SOLVABILITY OF GROUPS OF ORDER 2apb

HIROSHI MATSUYAMA

(Received October 13, 1972)

1. Introduction

At the beginning of this century Burnside proved his famous $p^a q^b$ -theorem by the help of character theory. Group-theoretic proof of the theorem was given by Goldschmidt [2] for odd primes in 1970.

The object of this paper is to give a simple group-theoretic proof of the following

Theorem.¹⁾ Groups of order $2^a p^b$ are solvable.

Lemma 1, 4 and 5 are due to Goldschmidt [2]. Notation used here follows Gorenstein [3].

2. Preliminaries

Lemma 1. Suppose $\mathfrak P$ is a p-subgroup of the p-solvable group $\mathfrak P$. Then $0_{\mathfrak p'}(N_{\mathfrak P}(\mathfrak P))\subseteq 0_{\mathfrak p'}(\mathfrak P)$

Proof. See Goldschmidt [2], lemma 2. Next lemma plays an important role in this paper.

Lemma 2. Suppose \mathfrak{G} is a p-group and \mathfrak{F} is a subgroup of \mathfrak{G} . Then $\mathfrak{F} \subseteq \mathfrak{G}$ or $N\mathfrak{G}(\mathfrak{F}) \supseteq \mathfrak{F}^{\times}(+\mathfrak{F})$ for some $X \in \mathfrak{G}$.

Proof. Let Δ be a \mathfrak{G} -conjugate class containing \mathfrak{F} . If $|\Delta| \neq 1$, then \mathfrak{F} acts on $\Delta - \{\mathfrak{F}\}$ by conjugation. Since $p \not \mid |\Delta - \{\mathfrak{F}\}|$, \mathfrak{F} fixes some element $\mathfrak{F}^{\mathbb{X}^{-1}}$. Then $\mathfrak{F} \subseteq N_{\mathfrak{G}}(\mathfrak{F}^{\mathbb{X}^{-1}})$ and hence $\mathfrak{F}^{\mathbb{X}} \subseteq N_{\mathfrak{G}}(\mathfrak{F})$.

Lemma 3. (Suzuki-Thompson) Suppose Δ is a conjugate class of a group \mathfrak{G} . If any two elements of Δ generate a p-group, then $\Delta \subseteq 0_p(\mathfrak{G})$.

Proof. See [3], 3.8.2.

¹⁾ After finishing this work the author has found that Bender [1] has also obtained a group-theoretic proof of the theorem in the general case.

3. The Minimal counter example

In this section let \mathbb{G} be a minimal counter example to the theorem. It is immediate to show that \mathbb{G} is simple and any proper subgroup of \mathbb{G} is solvable.

Let r be either prime divisor of $|\mathfrak{G}|$.

Lemma 4. A sylow r-subgroup of \mathfrak{G} normalizes no non-identity r'-subgroup of \mathfrak{G} .

Proof. See Goldschmidt [2], Lemma 3.

Lemma 5. (Bender) Suppose \mathfrak{M} is a maximal subgroup of \mathfrak{G} . Then the Fitting subgroup of \mathfrak{M} is an r-group.

Proof. We set $\mathfrak{F}=F(\mathfrak{M})$, the Fitting subgroup of \mathfrak{M} . Let $\mathfrak{F}=\mathfrak{F}_2\times\mathfrak{F}_p$ be the primary decomposition, and $\mathfrak{Z}=Z(\mathfrak{F})=\mathfrak{Z}_2\times\mathfrak{Z}_p$, the center of \mathfrak{F} .

Suppose lemma 5 is false, then $\mathfrak{F}_2 \neq 1$, $\mathfrak{F}_p \neq 1$. We first prove the next assertion [A].

- [A] \mathcal{F}_r has two distinct subgroups of order r, for some $r \in \{2, p\}$.
 - Suppose [A] is false, then \mathcal{F}_p is cyclic, and \mathcal{F}_2 is cyclic or a quaternion group.
 - (i) In the case \mathcal{F}_2 is cyclic.

Let \mathfrak{P} be a Sylow p-subgroup of \mathfrak{M} . Since $\mathfrak{P}/C_{\mathfrak{P}}(\mathfrak{F}_2)$ is a 2-group, $\mathfrak{P}=C_{\mathfrak{P}}(\mathfrak{F}_2)$. Then $Z(\mathfrak{P})\subseteq C_{\mathfrak{M}}(\mathfrak{F})$, and hence $Z(\mathfrak{P})\subseteq \mathfrak{F}_p$ by Fitting's theorem. (See [3], 6.1.3.) Since \mathfrak{F}_p is cyclic, $Z(\mathfrak{P})$ is a characteristic subgroup of \mathfrak{F}_p . Then $\mathfrak{M}=N_{\mathfrak{G}}(Z(\mathfrak{P}))$ and \mathfrak{P} is a Sylow p-subgroup of \mathfrak{G} , contrary to lemma 4.

- (ii) In the case \mathcal{F}_2 is a quaternion group.
- Let $\mathfrak Q$ be a Sylow 2-group of $\mathfrak M$. Since $\mathfrak Q/C_{\mathfrak Q}(\mathfrak F_{\rho})$ is abelian, $\mathfrak Q'\subseteq C_{\mathfrak Q}(\mathfrak F_{\rho})$. Then $Z(\mathfrak Q)\cap \mathfrak Q'\subseteq \mathfrak F_2$. $Z(\mathfrak Q)\cap \mathfrak Q'$ contains a unique subgroup $\mathfrak Q$ of order 2. So $\mathfrak Q$ is a chatacteristic subgroup of $\mathfrak Q$. Since $\mathfrak M=N_{\mathfrak G}(\mathfrak Q)\supseteq N_{\mathfrak G}(\mathfrak Q)$, it follows that $\mathfrak Q$ is a Sylow 2-subgroup of $\mathfrak G$. A contradiction.

By (i) and (ii), we have [A].

Next we prove the following statement [B].

[B] Let $\overline{\mathbb{M}}$ be a maximal subgroup of \mathbb{S} containing \mathfrak{F} . Then $\overline{\mathbb{M}}=\mathbb{M}$

Let $\overline{\mathfrak{F}}=F(\overline{\mathfrak{M}})=\overline{\mathfrak{F}}_2\times\overline{\mathfrak{F}}_p$ be the Fitting subgroup of $\overline{\mathfrak{M}}$ and $\overline{\mathfrak{F}}=\overline{\mathfrak{F}}_2\times\overline{\mathfrak{F}}_p$ be the centre of $\overline{\mathfrak{F}}$. Since $\mathfrak{F}_2\times\mathfrak{F}_p$ is contained in $\overline{\mathfrak{M}}$, $O_p(N\overline{\mathfrak{M}}(\mathfrak{F}_2))\subseteq\overline{\mathfrak{F}}_p=O_p(\overline{\mathfrak{M}})$ by lemma 1. Now \mathfrak{F}_p is a normal subgroup of $N\overline{\mathfrak{M}}(\mathfrak{F}_2)$ we have $\mathfrak{F}_p\subseteq O_p(N\overline{\mathfrak{M}}(\mathfrak{F}_2))$. Then $[\mathfrak{F}_p,\overline{\mathfrak{F}}_2]=1$. So $\overline{\mathfrak{F}}_2\subseteq N\mathfrak{G}(\mathfrak{F}_p)=\mathfrak{M}$. In the same way, we have $\overline{\mathfrak{F}}_p\subseteq\mathfrak{M}$. Then in the same way as above we have $\overline{\mathfrak{F}}_2\subseteq O_2(N\overline{\mathfrak{M}}(\overline{\mathfrak{F}}_p))\subseteq \overline{\mathfrak{F}}_2$. Interchanging \mathfrak{M} and $\overline{\mathfrak{M}}$ in the above argument, we obtain $\mathfrak{F}_2\subseteq \overline{\mathfrak{F}}_2$. Then $\mathfrak{F}_2=\overline{\mathfrak{F}}_2$ and we have $\overline{\mathfrak{M}}=\mathfrak{M}$. Thus $[\mathfrak{B}]$ holds.

Now we prove lemma 5. By [A] we may assume that \mathcal{F}_r contains an abelian subgroup \mathfrak{A} of type (r, r). Let \mathfrak{R} be a Sylow r-subgroup of \mathfrak{M} . If \mathfrak{R} is an r'-subgroup of \mathfrak{G} normalized by \mathfrak{R} , then $\mathfrak{R} = \prod_{x \in \mathbb{Z} - \{1\}} C_{\mathfrak{R}}(X)$. (See [3], 5.3.16.) Since

 $C_{\Re}(X) \subseteq C_{\Im}(X)$ and $C_{\Im}(X) \supseteq \Re$, $C_{\Re}(X) \subseteq \Re$ by [B]. It follows $\Re \subseteq \Re$. Then $\Re_{r'}$ is the unique maximal r'-subgroup of \Im normalized by \Re . So $N_{\Im}(\Re) \subseteq N_{\Im}(\Re_{r'}) = \Re$. Then \Re is a Sylow r-subgroup of \Im . A contradiction.

q.e.d.

Lemma 6. So contains a maximal subgroup M which satisfies the following condition;

$$\mathfrak{M} \cap Z(\mathfrak{P}) \neq 1$$
, $\mathfrak{M} \cap Z(\mathfrak{Q}) \neq 1$

for some Sylow p-subgroup \$\Pi\$ and Sylow 2-subgroup \$\Pi\$ of \$\Bar{\omega}\$.

Proof. Let $\mathfrak Q$ be a Sylow 2-subgroup of $\mathfrak G$ and X be an involution contained in $Z(\mathfrak Q)$. Suppose Δ is a conjugate class of $\mathfrak G$ containing X. By lemma 3, Δ contains two elements X_1 , X_2 such that $\langle X_1, X_2 \rangle$ is not a 2-group. Since $\langle X_1, X_2 \rangle$ is a dihedral group, $|X_1 \cdot X_2|$ is not a power of 2. Then $\langle X_1 \cdot X_2 \rangle$ contains a unique subgroup $\mathfrak Q$ of order P. Let $\mathfrak M$ be a maximal subgroup containing $N_{\mathfrak G}(\mathfrak Q)$. It is immediate to show that $\mathfrak M$ satisfies the condition of the lemma.

Proof of the theorem. Let M be a maximal subgroup of W which satisfies the condition of lemma 6. By lemma 5 $F(\mathfrak{M})$ is an r-group. Let G be an element of \mathfrak{M} contained in the centre of some Sylow r'-subgroup $\overline{\mathfrak{R}}$ of \mathfrak{G} , and let \mathfrak{R} be a Sylow r-subgroup of \mathfrak{G} containing $\mathfrak{F}_r = F(\mathfrak{M})$. Since $\mathfrak{M} = N_{\mathfrak{G}}(\mathfrak{F}_r)$, it follows $Z(\Re) \subseteq \mathcal{F}_r$ by Fitting. Then $\Re_0 = \langle Z(\Re)^X : X \in \langle G \rangle \rangle \subseteq \mathcal{F}_r$ and hence it is an rgroup normalized by G. Let Ω be a complete \mathfrak{G} -conjugate class containing $Z(\Re)$ and $\Omega = \Omega_1 + \cdots + \Omega_s$ be a disjoint sum of $\langle G \rangle$ -orbits. Let \Re_i be a group generated by Ω_i . For some element $Y \in \Re$, $Z(\Re)^Y \in \Omega_i$, then $\Omega_i = \langle Z(\Re)^{YX} :$ $X \in \langle G \rangle = \langle Z(\Re)^{XY}; X \in \langle G \rangle \rangle$. It follows that $\Re_i = \Re_i^Y$. Then \Re_i is an rgroup normalized by $G^{Y}=G$ for $i=1, \dots, S$. So there exist $\Omega_{i_1}, \dots, \Omega_{i_r}$ such that the group generated by $\Omega_{i_1} \cup \cdots \cup \Omega_{i_r}$ is an r-group normalized by G. $(l \ge 1)$ Let l be maximal. We may assume $\{i_1 \cdots i_l\} = \{1, \dots, l\}$ and $\mathfrak{N} = \langle \Omega_1 \cup \dots \cup \Omega_l \rangle$. It is trivial to show that $N_{\mathfrak{G}}(\mathfrak{R}) \ni G$. Let $\mathfrak{R}_{\mathfrak{g}}$ be a Sylow r-subgroup of \mathfrak{G} containing \mathfrak{R} . By lemma 2, $\mathfrak{R} \subseteq \mathfrak{R}_0$ or $N \otimes (\mathfrak{R}) \supseteq \mathfrak{R}^X (+ \mathfrak{R})$ for some $X \in \mathfrak{R}_0$. If $\mathfrak{R} \subseteq \mathfrak{R}_0$, then $N_{\mathfrak{G}}(\mathfrak{R})$ contains a complete conjugate class of \mathfrak{G} containing G. A contradiction. If $N_{\mathfrak{G}}(\mathfrak{R}) \supseteq \mathfrak{R}^{X}(\pm \mathfrak{R})$, then since $\Omega_{i}^{X} \cup \cdots \cup \Omega_{i}^{X} \pm \mathfrak{R}$, there exists some element Y of \Re such that $Z(\Re)^Y \subseteq \Re^X$ and $Z(\Re)^Y \subseteq \Re$. Suppose $Z(\Re)^Y$ is an element of Ω_i . (i>l), then $\mathfrak{R}_i\subseteq N_{\mathfrak{G}}(\mathfrak{R})$ from $N_{\mathfrak{G}}(\mathfrak{R})\ni G$ and $N_{\mathfrak{G}}(\mathfrak{R})\supseteq Z(\mathfrak{R})^Y$. Now $\mathfrak{R}\cdot\mathfrak{R}_i$ is an r-group normalized by G and generated by $\Omega_1 \cup \cdots \cup \Omega_l \cup \Omega_i$, contrary to our choice of \mathfrak{N} . Thus we proved the theorem. q.e.d.

OSAKA UNIVERSITY

References

- [1] H.Bender: A group theoretic proof of Burnside's p^aq^b -theorem, Math. Z. 126 (1972), 327–338.
- [2] D.M. Goldschmidt: A group-theoretic proof of the p^aq^b-theorem for odd primes, Math. Z. 113 (1970), 373-375.
- [3] D. Gorenstein: Finite Groups, New York, Harper & Row, 1968.