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MULTIPLY TRANSITIVE PERMUTATION
GROUPS AND ODD PRIMES
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In [4] M. Hall determined all 4-fold transtitive permutation groups whose
stabilizer of 4 points is of odd order. In this note we give some analogous

version of M. HalΓs theorem for any odd prime p on 3p-fold transtive per-

mutation groups. We note that such a version is also already obtained by E.
Bannai [1] on (p2-\-p)-fold transitive permutation groups.

Theorem. Let p be an odd prime. Let G be a Zp-fold transitive per-
mutation group on Ω={1,2, •••,#}. If the order of a stabilizer of 3p points
in G is prime top, then G=Sn(3p*ζn<4p) or G=An(3p+2*ζn<4p).

Our notation follows Nagao [6]. Let us recall some of them: For a set

S of permutations on Ω the set of the points left fixed by S will be denoted
by I(S). For a permutation x let α, (tf) denote the number of /-cycles. Also

let IC(S)=Ω—I(S) and a(x)=al(x). The order of a permutation x will be
denoted by o(x). p\ o(x) will mean that o(x) is divisible by p and pXo(x) will

mean that o (x) is not divisible by p.

1. On 2p-fold transitive groups

The next lemma which is indebted to Nagao [6] is essential in the present
work.

Lemma 1.1. Let X be a p-fold transitive permutation group on a finite
set Ω. Let P be a Sylow p-subgroup of X. If P is semiregular on Ω-/(P), then

(i) X has only one conjugacy class of the elements of order p, and
(ii) for an element u of order py Cx(u) is transitive on Γ(u).

Proof. Since X is p-fold transitive,

i) 6EX

by a result of Frobenius [1][2], On the other hand, since P is semiregular,

any element x with p-cycle is uniquely expressed as a product of an element
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u of order p and an element y of order prime to p which commute with each

J_

P
number of the fixed points of y on Ic(u). Hence we have by (1)

other. Then we can see easily that otp(x)=—a*(y)j where a*(y) denotes the

2 } 1^1 — V \XZ ~

where {wj , •••, {uk} are the conjugacy classes of X consisting of elements of
order p and the second summuation y1/ ranges over all the elements of Cx(ui)

of order prime to p. Now let t{ be the number of the orbits of Cx(uί) on Ic(ui)ί

then by [5], Theorem 16.6.13,

Since P is semiregular, a*(y) vanishes for an element y such that p \ o(y). Hence

Then by (2), = ^ I C,(ί,)|

p '

Therefore we have that k=l and tl=l. Thus we have the assertion.

REMARK. The following inequality is valid whenever X is p-fold transitive.

P χ

In this section we always assume that p is an odd prime and that G is a 2p-

fold transitive permutation group on Ω— {1, •••, n} , excluding Sn and Any where
the stabilizer H of the points 1, •••, 2p in G is of order prime to p. Then

I(H)={1, ~ ,2p} by Theorem of Nagao [6]. Let Δ= {1, •• ,2/)} and let N

=NG(H), then N*=S2p (cf. Wielandt [7], Theorem 9.4). Let P be a Sylow

/>-subgroup of TV then P is an elementary abelian group of order p2. We may

assume that

generate P; i.e., <«, by=P. Since | H \ is prime to p, P has at most p-\- 1 orbits

of length p. So we consider the following 3 cases separately.

Case (I) P has exactly two orbits of length p\ {1, " yp} and {/>+!, •••, 2/>} ,
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and P is semiregular on Ω— /(P) — {1, •••, 2p} .
Case (II) P has i ordbits of length p(2<i^p) and P is semiregular on£l— /(P)

— {1, •••, ip] and in this case we may assume that

ab = (1, 2, - p) (p+l, -.., 2p) (2p+l) (2p+2) (3p) ......

Case (III) P has p-\-\ orbits of length p and P is semiregular on Ω— I(P)

Let K=Gl ... tp and L= <&>•/£. Then we have the following corollary
immediately from lemma 1.1.

Corollary 1.2. | Cκ(a) \ = Σ α*(y) = Σ' α*(y) ,
ytΞCg-ίa) J6Eί7κ(β)

\cL(a)\ = Σα*Cy) = Σα*(y),
Je<7sCα) J'eC'iCβ)-ί7κCα)

w/*£r£ ί/te summuatίon Σ' ranges over all the elements of Cκ(a) of order prime to p
and a*(y) denotes the number of the fixed points of y on Γ(a).

Lemma 1.3. In cases (I) and (II) P is a Sylow p-subgroup of L. In case
(III) P is not a Sylow p-subgroup of L.

Proof. In case (I) and (II), n = ip-^-rp2+s for some integers / (2 </</>), r

and s (OO<_/>). Ll = K and K is p-fold transitive on Ω— {1, •• ,^>}. Hence
the first assertion holds by the assumption that | H \ is prime to p. We have
the second assertion similarly.

Lemma 1.4. Case (I) does not hold.

Proof. Let t denote the number of the orbits of CL(b) on Ic(b)— {1, •• ,̂ )}
and let a*(y) denote the number of the fixed points of y on Ic(b)— {1, •••,/>}.
By Lemma 1.3 P is a Sylow ^-subgroup of CL(b). In case (I) any element of P

except the identity has no fixed points on Ic(b)— {!,•••,/>}. Therefore a*(y) = 0
for any element y of CL(b) such that p \ o(y) and

t CL(b)\ =Σ'α*00
Jeo^Cί)

Hence by the remark after lemma 1.1,

because there exist two elements έ and ό"1 of L of order/) which are not conjugate
in L. Hence we have t — 0, that is, b is a/>-cycle. Then G = Snor An(cf. Wielandt
[7] §13). This is not the case.
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Lemma 1.5. Case (II) does not hold.

Proof. By corollary 1.2,

|cJX*)| = Σα*(y)ye0£Ca)-<7£Ce)

Since (?£,(#) : Cκ(ά) \ —p, we have

(3) ί=1!Ci(«)l
/)

ό, i2, ••-, ό^'1 are not conjugate with one another in C£,(Λ) since they are not con-
jugate in L. bi(i=29 3, •••,/>—!) and αi are not conjugate in CL(ά). We shall
show that b and ab are not conjugate in CL(ά). If έ and αi are conjugate in
CL(ά) by an element x, i.e., bx=ab. Then x^CL(ά)Γ\NL(P) and ** centralizes
b. Hence p\o(x\ but this is a contradiction since P is a Sylow ^-subgroup of
L. Thus we have p conjugacy classes in CL(a)—Cκ(ά) of order p represented
by the elements i, έ2, •••, ά^'1 and flέ, any of which has p fixed points on Ic(a).
Since the restriction of CL(P) on the orbits of P of length p is self-centralizing
(cf. Wielandt [5] §4), we have

Σα*(y) >p-p\CL(a): CL(P)\ \ {y^CL(P)\p^o(y)} \
yfECrfal-C^a)

= f\CL(a):CL(P)\.\CL(P):P\.

Hence Σ«*(j) >\CL(a)\ .
yeΞCtfaϊ-Cj^a)

This contradicts the equality (3).

2. Proof of Theorem

Lemma 2.1. Let p be an odd prime. Let G be a 2p-fold transitive
permutation group on Ω= {1,2, ••-,#}. Let K be the stabilizer of the points 1, 2,
••-, 2p in G and let P be a Sylow p-subgroup of K.

If P is not identity and semiregular on Ω— {1, 2, •••, 2p} , then P is of order p.

Proof. Let a be an element of order p which is conjugate with some element
of P such that

Then a normalizes Ky hence also normalizes a Sylow />-subgroup P/ of K. So
we find an element b of P' of order p which commutes with a. Then a fixes exactly
p points of a fixed block of b and 1 7(α) Π I(b) \ =p, i.e., |/«tf, by)\=p. Con-
jugating α to a' and i to V, we may assume that
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Let £)=<#', i'>, then any element of Q has at least p fixed points on Ω— {1, 2,
•••, 2p} . Q normalizes K, hence also normalizes a Sylow jp-subgroup P" of K.

Assume | P" \ ̂ p2. We shall find a subgroup S of P" of order p2 which is
normalized by Q. Since Q normalizes Z(P"\ the center of P", if | Z(P") Π CP"

(0 1 >P*> we find such subgroup S immediately. Let R=Z(P") Π CP"(Q) and
we assume | R \ =p. We can find a ^-invariant subgroup S of order p in P"/R.
Then the inverse image S in P" is ^-invariant and of order p2. S is a cyclic
group of order p2 or an elementary abelian group of order p2. Anyhow the auto-
morphism group of S does not contain an elementary abelian group of order p2.
Therefore some element £(φl) of Q centralizes S. Since c has fixed points on
Ω—I(S), c has at least p2 fixed points (cf. Wielandt [7] §4). Since p is odd,
p2>2ρ. This contradicts the semiregularity of P on Ω- {1, 2, •••, 2p}. Thus
we have the assertion.

Proof of Theorem. If G is 3p-fold transitive on Ω, then by lemma 2.1 a
Sylow ^-subgroup of a stabilizer of 2p points in G is of order p. But this contra-
dicts lemma 1.3. Thus we have the assertion of Theorem.

REMARK. A result corresponding to lemma 2.1 was also proved by E.

Bannai in a little strong form. His result will be published elsewhere.

At the end the author thanks Dr. E. Bannai and Mr. H. Enomoto for their
helpful advice and kind encouragement.
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