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Throughout this paper, R will denote a Dedekind prime ring with the
quotient ring Q. Let F be any non-trivial right additive topology. A short
exact sequence 0—L—M—>N—0 is said to be F~-pure if the induced sequence
0—Lp—>M—N—0 is splitting exact, where M is the F-torsion submodule
of M. A right R-module is said to be F~-pure injective if it has the injective
property relative to the class of F~-pure exact sequences. Similarly we shall
define the concept of F”-pure projective modules.

We have already determined the structures of F~-pure injective and F~-pure
projective modules, under some conditions for F.

In this paper, we shall show how the results in [4] on these injectivity and
projectivity can be carried over the case of modules over any topology, and
discuss the relationships between F~-pure injective modules and F-injective
modules. We shall show, in Theorem 2.2, that there is a duality between all
F-reduced, F-torsion-free, F-pure injective modules and all F-torsion, F-
injective modules. This is a generalization of a theorem of Harrison [2]. By
using the duality we shall give some properties of F-torsion-free and F*~-pure
injective modules.

1. F~-pure injective modules

Let R be a Dedekind prime ring with the two-sided quotient ring Q. We
denote the (R, R)-bimodule Q/R by K. Let F be a non-trivial (right additive)
topology. Then we denote the left additive topology corresponding to F by F,
(cf. [5]). For any module M, we denote the F-torsion submodule of M by M,.
Let Qszn’ I7'(IeF). Then szﬁﬂ]“l (JEF,) and K;=0r/R=K (cf.
[5])- In this paper, F is a fixed non-trivial topology. Following [7], a module
D is F-injective if Ext(R/I, D)=0 for every I&F. For any module M, we denote
the injective hull of M by E(M) and denote the F-injective hull of it by E o(M).
A module G is F-cotorsion if Ext(Qr, G)=0. Let M be a module. The union
of all F,-divisible submodules of M is itself F,-divisible and will be denoted by
MF=:if MF~=0, then M will be said to be F-reduced. From the exact sequence
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*
0-R-Z, 0 r—>K z—0 we derive the exact sequence: Hom(Q, M)L M—Ext

(Kg, M). Then we have

Lemma 1.1. Let M be a module. Then
(1) M|MF~ is F-reduced.
(ii) Im a*=MF~.

Proof. (i) If (M/MF=)F~=0, then we have an exact sequence 0—MF*
—>N—(M|MF=)F~—0, where N is a submodule of M and N2MF=. For any
F-torsion module T, we have 0=Ext(T', MF~)—Ext(T, N)—>Ext(T, (M|/MF~)F~)
=0 by Lemma 2.5 of [5] and so Ext(7, N)=0 implies that N is F,-divisible, a
contradiction.

The proof of (ii) is similar to one of Proposition 2.3 of [4].

From Lemma 1.1 we know that a module is F-reduced and F-cotorsion
if and only if it is F-cotorsion in the sense of [6].

Lemma 1.2. (i) Ext(Ky, M) is F-reduced and F-cotorsion for every module
M.

(ii) Let G be F-reduced and F-cotorsion. Then Ext(X, G)=0 for every F-
torsion-free module X.

Proof. (i) From the exact sequence 0—MF~—M—M|MF~—0, we have
the exact sequence 0=Ext(Ky, MF~)—>Ext(Ky, M)—Ext(K,, M|/MF~)—0.
By Proposition 5.2 of [6] and Lemma 1.1, Ext(Kz, M/MF~) is F-reduced and
F-cotorsion. Hence Ext(K, M) is also F-reduced and F-cotorsion.

(ii) First assume that X is a Q -module. Then we have an exact sequence

0—Ker f>>'PO~>X—0, where f is a Q --homomorphism. Hence Ker fis a
Op-submodule and so it is F,-divisible. Applying Hom( , G) to this sequence
we get the exact sequence: 0=Hom(Ker f, G)—=Ext(X, G)—Ext(Q, G)=0.
Hence Ext(X, G)=0. Next assume that X is arbitrary. Since X =0, we have
the exact sequence 0->X—->X®Q, and so the sequence 0=Ext(XQRQ0y, G)—
Ext(X, G)—0 is exact. Hence Ext(X, G)=0 for every F-torsion-free module
X.

Lemma 1.3. Let 0>L—>M-—>N—0 be an F~-pure exact sequence. Then
the sequence 0—Ext(K ., L)—Ext(K p, M)—Ext(K , N)—0 is splitting exact.

Proof. For any module X, we denote the module X/ X . by X and Ext(K 5, X)
by X*. Itis easy to see that if X is F-torsion-free, then X* is also F-torsion-
free. Now we consider the following commutative diagrams:
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0 0 0
y \ !
0> L¥ - M¥ - Nt -0
! Y |
0 —- L* > M* > N*¥ - (
' 4 )
0> L*¥ - M* - N* - (
| J y
0 0 0

Since Hom(K 5, X)=Hom(K 5, X) for every module X and R is hereditary,
the rows and columns are all exact. Further, from the assumption and Lemma
1.2, we know that the columns, the top and bottom rows are splitting exact.
Hence the middle row is also splitting exact.

Proposition 1.4. Let G be an F-reduced module. Then G is F-cotorsion if
and only if G is F*~-pure injective.

Proof. Assume that G is F-cotorsion. Then G=Ext(K s, G) by Proposi-
tion 5.2 of [6]. Hence, by using Lemma 1.3, we can easily prove that G is F=~-
pure injective. Conversely assume that G is F~-pure injective. Since G is
F-reduced and R is hereditary, the sequence 0—-G—Ext(K;, G)—-Ext(Qr, G)
—0 is exact and F~-pure. So the sufficiency is clear.

From Proposition 5.2 of [6] and Proposition 1.4 we know that an F-reduced
module G is F=-pure injective if and only if G=Ext(Ky, G). Let M be a sub-
module of G with (G/M),=0. Then G is an F=-pure essential extension of M if
there are no nonzero submodules H< G with H N M=0 and [(G/(H®HM)]=0.
An extension G of M is an F>-pure injective envelope if G is F~-pure injective
and the extension is F~-pure essential. By the same way as in §2 of [4], we
easily obtain that F~-pure injective envelopes exist and are unique up to isomor-
phism. Let M=D®H be any module, where H is reduced and D is divisible.
Then it is easy to see that MF*=D@®HF> and so E(MF~)=D®E(HF~). Let
fi: H->E(HF>) be an extension of the inclusion map HF~—E(HF>) and let f:
M—E(MF>): f(d, x)=(d, f,(x)), where d=D and x H. Let the map g: M—
Ext(Ky, M) be the connecting homomorphism. Define : M —E(MF~)®Ext
(Kpy M): h(m)=(f(m), g(m)). Then we have the following theorem by slight
modifications to the proof of Theorem 2.9 in [4]:

Theorem 1.5. Let M be a module. Then the sequence
0> M— E(MF~)®Ext(Kp, M) — Coker h — 0

is the F=-pure injective resolution of M. E(MF~)DExt(K, M) is the F~-pure
injective envelope of M, and Coker h is injective and F-torsion-free.
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ReMARK. (i) An F~-pure injective module is F-cotorsion. The converse
does not necessarily hold. For example, QO is F-cotorsion, because the sequence
0=Ext(K z, O7)—Ext(Qr, Or)—0 is exact. But it is not necessarily F~-pure
injective.

(ii) By the similar way as in Theorem 2.1 of [4] we have a module is F*~-
pure projective if and only if it is a direct sum of a projective module and an
F-torsion module. So the results in §3 of [4] hold for F*~-pure exact sequences.

Let M be an F-reduced module. From the exact sequence 0—Mp—M—
M|Mp—0 we get the exact sequence: 0 —>Ext(K, Mz)—Ext(K,, M)—Ext
(Kg, M[Mp)—0. It is easy to see that Ext(K, M/M) is F-torsion-free. Thus
we have

(1.6) Ext(Kp, M)=Ext(K, Mz)DExt(K, M|M).

An F-reduced, F~-pure injective module is called F-adjusted if it has no
nonzero F-torsion-free direct summands. For any F-torsion module T, Ext
(Kg, T) is F-adjusted (cf. §55 of [1]). Thusif G is an F~-pure injective module,
then, from Theorem 1.5 and (1.6) we get:

G=DPAPB,

where D is injective, 4 is F-adjusted and B is F-reduced, F-torsion-free, F>-
pure injective. For F-adjusted modules we have

(1.7) 'The mapping T—Ext(K , T)=G gives a one-to-one correspondence
between all F-reduced, F-torsion modules 7" and all F-adjusted modules G (cf.
Theorem 55.6 of [1]).

In the final section we shall study the structure of F~-reduced, F-torsion-free
and F~-pure injective modules.

2. F-torsion, F-injective modules and F-reduced, F-torsion-free,
F~-pure injective modules

In this section we consider the relations between F-torsion, F-injective
modules and F-reduced, F-torsion-free, F=-pure injective modules.

Lemma 2.1. Let D be an F-torsion, F-injective module. Then
(1) Hom(Kpy, D) is F-reduced, F-torsion-free and F=-pure injective.
(it) Hom(Kp, DYQKp=D.

Proof. (i) Since Ky is F-divisible as a left R-module, Hom (K, D) is
F-torsion-free and so (i) follows from Proposition 5.1 of [6] and Proposition 1.4.
(i) The mapping %: Hom(Ky, D)QKr—D defined by 7(xQg)=x(3),
where x& Hom(K ., D), g= K, is an epimorphism, because D is F-torsion and
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F-injective. Applying this map to Hom(K, ) we have the exact sequence:

0 —Hom (K, Ker 7)—Hom (K, Hom (K, D)QK F)EHom(K 7 D)—>Ext(Kg,
Ker 7)—0. Since Hom (K, D)=Ext(Kr, Hom(K, D)) by Proposition 5.2 of
[6] and (i), there is the isomorphism a: Hom (K, D)=~Hom (K, Hom (K, D)
®Kr) by Lemma 2.7 of [5]. For any g& K, xHom(K, D) we have [7.a(x)]
(@)=n[a(x)(@)]=n(*®7)=x(g) and so nya=1. Thus 74 is an isomorphism.
Hence Hom(K, Ker n)=0=Ext(K, Ker 7) implies that Ker »=0. Therefore
Hom(Ky, D)QK p=D.

Theorem 2.2. The correspondence
(%) D — G = Hom(K, D)

is one-to-one between all F-torsion, F-injective modules D and all F-reduced, F-
torsion-free, F=-pure injective modules G. The inverse of (%) is given by the
correspondence G—G QR K r.

Proof. This is immediate from Proposition 5.2 of [6], Lemmas 2.5, 2.7,
Corollary 2.6 of [5], and Proposition 1.4, Lemma 2.1.

This duality was exhibited by Harrison in [2] between all divisible, torsion
groups and all reduced, torsion-free, cotorsion groups. The author generalized
it to modules over bounded Dedekind prime rings (cf. [3]).

We define z“eFZEn_l R/I (I€F) and I?F1=£i2 R[J (JEF,). Then Ry and
R r, are both rings containing R. Let M be an F-torsion module. Then M is
an Rp-module as follows: For me M, i:([r,—l—l])EIA?F, we define mi=mr;,,

where S O(m)={r&R|mr=0}. Similarly, an F,-torsion left module is an R -
module.

Proposition 2.3. An F-reduced module is F-torsion-free, F*-pure injective
if and only if it is a direct summand of a direct product of copies of R Fy

Proof. From Lemma 2.7 of [5] and Lemma 2.1, IA?FI is F-reduced, F-
torsion-free and F~-pure injective and so the sufficiency is evident. Conversely
let G be F-reduced, F-torsion-free and F=-pure injective. Then there exists an
F-torsion, F-injective module D with G=Hom(K, D) by Theorem 2.2. Itis

l .
easy to see that D can be embedded in an exact sequence 0—D— [[K, with

sufficiently many copies of K. Hence we have the exact sequence 0—Hom

Z
(Kr, D)>TIR;—Coker i,—0. Hom(Kpz, [IKs/D) is F-torsion-free and Coker
iy is so. Hence the above exact sequence splits. So G is a direct summand of

TRz,

Lemma 2.4. (i) An F-torsion, F-injective module is a direct sum of uniform,
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F-torsion and F-injective modules.

(ii) If M is F-torsion-free, then Tor(M, L)=0 for every F,-torsion left module
L.

(iii) If M s F-torsion-free with M QK =0, then M is F-injective.

Proof. (i) Let D be F-torsion and F-injective. Then E(D)=>PE,,
where E, is uniform and injective. Hence D=E(D),=>P(E,)r and (E,)r is
uniform and F-injective.

(ii) Let L be an F,-torsion left module. Then L can be embedded in an
exact sequence 0—L—>'PK, with sufficiently many copies of K. Hence
we have the exact sequence 0—Tor(M, L)—-> P Tor(M, Kz)=0.

(iii) Let J be any element in F,. Then from an exact sequence 0—R//—
P K—L—0 we get the exact sequence Tor(M, L)y>M QR[] —->M QB KE).
The first and last terms are zero by the assumption and (ii). Thus MQR/J=0
implies that M is F-injective by Lemma 2.5 of [5].

A submodule B of an ﬁpl-module G is called an F-basic submodule if it
satisfies the following conditions:

(a) Bis a direct sum of indecomposable, cyclic f\’pl-modules,

(b) (G/B)r=0,

(c¢) G/B is F-injective.

Proposition 2.5. Let G be an F-reduced, F-torsion-free and F=-pure injective
module. Then

(1) G possesses an F-basic submodule.

(ii) Any two F-basic submodules of G are isomorphic.

Proof. By Theorem 2.2 there exists an F-torsion, F-injective module D
such that G=Hom(K, D). Write D=3 PD,, where D, is uniform and F-
injective. Further we let B=>PHom(K, D,) and B,=Hom(K,D,). Then
we may assume that G2B.

(i) We shall prove that B is an F-basic submodule of G. (a): Since D, is
isomorphic to a direct summand of K, B, is a cyclic R rmodule. From
Theorem 2.2 it is evident that B, is indecomposable. (b): Let D=(IID,)s-
Then DSD and (IID,/D)r=0. So 0—-D—IID,—IID,/D—0 is F=-pure.
Hence D is F,-divisible, because [ID, is F,-divisible (cf. Lemma 2.4 of [4]).
Applying Hom(K, ) to the above sequence we get the exact sequence 0—
Hom(K, D)~Hom(K, I1D,)—Hom(K, II1D,/D)=0. Hence Hom(Ky, D)=
IIHom(Ky, D,)=TIB,. Since D/D is F-torsion, D is a direct summand of D.
So G is a direct summand of [[B,. Let# be any element of [[B, with A/ < B
for some I F. Since kI is finitely generated, there are «,, -+, a,, such that 2l
cB, ® - ®B,,. Hence heB, since [IB, is F-torsion-free and B, ®---DB,,
is a direct summand of [[B,. Therefore (IIB,/B)r=0 and so (G/B)=0. (c):
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Applying Q K to the exact sequence 0—B—>G—>G/B—0 we have the exact
sequence Tor(G/B,K;)—>BQK p—G QK p—(G/B)QK —0. By (b)and Lemma
2.4, the first term is zero. Further BQKp=>'PD,=D=G QK implies that
(G/B)®QKr=0. Hence G/B is F-injective by Lemma 2.4.

(it) Let B=3>PB,’ be any F-basic different from B. Then by the same
way as in the above (c), we have D=>1PH(B,/QK). Hence we have B=~B’ by
Theorem 2.2 and Krull-Remak-Schmidt-Azumaya’s theorem.

Let S(Kr) be the right socle of K. Then S(Ky) is a left module and is
F,-torsion. Hence it is a left IAQFI-module. Let G=Hom(K y, D), where D is an

. e i
F-torsion and F-injective module. From the exact sequence 0—S(Kz)—Kp,

*
we have the exact sequence 0—Ker i*—>G-z—>Hom(S(K r), D)—0 as right I/?Fl-
modules.

Lemma 2.6. Ker i*= N\ G]J, where | ranges over all maximal left ideals in
F,.

Proof. Itisevident that S(Kz)=>] /R, where ] ranges over all maximal
left ideals in F,. By Lemma 2.1, we have an isomorphism 7: GQKz=D and
the exact sequence 0-G—->GRQOr—~GRK—>0. Let x be an element of G.
Then we have

#(S(K)) = 0 x(J*/R) = 0 = n(x® J~'[R) = 0 =
xQJ YR=0=x2 ] 'SGin GRQr = x=GJ

for every maximal left ideal ] in F,.

For any R -module M, we put J(M)=NMJ and M=DM][J(M), where J
ranges over all maximal left ideals in F,. By Corollaries 2.8 and 2.9 of [5], J(M)
is an Ry -module.

Corollary 2.7. (i) The Jacobson radical of R r, coincides with J(Rx D
(ii) Let G=Hom(K r, D), where D is F-torsion and F-injective. Then G=
Hom(S(Kr), D).

Proof. By Corollary 4.5 of [6], I@Fleom(KF, K ). Further, it is clear
that K. is quasi-injective and is an essential extension of S(Kr). Hence (i)
follows from Lemma 2.6. (ii) also follows from Lemma 2.6.

Let F; be an atom contained in F (i.e., F; is a minimal element in the lattice
of all topologies) and let Sy, be a simple, F;-torsion module. Then Gr,=Hom
(Kr, Ep(SF,)) is F-reduced, F-torsion-free, F~-pure injective and indecomposable.
By Corollary 2.7, C_;F‘,:—: Hom(S(Kr), Ex(Sr,))=Hom(S(Ky), Sr,) and so Gy, isa
simple Ry ~module. A simple R r,-module which is isomorphic to the module
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Gr, is said to be F-simple. By the F-rank M of an Ry ,-module M is meant the
cardinal number of a maximal independent set of s1mple RF -modules of M.
Similarly the Frank M of M is defined by using F;-simple submodules of M.

Theorem 2.8. Let G and G, be F-reduced, F-torsion-free and F=-pure
injective modules. Then G=G, if and only if F;-rank G=F ;-rank G, for all atoms
F; contained in F.

In particular, F-rank G coincides with the cardinal number of the numbers of
cyclic, indecomposable direct summands of the F-basic submodule of G.

Proof. The necessity is clear. To prove the sufficiency we let G=Hom
(Kg, D) and G,=Hom(Kj, D,), where D and D, are F-torsion, F-injective.
Further let D=3@D,, where D, is uniform and F-injective and let B=>PB,,,
where B,=Hom(Ky, D,). Then it is evident that J(B)=>'® J(B,) and so
B=3\®B,. For each a, D, is isomorphic to E(S ;) for some atom F; contained
in F, where SF‘ is a simple and F;-torsion module. Hence B is a simple RF,
module. The exact sequence 0—B—>G—G/B—0 is F~-pure and so the sequ-
ence 0—B—G is exact (cf. Lemma 2.4 of [4]). Next we shall prove that G is
an essential extension of B asan R r,-module. The diagram is commutative with
exact rows (cf. Corollary 2.7):

0 _— B — G
U U
0 — >®Hom(S(Kf), D,) — Hom(S(Kr), D).

So it is enough to show that Hom(S(Ky), D) is an essential extension of >1®
Hom(S(Ky), D,). To prove this, let f be any nonzero element of Hom(S(K), D).
Then there exists a simple direct summand S, of S(K) with f(S,)40. Write
S(Krp)=S,DS, and let e,: S(Ky)—S, be the projection. Since Kp=Eg(S,)

DE(SL), there is reR r, such that it is an extension of S(K F)——>S —Kpandis
a zero map on E(S}). Then 0= f7 and fre> @Hom(S(Kx), D,), as desired.
Thus F;-rank G coincides with the cardinal number of the numbers of F;-simple
direct summands of B, and so it coincides with the cardinal number of the
numbers of uniform, F-injective direct summands of D which containan F;-torsion
and simple module for every atom F; contained in F. Hence D=D, and so G=
G, by Theorem 2.2. 'The last assertion is evident from the above discussion.

Theorem 2.9. Let D be an F-torsion, F-injective module and let G=Hom
(Kgy D). Then Hom(D, D)=Homzp (G, G).

Proof. The mapping ®: Hom(D, D)—>Homkr (G, G), defined by @(f)(g)
=f.g(feHom(D, D), g=G) is clearly a ring homomorphism. Assume that
®(f)=0, where feHom(D, D). Let D=3>PD,, where D, is uniform and F-
injective. For each a, D, is isomorphic to a direct summand of K,. Hence
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there is g, =G such that g,(Kz)=D,. Then we have 0=®(f)(g,)(Kr)=f-£s
(Kr)=f(D,). Hence f=0, and thus & is a monomorphism. Finally we shall
prove that @ is an epimorphism. For any D,, there exists a direct summand
K, of Ky such that , : K,~D,. Lete,: K.—K, be the projection and let
i, : K,—~Kp be the inclusion. Write ¢,=0,e, and +r,=i7,0;'. Further let
B,=Hom(K, D) and let B=>1PB,. Then Bw=¢mkpl and B is an F-basic
submodule of G. Now let g be any element of Homzs (G, G). Then, as is
easily verified, the mapping

fiD2d=3d, — 2 g¢.) [Valds)IED,

where d, €D, , is a homomorphism. Further, for any ke K, we have

D(f) (¢a) (k) = foda(k) = &($a) [Va(Palk))]
= 8(Ba)ea(k) = &(Pata) (k) = 8($a) (%) »
because e, & K r,and g is an R r,-homomorphism. Hence ®(f) (¢,)=g(¢,) for
every ¢,. This implies that ®(f) coincides with g on B. So ®(f)—g induces

a homomorphism from G/B into G. Since G/B is F,-divisible and G is F-
reduced, the map is zero and so ®(f)=g.
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