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PERFECT CATEGORIES III

(HEREDITARY AND QF-3 CATEGORIES)

MANABU HARADA

(Received July 24, 1972)

Recently the author has defined perfect or semi-artinian Grothendieck
categories with some assumptions [8], as a generalization of cagegories of modules
in [1].

Further he has generalized essential results in [6] to such categories [9].
This note is a continuous work to give a generalizations of results in [3], [4]
and [5].

Let R be a ring with identity. R. M. Thrall defined a QF-3 algebra in [3]
and many authors defined QF-3 rings and studied them (cf. [10]).

R is called right QF-3 if R has a minimal a fithful right i?-module and R is
called right QF-3+ if the injective hull E(RR) is projective, (see [2]).

We generalize those concepts to semi-perfect Grothendieck categories 31
with generating set of finitely generated objects, (which are equivalent to group
valued functor categories ((£°, Ab) by [8], Theorem 3).
We shall completely determin structures of hereditary (more weakly locally PP)
and perfect QF-3 (resp, QF-3+) or semi-perfect and semi-artinian QF-3 (resp.
QF-3+, however this is a case of QF-3) categories 21. Furthermore, we shall
show that 21 is equivalent to product of 21^ and 21^ is the full subcategory SBl^1J,
where S is the ring of upper (resp. lower) tri-angular matrices of a division ring
over a well ordered set /, almost all of whose entries are zero, such that if 21 is
QF-3 I has the last element (resp. if 21, is semi-artinian QF-3+

9 then I has the last
element and hence, 2t is QF-3) and vice versa with some restrictions. Those
results are generalizations of [4] and [5].

1. Preliminary results

Let 2t be a Grothendieck category with generating set of finitely generated
objects. If every object (resp. finitely generated object) has a projective cover,
then 21 is called perfect (resp. semi-perfect). On the other hand, if every non-zero
object has the non-zero socle, 21 is called semi-artinian,

1) seefl,
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If 91 is semi-perfect, then SI has a generating set of completely indecompo-
sable projective {P*}/. Let ({Pa}°, Ab) be the additive contravariant functor
category of the pre-additive category {Pa} to the category Ab of abelian groups.
Put R= 2 (B[P*y Pp]- Then R is called the induced ring from 31 by {Pa}.

By ea we shall denote idempotents 1P(A in R. Let SJî  be the category of all
right i?-modules. By 3Ji# we denote the full subcategory of sSlR whose objects
consist of all M such that MR=M. Then

Theorem A ([8], Theorem 3). Let 31 be as above Then the following are
equivalent.

1) SI is semi-perfect.
2) 2 I~ ({PXAb) .
3) SWJfl£.

In this note, we only consider a semi-perfect category SI and hence, 31 will
be identified with ({P*}0, Ab) or 2Ji# in the following. We note in this case eaR
corresponds to Pm and eaRep^[Ppy P J .

We shall make use of same notations in [8] and [9] without further com-
ments and categorical terminologies in [11]. Rings in this note do not contain
identities in general.

2. Locally PP-categories

Let SI be a semi-perfect Grothendieck category with generating set of
finitely generated. If {Pa} and {Qp} are generating sets of 31 such that Pa and
Qp are completely indecomposable and projetve, then Pa is isomorphic to some
Qp and vice versa by Krull-Remak-Schmidt's theorem. Let R be the induced
ring from SI by {P}ay R=*£®[Pa: PJ . If fR is projective in 2ft£ for any a and
/? any element/ in [Pa, PJ , SI is called a locally (right) PP-category, (we called
it "partially" in [3]).

This is equivalent to a fact that every functor Tf in ({Pa}°, Ab) defined by
Tf(Py)=fRey is representative for every/e [P^, Pp]. We define similarly a left
PP-category.

We can easily see from the following lemma that right PP-categories are also
left PP-categories and that this defintion dose not depend on {Pa}.

Lemma 1. Let 3t be a semi-perfect Grothendieck category with a generating
set {Pa} as above. Then 31 is locally PP if and only if any / e [Prt, Pp] is zero
or monomorphic, (cf. [9], Proposition 3).

Proof. We assume that 31 is locally PP and 0^/eE [Pay PJ . Since/^=/ ,
Xf Xf

0<-fR <- e0R is exact. Further, e0R is indecomposable, and hence, fR « eJR.
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Put K=Kzrf and i: K->Pa. If z 4=0, there exists Py and A<E [P7, K] such that
0=j=&e [Py) P J ^ R . Then O=fih=fejh and eJh<EeaR. Hence, ih=eJh=Oy

which is a contradiction. Therefore, / is monomorphic. Conversely, if / is
monomorphic, then a mapping y]r: fR-+eaR(yjr(fr)=ear) is isomorphic. Hence,
fR is projective in 3JiJ.

As an analogy of Theorem 4 in [9], we have

Theorem 1 ([9]). Let % be a semi-perfect Grothendieck category with
generating set of finitely generated object. Then SI is locally PP and perfect (resp.
semi-artinian) if and only if% is equivalent to [/, 3I,]r (resp. [/, SI,]')2^ with functors
Th.such that yjrkji: Tkj(B)^Tki(P) for k>j>i (resp. k<j<i) is monomorphic,
for any minimal object Bin Tj{(P) andP^Sk^ where 31,'s are semi-simple categories
with generating sets.

Proof. We assume that SI is locally PP and {Pa} is a generating set of com-
pletely indecomposable projectives. Making use of Lemma 1 and the proof of
Theorem 4 in [9] we know that SI is equivalent to [/, SI,]r (resp. [/, SI ,]') and that
{P^=S,(P,J}2> (resp. {S,<P,J}) is a generating set in [/, SI,]" (resp. [/, SI,]7),
where {Pia} is a generating set of SI, and Piet is minimal. Since / e \P^\ Pjsj)]
is monmomorphic by Lemma 1, we have the conditions in the theorem. The
converse is also clear from the structure of [/, 31,]' (resp. [7, SI,]7) and Lemma 1.

REMARK. If we replace a minimal objects B in the above condition by any
finite coproduct of Ba., it is equivalent to the condition (*) — 1) in Theorem 3 in [9].
Hence, this fact gives us the defference between semi-hereditaty and locally PP.
We have immediately from Lemma 1. [9], Propositions 3 and 5 and their proofs

Theorem 2. Let SI be as in Theorem 1 and {Pa} a generating set of completely
indecomposable projectives. If SI is locally PP, then the following are equivalent.

1) All Pa are J-nilpotent.
2) lL(Pa)<oo far all a.
3) SI is semi-artinian.

Futhermore, the following are equivalent.

2) SI is perfect, (cf. [9], Theorem 6).

3. QF-3 categories

Let SI be a Grothendieck category with generating set of projectives {Pa}. An
object C in SI is called faithful if for any non-zero morphism/: Pa-^P^ there
exists £G [Pp, C] such that gf^O. Let {Qp} be another generating set of projec-

2) see [8], §3.



360 M. HARADA

tives and/'+Oe[Qz, Q8]. Since 0,©0, '=2 ©^* and ^ e ^ H e ^ , we
j" ^

have a non-zero morphim/: 2 © ^ - ^ 2 © ^ such that f \Q t=f a n d / | g / = 0 .

Hence, there exist a, /? such that ( / ^ / I P ^ + O, where pp is the projection of
2 0 P P to P^ Then we have £ 'e[P p , C] such that g\p^f\Pa)^0. Hence,

g'ppf+0. Let zOg and ^ be inclusions. Peut g/ppiQs=g^[Qs> C]. Then
grP^Q=g'P^QjrSif and Ker /=0 t ' . Therefore, £/'4=0. Thus, we have
shown that the faithfulness of C dose not depend on generating sets of projectives.

Let (E°, Ab) be the contravariant additive functor category, where (£ is the
small pre-additive category {PM}. Then 21 is equivalent to (2P, Ab). Hence C is
faithful and only if the corresponding functor in the above is a faithful functor.
Furthermore, (K°, Ab) is eqivalent to 9Ji^, where R is the induced ring from
{Pa}. Then faithful functors correspond to faithful modules in 2Ji#.

An object M is called a minimal faithful if M is faithful and every faithful
object is a coretract of M. According to R.M. Thrall [13], we call SI QF-3 if 21
contains a minimal faithful object M or equivalently, if 3JiJ has a minimal
faithful module.

From now on we shall assume that 2t is a Grothendieck category with
generating set of small projectives Pa. Further, we shall assume that 21 is a
locally PP and semi-perfect category and hence, we may assume that all Pa are
completely indecomposable and Pa^Pp for a+fi.

Every object A in 21 has an injective hull of A in 2t (see [11], p. 89, Theorem
3.2). We denote it by E{A). If £ ( 2 © P * ) is projective, 21 is called QF-3+

(see [2]).
Let Q be an injective envelope of R in 2Ji£ and M a minimal faithful module

in 9Ji^. Then M is a retract of Q and hence, M is injective. Furthermore, since
R is faithful, M is also a retract of R. Therefore, M is projective, and injective
and we may assume that M is a right ideal of R.

Since R is semi-perfect, i ? = 2 0 £«P and eaReJs are local rings. In the

proof of theorem 4 in [9], we considered indecomposable projective objects P in
2Ji£ such that [P, ^ i? ]=0 for all e^R^P. We call such P belonging to the first
block. Contrary, if [e*R, P ] = 0 , P is called belonging to the last bolck.

Lemma 2. Let 21 be a locally PP and QF-3 semi-perfect Grothendieck

category and R the induced ring. Then a minimal faithful object is a coproduct of

ea.R
ys which belong to the first block.

Proof. Since M is injective and a retract of 2 © ^ , Af=2©*«,# by

[14], Lemma 2. Further, since ea.R is injective [ea.Ry eR] = 0 by Lemma 1 if
Hence, ea.R belongs to the first block.
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Lemma 3. Let SI be as above and 2 ®etR a minimal faithful ideal Then

for any S e / there exist <p(8) in J such that e^^Re^O-

Proof. Let x be a non-zero element in e8Re8. Since 2 ®^{R= 2 ®eiRe*
I J,I3<*

is faithful, e<p<:8^Re8x^Q for some <p(S).
Let e{ be as above. We put R(i)= {y | e J, e,i

Lemma 4. Let % be as above and further perfect. Then R(i) contains the
last element S in R(t) namely, £,• JR£54=0 and e8R belongs to the last block.

Proof. We assume that R(l) does not contain the last element in R(l).
Put N= 2 0^i?/( 2 exReM)® 2 ®e,R and put N,= 2 ©*i#/(2>i Jk.), and

,^- W e shall s l l 0 W t h a t ^ i s faithful in 9Ji£. Let ^ = 2^*P>
and ^^4=0. If <p(a)^l7 we take O^ye^^ i t e^eJV, . Then

e2©**c<»)^&0 a nd ^4=0 by Theorem 1, since ^SJR^5 is a division
ring by Lemma 1. We assume cp(a)=\. Then a e R ( l ) and there exists
y^e1Re(A and 0^yxap^e1Re^ Hence, /3eR(l). Since R(1) does not have the
last element, we obtain 7 in R(l) such that /3<y. Hence {^+(2^i^8)}<x:4=0.

Therefore, N is faithful and iV contains a submodule No which is isomorphic to
exR. Then N0=nR^exR and ne1=n. Since eJ.Re1=0 for y>2, weiV,. Let

w = 2 *V, fy.^Rft 2 ^i^8)- T h e n
 » ( « I ^ Y ) = °

 f o r 7 = m a x ('/•)• However,

Which is a contradiction.

Theorem 3 ([4], Theorem 1). Let 9! be a perfect or semi-perfect and semi-
artinian and locally PP-Grothendieck category with a generating set of small preojec-
tives {Gy} j . If SI is QF-3, there exist non-isomoiphic indecomposable and protective
objects {P#}j (resp. {Qp}j) such that
1) {P^} (resp. {Qp}) is an isomorphic representative class of the projectives in the

first (resp. last) block,
2) 2"©-P* ^ a minimal faithful and injective object and

3) each Pa contains the unique minimal subobject Sa which is isomorphic to Qa.
Hence [Sa: A J = 1 and Sa is projective in sJJi# where Aa=[Qa, Q*] is a division
ring. Furthermore, any indecomposable projective is isomorphic to a subobject in
some Pa.

Proof. We shall prove the theorem on the induced ring R = ^®e0R;
eMR^epR if a4=/?. We know from Lemmas 2 and 3 that 2 © ei& 1S a minimal

faithful ideal, e4R belongs to the first block and e{R contains a submodule e{Rey.
where 7,. is the last element in R(i). Since ey.Rez=0 for £4=Y,-> ^i=eiRey. is a
right ideal. Put Ai=eyiRey.y then A,- is a division ring by Lemma 1. e4R is
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indecomposable and injective. On the other hand, any A,-submodule of r,- is
a i?-module. Hence, [x,-: AJ = 1 and rt. is the unique minimal subideal in etR.
Since x^ey.Rey^ey.R, t,- is projective. Furthermore, t,-4*Xy if i^j, since
eiR^peiRj and e£Ry e.R are injective hull of r,- and xp respectively. Let esR
be in the last block. Then e^^Re^O and (p($)^J. Hence, e<pC^Re8 = x<pC8>

Therefore, {ey.R} is an isomorphic respresentative class of projectives in the last
block. Let S<=I—J. Then e^Re^O by Lemma 3. Hence, [esRy ̂ Cs)i?]=}=0,
which means that e2R does not belong to the first block. Furthermore, eeR is
ismorphic into e^^R by Lemma 1.

Lemma 5. Let R be the induced ring from a locally PP-Grothendieck
category with generating set {Pa} as above. We assume that { ,̂-î }/ is a set of
injective objects such that E=E(R) in 3Ji# is an essential extension o / S © ^ 0 * ' 0 -

j

Then any / e [e^R, E] is either zero or monomorphic, where eiR
CKi:>='^®eiR and

e$ is any primitive idempotent. '

Proof. We assume /=f=0. Then *=f~1C£]eitR)3=0 for some eir Since
n n

2 eitR is injective, /1 r is extended to g G [ep i?, 2 eit K\ • Then g is monomorphic

by Lemma 1. Therefore, / is monomorphic.
Theorem 4. Let SI be a perfect, locally PP-Grothendieck category with

generating set of small projectives. Then SI is QF-3+ if and only if every projective
Py in the first block are injective and for any indecomposable projective P, there exists
Pain {Py) that [P, P J ^ O . Hence, {PT} is an isomorphic reprensentative class of
all projective and injective indecomposable objects.

Proof. Let R be the induced ring from completely indecomposable
projectives Pa. We assume SI is QF-3+. Then E=E(R) is isomorphic to
y^®ea.R

CKP, It is clear that ea.R belongs to the first block from Lemma 1.

For any projective epR, E(e^R)ciE. Hence, [e&R, eot.R]jp0 for some j , which
implies {ea.R} consist of all projectives in the first block. Conversely, we assume
that all projectives {tf,i?}/ in the first block are injective and have the property
in the theorem. Since faR, e,-i?]=t=O for any e$R, J E D S © ^ ' 0 ^ for

suitable indices K£. We assume E^ 2 (Be.RCKP. Then there exists g^

[ekR, E] such that Im g <£ XI © e.R^P. On the other hand, we obtain
£ r e [ekRy Eo] such that gf \ g~1(E0)=g from the proof of Lemma 5, where Eo is a
finite coproduct of ejR's. Then (g—g') | Eo—0. Therefore, g=g' by Lemma 5,
which is a contradiction.

REMARK. The fact \e$R, ea.R]^0 is equivalent to the validity of Lemma 3
for the abo\e SI.
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Theorem 4'. Let St fo a semi-perfect, semi-artinian and locally PP-Grothen-
dieck category with generating set of smallprojectives. Then SI is QF-3+ if and only
if SI contains projectives P# in the first block and all of such Pa are injective and

for any indecomposable projective P, there exists Pa such that [P, P J 4= 0. Hence,
{Pa} consist of all projective and injective indecomposable objects. In this case SI
is QF-3, (cf. [2], Proposition 2 and [12], Proposition 3.1).

Proof. We assume SI is QF-3+. Let S be the socle of E=E(R) and
5 = 2 ©SY,where Sys are minimal objects in E. Then E=E(S) and Ey=E(Sy)
is imdecomposable and projective by the assumption. Hence, from [8],
Corollary 1 to Lemma 2 E^eyR, which belongs to the first block. Let e$R
be any indecomposable ideal. Then E(e$R)czE. Hence, [e^R, eyR] 4= 0 by
Lemma 1 and the proof of Lemma 5. Since each eyR has the non-zero socle,
SI is QF-3 by the standard argument (cf. the proof of Lemma 7 below). The
converse is similarly proved as in the proof of Theorem 4.

Lemma 6. Let SI be as in Theorem 3 (resp. Theorem 4') and exR in the
first block. Let v be the last (resp. first) element in R(l). Then R(1)=C(T?). If SI
is as Theorem 4, R ( 1 ) 7 ^ C ( Y ) for any 7GR(1) and for any S and S'e(l) there
exists 6 in R(l) such that e8Ree^0 and etfRe^O, where R(1)Y= {a\ G R ( 1 ) , a<y}
and

Proof. Let 7 be in R(l) and S be in (I-R(l)y. Then
and <p(S)4=1. We assume e8Rey^0. Then e<Pc^ReyZD(e^c^Re8)(esRey)^0 by
Theorem 1. We take non-zero element x, y in eKS>Re7 and e1Rey, respectively.
Consider a mapping i|r: xR^yR such that ty(xr)=yr. Then <\Jr is well defined
and i?-homomorphic by Theorem 1. Hence, [fy>(8)i?, e1R]^0, which is a
contradiction. Therefore, R(1)Y:DC(Y). Let x be a non-zero element in e1Rey.
Then xR is a projective and indecomposable ideal in e1R by the assumption.

Hence, xR^eqR for some q. Put ^(x)=eqr. Then y]r(x)=\Ir(xey)=egrey. This
implies #<y (resp. # > Y ) . Similarly, we have q^y (resp. #< Y). We assume
R(l) contains the last (resp. first) elemeny rj. Then eyRev^xRev=(the socle of
^i?)4-0. Hence, R(1)=C(^). Let 7 'eR(l) . Then eyR and ey>R are mono-
morphic to exR. Since exR is injective, their images have a non-zero intersection
r. Hence, t684=0 for some 8. Therefore, eyReedF0 and ey'R

Lemma 7 (cf. [12]). Let A be a division ring and I a well ordered set. Let
ieij}i be a set of matrix units. Put R= 2 0^,-yA. Then enR is injective and

hence, R is hereditary and QF-3 in 3Ji^. R is QF=3 if and only of I contains the
last element.

Proof. We first note that each eHR contains only right ideals of form e{jR
and \e{iRy enR]^A. Let
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euReu

be a given exact diagram in 3Ji^. We shall extend f to M by the standard
argument. We obtain a maximal extension/0: N0-*enR such that NoliN and
fQ\N=f. If M4=iV0, there exists m in M such that me^N^ since {*«!?} is a
generating set. Put Mf=N0+meiiR and t={x\<=eiiR, mx^N0}. Then x is
a right ideal in £,,i?. Hence, x»eyyi? for some7 >*". We define^: x->enR by
setting g(x)=fo(mx) for #ex. Then £lf-|x and g are in [x, e^R^^e^A^* A.
Hence, g=8(eu|x) for some S in A, namelyg(x)=8eux for any a? in x. Therefore,
we have an extension / / : M'->enR by fd(nQ-\-mx) = fo(no)-\-8eux. Hence,
N0=M. We know from [8], Lemma 7 and [9], Proposition 1 that R is perfect
and ](R)= 2 ®et-.A. Since J(i?) is projective, R is hereditary by [9],

Lemma 3. Therefore, R is QF-3+ by Theorem 4. If i? is QF-3, enR is a
minimal faithful module by Theorem 3. Hence, / has the last element by
Theorem 3. Conversely, I has the last element, then enR contains the unique
submodule eiyR. It is clear that enR is faithful module. Let M be a faithful
module in 3Jij£. Then there exists min M such that meiy+0. Hence, we have
a monomorphism/ of enR to M hy f(e11r)=me11r. Therefore, R is QF-3.

Lemma 8. Let Abe a division ring and {ef-y}7 a set of matrix units. Put
5 = 2 0 Aeh. and i?=-S ® Aeh.. Then

1 J &j J

1) R is semi-hereditary.
2) R is semi-hereditary and QF-3 (or QF-3+) if and only if I has the last

element.
3) R is hereditary and QF-3+ (or QF-3) if and only if I is finite, (cf. [12]).
Proof. 1) Let x be a right ideal generated by {xly x2y •••, xn}. Since

xi=
n^xiea and ^-^Gt , we may assume that x^Re*., where e^.— e^.a.. Let

a:,-=max(a,-). Considering Re*, as a A-vector space, we may assume xly •••,#*

are linearly independent over A. If '^xiri=0 for r^R and a^r^O, then

r^g^O for £ < a r Considering in S, we have 2 xieai
rieza1—^ a nd ^Ti^.4=0.

Therefore, 2 # * - R = 2 ©^r-R- P u t ̂ 2=m a x({«*} —'OCi)- We consider a vector

space V2 generated by {2©^«^«2» xje*£- We may assume 1^ = 2 © ** ̂ » 2

, A, where yj—x^^ for some *. We shall show that 2 ©#,••
^ = 2 ©*,•/? © 2 ©y>ri?. We have already shown that

Let 2 ^ ^ = 2 j y ^ / ; ^ , r/GjR. If r/^O, r/v=t=0 f o r s o m e ^ T h e n

multiplying e/a2 in the above, we have ^xie4§1rie/4t2==^yiei$jtr/e/a2 and
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Hence> 2 J\-s* =
which is a contradication. On the other hand, x{R^eaiR, y.R^e^R. Repea-
ting this argument, we show that X is projective.

2) We assume that / has the last element a. We shall show that eamR is
injective as an analogy of Lemma 7. Let x be a right ideal in some e^R. Put
R(t)={7|"e/,'t«w=t=0}. If R(x) contains the last element S in R(r), then
X5= ^e^f^Re^t/f^e^R. Let £ be the least element in / —R(x). If £ is not a

limit element, R(x) contains the element. We assume £ is limit. Then r = U x/.
e'<8

We shall show [x, eaaR]^Aeaa. Let/e[t , e^R] and put / /= / | r / e [x / , eaaR]
«[*//#> e»<*R]- T h e i i / / ^ / ^ for some 8/£A. For £' £" we have 8s'ea2'
=Mea/)=f(ea/)=f/iW)=^e^. Hence, S/=8/>. If we put 8=8/, /=8^.
Thus, we have prepared necessary facts to use the proof of Lemma 7. Theref-
ore, eaotR is injective in 3Jl£ and R is QF-3+ and QF-3 by Theorem 4'. The
converse is clear from 1) and Theorems 3 and 4'.

3) If / is finite, R is a hereditary and QF-3 artinian ring by [4], Theorem 3.
We assume that R is hereditary and QF-3 or QF-3+. Then / has the last element
by Theorem 4. We assume that / contains a limit number a. Consider

J(«,*)=2©«*/A. Let* = g ^ 8 , . T h e n * = 2 ^ l + i 8 , ^ + x Y | e J ( ^ ) J ( i i )

c ]2(eaR). Hence, ](eaR)=]2(e<aR), which implies ](e#R) is not projective by
[8], Proposition 2. Therefore, / does not contain the limit number, but contain
the last element, Hence, / is finite.

From the above proof and [9] Lemma 3 we have

Corollary. Let R be as above. Then R is hereditary if and only if \ I \ <K0

and does not contain the last element.

Theorem 5. Let SI be a perfect or semi-perfect and semi-artiniam, and locally
PP-Grothendieck category with generating set of small projectives. If SI is QF-3+

or Q-F-3, then SC is equivalent to nSl^, where Sl^'s are of the same type as SI and
$la is not expressed as a product of full subcategories.

Proof. Let R be the induced ring from SI and ^e{R the coproduct of
projectives in the first block. We shall show ezRes' = 0 for either £gR(i),
S'$R(i) or £<$R(z), £'eR(i). If £eR(*) ezR is monomorphic to a submodule
of e{R. Hence, ez Ree>=0 if 8' $ R(i). Next, we assume £ 'e R(i). If eeRez>4= 0
for £$R(z), O + e^e/e^Rey.Cle^Rey. for some y,e.R(i) (or the last (resp. first)
element in R(/)) by Lemma 1, which contradicts to a fact Ry*(/)Z)C('y,.). Put
Ri= 2 e8#e/. Then i ? = 2 © R{ as a ring by Theorems 3, 4 and 4'. It is

clear that each R{ is Q^-3+ or QF-3 and directly indecomposable. Hence, we
have the theorem.



366 M. HARADA

From the above theorem, we may restrict ourselves to a case of indecompo-
sable categories if SI is as in the theorem.

Theorem 6. Let SI be an indecomposable semi-perfect Grothendieck category
with generating set of finitely generated objects. Then we have

1) SI is perfect, {semi-) hereditary and QF-3+ (resp. QF-3) if and only if% is
equivalent to [7, 2JiA]r, where I is a well ordered set (resp. with last element).

2) SI is semi-artinan, hereditary and QF-3+ (or QF-3) if and only if SI is
equivalent to [7, sXfiA]/, where I is a finite set

3) SI is semi-artinian, semi-hereditary and QF-3+ (or QF-3) if and only if SI
is equivalent to [7, MA]7, where I is a well ordered set with last element. Where A
is a division ring and functors T{j in [7, 3JiA] are equal to lattA, (cf. [2'], Theorem 3.2).

Proof. [7, yJlA]r is perfect, hereditary and QF-3+ by Lemma 7 and [9],
Theorem 3. We assume that 7 contains the last element. [7, <3JiA]r is QF-3 by
Lemma 7. If 7 is finite, [7, ̂ JlA]1 is semi-primary, hereditary and QF-3+ (and
QF-3) by Lemma 8. Finally, [7, 9JlA]/ is semi-artinian, semi-hereditary and
QF-3+ (QF-3) by Lemma 8 and [9], Proposition 1. Next, we assume that SI is
one of the forms in the theorem. Let JR be the induced ring: R=^(&eiR.

Then exR in the case 1) and e#R in cases 2) and 3) are in the first block by
Theorems 4 and 4', respectively, where a is the last element in 7. Since,
3t is indecomposable, exRey (resp. eaRey) 4= 0 for any y e 7 by Theorem 5,
Lemma 3 and Remark. Let SI be herediary (cases 1) and 2)). If [e1Rey: Av]>
2 (resp. [eaRey: A7]>2) for any y€E7, there exist linearly independent elements
x9 y over Ay = eyRey. Then xR + yR = xR(ByR by [9], Theorem 3, which con-
tradicts to the indecomposability of exR and e*R. Let a, b be non-zero elements
in exRey. As the proof of Lemma 6, a mapping yjr: aR-^bR such that yjr(a)=b
gives a i?-homomorphism. Furthermore, yjr is extended in [^/?, e1R] = A,
Hence b= Sa for some S G A ^ Therefore, [e1Rey: AJ=1 . Similarly, we obtain
[eaRey: A J = 1 . Next, we assume SI is semi-hereditary and QF-3+ (case 3)).
Then eaR is in the first block and injective. Let x,y be non-zero elements in
eaRey. Then xR-\-yR is a projective right ideal in eaR. Since eaR contains

the unique minimal module and R is semi-perfect, xR-{-yR*&esR for some SEE7.
Put y]r~1(eB)=z9 then zGLeaRes and x=zr, y=zr' for r, rf€zR. Hence, r = 8 and
x=zesres, y=ze8r'es. Therefore \e#Rey: &y~\ — \. Similarly to the above, we
can show [eaRey: A7] = l. Thus, in any cases e±Res (resp. eaRe2) is a simple
As-module. Hence, if eeRey^z0, e1Res®e2Reyde1Rey implies [esRey: Ag] =

[eeRey: Ay]=l from Theorem 1. Let ^4=0G^i?ey. Then A,- is isomorphic to
Ay by £: S,#=#£(S,). First we choose non-zero elements mxj in e1ReJ. Then
ejR is monomorphic to 2 ^i*A by the multiplication of mxj from the left side.

Hence, we can choose mjk in e5Rek such that m1JmJk=mlk (if ejRek+0). Then
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mu{mijmjk)—mljmjk=mlk = mumik. Therefore, mijmjk = mik if fw,-y#=0 and
m.k^0. Thus, R is a subring of 2©*«/A (resp. 2 ©£,-,-A) such that all of

elements of some (/, y)-entries may be equal to zero, where A ^ A,-. We assume
e4Rej=0 (in cases 1) and 2)). Then &"#=1 (resp. i^?a) and there exists 7 from
Lemma 6 such that £,i?£Y4=0, eyi?£7=J=O. Put e = e11+eii

Jt-eJj.-\-eyy(resp. e =
+ej). Then ei&? = ^ A e ^ A e ^ - A © e i y A 0 ^ A © e , 7 A © e . . A ©

y is hereditary by [9], Corolalry to Lemma 2 if R is hereditary.
However, we can easily see that eRe is not hereditary (cf. [6], Theorem 1).
Therefore, i ? = 2 © ^ , A , (resp. R='^®ei. A). Finally, we assume that R is

semi-hereditay (case 3)). Let y<S be in / . Then since m^R-^m^R is projec-
tive, mayR + ma8R=zR as before, where z^eaRe8. Hence, zR^m^Rz^m^R.
Therefore, ^^m^^^m^e^er^ implies e8Rey+0. Thus, SI is equivalent to
[/, TOA]7. The remainimg parts are clear from Theorems 3, 4 and 4' and
Lemma 8.
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