A’ that ux, x, fixes. Then wux, x,-u' %, x,—uu'’x, x, has
fixed points in A’. Since uu”’=u’ or #’a and w’=1 or a, uu”’=1 or a. Hence
uu''x, x,= C(<Q, x,, x,)) and so uu’’x, x, fixes A’ pointwise. Thus |I(uu"'x,x,)]
>t-+4, contrary to the assumption (x). Thus <Q, x,, x,> is semiregular on A—
{1, 2,3, 4}.

Suppose that <Q, x,, x,, ¥,> is not semiregular on A—{1’,2’,3’,4’}. Then
there is a <Q, x,, x,, x,>-orbit A’ of length sixteen. Since <Q, x,, x,> and <O, x,,
x,> are conjugate to <Q, x,, x,> in N(Q), <0, x,, x,> and <Q, x,, x,> are semiregular
on A—{1/,2,3,4}. Hence there is an elemenet &’ in Qx, x, x, such that ” has
fixed points in A’. Since {a, X, X,, x,%,><<Z(<Q, x,, x,, x,>), ¥’ = C(a, x,%,, X, %,)).
On the other hand <Q, x,, x,», <O, x,, x,> and <Q, «,, x,> are semiregular on A’.
Hence <a, x,x,, x,x,> is semiregular on A’. Since &’ has fixed points in A’ and
[<a, x,%,, x,%,>| =8, x’ fixes at least eight points of A’. Thus |I(x’)| >t—6+8
=t+2, contrary to the assumption (x¥). Thus <Q, x,, x,, x,> is semiregular on
A—{1,2/,3,4}.

Suppose that <O, x,, x,, x,, x,> is not semiregular on A—{1/,2/,3’,4'}.
Then <Q, x,, x,, x;, x,> has an orbit A’ of length 2°. Since <Q, x,, x,, x,>,
<0, x,, x,, x> and <Q, x,, x,, x,> ar conjugate to <O, x,, x,, x,> in N(Q), these
groups are semiregular on A—{1’, 2/, 3/, 4’}. Hence there is an element &’ in
Ox, x, x, x, such that x’ has fixed points in A’. Since <Q, x, x,, ¥, x,><<C(Q),
x®’=C(Q). Furthermore since x, x, and x, x,& Z(<Q, x,, x,, %5, %,>), %, X, and x, x,
commute with /. Thus x»'=C(KQ, x,x,, x,x,>). Since <Q, x, x,, x,%,> is
semiregular on A—{1’, 2, 3/, 4} and of order 2¢, x’ fixes at least 2* points in A’.
Then |I(x")| >¢—2-4+2'=1+8, contrary to the assumption (). Thus <Q, «,,
X,, X3, X,> is semiregular on A—{1’,2/, 3/, 4’}. Hence by (2.9) <Q, x,, x,, -+, x>
is semiregular on A—{1’, 2, 3/, 4'}.

On the other hand <a, x,> normalizes Gy, which is even order. Hence
a and x, commute with an involution « of Gy, . Then <a, x,, > normalizes
G- Hence there is a Sylow 2-subgroup O’ of G, such that <{a, x,, u>
normalizes Q’. Since Q’ is conjugate to O in G, and N(Q)@=S,,<{Q’, a,x,,u)>
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is conjugate to a subgroup of <Q, x,, x,, -**, x> in N(G;p,). Then <Q’, a, x,,u)
is semiregular on A—{1’, 2/, 3/, 4} since I(x,)NA={1’, 2’} and I(ax,)N A=
{3’, 4}. 'This is a contradiction since I(u)NAD{5’, 6/, 7, 8’}. Thus C(Q)"?
=+ 4, and so we complete the proof of (2.13)

2.14. Let y be a 2-element of N(Q). If y*? is an involution consisting of
exactly two 2-cycles, then |I(y)N A| 2.

Proof. Suppose by way of contradiction that '@ is an involution consist-
ing of exactly two 2-cyclesand |I(y) N A|=2. Then |I(y*)| >¢+42. Hence y’=1.
We may assume that

y=(12)(34)(5) (6)-() (1) (2) 3" 4)--- .

Then by (2.12) C(Q)'®=S, or 4,. Then since y’® is an even permutation,
Y@= C(Q)'?. Thus there is an element a of Q such that aye C(Q). Hence
ay commutes with @ and so y commutes with @. On the other hand y commutes
with exactly one involution of Q, which is a central involution of Q. Hence
acsZ(Q) and so yeC(Q). Thus |Q|=2 and so Q=<a>. Since I(y)N A=
{1/, 2’} and |A—{V’, 2'}| =2 (mod 4), |I(ay)N A| =2 (mod 4). Hence |I(ay)
N A|=2. Thus we may assume that

a= (1) (2)(t) (I'2) (3 4)+(n—11).

Then <a, y> is semiregular on A—{1’, 2/, 3/, 4}. Since C(a)'“°>4,, there is
an element 2z in C(Q) of the form

2= (1324)(56)(t)-.

By (2.3) we may assume that {a, y, 2> is a 2-group. Then 2=y or ay, and so
Iz*)NnA={1", 2’} or {3’,4’}. Thus 2 consists of 4-cycles on A—{1’, 2’} or
A—{3’,4}. Hence |A| =2 (mod 4), contrary to (2.7). Thus we complete the
proof.

2.15. Let y be a 2-element of N(Q). If y'® is an involution consisting of
exactly two 2-cycles, then |I(y)N A|=0.

Proof. Since |I(y)NI(Q)|=t—4, |I(y)NA|=0,20r 4. By (2.14) |I(y)
NA|=2. Hence suppose by way of contradiction that |I(y)N A|=4. By (2.4)
N(Q) has the 2-group <O, y,, ¥, ***, ¥ ¥.>. Since <Q, y,> is conjugate to
<0, y>, we may assume that y,=y.

First we show that y, fixes at least two Q-orbits in A. Suppose by way of
contradiction that y, fixes exactly one Q-orbit A, in A. Then |I(y,)NA,| =4,
so |Q]=]A,| =4

Since N(Q)' @ =S, or A4,, first assume that N(Q)'“®=S,. Then N(Q) has
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a 2-element

5= (12) (3) (-0~

By (2.3) we may assume that {Q, y,, x> is a 2-group. Then x normalizes <Q, y,>.
Hence x fixes A,, contrary to (2.13). Thus N(Q)'“@=+S,.

Hence N(Q)!®=A4,. First we show that <O, y,, ¥, -, ¥, ¥, fixes A,
and is semiregular on A—A,. Since y,’ normalizes <Q, y>, y,” fixes A,. Since
<Q, /> and <Q, ¥,3,"> are conjugate to <Q, y,> in N(Q), <Q, »,"> and <Q, y: 3>
are semiregular on A—A,. Thus <Q, y,, ¥,”> are semiregular on A—A,.

Since (yiyi)l(o):(yiyi)l@)’ 1 Sl! ]Sk: y_iyj:y—j ¥ Thus <y_1’ Yoy ooy y_k>
is elementary abelian. Similarly since (y,,/)@=(y,/y,)® and (y,y;-y,/) @ =
O -y:9)'9, 2<1i, j<k, {3,, §), :5;> is elementary abelian. Since y, fixes
exactly one Q-orbit A, in &, {J,, ,, -+, s, 7,/> fixes A,. Thus A, is the <0, y,,
YVas ***» Vi Yo D-01Dbit.

Suppose that <Q, y,, v,, ¥,/> is not semiregular on A—A,. Then there is
an element y’ in <Q, y,, ¥,"> ¥, such that 7 has fixed points in A—{A,}. Then
1@ is of order two or four. If /@ is of order two, then y’/“? consists of two
2-cycles. Thus <Q, y”> is conjugate to <Q, y,> which fixes exactly one Q-orbit '
A,. This is a contradiction. Thus y"/? is of order four and consists of one 4-
cycle and one 2-cycle. Then y”* consists of two 2-cycles on I(Q) and fixes at
least two Q-orbits in A, which is also a contradiction. Thus <Q, y,, ¥,, ¥,"> is
semiregular on A—A,.

Suppose that <Q, y,, ¥,, ¥5, ¥,"> is not semiregular on A—A,. Then there is
an element y’ in <Q, y,, ¥,, ¥."> ¥, such that §’ has fixed points in A—{A,}.
Then <Q, y”> is not conjugate to any subgroup of <Q, y,, ¥,, ¥.”>. Hence y' 7@
=(312:9)"Ds (1'9: )" ? or (3,,'3.,)"©. Suppose that y"/@=(y,y,y,)’?.
Then y'=9, 5,7, commutes with 7, 7, and ,”. Since {J,, 7,, ,> is semiregular
on A—{A,}, ¥ fixes at least eight Q-orbits in A—{A,}. Thus )’ fixes at least
eight Q-orbits other than A,. However since y7 consists of four 2-cycles, y’
fixes at most eight Q-orbits in A by (2.8). Thus we have a contradiction. Hence
YT E(319.9,)" V. Suppose that Y7 P=(y,"y,y5)"? or (y,3,",y5)"”. Then
<0, y”> is conjugate to <Q, ¥,¥,¥,> in N(Q) and so semiregular on A—A,, which
is a contradiction. Thus <Q, y,, ¥,, ¥5, ¥,”> is semiregular on A—A,.

Suppose that <O, y,, ¥,, Vs, V., ¥, is not semiregular on A—A,. Then there
is an element y’ in <O, y,, ¥, ¥s, ¥, >y, such that 3’ has fixed points in A—{A,}.
Then <Q, y’> is not conjugate to any subgroup of <Q, y,, ¥, ¥5 ¥,">. Hence y’
consists of one 4-cycle and three 2-cycles on I(Q). Then <Q, y*>=<0, y,>,
which is semiregular on A—A,. Thus we have a contradiction. Hence <Q, y,,
Y ¥ Yo ¥y > 1s semiregular on A—A,. Hence by (2.10) <O, y,, ¥, ***, Vi Y1 is
semiregular on A—A,.

Let a be an involution of Q commuting with y, and {7, 1,,%,,} be any
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{a,y,>-orbitin A—A,. Then <q,y,> normalizes G, ,, . ;,, which is of even order.
Hence a and y, commute with an involution u of G, ,,, ;. Then the 2-group
<{y,, wy normalizes G;,. Hence {y,, u> normalizes a Sylow 2-subgroup Q’ of
G- Since Q' is conjugate to O in Gy, and N(Q)@=4,, <O, y,,uy is
conjugate to a subgroup of <Q, y,, ¥,, ***, ¥ ¥,"> in N(G;o). Hence I(y,)NA
and {7, 7,, 7, %,} are contained in the same Q’-orbit. Since {i,, 7, 7, 7} is any
{a, y,y>-orbit in A—A,, G, is transitive on A. Hence G,,,, is transitive or
has two orbits {5, 6, -+, ¢} and A on Q—{1, 2, 3,4}. If G,,,, is transitive on
0—{1,2,3,4}, then G is 5-fold transitive on Q, contrary to (2.11). Hence
G, , s, has two orbits {5, 6, ---, £} and A on Q—{1,2,3,4}. Since N(Q)'®=4,,
for any four points j, fi, i j, of I(Q) the Gj ;, ;. ;-orbits on Q—{ji, jur ja» ji}
consist of two orbits I(Q)—{J., j., j»» j.} and A. Furthermore since G is 4-fold
transitive, for any four points &,, k;, k, R, of Q Gy, 4,4, s, has two orbits T, and
T,, where |T',|=¢t—4, |T,|=|A|. By a theorem of W. A. Manning [5] |T,| >
IT,|. Set I'(k,k,, ks, k)=T,U{k, k,, ks, k,}. Since [I(y,)NA|=4 and y,
commutes with @, we may assume that

a=(1) @)(#) (1'2) 3 #)--,
7= (12) 34 (5) (6)() (1) 2) () (#)-+- .

Let 7, j be any two points of I(Q)—{1, 2, 3,4}. Then y,=G, ,,; and a norma-
lizes G, ;;. Since |T(1,2/,1,5)—{1",2,14,5} +]|Q—T(",2,147)|, a fixes
T(1’,2%,4,7). Suppose that I'(1’, 2/, 7, j) contains {1, 2}. Then as we have seen
above I'(1, 2, 7, ) contains {1/,2’}. This is a contradiction since I'(1, 2, 7, j)=
I(Q). Similarly T'(1”, 2, 7, j) does not contain {3,4}. On the other hand since
N(Grey, s, p)F"*#>=A4,, a and y, are even permutations on T'(1’,2/,1,7).
Hence T'(1’, 2/, 7, j) contains {3/, 4’}. Hence T'(1’, 2/, 3/, 4’) contains {z,j}. Since
7,j are any two points of I(Q)—{l, 2, 3, 4}, T°'(1", 2/, 3/, 4) contains I(Q)—
{1,2,3,4}. By (2.1) |I(Q)| =8. Hence I[(Q)—{1, 2, 3, 4} contains {5, 6, 7, 8},
which is contained in T'(1/, 2/, 3/, 4’). Hence I'(5, 6, 7, 8) contains {1/, 2/, 3/, 4'}.
This is a contradiction since I'(5, 6, 7, 8)=1(Q). Thus y, fixes at least two O-
orbits in A.

Since C(Q)!@=S,, 4, or 1, we treat the following two cases separately:

Case 1. C(Q)'9=S, or 4,.

Case 2. C(Q)'“@=1.

Case 1. C(Q)!9=S, or 4,. Then we may assume that

7 =(12)34)O6) )@ (1) (2)3)#)-,
a=(1) (2@ (1"2) @ 4)(r—1n),

where a is a central involution of Q0 commuting with y,.
(i) Assume that y,&C(Q). Since C(Q)!®>4,, there is an element b in
O such that by,=C(Q). Then by, commutes with b, so y, commutes with &.
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Since y, & C(Q), b&Z(Q). Thus Q is non-abelian and so | Q| >4. Since b fixes
{1/, 2,3, 4} and commutes with 4, b is an involution or #*=a. Furthermore
20, y,0)=><a, by,>. Lety’ be any element of Z(<Q, y,>). Since I(y)N A=
{1,2,3,4},y fixes {1',2/,3/,4’}. Furthermore since <{a, b> is regular on
{1,2,3, 4}, y ¥ =a, b)1"**¥}, Hence there is an element % in {a, b>
such that uy’ fixes {1/, 2/, 3/, 4} pointwise. Thus uy’e{y,> because <Q, y,>, =
{y>. Henceuy’=1 ory,. If uy’=1, then y'e<a, b>NZ(OQ,y,>) since y'
Z(KQ,y>) and us<a, by. Hence y’=a or 1. Next suppose that uy'=y,. If
u=a or 1, then y,=uy’eC(Q) since y’=C(Q). This is a contrdiction since
1 €EC(Q). Thus u=b or ab. Hence y’=by, or aby,. Thus in either case y'
<a, by1> Hence Z(Q, y»)=<a, by,

Since C(Q)“>A4,, Oy, has an element which belongs to C(Q). Hence we
may assume that y,& C(Q). Since y, normalizes <Q, y,>, y, normalizes the center
{a, by, of <O, y,>. Hence (by,)’2=by, or a aby,. First assume that (by,)”>=by,.
Since y, commutes with b, y, commutes with y,. Hence v, fixes {1/,2/, 3, 4'}.
Since <a, by,, v,, is an abelian group of order eight and <a, by,> is regular on
{1’,2,3, 4}, there is an element u in <a, by,>y, which fixes {1/, 2/, 3/, 4}
pointwise. 'Thus u consists of exactly two 2-cycles on I(Q) and so I(x)N A=
{1/,2/,3', 4} by the assumption (¥). On the other hand <a, by,, y,><C(Q).
Hence ue C(Q). Thus | Q| <4, which is a contradiction. Next suppose that
(by,)’>=aby,. Then by the same argument as is used for y, we may assume that
y/€C(Q) and (by,)’'=aby,. Hence (by,)?2*'=by,. Since y,y,'€C(Q), v,y,’
commutes with . Hence y,y,” commutes with y,. Thus y,y,’ fixes {1/,2/,3/,4'}.
Thus <4, by,, y,9,”> is an abelian group fixing {1/, 2/, 3/, 4’}. Hence there is an
element # (1) in <a, by,, ¥,y,”> which fixes {1/,2/,3’, 4’} pointwise. Thus u
consists of two 2-cycles or one 4-cycle and one 2-cycle on I(Q). Hence |I(z)N
A| <6 by the assumption (*). On the other hand u= C(Q) and | Q| >4. Hence
| I(x) N A| =8, which is a contradiction. Thus y,C(Q). Hence |Q|=4 or 2.

(i1) Assume that |Q|=4. Then Q is elementary abelian or cyclic.

(ii.i) Assume that O is elementary abelian. Then we may assume that

O=<(a, b> and
a=(1)(2)--(t) (I"2) (3" 4) (5 6) (7' &)+,
b= (1) @)(1) (13) 2/ #) (5 7) (&' 8)---.

As we have proved above, y, fixes at least two Q-orbits in A. Hence we may
assume that

yo=(12) (34) (5) (6)--(2) (1) (2) (3) (#) (5" 6)) (7" 8')-+ .

Since <0, y,, and <0, y, y,> are conjugate to {Q, y,>, both groups are elementary
abelian. Hence <Q, y,, ¥,) is elementary abelian. Thus y, fixes {1/, 2/, 3/, 4}
and {5, 6/, 7, 8’}. Hence Qy, has an element which fixes {1/, 2/, 3, 4’} point-
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wise. We may assume that y, fixes {1/, 2, 3/, 4} pointwise. Thus I(y,)=(1(Q)
—{1,2,5,6})u{1, 2,3, 4} since |(I(Q)—{1,2,5, 6,})U{l’, 2,3, 4} =t
Furthermore since | I(y,y,)| <t, y,=(5" 7"} (6" 8") or (5’ 8) (6’ 7") on {5, 6', 7',
8}, Since <0, y,> and <Q, y,y,"> are conjugate to <Q, y,>, <O, ¥, 3> 18

elementary abelian and by the similar argument as above we may assume that
p=(1) (2) (3) &) (5 7) (6 8 or (1') (2) (3) (#) (5 8) (6/' 7 on {1/, 2/, -+,
8’}. Then in either case the order of (y,y,/)"is even and |I((y,y,")")| >¢+4,
contrary to the assumption (*). Thus Q is not an elementary abelian group.

(ii.ii) Assume that Q is cyclic. Then we may assume that Q=<b>, b’=a
and

b= (1) (2)-(2) (1" 3 2/ 4) (5" 7' 6’ 8)--- .

As we have proved above, y, fixes at least two Q-orbits in A. Hence we may
assume that

3. =(12) 34) (5) (6)--(2) (1) (2) 3) (#) (5" 6) (7" &)+ .

Then I(ay,)N A={5", 6/, 7/, 8'}. Hence <Q, y,> is semiregular on {9, 10/, ---, n}.
Since y, normalizes <Q, y,>, ¥,”2=7y, or ay,. Suppose that y”2=y,. Then y, fixes
{1,2/,3,4'} and {5, 6/,7’,8}. Furthermore since <Q, y,> is abelian, <Q, y,>
has an element

¥/ = (12)(3) (4) (5 6) (7) (8)--(1) (1) (2) (3) (#) (5" 6') (7 &)---..

Then |I(y,y.")| >t+4, contrary to the assumption (*). Thus y”>=ay,. Since
<0, y,» is conjugate to <Q, y,>, Oy, has an involution. Hence we may assume
that ¥, is an involution. Furthermore by the same argument as is used for y,,
y2"=ay,. Thusy?»?"'=y,. Hencey,y, fixes {1,,2/,3’,4'} and {5, 6,7/, 8}.
Hence Qy,y,” has an element u fixing {1’,2’,3/,4’} pointwise. Then I(u’)
contains (I(Q)—{1, 2, 3,4})U{1’,2/,3/,4'} of length £. Hence I(»*)=(I(Q)—
{1,2,3,4})u{l’, 2, 3,4} by the assumption (x). Hence u is a 4-cycle on
{5, 6,7, 8}. Since ucC(Q), u=borb~*on {5,6,7,8}. Furthermore since
y22=ay,, ¥, interchanges {1/, 2/, 3’, 4’} and {5, 6/, 7, 8’} as a set. Hence u”2u
=b or b~*. 'This means that (y,u)’=bor b=*. Thus y,u is of order eight. On
the other hand since (yu)!“@=y,"“, O, yu>=<{Q,y,>. Thus we have a
contradiction since {Q, y,”> is conjugate to <Q, y,> which has no element of
order eight. Thus Q is not cyclic. Hence | Q| 4.

(iii) Assume that |Q|=2. Then Q=<a>. Since C(a)!’=S, or 4,, we
treat these cases separately.

(iii.i) Assume that C(a)’®=.S,. Then C(a) has a 2-element

%, = (12) (3) #)---(®)-- .
By (2.3) we may assume that <a, x,, V., ¥, ***, V&, ¥."> is a 2-group. Then
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normalizes <{a,y,>. Hence y,"1=ay, or y,.

First suppose that y*i=ay,. Since x,’{a), x’=1 or a. Suppose that
x,’=1. Then {a, x,> is an elementary abelian group of order four. On the other
hand since y,"1=ay,, (x,y,)’=a. Thus {x,y,> is a cyclic group of order four.
This is a contradiction since {x,y,> is conjugate to {a, x,>. Suppose that x’=a.
Then (x,> is a cyclic group of order four. On the other hand since y,"i=ay,,
(%,3,)’=1. Thus <a, x,y,> is an elementary abelian group of order four. This
is a contradiction since <a, ¥, y,> is conjugate to <{a, x,>. Thus y,"15ay,.

Next suppose that y,"i=y,. Then <a, x,, y,> is an abelian group of order
eight. By (2.14) |I(ay,)N A|=0 or 4. Assume that |I(ay,)N A|=4. Then we
may assume that I(ay,) N A={5’, ¢/, 7/, 8’} and

¥ =(12) (34) (5) (6)-+(2) (1) (2) (3) () (57 6) (7" &)~

Then <a, y,> is semiregular on {9/, 10/, ---, n}. By (2.13) <a, x,> and <a, x,y,>
are semiregular on A. Hence <q, x,, y,> is semiregular on {9/, 10’, ---, n}. Since
{a, v,y and {a, y,y,) are conjugate to <{a, y,>, <a, ¥,> and <a, ¥, y,> are elementary
abelian. Hence {4, y,, y,> is elementary abelian. Furthermore since <{a, y,, ¥,>
is conjugate to {a, y,, X,>, <a, ¥,, X, is also abelian. Hence <{a, x,, y,, y,> is abelian.
Since <a, y,» is conjugate to <a, y,> in C(a), | I(y,)NA|=|I(ay,)NA|=4. If y,
has fixed points in {9’, 10’, .-, n}, then since y,=C({a, x,, y,>) ¥, fixes at least
eight points in {9/, 10’, -+, n}, contrary to the assumption (*). Similarly ay, has
no fixed point in {9/, 10/, ---, n}. Thus y, or ay, fixes {1/, 2/, 3/, 4’} pointwise.
Hence y, or ay,=(1") (2") (3") 4") (5’ 6') (7' 8) on {1/, 2/, ---, 8’}. Thus |I(y,y,)|
or |I(ay,y,)| >t+4, contrary to the assumption (x).

Hence |I(ay,)N A|=0. Then<a, x,,y,> is semiregular on A—{1/,2/,3",4'}.
Since <a, y;> and <{a, y,¥;>, i+ j and 1<{, j<k, are conjugate to <a, y,>, <@, y>
and <a, y;y;> are elementary abelian. Hence <a,y,,y,, --+, ¥s> is elementary
abelian. Furthermore since {a, %, ¥,>, 2<i<k, is conjugate to <a, %;, .
{a,x,y,> is abelian. Thus <a, %, y,, V., -**, y&> is abelian. Hence y, fixes
{1/,2, 3,4}, 1<i<k. Since <a, y,>, 2<i <k, is conjugate to <{a, ¥,>, y; or ay;
has fixed points in A. Hence we may assume that y; has fixed points in A.
Since y,€C(<a, x,, y,») and <{a, x,, y,> is semiregular on A—{1’, 2/, 3/, 4}, if y;
has fixed points in A—{1’,2’, 3/, 4'}, then y, fixes at least eight points of A—
{1/, 2/, 3/, 4}, contrary to the assumption (x¥). Hence y; fixes {1/, 2/, 3/, 4}
pointwise.

Assume that {a, x,, ¥,, ¥, ***, ¥:>, i >>1, is semiregular on A—{1’, 2/, 3/, 4'}.
If <a, %, y,, ¥2 ***, ¥i+1 18 DOt semiregular on A—{1’, 2/, 3/, 4}, then <{a, x,, y,,
Y2 ***» Yooy has an element y’ (1) fixing a <{a, x,, ¥,, ¥, ***, y;>-orbit of length
2:* pointwise. Then since )’ consists of at most 42 2-cycles on I(a) and i >1,
[ 1(y")| =t—2(:+1)42/*2>t, contrary to the assumption (*). Thus <a, x,, y,, ¥,
-+, ¥i+,y 1s semiregular on A—{1’, 2/, 3/, 4’} and this implies by induction that
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<a, X1y Vi Yoy -+, Y is semiregular on A— {1/, 2/, 3/, 4}.

Furthermore y,” fixes {1/, 2/, 3/, 4'}. Suppose that {a, x,, y,, Vs ***, Vi Y.
is not semiregular on A—{1’, 2/, 3’, 4}. Then there is an element y" in <{a, x,,
Vi Vos ***» Yoo ¥,’ which has fixed points in A—{1’, 2/, 3/, 4}. Then y7“ is of
order four or two. If y”7® is of order four, then <{a, y*>=<a, y,> and y”* has
fixed points in A—{1’, 2, 3/, 4}, which is a contradiction. Thus y”7“ is of
order two. Then y"is (13) (24)or (14)(23)on {1,2,3,4}. Hence y’'=<a,
Y5 1Y %1V 205 %, Y8) OF &y YY)y %,V %1V xlyk>' Thus <a, Vs %1V %, Y5
sosy X,V OF {ay V. V,y %Y,y %, Vs, -+, ¥,V is semiregular on neither {17, 2/, 3/, 4’}
nor A—{1/,2/,3’,4’}. This is a contradiction since <{a, y,", %,Vz % Vs *** %,V
and <a, y,9,/, %,Vz, %, Vs +*+, X, V> are conjugate to <a, V,, X,V X,V **y ¥, Vg I
C(a) which is semiregular on A—{1’, 2/, 3/, 4}. Thus <a, %,, ¥1, Y2 ***, Yoo V7>
is semiregular on A—{1’, 2/, 3/, 4'}.

On the other hand <{a, y,> normalizes G, 4, which is even order. Hence
there is an involution # in Gy, , commuting with a and y,. Since C(a)!“°=S,,
<a, y,, wy is conjugate to a subgroup of <a, x,, y,, ¥,, ***, Y& ¥,"> in C(a). This is
a contradiction since for any point of {1/, 2/, -+, 8} of length eight {a, y,, u) has
an element (1) fixing this point. Thus C(a)!“® +8S,.

(iii.ii) Assume that C(a)!“®=A4,. Since <{a, y,y.), <a, y,y,> and <a, y,y5>
are conjugate to <{a, y,>, these groups are elementary abelian. Hence <a, y,, y,, ¥5>
is elementary abelian. Since I(y,)N A={1",2’, 3", 4}, y, and y, fix {1’, 2/, 3/, 4'}.
Thus y, and y, are (1) (2) (3) (4), (I' 2) (&' 4), (I' 3) 2/ 4), (I 4) 2’ 3),
(1) (2) (3" 4) or (1’2)(3") (4) on {1/,2,3,4}. Furthermore by (2.14)
[ I{(ay,)NA|=0 or 4.

Assume that | [(@y,) N A|=4. Then we may assume that

a=(1)(2)---() (1 2y (3 4)---(n—1 m),
= (12) 3 4) (5) (6)-(1) (1) (2) (3) @) (5" &) (7' 8) (¥ 11')
(107 127) (13’ 15’y (14’ 16%)--- .
Suppose that y,=(1’) (2') (3’) (4#) on {1’, 2, 3’, 4}. The proof in the case y,=
(172) (3’ 4')-+- is similar since if y,=(1’2’) (3’ 4)--+ then ay,=(1") (2) (3") (4)---.
Since <a, y,> and <a, y,y,> are conjugate to <{a, y,>, any element of {a, y,y,>—<{a>
has four fixed points in A. Hence we may assume that

Y= (12) 3) (4) (5 6) (7) (®)() (1) (2) (3) (&) (5' 7) (6 8) (¥ 10)
(117 127) (137 16') (14’ 157)--- .

Thus <a, y,, y,> has two orbits of length two and three orbits of length four in
A. The remaining <a, y,, y,>-orbits are of length eight in A. Since <{a, y,> is
conjugate to <{a, y,>, ¥, has four fixed points in A. Since <a, y,, ¥,, ¥,> is abelian,
y, fixes {1’, 2/, 3/, 4} or one of the <a, y,, ¥,>-orbits of length four pointwise.
Moreover y, fixes the <a, y,, y,>-orbits of length four setwise. Thus y, fixes
{1/, 2, 3, 4} pointwise or has no fixed point in {1/, 2, 3’, 4'}. First suppose
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that y, fixes {1’, 2', 3, 4} pointwise. Then <y, y,, y,> fixes {1’, 2, 3", 4}
pointwise, and {5, ¢, 7/, 8} and {9, 10’ 11’, 12’} are <y,, ¥,, y,>-orbits of
length four. Hence <{y,, ,, y,> has exactly one element y’ (1) fixing {5, ¢/,
7', 8’} pointwise. Thus I(y')nA2{l’, 2/, ---, 8}. Hence y’=y,y,y, by the
assumption (*). Similarly {y,, v,, ¥,> has exactly one element (1) fixing {9,
10, 11’, 12’} pointwise, which is also y,y,y,. Thus |I(y,y,y,)| >¢-+4, contrary
to the assumption (%). Thus y, does not fix {1’, 2/, 3/, 4} pointwise. Similarly
y,==(1" 2') (3" 4)-+- since if y,=(1"2') (3’ 4)--- then ay,=(1") (2') (3") (4)---.
Next suppose that y,=(1" 3") (2’ 4’)--- or (1’ 4) (2’ 3')---. Since <a, y,, ¥5> 18
conjugate to <a, ¥, ¥, <a, ¥;, ¥5»> has exactly two orbits of length two in A.
Hence y, fixes {5, 6’} and {7’,8'}. Then <a,y,, y,y,> has no orbit of length
two in A. On the other hand C(a) has a 2-element
¥ =(1)2) @) #) G 7)(638)(9) (10)---(#)--- .

By (2.3) we may assume that <{a,y,, ¥,y y'> is a 2-group. Since <{a, y,, "> is
conjugate to <a,y,, ¥,¥,> in C(a), <a,y,,»"> has no orbit of length two in A.
Hence y'=(1"3") (2’ 4) or (1’ 4) (2" 3') on {1’,2',3",4}. 'Then <a,y, y.y:y">
has two orbits {1’, 2’} and {3’, 4} of length two in A. This is a contradiction
since <a, ¥, ¥,¥,Y > is conjugate to <a, y,, ¥,¥,> in C(a). Thus y,4(1") (2) (3')
(4)--+ and so y,=+(1" 2') (3" 4)---.

Suppose that y,=(1") (2') (3 4) on {1’, 2, 3", 4}. 'The proof in the case
y,=(1"2') (3') (4) on {1/, 2/, 3/, 4} is similar since if y,=(1’ 2') (3’) (4): then
ay,=(1") (2') (3’ 4)---. Since <a, y, y,> is elementary abelian and |I(y,)N A|=
4, we may assume that

¥ =(12) 3) (4) (56) (7) (8)-+(2) (1') (2) (3" ) (5") (6") (7 &)~ .
Since <a, ¥, ¥, y5> is elementary abelian, y, fixes {1/, 2'}. {3/, 4'}. {5, 6’} and
{7, 8}. Furthermore |I(y,)NA|=4 and |I(y,y,)NA|=4. Hence we may
assume that

%’§I)= (12) (3) (4) (3) (6) (7 8) (9) (10)-+(2) (1) (2') (3" #) (5" &) (7')
Then

1325 = (12) (3 4) (5 6) (7 8) (9) (10)-+(2) (1) (2)--+(8)-- .

Thus <a, y,, ¥,¥,> has exactly one involution y,y,y, fixing four <a, y,>-orbits of
length two pointwise. On the other hand C(a) has a 2-element

"=1)(2)B3)#) (57)(68)(9) (10)() .

By (2.3) we may assume that {a, y,, ¥,v,, ¥'> is a 2-group. Since <a, y,, ¥"> is
conjugate to <a, y,, ¥,¥s> in C(a), <a, y,, "> has exactly one element y” (1)
fixing four {a, y,>-orbits of length two pointwise.
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Then

¥ =(12) (34) (57) (68) (9) (10)--+(2) (V) (2)-+(8)" -
Thus |I(y,y,¥,y")| >t-+4, contrary to the assumption (x). Hence y,%(1") (2')
(3'4')--- and so y,+(1"2") (3') (4)---.

Suppose that y,=(1'3") (2’4’) on {1, 2, 3, 4}. The proof in the case
Y.=(1'4) (2°3") on {1’, 2, 3, 4} is similar since if y,=(1'4") (2'3’)-+- then ay,=
(1'3") (2’4’)---. Since I(ay,)N A={5", 6, 7', 8'}, if 3, or y, has fixed points in
{5, 6’, 7. 8}, then by the same argument as above we have a contradiction.
Hence we may assume that

¥.=(12) 3) (4) (56) (7) (8)-(2) (1'3') (Z'4) (5'7') (6"8")-- .
Similarly y, or ay, is (1'3’) (2'4) on {1’, 2/, 3, 4}. Hence we may assume that
¥:=(1"3") (2’4)on {1, 2, 3, 4}. Furthermore y, is (5'7') (6'8) or (5'8)
(6’7)on {5, 6,7, 8%}. Since |I(y,y5)| <t,

¥s=(12) (3) (4) (5) (6) (78) (9) (10)---(2) (1'3") (2'4) (5'8) (6'7")--,
and so
1y:ys = (12) (34) (56) (78) (9) (10)--+(2) (1') (2')-++(8)"- -

Hence by the same argument as in the case y,=(1") (2') (3'4’)--+, we have a con-
tradiction. Thus y,%(1'3’) (2'4’)--- and so y,#+(1’4')(2'3)---. Hence
[ I(ay)NA| +4.

Thus |I(ay,)N A|=0. Then we may assume that

¥ =(12) (34) (5) (6)--(1) (1) (2) 3) ¥) (5’ 7') (6'8)---.
Since <a, y,> is conjugate to <a, ¥,> in C(a), either y, or ay, has four fixed points
in A. Hence we may assume that y, has four fixed points in A. Then y, fixes
{1, 2, 3, 4} or one of the <{a, y,>-orbits of length four pointwise.

First suppose that y, fixes {1’, 2/, 3/, 4} pointwise. Since {a, y,> and
<{a, y,y.) are conjugate to <a, y,> in C(a), <a, y,> and <a, y,y,> are semiregular
on A—{1’, 2, 3, 4}. Hence <a, y,, ¥,> is semiregular on A—{1’, 2,3, 4'}.
Since <a, y,> and {a, y,y,>. i=1 and 1<7, j<k, are conjugate to <a, y,>, <a, ¥,>
and <{a, y;y;> are elementary abelian. Hence <a, y,, ¥,, ***, ys> is elementary
abelian. Moreover y; or ay;, 3<i<k, has four fixed points in A. Hence we
may assume that y; has fixed pointsin A. Since y;& C(<q, y,, ¥,>) and <a, y,, ¥,»
is of order eight and semiregular on A—{1’, 2/, 3, 4}, y, fixes {1, 2/, 3, 4}
pointwise.

Now we show that <{a, y,, ¥,, **, 5> is semiregular on A—{1’, 2/, 3, 4}.
Suppose that <a, y,, y,, ¥5> is not semiregular on A—{1’, 2, 3',4’}. Then there
is exactly one element y’ (1) in {a, y,, ¥,, ¥,> fixing a <a, y,, y,>-orbit A’ in
A—{1',2,3,4} pointwise. Since |A'|=8, |I(y")NI(a)| <t—8. Hence
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Y'=9.9.9: 0t ay,¥,¥,. If y'=y.9,y,, then I(y’) contains (I(a)—{1,2, .-+, 8})U
{1, 2, 3", 4} UA’ of length ¢4, contrary to the assumption (%). Thus y'=
ay,y,ys and I(y")=(I(a)—{1, 2, -+, 8}) UA’ since |(I(a)—{1,2, -+, 8}) UA'| =t.
Furthermore this shows that <a, y,, ¥,, y,> is semiregular on A—({1’, 2/, 3, 4} U
A’). Hence <a, y,, ¥, ¥5> has two orbits {1’, 2’} and {3/, 4} of length two and
two orbits of length four whose uion is A’ in A, and the remaining orbits in A
are of length eight. On the other hand C(a) has a 2-element

¥'=(1)(2) @) #) (57) (68) (9) (10)-+(2)--- .

By (2.3) we may assume that <a, y,, ¥,, ¥5, ¥"> is a 2-group. Then y” nor-
malizes {a, y,, ¥, ¥s> and so y” fixes {1’, 2/, 3’, 4} and A’. Since <a, y,, ">
is conjugate to <a, y,, ¥,¥,> in C(a), <a, y,, ¥’ is elementary abelian and has
two orbits {1’, 2’} and {3, 4} of length two and two orbtis of length four in A.
Hence we may assume that y” fixes {1/, 2, 3’, 4} pointwise and ay,y”” has eight
fixed points in A—{1’, 2', 3, 4}. Furthermore since y" fixes A’, ay,y” fixes A’
pointwise or {a, y,, "> is regular on A’. If ay,)” fixes A’ pointwise, then
I(ay,y,y5ay,y"")=1(y,y,y"") contains (I(a)—{5, 6, 7, 8}) U{l’, 2/, 3", 4 U A’ of
length #-+-8, contrary to the assumption (*). Thus {a, y,, ¥""> is regular on A’.
On the other hand <{a, y,, y,> is elementary abelian and regular on A’. Hence
<a, ¥, ¥,> has an element « such that 4*’=9""%". Thus uy” €<a, ¥,, ¥, ¥""> and
I(uy”) contains A’ of length eight. Hence |I(wy”’)NI(a)| <t—8. This is a
contradiction since any element of {a, ¥,, ¥,, ¥'"> fixes at least #—6 points of I(a).
Thus <a, y,, y,, ¥s» is semiregular on A—{1’, 2,3, 4}. Hence by (2.6)
<@, Y1y Yoy +**, Vi is semiregular on A—{1’, 2/, 3, 4'}.

Since y,’ normalizes <a, y,, ¥, ***, Yo, ¥, fixes {1’, 2/, 3', 4}. Suppose
that <a, y,, ¥,, ***, Y& ¥,"> is not semiregular on A—{1’, 2/, 3’, 4}. Then there
is an element y’ in <&, y,,y,, ***, ¥&>y,’ which has fixed pointsin A—{1/,2/,3,4'}.
Then y7® is of order four or two. If y7® is of order four, then <{a, y'*>=
<a, y,> and y”* has fixed points in A—{1’, 2/, 3/, 4'}, which is a contradiction.
Hence y/® is of order two. Thus y’ is (13) (24) or (14) (23) on {1, 2, 3, 4}.
Hence y'€<a, ¥/, ¥:Y063:Y0 " Yo OF & D1¥)s Y2Ya YoYo» =+ VoY Thus
<a, yl,’ Y2V Yo ""yzyk> or <a, ylyll’ Y2Ya Yoo =t yzyk> is semiregUIar on
neither the orbit {1’, 2/, 3/, 4} of length four nor A—{1’, 2’, 3’,4’}. Thisisa
contradiction since these groups are conjugate to {a, ¥, ¥.¥s Y. Ve ***» ¥2Ye> i
C(a) which is semiregular on A— {1, 2/, 3, 4}. Thus <a, y,, ¥y ***, Y ¥i' > I8
semiregular on A—{1’, 2’, 3, 4}.

On the other hand <a, y,> normalizes G .,y, which is of even order.
Hence there is an involution # in Gy, commuting with a and y,. Then
{a, y,, w) is conjugate to a subgroup of <a, y,, ¥,, ***, ¥, y,'> in C(a). Thisisa
contradiction since for any point of {1/, 2/, -+, 8} of length eight <{a, y,, > has
an element (1) fixing this point. Thus y,4-(1") (2) (3') (4)--- .
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Next suppose that y, fixes a {a, y,>-orbit of length four pointwise. Then
we may assume that y, fixes {5’, 6/, 7', 8’} pointwise and

y.=(12) (3) (4) (56) (7) (8)-+(#) (1'3) (2" #) (5) (6") (7') (&) -
Sinee <a, y,, y,> is conjugate to <a, ¥, ¥.),¥s or ay, is (1'3")(2'4’) on
{1',2,3,4}. Hence we may assume that y,=(1"3")(2'4’)---. Since

<a, y,, ¥s» is conjugate to <a, ¥,, y,>, s is (5'7) (6'8) or (5'8") (6'7") on
{5, 6, 7, 8}. On the other hand C(a) has a 2-element

¥, = (1) (2) ) (4) (57) (68) (9) (10)---(2)--- .

By (2.3) we may assume that <a, v, y,, s, ¥, ;> is a 2-group. Since <a, y,">
and <a, y,> are conjugate to <{q, y,>, <a, y,"> and <{a, y,’)> are elementary abelian.
Since <a, ¥,v,, ¥,”> and <a, y,, ¥,’> are conjugate to <a, y,, y,y,> and I(y,) N A=
Iy, v )N A={l", 2/, 3, 4}, y/ or ay/,i=1, 2, fixes {1, 2/, 3, 4} pointwise.
Hence we may assume that y’ and y,’ fix {1/, 2/, 3, 4} pointwise. Thus
Vi VoV ¥, and y,/ fix {1/, 2, 3, 4} pointwise. Hence <a, y,, ¥,¥s ¥i» ¥, 18
elementary abelian.

If y,/ or y,’ fixes {5, 6’, 7/, 8}, then (y,,")* or (y,y,’)* is of order two and
fixes (I(a)—{1, 2, 3, 4}) U{l’, 2, ---, 8} of length t+4 pointwise, contrary to
the assumption (*). 'Thus {5, 6/, 7, 8y {5, 6, 7', 8}, i=1, 2.

Since y,=(5'7') (6'8'):++ or (5'8) (6'7')---, first suppose that y,=(57")
(6'8)---. Then I(y,y,y,) N A={1", 2/, ---,8'}. Since I(y,)NA={1", 2/, 3,4}
and y,” commutes with y,y,y,, y,” fixes {5, 6/, 7/, 8'}, which is a contradiction.
Next suppose that y,=(5'8') (6'7’)---. Since {5, 6,7, 8P x={5,6,7, 8},
we may assume that {5, ¢, 7/, 8'}*"'={9’, 10/, 11", 12'}, where {9/, 10/, 11/, 12}
is a {a, y,>-orbit. Since ay,y,y, fixes {5, 6, 7/, 8’} pointwise and commutes
with y/, ay,y,y, fixes {9, 10/, 11/, 12’} pointwise. Then I(ay,y,y,)N A=
{5, 6, -++, 12’} since |I(ay,y.y,)| <t. Furthermore y,’ commutes with ay,y,ys.
Hence {5,6,7,8V7={9, 10/, 11", 12’}. Thus {5,6,--,12'} is a
<Y1y Y20 ¥ ¥, v-orbit of length eight. Since the order of <y, v,¥s, ¥,, ¥, is
sixteen, there is an element y’ (1) in <y, ¥,y,, ¥/, ¥,/ > fixing {5, 6/, -+, 12'}
pointwsie. ~ Moreover  since Iy, y,¥s,, ¥/, ¥, 0)2{1, 2/, 3, 4}, I(y') 2
{1,2,3,4} and so |I(y')NA|>12. This contradicts the assumption (*)
since y"/“” is an involution consisting of at most four 2-cycles. Thus C(Q)' @3 4,.

Case 2. C(Q)'@=1.»

(i) Since [I(y,)N A|=4, I(y,)N A is contained in one or two Q-orbits in
A. If I(y,)N A is contained in two Q-orbits, then y, fixes exactly two points of
a Q-orbit. Then by (2.12) C(Q)'“>A4,, which is a contradiction. Thus
I(y,) N A is contained in one Q-orbit.

1) The proof in this case is due to the suggestion of Dr. E. Bannai. The proof was first
more complicated.
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(i1) Let ®(Q) be the Frattini subgroup of Q. Then since y, is an automor-
phism of Q and ®(Q) by conjugation, y, induces an automorphism of Q/®(Q),
which we denote by y,*. For an element a of Q, a™*a”1 is in ®(Q) if and only
if the image in Q/®(Q) of a is in Cgeey(,*). Hence the number of elements
a in Q such that a7'a”1 is in ®(Q) is | Cojewr(3:*)|+ |D(Q)|. On the other
hand for elements a and b of Q, ab™" is in Cgq(y,) if and only if a™'a”1=b""b".
Hence the number of elemenets @ in Q such that a~'a’: is in ®(Q) is at most
| Co(3)] 1 R(Q)| =4+ |B(Q)]. Thus 4 |&(Q)| Z| Comcar(y.)| -1 (Q)| and
$0 4= | Coro(y:*)|. Since Q/®(Q) is elemtary abelian, |Q/®(Q)| <(2%)*=2"
by Lemma of [6]. Thus the automorphism group of Q/®(Q) is contained in
GL(4, 2). Furthermore if an element of odd order in N(Q) acts trivially on
O/®(Q) by conjugation, then this element belongs to C(Q) ([1], Theorem 5.1.4).
Since C(Q)'“9=1 and N(Q) =S, or 4,, N(Q)'“ is involved in the automor-
phism group of Q/®(Q) and so in GL(4, 2). Thus N(Q)'®@=S, or 4,.

(iii) Suppose that N(Q)'®@=S,. Let H be the normal subgroup of G
consisting of all even permutations of G. Then for any point 7 of Q, H; is
normal in G;. Since G, is 3-fold transitive on Q— {7} and |Q— {i}| is odd, H;
is 3-fold transitive on Q— {7} by a theorem of Wagner [15]. Hence H is 4-fold
transitive on Q). Let x be a 2-element of Ng(Q) such that

x=(1)(2) 3) (4) (56)--.

Then x has no fixed point in A by (2.13). Hence the number of Q-orbits in
A is even and so Q <H. If x is an odd permutation, then xe£ Ny(Q). Hence Q
is a Sylow 2-subgroup of H,,,, and |I(Q)| =6, which is a contradiction by [12].
Thus x is an even per- mutation. Hence x* isan odd permutation. On the
other hand since x has no fixed point in A and x¥*<Q, every cycle of x in A
has the same length and X consists of 2-cycles. Thus x consists of cycles of
length 2| Q| in A since x* is an odd permutation. Thus |x|=2|Q|. Hence
|&*|=]0]|. Since #*’=Q, Q=<«*>. Hence the automorphism group of Q is
a 2-group. This is a con-tradiction since N(Q)!“@=.S and N(Q)*“’ is involved
in the automorphism group of Q. Thus N(Q)/@ £ S,.

(v) Suppose that N(Q)'@=4,.

(v. 1) 79 is an involution consisting of exactly two 2-cycles. Hence by
(2.8) y, fixes at most four Q-orbits in A. Furthermore we have proved that y,
fixes at least two Q-orhits in A. Thus y, fixes two, three or four Q-orbits in A.

(v.11) Suppose that y, fixes exactly four Q-orbits in A. Then by (2.8)
every element of Oy, is an involution. Since {Q, y,> and <Q, y,y,> are conjugate
to <O, y,>, every element of Qy, and Qy,y, is an involution. In particular y,, y,
and y,y, are involutions. Hence y, and y, commute. Let # be any element of
O. Then uy, and uy,-y, are also involutions. Hence y, commutes with uy, and
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so commutes with . Thus y, = C(Q), which is a contradiction since C(Q)!“@=1.
(v. iii) Suppose that y, fixes exactly three Q-orbits in A. Then by (2.8)

there are at least % Q| involutions in Qy,. Since y, normalizes <Q, y,>, ¥,

fixes at least one <Q, y >-orbit of length |Q|. Then for a point ¢ of the
<0, ¥, y.r-orbit of length |Q| Qy, and Qy, have elements fixing 7. Hence we
may assume that y, and y, fix 2. Then y’=y,’=1 and y,y,=v,y,. Let T bea
set of elements u in Q such that both uy, and uy,y, are involutions. Since

0O, y,y.> is conjugate to <Q, y>, there are at least %IQI involutions in

0Oy,y,. Hence |T| 2%[ 0l. Sihce ¥, is an involution, y, commutes with uy,,

where u=T. Furthermore y, commutes with y,. Hence y, commutes with .
On the other hand |I(y,)NA]=4. Hence y, commutes with exactly four

elements of Q. Thus |T| <4. Hence 4> |T| 2%|Q| and so 8>10Q/|. Then

the automorphism group of Q is a 2-group, S,, S, or SL(3,2) (see [3]). Since
N(Q)'®@=4, and N(Q)'? is involved in the automorphism group of Q, we have
a contradiction.

(v. iv) Thus y, fixes exactly two Q-orbits in A. Then any 2-element of
N(Q) which is an involution consisting of exactly two 2-cycles on I(Q) fixes two
Q-orbits in A. Set A={A, A,, -+, A,}, where A=A UA,--UA, and
A;, 1<i<r, is a Q-orbit. 'Then we may assume that

I = (Al) (A:) (Bs84) (AsAg)+
and y, fixes four points 1/, 2/, 3’, 4 of A,.

(v.v) Since y, normalizes <Q, y,>, 7, fixes {A,, A,}, Assume that
F.=(A,A,)-++.  Since <Q, y,> and <Q, y,y,> are conjugate to <O, y,>, y.and ¥, ¥,
fix exactly two Q-orbits in A. Since F,=(A)) (A,) (A,A,) (A;Ay)+ and 7,
commutes with 7,, we may assume that

7. = (A4,) (4y) (A4) (A A0 .

Then <{J,, 7,> is semiregular on {A,, A,--}. Since {§, 7, J,> is elementary
abelian, 7, fixes {A,, A,}, {A,, A,} and {A;, A,}. Furthermore since <Q, y,v,>

and <Q, y,y,> are conjugate to <Q, y,>, .y, and ¥,y, fix exactly two Q-orbits in
A. Hence

T =(8:4,) (85A)) (A) (A=«
Since 7,7, fixes A,, there is an element in Qy,y, fixing 1’ of A,. Hence we may
assume that y,y, fixes 1’. Then I((y,y,)’) and I((y.ys)’1+y.y,) contains I(Q)U
{1’} of length t+1. Hence by the assumption (*) (y,¥,)’=1 and y,-y,y,=

¥.¥s+:. Let T be a set of elements « of Q such that both y,y,u and y,y,y,u are
10|

involutions. Since 7,7, fixes A, and A,, by (2.8) there are at least = involu-
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tions in y,y,0 having fixed points in A. Furthermore since 37,7, fixes
{A, A, ..., A} pointwise and ¥, 7,7y, consists of four 2-cycles on I(Q), by (2.8)

at least %I O| involutions of y,y,y,0 have fixed points in A. Hence |T'|>

%IQI. Since for any element u of T y,yu and y,-y,yu are involutions, y,

commutes with y,yu. Furthermore y, commutes with y,y,. Hence y, com-
mutes with #. Since |I(y,) N A| =4, y, commutes with exactly four elemenets

of 0. Hence |T|<4. Thus %]Q| <4andso |Q|<16. Since C(Q)'@—1,

N(Q)'®=A4, is involutved in the automorphism group of Q. Hence Q is an
elementary abelian group of order sixteen (see [3]). As we have seen above, at

least %lQI elements of y,y,y,0 are involutions. Then since ¥,y,y, is an in-

volution and Q is elementary abelian, y,y,y, commutes with at least %lQI

elements of Q. Hence y,7,y, centralizes Q. This is a contradiction since
C(O)Y®=1. Thus we may assume that 7,=(4A,) (A,) (A;54;) (AA)-.
Similarly 7, fixes {A,, A,} pointwise.

Suppose that {4, 7,, ¥,> is not semiregular on A—{A, A,}. Then we may
assume that y, fixes {A;, A,, A;, A;}. Then 3,7,7, fixes {A,, A,, -+, Ay} point-
wise. Hence by the same argument as above we have a contradiction. Thus
{F,y Voy Vo 1s semiregular on A —{A,, A,}.

Since <Q, y,"> is conjugate to <O, y,>, y," fixes exactly two Q-orbits in A.
Since {J,, 7.5, ') is abelian and {7, 7,7,> is semiregular on A —{A,, A,}, 5/
fixes A, and A,.

Suppose that {3, 7,, 75, ,"> is not semiregular on A—{A,, A,}. Then there
is an element y’ in <O, y,, ¥,, ¥,>y," such that 7" has fixed points in A other than
A, and A,. Then y' /@ is of order four or two. If y7@ is of order four, then
§?=79,. 'This is a contradiction since 7, has no fixed point in A—{A,. A,}. If
y'1@ is of order two, then y’/® has exactly two or four 2-cycles. Hence <Q, y">
is conjugate to <Q, y,> or <Q, y,¥,¥,>. This is a contradiction since y, and
9,9.9; have exactly two fixed points A, and A,. Thus {§,, ¥,, ¥, 7,"> is semi-
regular on A—{A,, A,}.

Since j,, y, and y," fix A, Oy,, Oy, and Oy, have elements fixing 1’ of A,.
Hence we may assume that y,, vy, and y, fix 1. Then {y, ¥, y,> and
{y» ¥.¥» ¥,y are elementary abelian. Since I(y,)NA={l’, 2,3, 4},
Y1y Vor Vs ¥ fixes {1/, 2/, 3", 4}. Set R=Cy(y,). Then R is of order four
and has an orbit {1/, 2’, 3, 4}. Hence <y, ¥,, ¥;, ¥,> normalizes R. Since
y.€C(Q), |O] >4. Hence the number of the R-orbit in A, is even. Since
<Y1 Yo Vs ¥/> fixes the R-orbit {1’, 2/, 3,4} in A,, we may assume that
<Y1 ¥2» Vs ¥.'> fixes one more R-orbit {5, 6/, 7/, 8’} in A,.
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(v.vi) Let a be an involution R commuting with y, y, and y,. Then
{a, y,>-orbits in A—(A, U A,) are of length four. Let {i,,7,,7,,7,} be any <a, y,>-
orbit in A—(A,UA,). Then <aq, y,> normalizes G, ,,;,;,. Hence thereisan
involution % in G, ;,,,, commuting with @ and y,. Then <{y,, #> normalizes
G and so a Sylow 2-subgroup Q' of G;,. Since N(Q)'@=A4,, <O, y,, u>
is conjugate to a subgroup of <O, y,, ¥, ¥s ¥/> 1In N(Gq). Hence y, fixes
exactly two Q’-orbits A,” and A, in A and {4, 7,, 75, Z,} is contained in A" or A,’.
Furthermore since <Q’, y,> is conjugate to <Q, y,> in <Q, OQ’, y,>, there is an
element v in <Q, O, ¥'> such that <{Q', y>*=<0, y,>. Then (A/UA)/)'=
A UA,. Since v/ or (y,9)'®=1 and <Q’, y,>***=<0, y,>, we may assume
that o/ ®=1. Then veG g, and (A UA,)’=A,UA,. Thus {7, i, i, i} is
contained in a G,-orbit which contains A, or A,. Since {7, 2, 2, 7,} is any
{a,y,y-orbitin A—(A, U A,), any <a, y,>-orbit in A—(A, U A,) is contained in the
G'1@>-orbit which contains A, or A,. Hence G, is transitive or has two orbits
T, and I, on A, where T',2D A, and T,2A,.

Since y, fixes exactly two O-robits in A, the number of Q-orbits in A is
even. Hence |A| is divisible by 2| A,|=2|0Q]|. If Gy, is transitive on A,
then the order of G, is divisible by 2| Q|. This is a contradiction since Q is
a Sylow 2-subgroup of G;,. Hence G, has two orbits T, and T, on A.

Since y,&C(Q), |O| >4. Hence <Q, y,, ¥/> is a Sylow 2-subgroup of
Gse.5. Since G is 4-fold transitive, any Sylow 2-subgroup P of a stabilizer of
four points in G is conjugate to <O, ¥,, /> and so has exactly one orbit of
length four. Furthermore a stabilizer of a point of this orbit of length four in P
is conjugate to Q.

We may assume that

7= (12) 34) () (6) (7) (B) (1) (2) 3') (#) (5 6) (7' 8,
a= (1) (2)-(8) (' 2) (3 #)--.

Since ¥, and y, fix 1" and commute with @ and y,, ¥, and y, are (1") (2') (3") (4)
or (1) (2') (3 4)on {1', 2/, 3/, 4}.

Assume that y,=(1") (2') (3') (4) on {1’, 2/, 3’, 4}. Since |I(y,y,)| <t, we
may assume that

Y= (12) ) (4 (56) (7) (8) (1) (2) (3) (4) (5" 7') (6" &)+~
Thus <{y,, y,> is semiregular on {5, ¢, ---, n}. Suppose that y, has fixed points
in {5, 6/, -+, n}. Since {y,, y,, ¥,> is abelian, y, has at least four fixed points
in {5, 6/, ---, n}. This is a contradiction since I(y,)D>{1’} and |I(y,)|<8.
Hence y, fixes {1’,2',3, 4’} pointwise. Since <¥,, y,, > fixes the R-orbit
{5, 6", 7,8}, there is an element (1) in {y,, y,, y,> fixing {5, 6/, 7/, 8} point-
wise. Since I({y,, ¥., ¥50)2{1’, 2/, 3, 4}, this element is y,y,y,. Hence

¥:=(12) 3) (4) (5) (6) (7 8) (') (2) (3") (#) (5" &) (6 7)---.
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Then <{y,, ¥,, ¥,» normalizes G,,,,,,. Hence as we have seen above, <y, ¥,, y>
normalizes a 2-subgroup Q” of G, ,,,,» which is conjugate to Q. Then |I(Q")|
=8 and N(Q")!@"”=4,. Hence y,/9", ,/9” and y,/@" are even permutations.
Since y,, y, and y, are (1 2) (1) (2') on {1, 2,1/,2'}, y,, ¥, and y, have exactly
one more 2-cycle other than (1 2) in I(Q”). This is impossible. Hence y,=
(1) (2) (3) (@) Similarly y,%(1') (2) (3') (4)---
Thus y, and y, are (1) (2) (3’ 4) on {1/,2/,3,4’}. Since |R|=4, R is
cyclic or elementary abelian. First assume that R is cyclic. Then R=<{b)> and
b=1) 213 24)(5 76 8)-.
Then <R, y,> is semiregular on {9, 10/, ---, n}. Since <a, ¥, y,> is abelian, if
¥, has fixed points in {9’, 10, ---, n}, then y, fixes at least four points of {9’, 10,
---,m}. 'This is a contradiction since I(y,) contains {3, 4, 7,8} U{1’} of length
five. Thus y, has no fixed points in {9, 10/, -+, n}. Similalry y, has no fixed
points in {9’, 10’, ---,n}. Hence y, and y, have exactly two fixed points in
{5,6,7,8}. Next assume that R is elementary abeliain. Then R=<a, b’>
and

b= (1) (2)-+(8) (' 3) (2" 4)--- .

Then &'y, and &'y, are of order four and so 4-cycle on {5, 6,7, 8’}. Hence y,
and y, have exactly two fixed points in {5, 6", 7, 8’}. Thus in both cases we
may assume that

a=(1)(2)-(8) (I'2") (3 4) (5 &) (7" &)---.
¥.=(12) (3) (4) (5 6) (7) (8) (1) (2) (3" 4) (5) (6) (7' &)+,
Y= (12) (3) (4) (5) (6) (7 8) (1') (2') (3" 4) (5" &) (7) (8')--- .
Since <a, ¥,, ¥, y;> normalizes G,, ., as we have seen above <a, y,, ¥,, ¥,> nor-
malizes a 2-subgroup Q" of G, ,,,,» which is conjugate to Q. Then [[(Q”)|=8
and N(Q")'@"=4,. Hence a'@", y 1@, 379" and y,/9" are even permuta-
tions. Since a=(1) (2) (1’ 2') and y,=(1 2) (1") (2), i=1,2, 3, 0on {1,2,1/,2'},
a and y; have exactly one more 2-cycle other than (1’ 2’) and (1 2) respectively
in I(Q"). Since the lengths of <a, y,, y,, y,>-orbits in {9, 10/, -+, n} are at elast
eight, [ 1(Q”)N {9, 10, .-+, n}|=0. Hence I(Q")={1,2,3,4,1,2,3,4},{1,2,
56,1,2,5,6}, or {1,2, 7,8,1,2,7,8}%.
First assume that 1(Q")={1, 2, 3,4, 1’, 2/, 3, 4'}. Then a Sylow 2-subgroup
of G,,,, containing O or Q” has exactly one orbit {5, 6,7, 8} or {1’,2/,3’, 4}
of lengh four respectively. Since Sylow 2-subgroups of G,,,, are conjugate,
{5, 6,7,8} and {1’,2/, 3/, 4’} are contained in th same G, ,,,-orbit. Since I',D
{1,2,3,4}, {5,6,7,8} and T, are contained in the same G,,,,-orbit. By
(2.11) G is not 5-fold transitive. Hence G,,,, has two orbits {5,6,7,8}UT,
and T, on Q—{1, 2, 3, 4}.
Next assume that I(Q")={1, 2,5,6,1’,2,5,6}. Then by the same
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argument as above G, ,,, has two orbits {3,4, 7,8} UT', and T,. Since N(Q)'®
=4, there is an element 2=(1) (2) (3 5) (4 6) (7) (8)-:*. 'Then G,,,,=(G,,s¢)°
has two orbits {5, 6, 7,8} UT,” and T,*. Since T', and T, are G;,-robits, T';*
=T, or I',. On the other hand G is 4-fold transitive on Q. Hence G,,,, has
two orbits {3, 4, 5, 6} UT; and T';, where {7, j}={1, 2}. Since 2€G,,,,,  fixes
T, and T,. Hence G,,,, has two orbits {5,6,7,8}UT, and T,. Similarly if
0"H={1,2,7,8,1,2,7,8}, then G,,,, has two orbits {5,6,7,8}UT, and
T,. Thus in any case G, ,,, has the two orbits {5, 6, 7, 8} UT), and T,.

On the other hand A, is contained in T, and fixed by y,. Hence there is an
element in Qy, fixing four points of A,. Then by the same argument as above
{5, 6, 7, 8} and T', are contained in the same G, , , ~orbit. Thus G,,,, is transitive
on Q—{1, 2, 3,4}, contrary to (2.11). Thus N(Q)*?®=+4,. Hence we complete
the proof of (2.15).

2.16. N(Q)'@=+S,,

Proof. Suppose by way of contradiction that N(Q)'“®=S,. Then by (2.4)
N(Q) has the 2-group <0Q, x,, x,, -+, x,>. Now we show that <Q, x,, x,, -, x>
is semiregular on A. By (2.13) and (2.15) <O, x,, x,) is semiregular on A.

Suppose that <O, x,, x,, x,> is not semiregular on A. Then x, fixes a <Q, x,,
x,>-orbit A’ of length 4| Q| in A. Then by (2.13) and (2.15) z,%,%, fixes O-orbits
in A’. Furthermore <x,, &,, X,> is abelian and {&,, &,> is semiregular on A. Hence
x,%,%, fixes four Q-orbits in A’. By (2.8) %, %,%, fixes at most six Q-orbits in A,
Hence ®,%,%, does not fix any Q-orbit in A—A’. Hence <{Q, x,, x,, x,> is semi-
regular on A—A’.  Since N(Q)!?®=S,, N(Q) has a 2-element

»=(13)24 ) 60

By (2.3) we may assume that <O, x,, x,, x5, y,"> is a 2-group. Then y," normalizes
<Q, %,, %, x,>. Hence y,” fixes the <Q, x,, x,, x,>-orbit A’. Thus A’ is a<{Q, x,,
x,, v,/ >-orbit. Hence {0, x,, x,, ¥,"> has an element x (3= 1) fixing a point of A’
Then by (2,13) and (2.15) x’® is of order four and has exactly one 4-cycle (1 3
24)or(1423). Hence (x*)’“=(1 2) (3 4) and has fixed points in A, contrary
to (2.15). Thus <Q, x,, x,, x,> is semiregular on A.

Suppose that <Q, x,, x,, %, x,> is not semiregular on A. Then x, fixes a
<Q, %y, x,, x,>-orbit A’ of length 8| Q| in A. Since (%, %,, %,, X, is abelian and
{&x,, X,, X,> is semiregular on A, by (2.8) %,%,%,%, fixes exactly eight Q-orbits in
A, whose union is A’.  Thus <Q, x,, x,, x,, x,> is semiregular on A—A’. Since

N(Q)Y@=S,, N(Q) has a 2-element

¥ =(13)(24)G)6)- @)
By (2.3) we may assume that <{Q, x,, x,, X,, x,, ¥,> is a 2-group. Then y," nor-
malizes <Q, x,, %,, x;, x,>. Hence y,’ fixes A’. Then A’ is a {Q, x,, X, X3, ¥,/ -
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orbit. Hence there is an element x in <Q, x,, x,, x,>y,” fixing a point of A’.
Since <Q, x> is not conjugate to any subgroup of <Q, x,, x,, x,>, ¥’ is of order
four and has exactly one 4-cycle (1 3 2 4) or (1 4 2 3). Hence (x*)"®=(12) (3 4)
and x® has fixed points in A, contrary to (2.15). Thus <Q, x,, x,, x,, x,> is semi-
regular on A. Hence by (2.9) <Q, x,, x,, :*+, ;) is semiregular on A,

On the other hand Q has an involution a=(1) (2)--:(¢) ({):--. Then a
normalizes G,,;; and so commutes with an involution # of G,,;;. Then u
normalizes G;,. Hence # normalizes a Sylow 2-subgroup Q" of G;,. Since
Q' is conjugate to Q in G, and N(Q)' =S, <Q', u) is conjugate to a subgroup
of <Q, x,, %, +++, % in N(G1@). Hence <Q, x,, x,, -+, x> has an element (F1)
which has fixed points in A. This is a contradiction. Thus N(Q)'“?@%S,.

2.17. We show that N(Q)' 9@ == A, and complete the proof of the theorem.

Proof. Suppose by way of contradiction that N(Q)"“®=A4,. First suppose
that t=8 or 9. Let a=(1) (2)::(¢) ({5):-- be an involution of Q. Then a
normalizes G,,;; and so commutes with an involution u# of G,,;;. Since
N(Q)@=N(G;) @=4, or A, and |I(u)| <t, u'? consists of exactly two
2-cycles. 'This contradicts (2.15) since |I(x) N A|=0.

Thus t>10. Then by (2.4) N(Q) has the 2-group <O, ¥, ¥s = Y ¥,/
k>4. Now we show that <Q, ¥,,¥,, -+, ¥, ¥,”> is semiregular on A. By (2.15)
<0, y,, ¥.> is semiregular on A,

Let y be any element of <Q, y,, ¥,, ¥,/>— Q. Then y'? is of order two or
four. If "9 is of order two, then y‘9’ consists of exactly two 2-cycles. Hence
by (2.15) y is semiregular on A. If '@ is of order four, then (y°)/@=y 1@,
Hence y is semiregular on A. Thus <Q, y,, ¥,, ¥,/ is semiregular on A.

Suppose that {Q, y,, ¥, y5> is not semiregular on A. Then by (2.15) 3, 7,7,
has fixed points in A. Since (y,,¥,)'? is an involution consisting of exactly
four 2-cycles 7,7,7, fixes at most eight Q-orbits by (2.8). On the other hand
{J J2» Js» is abelian and {3, 7,> is a semiregular group of order four. Hence
7.9,9s fixes four or eight Q-orbits. Thus y, fixes one or two <Q, y,, ¥,>-orbits
in A. '

Assume that y, fixes exctly one <Q, y,, y,>-orbit T" in A. Then since y,’
normalizes <Q, ¥, ¥:, ¥s>, ¥, fixes I'. Hence T is also a <Q, y,, ¥,, y,">-orbit.
This is a contradiction since <Q, ¥,, ¥,, ¥,"> is semiregular on A. Thus y, fixes
exactly two <Q, y,, y,>-orbits in A, say T", and T',. Hence by (2.8) any element
of 0y,¥,¥, is an involution and has exactly eight fixed points in A.

Suppose that T\=A, UA,UA,UA, and T,=A;UAUA,UA,, where A,
1<i<8, is a Q-orbit. Set T'={A,, A,, A, A,} and T,={A,, A, A,, A;}. Then
we may assume that
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.= (Al AZ) (A3 A4) (As As) (A7 As)'" ’
y. = (Al As) (Az A4) (As A7) (As As)"' ’
Yy = (Al A4) (Az As) (As As) (A,-, A1)'" .

Since y;, >4, normalizes <Q,y,, ¥,,¥,>, I'’i=T", or T',. Suppose that
I'?=TI,. Then T, isa<Q,y,y, y,>-orbit. Hence y,y,y; fixes a Q-orbit in T
by (2.15). Since j,7,7, is the identity on T, §, 7, 7,. 7, 7.7,=7,7; fixes a Q-orbit
in T, contrary to (2.15). Thus I'?i=T,.

Suppose that t>12. Then N(Q) has y, and y,. Since {j,, ¥, j,> is
elementary abelian and I'”+=T,, we may assume that

Fo= (A Ag) (B, A) (A A7) (A, A+ .

Furthemore since T'’s=T,, T, UT, is a {J,, 7, 7., Js-orbit of length eight.
Hence <9, 7.,07.9s has an element fixing T, UT, pointwise. Thus we may
assume that y, 7,7, fixes T, U T, pointwise and so

Fs = (A1 Ag) (Az A5) (Ag Ag) (Ay Ay)- .
On the other hand N(Q) has 2-elements

¥/ = (1) (2) 34 () (6) (7) (8) (9 11) (10) (12) (13)---(2) -,

¥ = (1) (2) 34 (5) (6) (7) (8) (9) (11) (10 12) (13) (14)-+-(2)--- .
By (2.3) we may assume that <Q, y,, ¥,, ¥5, ¥/, ;> is a 2-group. Then by the
same argument as above T'V=T2s=T,. If j/=(A, A,)--+, i=4, 5, then (y,y,)’
has the same form as y, on I(Q) and fixes A, which is a contradiction. Similarly
7/ F(A, Ag)-++, i=4, 5, since (§,7/)’=5,. Hence we may assume that

yi = (Al A7) (A2 As) (Aa As) (A4 As)"' ’
= (A1 Ay) (A; &) (A A) (A, A+

Then y,y5y,’y," consists of exactly two 2-cycles on I(Q) and fixes A,, contrary to
(2.15).

Thus t=10 or 11. Assume that #=10. The proof in the case t=11 is
similar. Since <O, ¥,, ¥, ¥,"> is semiregular on A, the lengths of <O, ¥,, ¥,, y,">-
orbits on A are 8|Q|. On the other hand <Q, y,, v,, y,"> fixes 7, 8,9, 10 and
has two orbits {1, 2, 3,4} and {5, 6} on I(Q). Hence <Q, y,, ¥,, »,"> is a Sylow
2-group of G,44,. Furthemore in <Q, y,, y,, "> any element fixing ten points
belongs to Q. Since G is 4-fold transitive, this shows that any element fixing
ten points is conjugate to an element of Q. Set 2,=y,y,y,. By what we have
proved above every element of Qz, is an involution. Hence for any element u
of Q us=u"'. Furthermore N(Q) has a 2-element

2 =(13)(24)(57) (68) (9) (10)-+-.

By (2.3) we may assume that <Q, =z, 2,> is a 2-group. Since <Q, z,> and
<0, z,2,> are conujgate to <0, z,>, every element of Oz, and Qz,z, is an
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involution. Hence for any element % of Q w"2=u"" and #**2=5"". On the other
hand (u1)%2=(u"")"2=u. Hence u=u"'. Thus Q is elementary abelian and
2, 2,€C(Q). Then since N(Q)'9@=4,, and C(Q)'? is a normal subgroup
(F1), N(O)'@=C(Q)'?. In particular since Q is abelian, every 2-element of
N(OQ) belongs to C(Q).

Since y,’€ 0, the order of y, is two or four. Suppose that y, is of order
two. Then for any 2-cycle (¢j) of y, in A y, normalizes G,,,;. Hence y,
normalizes a 2-subgroup Q' of G,, ; ; which is conjugate to Q. Since N(Q')!?°=
Ay, ¥, consist of exactly two or four 2-cycles on I(Q’). Suppose that y, consists
of exactly four 2-cycles on I(Q’). Then <Q’, y,> is conjugate to <Q, 2,>. Then
| I(y,)| =10, which is a contradiction. Thus y, consists of exactly two 2-cycles
on I(Q"). Then I(Q)={i,}1,2,5,6,--,10}. Then Q and Q' are contained
in G, 44, and so conjugate in G,4,,.. Thus G,,,,, has an element which takes
{1,2,4,j} into {1, 2, ---,6}. Since {1, 2, -+, 6} is contained in a G, 4, -orbit
and (7j) is any 2-cycle of y, in A, G,4,,, is transitive on Q—{7, 8,9, 10},
contrary to (2.11). Thus y, is of order four. Hence every involution of N(Q)—Q
consists of exactly four 2-cycles on I(Q) and every involution of G fixes exactly
ten points.

C(Q) has an involution

z,=(13)(24) (56)(7)(8) (9 10)---.

By (2.3) we may assume that <Q, 2,, 2,> is a 2-group. 'Then since 2,2, consists
of exactly four 2-cycles on I(Q), 2,2, is of order two. Hence 2,2,—=2,2,. Since
I(2,)%1(2;) and any Sylow 2-subgroup of G, is conjugate to Q, 2, fixes exactly
two points of I(z,). Hence |I(z)N1(z;)N A|=2. Then since Q is semiregular
on A and {2, 2, <C(Q), |Q|=2. Set Q=<a).

Since <a, y,y,> is conjugate to <{a, y,>, ¥,¥, is of order four and (y,y,)’=a.
Let (¢j k I) be any 4-cycle of y,y, in A. Then y,y, normalizes G, ;,. Hence
¥sY, commutes with an involution 2 of G, ;,,. Since x commutes with (y,y,)*
=a, % fixes I(a). Thus y,y,z is of order four and (y,y,2)" is of order two.
Hence y,y,% consists of exactly two 2-cycles on I(a). Then since (y,y,)/®=
(7 8) (9 10) and 2" consists of exactly four 2-cycles, = has 2-cycles (7 8) and
(9 10). Hence y,y,2€G,44,. Furthermore y,y,2 is (¢j k1) on {77, &, I}.
Hence {3, j, &, I} is contained in a G,,,,-orbit. Set 2,=y,y,y,. Then =z, has
2-cycles (7 8) and (9 10). Since C(a)’®,;4,,=As C(a) has an involution 2/
which is conjugate to z under C(a),4,,, and has the same form as z, on I(a).
Then {a, 2> and <a, 2,> are Sylow 2-subgroups of <q, 2,, &’ and <{aq, 2, >/“=
{a, 2>, Hence <a, 2> is conjugate to <a, 2,> under <q, 2,, 2’ >;s» and so 2’
is conjugate to 2, or az, under <, 2,, 2 >;,. Thus 2z is conjugate to 2, or az,
under C(a);595. Since I(2)NAC{i,j, &k, [}, there is an element in C(a), 4,40
which takes {7, j, &, [} into I(2,) N A or I(az,)N A. On the other hand 22"=z,a.
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Hence (I(z,)N AY'=1I(az,)N A. Thus C(a),,,,, has an element taking {3, j, &, I}
into I(z,)N A. Furthermore y,’y, is of order eight and commutes with z,. Hence
/¥, consists of a 8-cycle on I(z)NA. Thus I(z)NA is contained in a
C(a), 54 o-0rbit. Since (Zj k [) is any 4-cycle of y,y, in A, A is cntained in a
C(@);5910-01bit and so in a G4, 0-0rbit. By (2.11) G,,,,, is intransitive on
0—1{7,8,9,10}. Hence G,,,,, has exactly two orbits {1, 2, ---,6} and A on
0—{7,8,9,10}. Since G is 4-fold transitive, any four points i,, 7,, 7,, 7, of Q
uniquely determine a subset A(7, 4, i, z,) of Q which is the G, ,,,, ;-orbit of
lengt six.

For a 2-cycle (11 12) of a and any two points 7,, 7, of {1, 2, --+, 10} four points
11, 12, 7,, 7, uniquenly determine A (11, 12, 7, %,), on which a consists of exactly
three 2-cycles. Conversely for any 2-cycle (j, /) of @ in A—{11, 12} four points
11, 12,,, j. uniquely determine A (11, 12,7, j,) and a fixes exactly two points of
A (11,12,5,, j,) which are contained in {1, 2, --+, 10}. Hence the number of 2-

cycles of a in A—{11, 12} is (120)-3=135. Hence n=121135.2=282. On

the other hand for any point 7 of Q—{1, 2, 3} four points 1, 2, 3,7 uniquely
determine A (1,2, 3,7). Hence 282—3=0 (mod 7), which is a contradiction.
(In the case t=11 for any two points 7, 7, of {1,2, ---, 11} [{1,2,---, 11} N A

(11, 12,4, 4,)| =3. Hence (121>EO (mod 3), which is a contradiction.) Thus

<O, ¥, ¥2» Y5> is semiregular on A.

Let ¥’ be any element of <Q, y,, ¥,, ¥3, ¥:» ¥/ >— Q. Then y?? is of order
two or four. If y7? is of order two, then y'7® consists of two or four 2-cycles.
Hence <Q, y") is conjugate to a subgroup of <Q, y,, ¥, ¥s> in N(Q). Hence y’
is semiregular on A. If y"/? is of order four, then (y*)!@=y,/9. Hence y’
is semiregular on A. Thus <Q, y,, ¥,, ¥s, Y., ¥,"> is semiregular on A. Hence by
(2.10) <O, ¥1, Y25 ***» Yir ¥, is semireglar on A.

Let x be any 2-element of N(G.,). Then x normalizes a Sylow 2-subgroup
Q' of G- Since Q is a Sylow 2-subgroup of Gy, and N(Q)'@=4,, <Q’, x>
is cnjugate to a subgroup of <Q, y,, ¥,, **, ¥&>. Hence x is semiregular on A.
On the other hand Q has an involution a=(1) (2)-:-(¢) (5)-:-. Then a normalizes
G,.; j, and so commutes with an involution % of G,,;;. Then v N(G ) and
| I(u) N A| #0, which is a contradiction. Thus N(Q)'“@+4,.

Thus we complete the proof of the theorem.

3. Proof of the lemma

In this section we assume that G is a permutation group as in Lemma.
Suppose by way of contradiction that there is a 2-group Q in G such that
[ 1(Q)] =12 and N(Q)®=M,,. Let @ be a Sylow 2-subgroup of Gq,. Since
N@)P=N(G 1) O>NQ)@=M,,, NQ)Y9=S,, 4,, or M,,. If N@Q)®@
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=S, or A4,,, then by Thereom G=S,, or 4,. Hence N(Q)'®=S,,, which
is a contradiction. Thus N(Q)'®=M,,. Hence we may assume that Q is a
Sylow 2-subgroup of G-

Set I(Q)={1, 2, ---, 12} and A=Q—1(Q). Then n>35 ([2], p. 80) and so
|A]>23.

Since N(Q)'“®>=M,,, we may assume that N(Q) has 2-element

%= (1) (2) (3) 4) (5 6) (7 8) (9 10) (11 12)-~+,
=10 @E)#(5768) (9111012)-,
Y., =(1)2)(3)4) (51069) (7 11 8 12)---,

and <Q, x,, y,, ¥,> is a 2-group (see (2.3)). Then <Q, y,>>=<0, y,">=<0, y-
Since Q is a normal subgroup of <Q, y,, ¥,>, O has a central involution a of

<O, ¥, ¥.>. Then we may assume that
a = (1) (2)--(12) (13 14) (15 16)-+(n—1 n).

3.1. First we show hat {Q, y,, y,> has at least one orbit of length eight in A
on which {Q, y,, ¥,>1s a quaternion group.

Proof. Suppose by way of contradiction that <Q, y,, ¥,> has no orbit of
length eight in A on which <Q, y,, y,> is a quaternion group. Then {5, 6, --+, 12}
is the unique <Q, y,, y,>-orbit of length eight and on which <Q, y,, y,> is a
quaternion group.

(i) We show that <Q, y,, ¥,> is a Sylow 2-subgroup of G,,,, and Q is a
characteristic subgroup of <Q, y,, y.>. Let x be any 2-element of N(<Q, y,,
Y20)1234. Then x fixes {5, 6, -+, 12} and so I(Q). Hence x&N(Q). Since
(N(O), 23 )@=y, y)'9, 1P =y,, y,'?®. Hence there is an element x’
in {Q, y,, > such that ¥"7@=x!@, Hence (¥ 'x)®=1 and so ¥’ xQ.
Thus x=<Q, ¥><<0, ¥,, .>. This shows that <Q, y,, ¥,> is a Sylow 2-sub-
group of G,,,,. Furthermore since any automorphism of <Q, y,, ¥,> fixes I(Q)
and <Q, y,, ¥.>re:=0, O is a characteristic subgroup of <Q, ., y.>.

(ii) Let ¢, j, k, [ be any four points of Q and X be a 2-group such that
X<N(G;;r;). Then we show that G;;,, has an involution x such that
X< C(x), | I(x)| =12 and C(x)!*<M,,. Since X <N(G; ;,), X normalizes a
Sylow 2-subgroup P’ of G; ;,,. Since G is 4-fold transitive, P’ is conjugate to
{0 v, ¥,>. Hence P’ has a characteristic subgroup Q' which is conjugate to Q.
Then X< N(Q’). Hence there is an involution x in Q' such that X <C(x).
Since |I(Q")|=12 and N(Q')'®°=M,,, |I(x’)|=12 and C(x)'**<M,,. We
remark that if x is the unique involution of Q’ then C(x)!®=M,,.

(iii) We show that Q is a cyclic or generalized quaternion group and
C(Q)Y9=N(Q)@. Suppose by way of contradiction that Q has an involution b
other than a. Then since ais a central involution of Q, we may assume that

b= (1) (2)--(12) (13 15) (14 16) (17 19) (18 20) (21 23 ) (22 24)--- .
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Then <a, b><N(G,3,4:5:5)- Hence by (ii) Gy, ;4 ;5 16 has an involution # such that
<a, b<C(u), |I(w)|=12 and C(u)**<M,,. Then |I(a)NI(u)|=0 or 4. If
| I(@) N I(u)| =4, then b7 fixes the same four points that a fixes and commutes
with a’®. This is a contradiction since C(u)’®<M,,. Hence |I(a)N I(u)| =0.
Then we may assume that

u=1(13)(24)(57)(68)(911) (10 12) (13) (14)---(24)--- .

Since <a, 4> <N(G,;;.,), by (ii) G, ;5 , has an involution v such that <{a, u><
C(v), |1(v)| =12 and C(v)’*<M,,. Let R be a Sylow 2-subgroup of <a b, u, v>
containing <{a, b, #>. Then R'®={u, v>'®, Hence R has an element v’ such
tha o'/ @=9"? and ¢’ is conjugate to v. Since ucZ(<a, b, u, v>), v’ fixes I(u).
Since v’ fixes 1,3 which are not contained in I(x) and |I(v')| =12, v’ does not
fix I(u) pointwise. Furthermore I(u) is a union of of <{a, b, u, v>-orbits and v’ is
conjugate to v which has fixed points in J(x). Hence o’ has fixed points in
I(u) and so ' fixes exctly four points of I(u). Since (bv')'™ is a 2-element of
C(u)' < M,,, (bv')'™ is of order two, four or eight. If (bo')’® is of order two,
then b commutes with v'. Hence <a, 5>’ is a four group and |I(<a, b>'®”)|
=4. This is a contradiction since M,, has no such subgroup. If (bv')’™ is of
order four or eight, then ((bo")’“)? or ((bv)’*)* is an invlution fixing four points
and so I((bv')’) or I((bv')*) contains {1, 2, ---, 12} and four points of I(u),
contrary to the assumption. Thus Q has exactly one involution and so Q is a
cyclic or generalized quaternion group. Hence the automorphism group of Q is
a 2-group or S,. Since N(Q)@=M,, and N(Q)“®/C(Q)'? is involuved in
the automorphism grup of Q, C(Q)!@=N(Q)!.

(iv) Thus a is the unique involution of Q. Since aEN(G,,1510), Giz21310
has an involution x such that ax=wxa, |I(x)|=12 and C(x)'®=M,, by (ii).
Then we may assume that x=x, and

x,= (1) (2) (3) (4) (5 6) (7 8) (9 10) (11 12) (13) (14)---(20)---.
Since <a, #,><N(Gs131), Gss1s 14 has an involution ¥, such that {a, x,><C(x,),
[I(x,)| =12 and C(x,)’“?=M,, by (ii). Then <x,, x,> normalizes a Sylow
2-subgroup of G, containing @. Hence we may assume that {x,, x,> normalizes
O. Furthermoe since N(Q)!®=DM,, and C(x,)'“P=DM,,, we may assume that

x, = (12) (34) (5) (6) (7) (8) (9 10) (11 12) (13) (14) (15) (16) (17 18)
(19 20)---
or
%= (1) (2) (3 4) (5) (6) (7 8) (9 11) (10 12) (13) (14) (15 16) (17 19)
(18 20)-- .

(v) We show that x,, x,&C(Q). Suppose by way of contradiction that
x,=C(Q). Since <Q, x,> is conjugate to <O, x,> in N(Q), there is an element
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u in Q such that x,u is conjugate to x, in N(Q). Then xucs C(Q) and |I(x,u)|
=12. Hence x,u commutes with u and so ¥, commutes with u. Since x,
and x,u are of order two, u’=1. Hence u=a or 1. Thus x,&C(Q). Since
<%,y 2,0 < C(Q) and |I(x,) N I(x,) N A| =2 or 4, Q is of order two or four. Thus
Q is abelian. Then since N(Q)!@=C(Q)'? by (iii), y,€ C(Q), i=1, 2. Since
v.2€<0, x>, there is an element #; in Q such that y’=ux,. Then y, commutes
with ux,. Since y; commutes with u;, y; commutes with x,. Hence y; fixes
I(x)N A. Furthermore since x,€C(Q), Q fixes I(x,)N A. Thus I(x)NA is a
union of <Q,, ¥,, ¥, >-orbits.

Suppose that Q is of order four. Since <Q, y,, y,)!*’"* is not a
quaternion group and C(x)/*Y= M, <Q, y,, y/@r4=0QI*’n4  Hence
(<O, ¥1» Y201z ar| =8 and so Qy,, i=1, 2, has an element y; fixing I(x,)N A
pointwise. Then I({y/, y,/>)=I(x,). Since N(Gy,) P> C(x,)'*P=M,,, for
the four points 1,2, 3,4 of I(x,) a Sylow 2-subgroup of G, ,,, cotaining {y,’, y:'>
is of order at least 8-8. 'This is a contradiction since <Q, y,, ¥,»> is a Sylow
2-subgroup of G, ,,, and of order 8-4.

Next suppose that Q is of order two. Then by the same reason as above
<0, ¥, 141" is a cyclic group of order two or four. Hence <Q, y,, ¥,> has
an element y which is of order four and fixes I(x,)N A pointwise. Then by the
same argument as above G,,,, has a Sylow 2-subgroup containing y and of
order at least 8-4. This is a contradiction since <Q, y,, y,> is a Sylow 2-sub-
group of G, ,, and of order 8-2. Thus x,¢£C(Q). Similarly x,& C(Q).

(vi) Since C(Q)'®@=N(Q)"® and x,e£C(Q), Q is nonabelian. Hence by
(iii) Q is a generalized quaternion group. Moreover there are elements b, and
b, in Q such that b,x, and b,x, belong to C(Q). Then b, commutes with ;,
i=1, 2. Hence x, commutes with b,. Thus b, fixes I(x;). Since |I(x;)NI(Q)|
=4 and C(x,)*°=DM,,, b, fixes exactly four points of I(x;) and so b, is of order
two or four. If b, is of order two, then b,=a since a is the unique involution
of Q. This is a contradiction since x;6C(Q). Thus b, is of order four. Fur-
thermore this shows that <Q, y,, ,> has exactly one central involution a.

Suppose that Q is of order at least sixteen. Then we may assume that
0={<c, d>, where ¢*=d*”’=1 and r>3. Suppose that b,={d>. Then since d
commutes with b.x,, d commutes with x,. Then d fixes I(x,) N A of length eight.
Since d is of order at least eight, d is of order eight. Thus d’“? has four fixed
points and one 8-cycle, which is a contradiction since C(x,)’*°’=M,,. Thus
b,&<{d> and so Q=<b,, d>. Similarly Q=<b,, d>. Hence dbi=d™, i=1, 2,
and so d%"i=(d™")*i.  On the other hand since bx;=C(Q). Hence db"i=d.
Thus d*i=d™* and so d*":=d. Since |I(xx,)| <12, |I(xx,) NI(Q)| =4 and
I(x,x,) N AD{13, 14}, 2< |I(xx,)N A| <8. Then since d is of order at least
eight, |I(x,x,)N A| =8 and d is of order eight. Thus |I(x,x,)| =12 and d’*"?
has four fixed points and one 8-cycle. This implies that C(xx,)’" "2 K M,,.
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On the other hand for any four points i j, k, [ of I(xx,) let P’ be a Sylow
2-subgroup of G ;;, containing x,x,. Then since G is 4-fold transitive, P’ is
conjugate to <Q, y,, y,>. Hence P’ has the unique central involution @’ which
is conjugate to a. Then P';,, is conjugate to Q and C(a')/*’=M,. If
xx,=a’, then C(xx,)'*1"2=DM,, which is a contradiction. Hence xx,%a’.
Then since P’;,/, has exactly one involution a’, x,x,& P’ yc,». Hence I(x,x,) N
I(@)={i, j, k, I} because C(a’)“*’=M,,. Thus a’®*2 fixes exactly four points
%7, k, . Then by a lemma of Livingstone and Wanger [4] C(x,x,)’**2 is 4-fold
transitive on I(xx,). Since C(wx,)/"*2+M,,, C(xx,)**2>A4,. Then by
Theorem G=S,, or A, which is a contradiction.

Thus Q is a quaternion group. Since C(Q)'9 =N(Q)"“?, Oy, has an
element which belongs to C(Q). Hence we may assume that y,e C(Q). Hence
y.2(bx) '€ C(Q)N Q=<a>. Thus y*=bx, or abx, and so y, is of order eight.
Furthermore y, commutes with a and 4,. Hence y, commutes with x,. Thus y,
fixes I(x,) and so y,’*Y has four fixed points and one 8-cycle. Thisis a con-
tradiction since C(x,)!“P=M,,. Thus we complete the proof of (3.1).

3.2. Next we show tht Q is of order two and Qux, has an involution x, such
that |I(x,')| =12 and C(x,)'*"=M,,.

Proof. By (3.1) <O, y,, y,> has an orbit T" in A such that |[T'|=8 and
<0, ¥y, ¥.>F is a quaternion group. Then Q is a quaternion group or a cyclic
group of order four or two. Hence the automorphism group of Q is S, or a
2-group. Furthermore N(Q)!®@=M,, and N(Q)'®|C(Q)*?® is involved in the
automorphism group of Q. Hence N(Q)@=C(Q)'?.

Suppose that Qis a cyclic group of order four. Then since N(Q)'@ =
C(Q)'? and Q is abelian, any 2-element of N(Q) is contained in C(Q). Thus
Z(KQ, ¥, ¥.0) =0. On the other hand <Q, y,, y,>* is a quaternion group.
Hence Q has an element b of order four and " & Z(<Q, y,, y.>"), which is a con-
tradiction. Thus the order of Q is not four.

Since <O, y,, y,>" is a quaternion group and <Q, ¥,, ¥, is of order at least
82, <0, ¥1, ¥.>r has an involution, which is contained in Qw,. Hence we may
assume that x,&<0, y,, y.>r. Then x,Z(KQ, y,, y,») and |I(x,)|=12. Let
x be any involution of <Q, y,, y,> other than a and x,. Since Q has exactly one
involution @, x&€Q. Hence xQx,. Thus x'@=x,/? and so xx, is an involu-
tion of Q. Hence xx,—a and so x=ax,. Thus <Q, y,, ¥,> has exactly three
involution a, x,, and ax,, which are contained in Z(<(Q, y,, ¥,>)-

Assume that <Q, y,, y,> is a Sylow 2-subgroup of G,,;,. For any four
points, 7, j, k, [ of I(x,) let P’ be a Sylow 2-subgroup of G, ;, containing x.
Since G is 4-fold transitive, P’ is conjugate to <Q, y,, ¥,>. Since any involu-
tion of <Q, y,, y,> is contained in the center of <Q, y,, y,>, ¥, is contained in
the center of P’. Thus P7“? < C(x,)'™*» and P'7*? fixes exactly four points z, j,
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k, I. 'Then by a lemma of Livingstone and Wagner [4] C(x,)’*" is 4-fold tran-
sitive. Since |I(x,)| =12, C(x,)’*°’=M,, by Theorem.

Assume that <Q, y,, ¥,> is not a Sylow 2-subgroup of G,,;,. Then
N(LQ, 1, ¥2))1254 has a 2-element &’ such that &’ €£{Q, y,, y,>. If &’ fixes I(Q),
then ¥/ Py, y,5'9 since N(G )’ @=M,,. Hence there is an element x”’
in <Q, y,, y.> such that x/@=x"1@®_ Thus x’x”"'€Q and so ¥ €<Q, ¥,, ¥,
which is a contradiction. Thus &’ does not fix I(Q). Then a*#a. Hence
a”=x, or ax,. Since C(a)'=DM,,, C(x,)'*? or C(ax,)’**>=M,,. Thus Qx, has
an élement x,, where x,'=x, or ax,, such that |I(x,)| =12 and C(x,")!*"=M,,.

Since N(Q)'“®P=M,,, we may assume that N(Q) has a 2-element

%= (1) (2) 34 (5) (6) (7 8) (9 12) (10 11)---

and <Q, v,, ¥., %, is a 2-group. Then <Q, «x,> is conjugate to <Q, x,>. Hence
we may assume that |I(x,)| =12, x,&C(Q), |I(x;)| =12 and C(x,)'"s> = M,
where x,’=ux, or ax,.

Since x,& N(LQ, y,, ¥,»), ¥, 2=x, or ax. Suppose that x*2—ax,. If Q is
of order two, then <Q, x,> is an elementary abelian group of order four. On
the other hand <Q, x,x,> is conjugate to <Q, x,> and xx, is of order four,
which is a contradiction. Thus Q is a quaternion group. Set IV=I(ax,)N A.
Then (I(x,) N AY2=I(ax,)N A. Hence |IV|=8 and <Q, y,, y,>* is a quaternion
group. Since |<Q, ¥,, ¥.or|=38, Oy, has an element y,/ fixing T" pointwise.
Then y,’€C(Q). Since Q™ is a quaternion group, ¥,’™ is the identity or an in-
volution. Hence y,” is not the identity and fixes {1, 2, 3,4} UT UT" pointwise.
This is a contradiction since |{1, 2, 3, 4} UT'UT"|=20. Thus x,"2=x,.

Then x,” and x," commute. Since C(x,' )" =M,,, I(x,") N I(x,')={1, 2,7, j},
where {7, j}C A. Thus <x/, x,”> fixes exactly two points 7, j of A. Then since
<x)y %, >< C(Q), O is of order two.

3.3. Finally we show that |Q| 42 and complete the proof.

Proof. By (3.2) |Q|=2, and so Q=<a)> and {q, x,> is an elementary abelian
group of order four. Furthermore we may assume that C(x,)/*’=M,, and
I(x)={1, 2, 3, 4, 13, 14, -+, 20}. Since N(Q)'® = C(a)!® = M,, and C(a)'®
>< 9y, ¥, C(a) has 2-elements

%, = (1) (2) 3 4) (5) (6) (7 8) (9 11) (10 12)--,
%, = (12) (34) (5) (6) (7) (8) (9 10) (11 12)---.

Then we may assume that <{a, y,, y,, %, ¥5> is a 2-group (see (2.3)). Since
<a, x;» is conjuagte to {a, x,> in C(a), i=2, 3, we may assume that |I(x,)| =12
and C(x;)'*’= M,. Furthermore since <{a, xx,>,i%j and 1<, j<3, is
conjugate to <a, x,> x;x; is of order two. Thus x; and x; commute and so
<a, %,, %, %, is elementary ableian.
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Since a'“P=(1) (2) (3) (4) (13 14) (15 16) (17 18) (19 20) and C(x,)'*’=M,,,
we may assume that x,/%’=(1) (2) (3 4) (13) (14) (15 16) (17 19) (18 20) and
x7*=(12) (3 4) (13) (14) (15) (16) (17 18) (19 20). Since |I(x,)| =12, we may
assume that I(x,)={1, 2, 5, 6, 13, 14, 21, 22, ---,;26}. Then since a’*?=(1) (2)
(5) (6) (13 14) (21 22) (23 24) (25 26) and C(x,)’*2? = M,,, we may assume that
% ¥2=(1) (2) (5 6) (13) (14) (21 22) (23 25) (24 26) and x,'“2=(1 2) (5) (6) (13)
(14) (21 22) (23 26) (25 24). Since |I(x;)|=12, we may assume that I(x;)=
{5,6,7,8,13, 14, 15, 16, 27, 28, 29, 30}. Then since a’*>=(5) (6) (7) (8) (13 14)
(15 16) (27 28) (29 30) and C(x,)'“=M,,, we may assume that x,’*>=(5) (6)
(7 8) (13) (14) (15 16) (27 29) (28 30) and x,”“=(5 6) (7 8) (13) (14) (15) (16) (27 28)
(29 30). Then ax.x, is of order two and I(ax,x;) contains {9, 10, 11, 12, 17, 18,
19, 20, 23, 24, ---, 30} of length sixteen, which is a contradiction. Thus we
complete the proof of the lemma.

4. Proof of Corollary 1

In this section we assume that G is a 4-fold transitive group on Q=
{1, 2, --,n} and n is even. Let P be a Sylow 2-subgroup of a stabilizer of four
points in G. Then |I(P)|=4 by Corollary of [13].

Proof of (1) of Corollary 1. We proceed by way of contradiction. We
assume that G is a counter-example to (1) of Corollary 1 of the least possible
degree. Then n>35 ([2],p.80). Set I(P)={1, 2, 3, 4}. Let ¢ be the maximal
number of fixed points of involutions of G and Q be a Sylow 2-subgroup of
Gre such that |I(Q)|=t. For any four points i, j, k, I of I(Q) let P’ be a
Sylow 2-subgroup of G, ;, containing Q. Since G is 4-fold transitive, P’ is
conjugate to P. Hence by the assumption I(P")=I(Z(P"))={i, j, k, I}. Thus
C(O)Y@>Z(P'Y? and I(Z(P')Y)={i, j, k, I}. Hence by a lemma of Living-
stone and Wagner [4], C(Q)'“ is 4-fold transitive on I(Q). If (C(O)Y?P);;k:
is of odd order, then |I(Q)|=4. Hence by a theorem of H. Nagao [10] G=S,,
A, or M,,, which is a contradiction since n>>35. Hence (C(Q)®); ;& is of
even order. Then C(Q)'@ satisfies the assumption of (1) of Corollary 1.
Hence by the minimal nature of the degree of G, C(Q)!“®=S,, 4, or M,,. By
Lemma C(Q)'9@+£M,,. If C(Q)'“=S,or 4,, then by Theorem G>A4,, which
is a contradiction. 'Thus we complete the proof.

Proof of (2) of Corollary 1. If P,=1, then by a theorem of H. Nagao [10]
G=S,, A, or M,,. Suppose that there is a point 7 of Q— I(P) such that P,=+1.
Let ¢ be the maximal number of fixed points of involutions of G. Since P;
is semiregular (Z=1), we may assume that |I(P;)|=¢. For any four points
&y 15, 13, 1, Of I(P;) let P’ be a Sylow 2-subgroup of G, ;, ;,;, containing P;. Then
NpAP;)'®F? is semiregular (1) and fixes exactly four points 7, 7,, 7, 7,. Hence
by a lemma of Livingstone and Wagner [4] N(P;)’®? is 4-fold transitive on I(P;)
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and by a theorem of H. Nagao [10] N(P,)'®?=S,, 4, or M,,. Hence by
Theorem and Lemma, G=S; or 4,,. 'Thus we complete the proof.

5. Proof of Corollary 2

In this section we assume that G is a permutation group as in Corollary 2.
We may assume that P is a Sylow 2-subgroup of G,,,,. Thenby a corollary
of [13] |I(P)|=4, 5 or 7.

Suppose that [I(P)|=4. Thenn is even. Furthermore since P is transi-
tive on Q—I(P), I(P)=I(Z(P)). Hence by Corollary 1, G==S,t,, (k=>1), Azt,,
(k=>2) or M,,.

Next suppose that |I(P)|=5. Since P is transitive on Q—I(P), by a
theorem of H. Nagao [9] G,,;, is doubly transitive on Q—{1, 2, 3, 4}. Then
G, satisfies the assumption of Corollary 2 and |I(P)—{1}|=4. Hence by what
we have proved above, G, is one of the groups listed above. Hence G=3Sy,;
(k=1) or A5 (k=2).

Finally suppose that |I(P)|=7. Then by a theorem of [12] G=M,,.
Thus we complete the proof.
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