BELTRAMI DIFFERENTIAL EQUATION AND QUASICONFORMAL MAPPING

Takehiko SASAKI

(Received December 6, 1972)

1. Introduction

Let $\varphi(z)$ be a holomorphic function in the disk $D=\{z| | z \mid<1\}$ and $k(<1)$ a positive constant. Put $\mu(z)=k \bar{\rho}^{\prime}(z) / \varphi^{\prime}(z)$ in D and $\mu(z)=0$ outside D. Then the Beltrami differential equation $w_{\bar{z}}=\mu(z) w_{z}$ is known to have a homeomorphic solution $w=f(z)$ in $|z| \leq \infty: f(z)$ is a Teichmüller mapping in D and is meromorphic outside D : further the solution $f(z)$ is unique if normalized by the condition $f(1)=1, \lim _{z \rightarrow \infty} f(z) / z=1$. (see [1], p. 91). In this paper we restrict ourselves to the case in which $\varphi(z)$ is rational and investigate the solutions of those Beltrami equations. First we introduce a function $\Phi(z)$ which is defined by means of $\varphi(z)$ and satisfies the relation $g \circ f(z)=\Phi(z)$ for some rational function $g(z)$. Next we find the conditions for $\varphi(z)$ under which $f(z)$ maps D onto itself. These are equivalent to the condition for $f(z)$ to fix the boundary of D pointwise. From this we shall obtain short proofs of Theorem 6 in [2] and Theorem 2.3 in [3]. Finally we have an example which fixes the boundary of D pointwise for some k but not for k^{\prime} other than k.

2. $\Phi(z)$ is a branched covering

Let $\varphi(z)$ be a non-constant rational function holomorphic in D. Put with some $k, 0<k<1$,

$$
\Phi(z)= \begin{cases}\varphi(z)+k \bar{\varphi}(z) & \text { for } z \text { in } D \\ \varphi(z)+k \bar{\varphi}(1 / z) & \text { for } z \text { outsde } D\end{cases}
$$

Then we have
Lemma. $\Phi(z)$ is a branched covering and has the same number of sheets as $\phi(z)$.

Proof. By definition $\Phi(z)$ is a branched covering in D and outside \bar{D}. On the boundary of $D, \varphi(z)+k \bar{\varphi}(z)$ and $\varphi(z)+k \bar{\varphi}(1 / z)$ have the same values and the same orientation. Therefore $\Phi(z)$ has the same multiplicities as $\varphi(z)$ on the
boundary of D, so that it is an unlimited branched covering. Next we count the number of sheets. Writing

$$
\varphi(z)=\gamma \frac{\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{m}\right)}{\left(z-\beta_{1}\right) \cdots\left(z-\beta_{n}\right)}
$$

we have

$$
\Phi(z)=\gamma \frac{\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{m}\right)}{\left(z-\beta_{1}\right) \cdots\left(z-\beta_{n}\right)}+k \bar{\gamma} \frac{z^{n-m}\left(1-\bar{\alpha}_{1} z\right) \cdots\left(1-\bar{\alpha}_{m} z\right)}{\left(1-\bar{\beta}_{1} z\right) \cdots\left(1-\bar{\beta}_{n} z\right)}
$$

on the complement of D. Since $\beta_{i} i=1, \cdots, n$, lie outside D, the number of z with the multiplicities at which $\Phi(z)=\infty$ is $n+\max (m-n, 0)=\max (m, n)$ which is equal to the number of sheets of $\varphi(z)$. q.e.d.

Let $f(z)$ be the normalized solution of $f_{\bar{z}}(z)=\mu(z) f_{z}(z)$ with $\mu(z)=k \bar{\rho}^{\prime}(z) /$ $\varphi^{\prime}(z)$ in D and $=0$ outside D. Then $\Phi \circ f^{-1}$ is a branched covering with the same number of sheets as $\varphi(z) . \quad f(z)$ is meromorphic outside \bar{D} with a simple pole at ∞ so that $\Phi \circ f^{-1}$ is meromorphic outside $f(\bar{D})$. It will be shown as follows that $\Phi \circ f^{-1}$ is holomorphic in $f(D)$. The differentiation of $f \circ f^{-1}(w)=w$ with respect to \bar{w} gives

$$
\left(f_{z} \circ f^{-1}(w)\right) f^{-1}(w)_{\bar{w}}+\left(f_{\bar{z}} \circ f^{-1}(w)\right) \overline{f^{-1}}(w)_{\bar{w}}=0 \quad \text { a.e. }
$$

or

$$
f^{-1}(w)_{\bar{w}}=-\frac{f_{\bar{z}}(z)}{f_{z}(z)} \overline{f^{-1}}(w)_{\bar{w}}=-k \frac{\bar{\varphi}^{\prime}(z)}{\varphi^{\prime}(z)} \overline{f^{-1}}(w)_{\bar{w}} \quad \text { a.e.. }
$$

So, we have

$$
\begin{aligned}
\left(\Phi \circ f^{-1}(w)\right)_{\bar{w}} & =\left(\Phi_{z} \circ f^{-1}(w)\right) f^{-1}(w)_{\bar{w}}+\left(\Phi_{\bar{z}} \circ f^{-1}(w)\right) \overline{f^{-1}}(w)_{\bar{w}} \\
& =\left(\phi^{\prime} \circ f^{-1}(w)\right)(-k) \frac{\bar{\varphi}^{\prime}(z)}{\varphi^{\prime}(z)} \overline{f^{-1}}(w)_{\bar{w}}+k\left(\overline{\mathcal{P}}^{\prime} \circ f^{-1}(w)\right) \overline{f^{-1}}(w)_{\bar{w}}=0 \quad \text { a.e.. }
\end{aligned}
$$

This shows the holomorphy of $\Phi \circ f^{-1}$ in $f(D)$. Except for a finite number of points which are f-images of the critical points of $\varphi(z), \Phi \circ f^{-1}(w)$ is holomorphic on the boundary of $f(D)$ because it is locally a composition of the quasiconformal mappings and 1 -quasiconformal. By the finite multivalency of $\Phi \circ f^{-1}$ it is meromrophic at the excepted points so that it is a rational function. We formulate this as

Theorem 1. $f(z)$ and $\Phi(z)$ are related with a rational function $g(z)$ such that $g \circ f(z)=\Phi(z)$.

Application. We consider the expansion of $f(z)$ outside \bar{D}. Under the normalization $f(0)=0$, instead of $f(1)=1, f(z)$ has an expansion

$$
f(z)=z+P(\mu(h+1))=z+P_{\mu}+P_{\mu} T \mu+P_{\mu} T \mu T \mu+\cdots,
$$

where
$\operatorname{Ph}(\zeta)=-\frac{1}{\pi} \iint h(z)\left(\frac{1}{z-\zeta}-\frac{1}{z}\right) d x d y$ and $T h(\zeta)=\lim _{z \rightarrow 0}-\frac{1}{\pi} \iint_{\mid z-\zeta \gg} \frac{h(z)}{(z-\zeta)^{2}} d x d y$. (see [1]). If $g(z)$ is determined explicitly we shall be able to see $P \mu, P_{\mu} T_{\mu}$, $P_{\mu} T_{\mu} T_{\mu}, \cdots$ succesively. For example consider the case of

$$
\varphi(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z
$$

where a_{i} are real and $\left\{z \mid \varphi^{\prime}(z)=0\right\}$ lies on the segment $[-1,1]$. Then we find $g(w)=(1+k) \varphi\left((1+k)^{-1 / n} w\right)$ and $\Phi(z)=\varphi(z)+k \varphi(1 / z)$ outside D. Substituting these into $g \circ f(z)=\Phi(z)$ we have

$$
\begin{array}{r}
\sum_{i=1}^{n} a_{i}(1+k)^{1-i / n}\left(z+k P \mu^{\prime}+k^{2} P \mu^{\prime} T \mu^{\prime}+k^{3} P \mu^{\prime} T \mu^{\prime} T \mu^{\prime}+\cdots\right)^{i} \\
=\varphi(z)+k \varphi(1 / z), a_{n}=1 .
\end{array}
$$

Here we put $\mu^{\prime}=\mu / k=\bar{\varphi}^{\prime}(z) / \varphi^{\prime}(z)$. Comparing the coefficients of j-th power of $k, j=0,1,2, \cdots$, of both sides we have

$$
\begin{aligned}
& P \mu^{\prime}=(\varphi(1 / z)-\varphi(z)) / \varphi^{\prime}(z)+z / n, \\
& \quad P \mu^{\prime} T \mu^{\prime}=-\frac{1}{2 \varphi^{\prime}(z)}\left(\varphi^{\prime \prime}(z)\left(P \mu^{\prime}\right)^{2}+2 P \mu^{\prime} \sum_{i=1}^{n} i(1-i / n) a_{i} z^{i-1}\right. \\
& \left.+\sum_{i=1}^{n}(1-i / n)(-i / n) a_{i} z^{i}\right),
\end{aligned}
$$

3. The case in which $\boldsymbol{f}(\boldsymbol{z})$ keeps every boundary point of \boldsymbol{D} fixed

Let $F(z)$ be a quasiconformal mapping of D onto D which satisfies $F_{\bar{z}}(z)=$ $\mu(z) F_{z}(z)$. If $F(z)$ fixes the boundary of D pointwisely, then we have a normalized solution of $f_{\bar{z}}(z)=\mu(z) f_{z}(z)$ by setting $f(z)=F(z)$ in D and $f(z)=z$ outside D. This implies that $f(z)$ maps D onto D. Conversely if a normalized solution $f(z)$ maps D onto D then $f(z)=z$ outside D and therefore it fixes the boundary of D pointwisely. The restriction of $f(z)$ to D is a solution of $F_{\bar{z}}(z)=\mu(z) F_{z}(z)$ which fixes the boundary of D pointwisely. Therefore we can say that $F(z)$ fixes the boundary of D pointwisely if and only if the normalized solution $f(z)$ maps D onto D. If $f(z)$ maps D onto D, then we have $g(z)=\varphi(z)+k \bar{\varphi}(1 / z)$ outside D and therefore everywhere. In this case all poles of $\varphi(z)$ lie on the boundary of D. More precisely, $m \leqq n$ and $\left|\beta_{i}\right|=1, i=1,2, \cdots, n$. Proof is as follows;

First we observe that the number of sheets of $g(z)$ is equal to $\max (m, n)$. This follows readily from Lemma and Theorem 1. $g(z)$ has poles at $\beta_{i}, \bar{\beta}_{i}^{-1}, i=$
$1,2, \cdots, n$, and at $0, \infty$ if $m>n$. If $m>n$ then the number of z with the multiplicities at which $g(z)=\infty$ is not less than $2(m-n)+n=m+(m-n)$, which is a contradiction. Therefore $m \leqq n$. If there is a $\beta_{i},\left|\beta_{i}\right| \neq 1$, then the number of z with the multiplicities at which $g(z)=\infty$ is greater than n, a contradiction. The assertion follows.

The identity $g(z)=\varphi(z)+k \bar{\varphi}(1 / z)$ implies that $\varphi(z)+k \bar{\rho}(1 / z)$ has the branch points at $w_{i}, i=1,2, \cdots, l$, and only there in D, where w_{i} is the f-image of the branch point $z_{i}, i=1,2, \cdots, l$, of $\varphi(z)$ in D with the same order as $\varphi(z)$ has at z_{i}, and that $\varphi\left(w_{i}\right)+k \bar{\rho}\left(1 / \bar{w}_{i}\right)=\varphi\left(z_{i}\right)+k \bar{\varphi}\left(z_{i}\right), i=1,2, \cdots, l$. Conversely if $g(z)=$ $\varphi(z)+k \bar{\rho}(1 / z)$, this is true when the above conditions on $\varphi(z)$ are satisfied, then $f(z)$ maps D onto D. We summurize those as

Theorem 2. The followings are all equivalent.

a) $F(z)$ fixes the boundary of D pointwisely,
b) $f(z)$ maps D onto D,
c) $g(z)=\varphi(z)+k \bar{\rho}(1 / z)$,
d) $\varphi(z)$ has poles only on the boundary of $D, \varphi(z)+k \bar{\varphi}(1 / z)$ has the branch points at $w_{i}, i=1,2, \cdots, l$, and only there in D, where w_{i} is the f-image of the branch point $z_{i}, i=1,2, \cdots, l$, of $\varphi(z)$ in D with the same order as $\varphi(z)$ has at z_{i}, and $\varphi\left(w_{i}\right)+$ $k \bar{\varphi}\left(1 / \bar{w}_{i}\right)=\varphi\left(z_{i}\right)+k \bar{\varphi}\left(z_{i}\right), i=1,2, \cdots, l$.

4. Short proofs

If $\varphi(z)$ has no branch point in D, then d) implies that $\varphi(z)$ has poles only on the boundary of D. This is Theorem 6 in [2]. On the other hand if $\varphi(z)$ has the branch points in D and if a) is true for all $k, 0<k<1$, then we can show $w_{i}=z_{i}, i=1,2, \cdots, l$. In this case d) implies that $\varphi(z)$ has poles only on the boundary of D and $\bar{\varphi}(1 / z)$ has the branch points at $z_{i}, i=1,2, \cdots, l$, and only there in D with the same order as $\varphi(z)$ has at z_{i} and that $\varphi\left(1 / z_{i}\right)=\varphi\left(z_{i}\right), i=$ $1,2, \cdots, l$. Conversely if the above conditions on $\varphi(z)$ are satisfied then d) is satisfied with $w_{i}=z_{i}, i=1,2, \cdots, l$, and hence a) is true for all $k, 0<k<1$. This is Theorem 2.3 in [3].

Proof of $w_{i}=z_{i}, i=1,2, \cdots, l$. By the well known fact that $\left|w_{i}-z_{i}\right|<2 k$ for all $k, 0<k<1, \mathrm{~d}$) implies that for all k

$$
k\left(\overline{\mathcal{P}}\left(z_{i}\right)-\bar{\varphi}\left(1 / \bar{w}_{i}\right)\right)=\varphi\left(w_{i}\right)-\varphi\left(z_{i}\right)=\varphi^{\prime}\left(z_{i}\right)\left(w_{i}-z_{i}\right)+O\left(\left(w_{i}-z_{i}\right)^{2}\right) .
$$

Dividing both sides by k and letting $k \rightarrow 0$, we have $\varphi\left(1 / z_{i}\right)=\varphi\left(z_{i}\right)$. Therefore $\varphi(z)+k \bar{\rho}(1 / z)=\varphi\left(z_{i}\right)+k \bar{\rho}\left(z_{i}\right)=\varphi\left(z_{i}\right)+k \bar{\varphi}\left(1 / z_{i}\right)$ is satisfied by z_{i} and w_{i}. We set $E_{i}=\left\{z \mid \varphi(z)=\varphi\left(z_{i}\right)\right\} \cap D$ and $E_{i}^{\prime}=\left\{z \in E_{i} \mid z \neq z_{i}\right\}$. Then for sufficiently small k, w_{i} lies near z_{i}, and $f\left(E_{i}{ }^{\prime}\right)$ and w_{i} have a positive distance which tends to the distance between $E_{i}{ }^{\prime}$ and z_{i} as $k \rightarrow 0$, hence we have $w_{i}=z_{i}$ for small k. By the continuity of $f(z)$ in k we have $w_{i}=z_{i}$ for all $k, 0<k<1$, because all w_{i}, $i=$
$1,2, \cdots, l$, are fixed for small k and they do not change with each other without a jump.

5. Special solution

In general c) in Theorem 2 does not imply that $w_{i}=z_{i}, i=1,2, \cdots, l$, for there are $\varphi(z)$ and k, that is $\mu(z)=k \bar{\varphi}^{\prime}(z) / \varphi^{\prime}(z)$, such that $f(z)$ maps D onto D and z_{1} to $w_{1} \neq z_{1}$. This gives an example of $\mu(z)$ for which $F(z)$ fixes the boundary of D pointwisely but not for $k^{\prime} \neq k, 0<k^{\prime}<1$. The existence of such $\mu(z)$ is known in [2] where $\mu(z)$ is not restricted to be the Teichmuller type.

Let $\varphi(z)=z^{2}(z-(5+\sqrt{13}) / 2) /(z-1)^{3}, k=(3+\sqrt{13}) / 8$. Then we have $\phi^{\prime}(z)=0$ at $z=0$ and $\varphi(0)+k \bar{\varphi}(0)=0$. On the other hand $\varphi(z)+k \bar{\varphi}(1 / z)=$ $(z-1 / 2)^{2}(z-(3+\sqrt{13}) / 2) /(z-1)^{3}$, hence $(\varphi(z)+k \overline{\mathcal{P}}(1 / z))^{\prime}=0$ at $z=1 / 2$ and $\varphi(1 / 2)+k \overline{\mathcal{\rho}}(2)=0$. Therefore we have $g(z)=\varphi(z)+k \bar{\varphi}(1 / z)$ with $k=(3+\sqrt{13}) / 8$ and $z_{1}=0, w_{1}=1 / 2$.

Osaka City University

References

[1] L.V. Ahlfors: Lectures on Quasiconformal Mappings, Van Nostrand, New York, 1966.
[2] E. Reich and K. Strebel: On quasiconformal mappings which keep the boundary points fixed, Trans. Amer. Math. Soc. 138 (1969), 211-222.
[3] -: Einige Klassen Teichmüllerscher Abbildungen, die die Randpunkte festhalten, Ann. Acad. Sci. Fenn. Ser. A I. 457 (1970), 1-19.

