REPRESENTING ELEMENTS OF STABLE HOMOTOPY GROUPS BY SYMMETRIC MAPS

Mamoru MIMURA, Juno MUKAI and Goro NISHIDA

(Received June 14, 1973)

0. Introduction

Let S^{m} be the unit m-sphere. Let p be a prime and π the cyclic group of order p. Denote by $B \pi^{(r)}$ the r-skeleton of the classifying space $B \pi$. Recall that $B \pi$ is the infinite real projective space for $p=2$ and the infinite lens space for $p>2$. Let X be a space. Let m be a positive integer for the case $p=2$ and m an odd integer for the case $p>2$. Then a map $f: S^{m} \rightarrow X$ is called symmetric if there exists a $\operatorname{map} \bar{f}: B \pi^{(m)} \rightarrow X$ such that the following diagram is commutative:

, where $\omega: S^{m} \rightarrow B \pi^{(m)}$ is the canonical projection.
An element of the homotopy group $\pi_{m}(X)$ is called symmetric if it is represented by a symmetric map. For $p=2$, the definition of a symmetric map is due to J. H. C. Whitehead [14], in which he showed that if an essential element of $\pi_{m}\left(S^{m-1}\right)$ is symmetirc, then $m \equiv 3 \bmod 4$. Some results about the symmetricity of the elements of $\pi_{m}(X)$ are found in [4], [8], [10], [21] and [13].

Let X be an $(l-1)$-connected, finite $C W$-complex. Then our purpose is to show the following

Theorem 1. Every element of $\pi_{m}(X)$ is symmetric for any m satisfying $2 \operatorname{dim} X-l<m<2 l-2$ and
i) $m \equiv-1 \bmod 2^{\phi(k+1)} \quad$ for $p=2$,
ii) $m \equiv-1 \bmod 2 p^{[(k+1) / 2(p-1)]}$ for $p>2$,
where $k=m-l, \phi(s)$ is the number of integers i such that $0<i \leqq s$ and $i \equiv 0,1,2$ or $4 \bmod 8$ and $[s]$ indicates the integer part of a rational s.

Corollary 2. For an arbitrary $k>0$, every element of the k-stem of the stable
homotopy groups of spheres is symmetric.
To prove the above theorem we use the S-duality [11] and the Kahn-Priddy theorem [6] which is stated as follows for our use. Denote by ${ }^{p}\{X, Y\}$ the p-primary component of $\{X, Y\}=\lim _{n \rightarrow \infty}\left[S^{n} X, S^{n} Y\right]$.

Theorem 3. [Kahn-Priddy]. Let N be a sufficiently large integer and $h: S^{N} B \pi^{(s)} \rightarrow S^{N}$ a map such that the functional $\mathfrak{S}^{1}\left(S q^{2}\right)$-operation is non-trivial (respectively). Then for a connected, finite $C W$-complex X of dimension $<s, h_{*}$: $\left\{X, B \pi^{(s)}\right\} \rightarrow^{p}\left\{X, S^{0}\right\}$ is an epimorphism. Furthermore, assume that the functional $\mathfrak{B}^{[(s+1) / 2(p-1)]}\left(S q^{s+1}\right)$-operation of h is non-trivial for odd s (respectively), then h_{*} is an epimorphism for X of dimension $\leqq s$.

We express our thanks to H . Toda who suggested us to use the S-duality.

1. A proof of the Kahn-Priddy theorem

First we shall prove Theorem 3 for $p=2$. The notations of [6] are carried over to the present section unless otherwise stated.

Roughly speaking, the proof of Theorem 3 is to replace the infinite dimensional real projective space P^{∞} with the s-dimensional one P^{s} and the map $\phi: P^{\infty} \rightarrow\left(Q S^{0}\right)_{0}$ with a map $\operatorname{adj}(h): P^{s} \rightarrow\left(Q S^{0}\right)_{0}$ (cf. p. 985 of [6] and Theorem 7.3 of [9]) in the proof of Theorem 3.1 of [6].

Let $\quad t: B \mathfrak{S}_{2^{k}}^{(s)} \rightarrow \hat{Q}_{m}\left(B \mathfrak{S}_{2^{k}}(2)\right)^{(s)}$

$$
=\hat{Q}_{m}(\underbrace{\hat{Q}_{2} \cdots \hat{Q}_{2}}_{k-1} B \Im_{2})^{(s)} \subset \hat{Q}_{m}(\underbrace{\left(\hat{Q}_{2} \cdots \hat{Q}_{2}\right.}_{k-1} P^{s})
$$

be a restriction of the pretransfer $T: B \mathbb{S}_{2^{k}} \rightarrow \hat{Q}_{m}\left(B \mathbb{S}_{2^{k}}(2)\right)$ (Definition 3.1 of [6]) on the s-skeleton $B \mathfrak{S}_{2^{k}}^{(s)}$. Let $g_{2}{ }^{\prime}: \hat{Q}_{m}(\underbrace{\hat{Q}_{2} \cdots \hat{Q}_{2} P^{s}}_{k-1}) \rightarrow \hat{Q}_{m^{k}-1}\left(P^{s}\right)$ be induced by the wreath product and $g_{3}{ }^{\prime}: \hat{Q}_{m^{k}-1}\left(P^{s}\right) \rightarrow Q\left(P^{s}\right)$ a Dyer-Lashof map. Then we obtain a commutative diagram

, where $a=\operatorname{adj}\left(g_{2}{ }^{\prime} g_{3}{ }^{\prime} t\right), b$ is a restriction of $G_{\phi}\left(\mathrm{p} .985\right.$ of [6]) on $\sum^{\infty} \mathfrak{S}_{2^{k}}^{(s)}$ and r^{\prime} is defined by $r^{\prime}(x \wedge f)=f(x)$ for $x \in \sum^{\infty} S^{0}$ and $f \in\left(Q S^{0}\right)_{0}$. Remark that b is a restriction of $\sum^{\infty} \bar{\phi} \circ g_{3} g_{2} f_{1}$ on $\sum^{\infty} B \mathbb{S}_{2^{k}}^{(s)}$.

For large $k, b_{*}: H_{i}\left(B \mathfrak{S}_{2^{2}}^{(s)} ; Z_{2}\right) \rightarrow H_{i}\left(Q\left(S^{0}\right)_{0} ; Z_{2}\right)$ is an isomorphism if $i<s$ (p. 985 of [6]). So, by the Whitehead-Serre theorem, $b_{*}:{ }^{2}\left\{X, B \mathbb{S}_{2^{k}}^{(8)}\right\} \rightarrow$
${ }^{2}\left\{X,\left(Q S^{0}\right)_{0}\right\}$ is an isomorphism for a finite $C W$-complex X of dimension $<s-1$ and an epimorphism for X of dimension $<s$. It is clear that $r_{*}{ }^{\prime}:\left\{X,\left(Q S^{0}\right)_{0}\right\} \rightarrow$ $\left\{X, S^{0}\right\}$ is an epimorphism if X is connected. Thus $\left(r^{\prime} b\right)_{*}$ is an epimorphism on the 2 -component and hence so is h_{*}. This proves the first part of Theorem 3 for $p=2$.

Under the first assumption of Theorem 3, the functional $\mathfrak{S}^{i}\left(S q^{2 t}\right)$ - and $\beta \Re^{i}\left(S q^{2 t+1}\right)$ - operations are non-trivial for $2 i(p-1) \leqq s(2 i \leqq s$, respectively $)$. This is easily seen by use of the cohomology structure of $B \pi^{(s)}$ and the Adem relation. So, by adding the second assumption, $b_{*}: H_{i}\left(B \mathbb{S}_{2^{k}}^{(2)} ; Z_{2}\right) \rightarrow H_{i}\left(Q\left(S^{0}\right)_{0} ; Z_{2}\right)$ is an isomorphism for $i<s$ and an epimorphism for $i \leqq s$. This completes the proof of Theorem 3 for $p=2$.

For $p>2$, the argument is quite parallel (cf. Remark 3.5 of [6] and Theorem 7.5 of [9]) and we omit it.

2. The S-duality

From now on we shall devote ourselves to the proof of Theorem 1. Denote by $B \pi_{s}^{r}=B \pi^{(r)} / B \pi^{(s-1)}$, where $B \pi_{0}^{r}$ means $B \pi^{(r)} \cup$ (one point). Let X be an ($l-1$)-connected, finite $C W$-complex of dimension j. Then $f: S^{m} \rightarrow X$ is symmetric if and only if there is a $\operatorname{map} \bar{f}^{\prime}: B \pi_{n}^{m} \rightarrow X$ for $1 \leqq n \leqq l$ such that the following diagram is commutative:

, where ω^{\prime} is the map ω of (1) followed by the collapsing map from $B \pi^{(m)}$ to $B \pi_{n}^{m}$.
Let N be so large that $N \geqq \max (2 j+1,2 m+1)$ and take N-duals of everything in (2):

, where $D_{N} Y$ and $\Delta_{N} g$ are N-duals of a finite $C W$-complex Y and a map g [11]. If $m \leqq 2 n-2$, then we work in the stable range. So, we obtain the following

Proposition 4. Let X be an (l-1)-connected, finite $C W$-complex, $N \geqq$ $\max (2 j+1,2 m+1)$ and $m \leqq 2 n-2$. Then a map $f: S^{m} \rightarrow X$ represents a symmetric element if and only if there is a map $\tilde{f}: D_{N} X \rightarrow D_{N}\left(B \pi_{n}^{m}\right)$ for $1 \leqq n \leqq l$ such that the following diagram is homotopy commutative:

3. The S-dual of $\boldsymbol{B} \boldsymbol{\pi}_{\boldsymbol{m}}^{\boldsymbol{n}}$

Take $N=N(a, s)=a 2^{\phi(s)}$ for $p=2$ and $2 a p^{[s / 2(p-1)]}$ for $p>2$, where a is a sufficiently large integer.

Put $s=m-n$. Let $\varepsilon=\varepsilon(s)=0$ if $s \equiv-1 \bmod 2(p-1)$ and $\varepsilon=1$ if $s \equiv-1$ $\bmod 2(p-1)$ for $p>2$ and $\varepsilon=0$ for $p=2$. Then we have the following

Proposition 5. $D_{N}\left(B \pi_{n}^{m}\right)$ has the same homotopy type as $B \pi_{N-m-1}^{N-n-1}$ for $N=N(a, s+\varepsilon)$ with $s=m-n$.

Proof. For $p>2$, recall from Theorem 1 of [7] that the stunted lens space $B \pi_{2 n}^{2 m+1}=L^{m}(p) / L^{n-1}(p)$ is the Thom complex $\left(L^{s}(p)\right)^{n \pi_{1} * r(\xi)}$, where $L^{r}(p)=$ $B \pi^{(2 r+1)}$ is the ($2 r+1$)-dimensional lens space, ξ is the canonical line bundle over the complex projective s-space $C P^{s}, r(\xi)$ is the real restriction of ξ and $\pi_{1}^{*} r(\xi)=$ $r \pi_{1}^{*}(\xi)$ is the bundle induced by the natural projection $\pi_{1}: L^{s}(p) \rightarrow C P^{s}$.

First we shall show

$$
\begin{align*}
D_{N}\left(B \pi_{2 n}^{2 m+1}\right) & \simeq\left(L^{s}(p)\right)^{(N / 2-(m+1)) \pi_{1} * r(\xi)} \tag{4}\\
& \simeq B \pi_{N-2 m-2}^{N-2 n-1} \quad \text { for } \quad N=N(a, 2 s+1)
\end{align*}
$$

According to Theorem 3.3 of [3], the S-dual of $B \pi_{2 n}^{2 m+1} \simeq\left(L^{s}(p)\right)^{n \pi_{1} * r(\xi)}$ is $\left(L^{s}(p)\right)^{-n \pi_{1} * r(\xi)-\tau}$, where τ is the tangent bundle over $L^{s}(p)$. As is well known, $\tau+1=(s+1) \pi_{1}^{*} r(\xi)$. So $\left(L^{s}(p)\right)^{-n \pi_{1} * r(\xi)-\tau} \simeq\left(L^{s}(p)\right)^{1-(m+1) \pi_{1} * r(\xi)}$. By Theorem 2 of [7] the J-order of $\pi_{1}^{*} r(\xi)-2$ is $p^{[s /(p-1]}$. Obviously $[s / p-1]=[2 s+1 / 2(p-1)]$ holds. So by Theorem 3 of [7], $\left(L^{s}(p)\right)^{-(m+1) \pi_{1} *(\xi)}$ and $\left(L^{s}(p)\right)^{\left(N / 2-(m+1) \pi_{1} * r(\xi)\right.}$ have the same stable homotopy type. Therefore we have obtained (4).

Observe that $D_{N}\left(B \pi_{2 n}^{2 m}\right)=D_{N}\left(B \pi_{2 n}^{2 m+1}\right) / S^{N-2 m-2}$ for $N=N(a, 2 s)$ and also that $D_{N}\left(B \pi_{2 n+1}^{2 m+1}\right)$ is obtained from $D_{N}\left(B \pi_{2 n}^{2 m+1}\right)$ by deleting the top dimensional cell for $N=N(a, 2 s)$. By the same way as above we obtain $D_{N}\left(B \pi_{2 n+1}^{2 m}\right)$ from $D_{N}\left(B \pi_{2 n}^{2 m}\right)$ for $N=N(a, 2 s)$.

Similarly and more simply we have the assertion for $p=2$ (Theorem 6.1 of [3]). We note that the J-order of $\xi-1$ is $2^{\phi(s)}$, where ξ is the cannonical line bundle over the s-dimensional real projective space P^{s} ([1] and [2]).

4. On the Kahn-Priddy map

Consider the cofibring sequence

$$
\begin{equation*}
\cdots \rightarrow S^{m} \xrightarrow{\omega^{\prime}} B \pi_{n}^{m} \xrightarrow{i^{\prime}} B \pi_{n}^{m+1} \xrightarrow{q^{\prime}} S^{m+1} \rightarrow \cdots, \tag{5}
\end{equation*}
$$

where i^{\prime} and q^{\prime} are the canoncial inclusion and projection respectively.
Put $s=m-n$ and take $N(a, s+2)$-duals of everything in (5) and use Theorem 6.2 of [11] and Proposition 5, then we have the following

Proposition 6. There is a cofibring sequence

$$
\cdots \leftarrow S^{N-m-1} \stackrel{h}{\longleftarrow} B \pi_{N-m-1}^{N-n-1} \frac{q}{\longleftarrow} B \pi_{N-m-2}^{N-n-1} \stackrel{i}{\longleftarrow} S^{N-m-2} \leftarrow \cdots
$$

for $N=N(a, s+2)$, where $h: B \pi_{N-m-1}^{N-n-1} \simeq D_{N}\left(B \pi_{n}^{m}\right) \xrightarrow{D_{N} \omega^{\prime}} S^{N-m-1}, q=D_{N} i^{\prime}$ and $i=D_{N} q^{\prime}$.

We note that the cofibre of h is $S B \pi_{N-m-2}^{N-n-1}$.
Proposition 7. Let $m+1 \equiv 0 \bmod 2^{\phi(s+1)}$ for $p=2$ and $m+1 \equiv 0$ $\bmod 2 p^{[s+1) / 2(p-1)]}$ for $p>2$. Then
i) $B \pi_{N-m-1}^{N-n-1} \simeq S^{N-m-1} B \pi_{0}^{s} \simeq S^{N-m-1} B \pi^{(s)} \vee S^{N-m-1}$.
ii) $h \mid S^{N-m-1}$ is of degree p and $h \mid S^{N-m-1} B \pi^{(s)}$ has non-trivial functional $\mathfrak{W}^{i}\left(S q^{i}\right)$-operations for $2 i(p-1) \leqq s+1(2 \leqq i \leqq s+1)$, respectively).

Proof. Recall that $N=N(a, s+2)$ with sufficiently large a. Put $m+1=$ $N(b, s+1)$ for any b with $0<b<a-1$. Then $N-m-1=N(c, s+1)$ and $N-n-1=N(c, s+1)+s$ for some integer c. So by the James periodicity for $p=2$ ([5]) and by Theorem 4 of [7] for $p>2$, we have $B \pi_{N-m-1}^{N-n-1} \simeq S^{N-m-1} B \pi_{0}^{s}=$ $S^{N-m-1} B \pi^{(s)} \vee S^{N-m-1}$. This leads us to i).

Since $N-m-1$ is even, $h \mid S^{N-m-1}$ is of degree p. For $i>N-m-2$, there is the natural isomorphism $H^{i}\left(S B \pi_{N-m-2}^{N-n-1} ; Z_{p}\right) \cong H^{i-1}\left(B \pi^{(N-n-1)} ; Z_{p}\right)$. Let u and v be generators of $H^{i-1}\left(B \pi^{(N-n-1)} ; Z_{p}\right)$ for $i=2$ and 3 respectively. Then the non-triviality of the functional \mathfrak{S}^{i}-operation follows directly from the following relation:

$$
\mathfrak{P}^{i}\left(u v^{(N-m-3) / 2}\right)=u \mathfrak{S}^{i}\left(v^{(N-m-3) / 2}\right)=\binom{c p^{[s+1) / 2(p-1)]-1}}{i} u v^{(N-m-3) / 2+i(p-1)} \neq 0
$$

for $2 i(p-1) \leq s+1$.
Similarly the functional $S q^{i}$-operation is non-trivial for $2 \leq i \leq s+1$.
This completes the proof.

5. A proof of the main theorem

Obviously we have the following
Lemma 8. If Y is an $(r-1)$-connected $C W$-complex of dimension $r+s$ with $r>s$, then there exists an ($s-1$)-connected CW-complex W of dimension $2 s$ such that $Y \simeq S^{r-s} W$.

Now we are ready to prove Theorem 1 supposing Theorem 3. If X is
($l-1$)-connected and $\operatorname{dim} X=j$, then $D_{N} X$ is $(N-j-2)$-connected and dim $D_{N} X=N-l-1$. Therefore, by the above lemma, there exists a $(j-l-1)$ connected and $2(j-l)$-dimensional $C W$-complex W such that $D_{N} X \simeq$ $S^{N+l-2 j-1} W$. If $m+l>2 j$, then $S^{N+l-2 j-1} W=S^{N-m-1}\left(S^{m+l-2 j} W\right)$ and dim $S^{m+l-2 j} W=m-l=k$. Hence Propositions 4 and 7 for $n=l$ and Theorem 3 complete the proof of Theorem 1.

6. An example

Theorem 1 does not hold without the assumption $2 \operatorname{dim} X<m+l$. This is shown as follows.

Let $\iota \in\left\{S^{0}, S^{0}\right\}, \eta \in\left\{S^{1}, S^{0}\right\}$ and $\nu \in\left\{S^{3}, S^{0}\right\}$ be generators. Put $\alpha=\nu \vee 2 \iota$ and $X=\left(S^{m-5} \vee S^{m-2}\right) \bigcup_{\alpha} e^{m-1}$. Then it is clear that $\pi_{m}(X)=\{\tilde{\eta}\} \cong Z_{4}$ for $m>11$, where $\tilde{\eta}$ is a co-extension of η. It is shown as follows that $\tilde{\eta}$ is not symmetric for any $m>10$.

If $\tilde{\eta}$ is represented by a symmetric map $f: S^{m} \rightarrow X$, then f is decomposed as (2) for $n=m-5$. It is easily seen that m is odd and $\left(\bar{f}^{\prime}\right)^{*}: H^{m-1}\left(X ; Z_{2}\right) \rightarrow$ $H^{m-1}\left(P_{m-5}^{m} ; Z_{2}\right)$ is an isomorphism. Put $m \equiv k \bmod 8$, where $k=1,3,5$ or 7. Since $S q^{4}$ is non-trivial in $H^{*}\left(X ; Z_{2}\right)$, we have $k=1$ or 3 and $\left(\bar{f}^{\prime}\right)^{*}: H^{m-5}\left(X ; Z_{2}\right) \rightarrow$ $H^{m-5}\left(P_{m-5}^{m} ; Z_{2}\right)$ is an isomorphism. The operation $S q^{2}: H^{m-1}\left(P_{m-5}^{m+1} ; Z_{2}\right) \rightarrow$ $H^{m+1}\left(P_{m-5}^{m+1} ; Z_{2}\right)$ is non-trivial and so we have $k=3$.

Consider the diagram (2)' for $n=m-5$. Then we have

, where $N=a 2^{\phi(5)}=8 a$ for sufficiently large a and $D_{N} X=S^{N-m} \cup e^{N-m+1} \cup e^{N-m+4}$. Put $N-m=8 t+5$ and let $q: P_{8 t+4}^{8 t+9} \rightarrow S^{8 t+9}$ be the collapsing map. Then it is clear that $q \Delta_{N}\left(\bar{f}^{\prime}\right): D_{N} X \rightarrow S^{8 t+9}$ is also the collapsing map and $\left(q \Delta_{N}\left(\bar{f}^{\prime}\right)\right)^{*}$: $\widetilde{K O}\left(S^{8 t+9}\right) \rightarrow \widetilde{K O}\left(D_{N} X\right) \cong Z_{2}$ is an isomorphism. On the other hand, we have $\widetilde{K O}\left(P_{8 t+4}^{8 t+9}\right) \cong Z+Z_{4}$ by Theorem 7.4 of [1]. This is a contradition. Hence $\tilde{\eta}$ is not symmetric for $m>10$.

Kyoto Univeristy
Osaka University
Kyoto University

References

[1] J. F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] -: On the groups $J(X)$-II, Topology. 3 (1965), 137-172.
[3] M. F. Atiyah: Thom complexes, Proc. London Math Soc. 11 (1961), 291-310.
[4] G. E. Bredon: Equivariant homotopy, Proc. Conference on Transformation Groups, New Orleans, Springer Verlag (1968), 281-292.
[5] I. M. James: Cross-sections of Stiefel manifolds, Proc. London Math. Soc. 8 (1958), 536-547.
[6] D. S. Kahn and S. Priddy: Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc. 78 (1972), 981-987.
[7] T. Kambe, H. Matsunaga and H. Toda: A note on stunted lens space, J. Math. Kyoto Univ. 5 (1966), 143-149.
[8] J. Mukai: Even maps from spheres to spheres, Proc. Japan Acad. 47 (1971), 1-5.
[9] G. Nishida: The nilpotency of elements of the stable homotopy groups of spheres, J. Math. Soc. Japan 25 (1973), 703-732.
[10] E. Rees: Symmetric maps, J. London Math. Soc. 3 (1971), 267-272.
[11] E. H. Spanier and J. H. C. Whitehead: Duality in homotopy theory, Mathematika. 2 (1955), 56-80.
[12] J. Strutt: Projective homotopy classes of spheres in the stable range, Bol. Soc. Mat. Mexicana 16 (1971), 15-25.
[13] -: Projective homotopy classes of Stiefel manifolds, Canad. J. Math. 14 (1972), 465-476.
[14] J. H. C. Whitehead: On the groups $\pi_{r}\left(V_{n, m}\right)$ and sphere bundles, Proc. London Math. Soc. 48 (1944), 243-291.

