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Abstract. Oriented and weakly complex bordism modules of free meta-
cyclic actions are determined up to the Kasparov formula which describes the
bordism classes of generalized lens spaces in terms of a linear combination of
those of the standard lens spaces. Inthe oriented case for p=2 (the dihedral case),
the module structure is particularly simple because the corresponding Kasparov
formula reduces to the multiplication by 4-1. We also compute the abelian
group structure of these bordisms in case p>2 a prime and ¢>3 an odd prime.
Of independent interest is the canonical projections defined on these bordism
modules which select a direct summand with one generator in each 2pj— 1dimen-
sion (j=1, 2,---).

1. Introduction.

Let Z, , be the metacyclic group

Zop= {2, y|x? =92 =1, yxy~' = «"}

where p>2 is a prime integer, ¢>3 is an odd integer and 7 is a primitive p-th
root of 1 mod ¢ such that (r—1, ¢)=1. (So r=—1 mod ¢ when p=2.) By
virtue of Fermat’s theorem, these conditions imply (p, ¢)=1.

Obviously there is an exact sequence

T
1————>Z,,——z—>Zq,p——"<Zp———>1
s
with s a corss-section defined by s(7)=y.

Kamata—Minami [3] determined the additive structure of the weakly
complex reduced bordism group of the free dihedral group actions QY(Z,,) in
case ¢ is an odd prime. Here we generalize their results to the cases for the
oriented and weakly complex bordism modules O$°(Z,,,) and O¥(Z,,,) of the free
metacyclic actions.

For the basic notations and prerequisites, we refer the reader to the
introductory part and §1 of Kamata— Minami [3].
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Thanks are due to Professor Minoru Nakaoka for suggesting me the subject.
2. The module structure of O%(Z,,,); L=S0, U

First we recall the basic fact about {}(Z,, ;) from Lazarov [5].

Lemma 2.1. (Lazarov [5]).

(1) ix: QK(Z)—>OK(Z, ) is surjective onto the g-torsion.

(2) s%: QK(Z,)—0(Z,,p) is injective onto the p-torsion (which is a direct
summand as an Q%-module because 7 os=id).

The proof is done by calculating the integral homology Hy(Z,,»;Z). Thanks
to our assumption on p, ¢ and 7 stated in the introduction, Lazarov’s proof still
works here in a slightly generalized situation.

Therefore it suffices to know the kernel of 74 for the determination of the
module structure Q%(Z,,) because we already know the structure of Q%(Z,,)
(Conner-Floyd [1], Kamata [2], Shibata [6]).

Let

T(q’j): qu SH-1 gt

denote the Z,-action on the (2z—1)-dimensional sphere defined by T, j»(x*, 2)=
p"z, where p=exp (2r/—1/q). This is a free action if j is a unit in Z,.

Let us consider the images of the [T, ,), S**~'] by the canonical homo-
morphism

ix: OH(Z)—>O0%(Z4.)-
Lemma 2.2.
i*[T(q.’i)’ SZﬁ—l] = [T(q,ri)’ ZPXSZ"—I]’
where ch,r!‘) (x, (3", 2)) = (", p7"7"=) and
Tearir (9, (7, 2)) = (7, 3).

Proof. The map iy is the extension (see Conner-Floyd [1] page 53), and so
z->{<[Z‘(q,ri)1 Szn-l] = [T(q,rf)r Zq»i’>z<S2”—1]
q
where TM,,,') is the natural operation of Z,, on Z,,X S ! from the left.
Zq

There is an L-structure preserving (L=SO or U), Z,,-equivariant diffeo-
morphism

¢j: (T(q’ri), Zﬂu?? S2n-1)__)( f‘(q,”.)’ ZPX S2n-1)
q

defined by ¢;([x%y?, 2])=(5?, p*ri~*2).
Hence the lemma follows.
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Corollary 2.3.
ix[Teq,00 8™ 7] = ix[Teq,riry $™7']
for]=0, 1, 2’ -..’P_l.

Proof. From the preceding lemma, it suffices to find an L-structure
preserving, Z, ,-equivariant diffeomorphism

W5t (Beaon ZpX 5™ >(Leq i Z,% 577,
In fact the formula (5%, 3)=(5**/, 2) defines a desired one.

Let ¢: OQ%(Z,,,)—>0%(Z,) be the transfer homomorphism, i.e. the homomor-
phism induced by the restriction of the action on the subgroup (Conner-Floyd [1]
page 52).

Lemma 2.4.
-1
toix[Teq,p, S = Z;‘; [Teq,risy S™7'.
Proof. The lemma is obvious from Lemma 2.2 and the definition of #.

DerFinITION 2.5. We define the elements B,,_, (n=1, 2, --+) of OF,_, (Z,)
as follows.

(1) In case (n) P) = 1’ '82”—1 = o<]<25—1([T(q")’ Szn—l]—[T(q,rf)’ Szn—l])’
(2) Bopm— = toix[Teg v S*" 1= 33 [Teqriy S*"7'].

0<j<p-1

Lemma 2.6. (1) #48,,-, = 0 in case (n, p) = 1.
(2) toi*ﬁzpm—l == PBme_l.

Proof. (1) is obvious from definition 2.5 and corollary 2.3. Also defini-
tion 2.5, corollary 2.3 and lemma 2.4 imply (2).

At this stage, we need the formula of Kasparov [4], which describes the uni-
tary bordism classes of the generalized lens spaces as a linear combination of
those of the standard lens spaces. We restate his formula only in the special
case which we concern.

Theorem 2.7 (Kasparov [4]). In 0%(Z,), the class [Teq i, S*™7'] is the
coefficient of X" in
(2 [Teq,00 S*71X*) (X[g™(r/g(X)))"

(or its image in Q59(Z,) by the natural homomorphism QY(Z,)—>O3%(Z,)), where
gX)= ;‘ ([CPy_,]/R) X" is the logarithm of the cobordism formal group law, i.e.
1<h
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“the Miscenko series”.

Corollary 2.8.
an—l—P[T(q,l)) Szn_1] S \Qi {[T(q,o’ SZk_l] H 1 <k<n_ 1]} ’
where Q% {---} denotes the Q% -submodule of O%(Z,) generated by the elements {---}.

Proof. By the Kasparov formula, we see that

[Zenris S71—( 55 V[ Teamn S™ 1€ O5[Taq 00 S5 1<i<n—1}

Notice that here we can treat everything as reduced mod g since [T 1, S 7]
1\n__

€0§{[Teo,r S*7); 1<h<j} (Shibata [6]). In case n=kp, _ -<,-,<7

KEQ gll /(r?)¥)=p. Thus the lemma is true. Otherwise put n=kp+2(1<t<p—1).

Then 3> (1/r)"= > (r"*)’=0 mod g since r~* is a root of the equation
0<f<h-1

<5< -1
¥ —1=(x—1) (¥*'+--+x+1)=0 and r*—1 is a unit in Z, by virtue of the
condition (r—1, g)=1. Therefore the lemma holds also in case (», p)=1.

Corollary 2.9. Q4{[Tc., S¥7']; 1< <k} =Qf{B2j-1; 1<j<k}. In
particular, OK(Z,)=Q% {B2;-1; 1< }.

Proof. Since we are assuming (p, g)=1, this corollary is easily proved by
induction on % by virtue of 2.8.
Now we can state the main theorem of this section as follows.

Theorem 2.10. There are the following exact sequences of Q%-module
homomorphisms

(1) 0=Q&{Bymr; 1<m, (m, p)=1} 2%

SO Z)BNZ,) B 082, )0, and

s+
@) 00k {Bops_r; 1<K DOKZ,)* "5 05(Z, )0,

where ¢ is the canonical inclusion as a submodule,

P[T(q,lh Szm—l]_ 2 [T(q,rf)’ Szm_l]

0<j<p-1
if (m, p) = 1, and
[T(q,rf)v Szm-l]

0<j<p-1
if plm,

and the [T, ,i5, S*™ '] can be written down as a linear combination over Q% of the
[Teqn, S '] (1<n<m) by the Kasparov formula (Theorem 2.7).

Bzm—x =
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Proof. The proof is now obvious from 2.1, 2.6 and 2.9. We only indicate
the proof of the fact that Ker ix CQ%{Bom-r; 1<m, (m, p)=1}. Suppose x
belongs to Ker 7y and is homogeneous of dimension 2t—1. By 2.9,

¢
X = leaz(t—m)Bzm-l

[¢/#] L[:/5]
for some Ayt —py EQ5cs—my. Then 0=toiy(x)= D) patzt—2pmfS2pm-1. SO mzlaz:ﬁzm
m=1 =

¥722] .
Bzpm-1=0 and this implies ¥=x— > Qar—2pmB2pm-1= 2,0tz —m)B2m—1 s desired.
Mm=z1 1<m<t

(m, p)=1
3. The oriented case for p=2.

There is a special simplicity for the oriented bordism of the free dihedral
actions.

Lemma 3.1. Let s be a unit in Z,. It holds in O5°(Z,) that
[Teq,-05 S 71 = (=1)"[Teq,00 S™7]-
Proof. Consider the Z,-equivariant diffeomorphism
¢t (Taq,-sn 8™ )>(Teq 0 ™)

defined by ¢(2y, ***, 24-1)=(2, ***, Z,-,), t.e. the complex conjugation. Then ¢
preserves the orientation when # is even and reverses when # is odd. O.E.D.
It follows that, in £5§°(Z,),

Buin = [Tq00 S [Teq,-0» $**']
= Z[T(q,l); S““], and

Buims = [Tea.p) S+ [Tea, - $47']
= Z[T(q,l)v S“_l].

Therefore theorem 2.10 of the last section reduces to the following.

Theorem 3.2. There are the following exact sequences of Q5°-module homo-
mor phisms

0
(1) 0080 {[Teg o, S™*1]; 0<m} 20

_ ~ s+ 8%
D52 DOOZ) =5 030(Z, )0,

and
(2) 008 {[Teqpr S ];1 <} DOFA(Z)—

Iyt Sy _
2R 059(Z, ) 0.
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ReEMARK 3.3. The module structures of Q$°(Z,) (¢ odd) and 0§°(Z,) are
determined in Shibata [6]. According to 6.1 and 6.3 of Shibata [6], together
with the fact that the natural homomorphism QF—>Q§°/Tor kills the elements of
dimension 4;+2(;=0, 1, 2, --), we see that the restriction of the Smith homo-
morphism

A: Q3{[Teq,0) S 1<m}—
QB2 {[Teq,5 S5 1<m}

is an isomorphism, and thus 0$°(Z,) is a direct sum of two isomorphic copies
(with dimension shift) of Q$°-submodules.

ReEmMARK 3.4. We can not expect such a simple phenomenon in the unitary
bordism of the dihedral actions. For example,

[Teq,-0s S = [Teq5 S1—2[CP] [Teq,5 S],
[Teq, -1 S°1 = —[Teq,05 STIH3[CP,] [Teq,n5 S°]
—3[CP.J [Teq» S],
and so
tois[Teq .y S°] = 2[Tq,0 S°1—2[CP\] [Tcq,100 Sy F2[Ta,m5 7],
and in case ¢>3,
toi*[T(Q,l)) Ss] = 3[CP1] [T(q,l)y Sa]-s[cpl]z[T(q,x)) S1]4=0
in O8Y(Z,).
Also when ¢=3,
totx[Tes ny S°] = 5[CP,] [Tes, 5, S"1—[CP.F[T 5,055 S°] -+ 0.

ReEMARK 3.5. Even in the oriented case, if we take the case for p>3, the
Kasparov formula becomes complicated. The lowest dimensional example is
the case for p=3, ¢g=7, r=2. 'The computation shows that

toix[Tar,, S°] = 3[Ter,py STH4CPy] [Ter,5,8"1% 3 [T ,05 S
toix[Terpy S°1 = S5[CPy] [Ter,p, STIH-2[CPJ[Ter,0, ST
Therefore toix[Te, ., S°1#0 in OF(Z)).
4. Computation of abelian group sturcture of O%(Z,,,) for q an odd
prime

In this section we present a generalization of the main theorem of Kamata-
Minami [3] to the case for OQ%(Z,,,) with p>2 a prime and ¢>3 an odd prime.
So in this section, we assume g an odd prime.
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As in Kamata [2], let I'«(q) be the polynomial subring of Qf=2Z[x,, x,, ---]
which is generated by «x; (/4=¢—1) (unitary case) or its image in Q$° by the
canonical homomorphism Q¥—Q$° (oriented case).

Analogously to Kamata-Minami [3], proposition 3.1, we obtain;

Proposition 4.1.  The following two conditions for the elements [M*¢~*]e
T ;-1 (g) are equivalent;

(1) 33 [M* P8y, =0 in 5(Z,), and
(2) [Mz(l—k)] Eq[k—l/q—lj-(—lrz(l_k)(q)’
where the 3,,_, are the module generators of O%(Z,) defined in section 2.

Now 0%(Z,) can be considered as a T'x(¢g)-module and we denote by T'y«(q)
{-+:} the T'y(g)-submodule of 0% (Z,) generated by the elements {:-}.

Lemma 4.2. Ther is a T x(q)-isomorphism

v: T(@) {[Tca,n 713 1<n} —T's(q) {Bon-15 1<}
dEﬁned by D[T(q,l), S2"_1]=an-1-

Proof. According to proposition 4.1 and Kamata [2], proposition 2.5, the
[Teq .5, S*7'] and the B,,-, satisfy the same I'y(g)-module relations. Q.E.D.

Corollary 4.3. O¥(Z)=T's(g){[Tea,0r S5 1<} =T's(g){Bon_s; 1 <1}

Proof. The first equality is a consequence of Kamata [2], proposition 2.6.
So the map v of 4.2 defines an injective endomorphism of Q%(Z,) which is
dimension preserving. But 0%(Z,) contains only a finite number of elements in
each dimension, and thus the injectivity of » implies the surjectivity. This means

Tx(9) {Bun-1; 1<n} =Image v=0%(Z,).
Corollary 4.4. Qi {Bzﬁm—-l; 1< m} =F*(q) {Bme—l; 1 <7ﬂ}

Proof. Itisobvious that Q% {Bzpm-1; 1<m} DTx(q) {B2pm—1; 1<m}. Con-
versely let

(*) xzz”_}oazt-f-Z(n—m)PBme— 1; A2t +2(e-myp = Q%.  From the preceding corolla-
ry, Q5{B2j-1; 1<} CT%(q){Ben-1; 1<n}. So
t+nd
(rx) x= z;)')’z:—zpn-—zj‘ﬁzj—l; Y2tr2pn—25 € T'x(q)-
“=

By (), we have toiy(x)=px. On the other hand, (*x) implies

. n+Lt/0]
toig(x) = D) PV2er2ptn-m)B2pm-1.

m=1
n+[t/p]

Therefore x= mz;‘i Yott2pn-mBepm—1. Q.E.D.
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Now we are ready to prove the main theorem of this section.

Theorem 4.5. The additive structure of Q%(Z,) with q an odd prime is
determined by the following exact sequence of T x(q)-homomorphisms

. @0
0 — Tu(@){ (g7 1714 85y _1; 1< j}}

o T {Bar; 1<} }BOKZ,) 2% 62, -0,

where T'y(¢){{---}} denotes the free I"x(¢)-module generated by {---}.

Proof. According to 2.10 and 4.4, /x5 is epimorphic. And 4.1 implies
that the kernel of Z4-}-s4 is as stated in the theorem. Q.E.D.

REMARK 4.6. Except for the case 0§°(Z,), it holds that additively

OUZ,)=T«(p){[Tcp0» S7']5 1<n}/
F*(P) {P[n_1/P—1]+1[T(p,l)’ Szn-l]; 1<n}
(Kamata [2], proposition 2.6)
And, also additively,
0(Z:) = BEY "W,
j=0

where ¥, is Wall’s polynomial subalgebra Z,[X,,_,, X,; k+27, (X;;)*] in
Ny and E**' is the isomorphism of raising the dimension of each element by
2j+1. (Shibata [6], corollary 3.3, lemma 4.1)

5. Canonical splitting for 0%(Z,)

According to the results of section 2, we have the following proposition.

Proposition 5.1. Let p, q, r be as stated in the introduction. (1) There is
the projection homomorphism

Pcor: ﬂi(zq) — 04(Z,)
defined by pcp,ry=1o(tx| Qx {B2pm-1; 1<m}) "ol

(2) The corresponding direct sum decomposition as Q%-modules Image pc, ,,D Ker
Pc 0,7 is

O%(Zg) = Q&kA{B2pm-1; 1<m} DQE{Bon_r; 1<n, (n,p) = 1} .
When p=2, r is necessarily equal to —1, or equivalently, g—1.

Corollary 5.2. Let g be an odd integer.
(1) The formulas

p2(B4n+1) =0, Pz(184n+3) = Binss
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define an Q%-homomorphism
p.: Qk(Z;) — DK(Z,)

which is a projection operator.
(2) The corresponding direct sum splitting is;

0UZ;) = QZ{Bun-1; 1<1} DOAY{Bon-5; 1<n},
Q3°(Zs) = QP {[Tcan S 15 1<} BQFP{[Teq, S*7°5 1<} .

I doubt if there is an analogous direct sum splitting for O3¥(Z,6); a>1.
In the rest of this section, we assume ¢ an odd prime and p a prime such
such that p|g—1.

By elementary number theory arguments we obtain the following fact.

Lemma 5.3. The equation x*—1=0 mod q has exactly p distinct roots in
Zg. If r=1 is one of them, then r, r*, ---, r*™" are the primitive p-th roots mod q

and x*—1= i'__I (x—77) mod q.

Theorem 5.4. For ¢>3 an odd prime and p a prime such that p|q—1, there
is the canonical projection
Pyt Q%(Z4) — O%(Z,)
whcth gives the canonical direct sum decomposition
Q5(Z,) = 05 {B2pm-1; 1<m} PQEA{Bon-1; 1<n, (n,p) = 1},
and in particular for p an odd prime,
DAZg) = D2 {Bapm-1; 1<m} DO {Bapm-2p-1; 1<m}

@ Qio{ﬁain—l; 1<n, (n,p) = 1}
D Q5P{Bin-3; 1<n, 2n—1,p)= 1} .

Proof. Lemma 5.3 implies that we can find primitive p-th roots in Z,
and that the definition of the 3,,_, does not depend on the choice of a p-th root.
Hence the theorem follows from 5.1.
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