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Recently the author has defined perfect or semi-artinian Grothendieck
categories with some assumptions [8], as a generalization of cagegories of modules
in [1].

Further he has generalized essential results in [6] to such categories [9].
This note is a continuous work to give a generalizations of results in [3], [4]
and [5].

Let R be a ring with identity. R.M. Thrall defined a QF-3 algebra in [3]
and many zuthors defined QF-3 rings and studied them (cf. [10]).

R is called right QF-3 if R has a minimal a fithful right R-module and R is
called right QF-3" if the injective hull E(Rg) is projective, (see [2]).

We generalize those concepts to semi-perfect Grothendieck categories U

with generating set of finitely generated objects, (which are equivalent to group
valued functor categories (€°, 4b) by [8], Theorem 3).
We shall completely determin structures of hereditary (more weakly locally PP)
and perfect QF-3 (resp, QF-3") or semi-perfect and semi-artinian QF-3 (resp.
OF-3*, however this is a case of QF-3) categories 2. Furthermore, we shall
show that ¥ is equivalent to product of %, and A, is the full subcategory Ms >,
where S is the ring of upper (resp. lower) tri-angular matrices of a division ring
over a well ordered set I, almost all of whose entries are zero, such that if U is
OF-3 I has the last element (resp. if 2, is semi-artinian QF-3", then I has the last
element and hence, A is QF-3) and vice versa with some restrictions. Those
results are generalizations of [4] and [5].

1. Preliminary results

Let 2 be a Grothendieck category with generating set of finitely generated
objects. If every object (resp. finitely generated object) has a projective cover,
then 2 is called perfect (resp. semi-perfect). On the other hand, if every non-zero
object has the non-zero socle, U is called semi-artinian,

1) see§l,
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If A is semi-perfect, then A has a generating set of completely indecompo-
sable projective {P,},. Let ({P,}°, Ab) be the additive contravariant functor
category of the pre-additive category {P,} to the category Ab of abelian groups.
Put R:géz @[P,, Pg]. Then R is called the induced ring from A by {P,}.

By e, we shall denote idempotents 15, in R. Let Mg be the category of all
right R-modules. By 9% we denote the full subcategory of M, whose objects
consist of all M such that MR=M. Then

Theorem A ([8], Theorem 3). Let U be as above Then the following are
equivalent.

1) A is semi-perfect.
2) Ax~({P,}", Ab).
3) A=~M;.

In this note, we only consider a semi-perfect category 2 and hence, U will
be identified with ({P,}°, 4b) or M}, in the following. We note in this case e, R
corresponds to P, and e, Reg~[P,, P,].

We shall make use of same notations in [8] and [9] without further com-
ments and categorical terminologies in [11]. Rings in this note do not contain
identities in general.

2. Locally PP-categories

Let A be a semi-perfect Grothendieck category with generating set of
finitely generated. If {P,} and {Qg} are generating sets of U such that P, and
Og are completely indecomposable and projetve, then P, is isomorphic to some
O and vice versa by Krull-Remak-Schmidt’s theorem. Let R be the induced
ring from A by {P},, R=2P[P,. Ps]. If fR is projective in My for any o and
B any element f in [P,, Pg], A is called a locally (right) PP-category, (we called
it “partially” in [3]).

This is equivalent to a fact that every functor T, in ({P,}°, Ab) defined by
T ,(Py)=fRey, is representative for every f&[P,, Pg]. We define similarly a left
PP-category.

We can easily see from the following lemma that right PP-categories are also
left PP-categories and that this defintion dose not depend on {P,}.

Lemma 1. Let U be a semi-perfect Grothendieck category with a generating
set {P,} as above. Then U is locally PP if and only if any f<[P,, Pg) is zero
or monomorphic, (cf. [9], Proposition 3).

Proof. We assume that % is locally PP and 0= f[P,, Ps]. Since fe,=f,

X X
0<fR <—I e,R is exact. Further, e,R is indecomposable, and hence, fR mf e R.
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Put K=Ker f and i: K—P,. Ifi+0, there exists Pyand h€[P,, K] such that
O%+ihe[P,, P,JSR. Then O=fih=fe,ih and e,ihce, R. Hence, th=e,ih=0,
which is a contradiction. Therefore, f is monomorphic. Conversely, if f is
monomorphic, then a mapping r: fR — e, R({r(fr)=e,r) is isomorphic. Hence,
/R is projective in M.

As an analogy of Theorem 4 in [9], we have

Theorem 1 ([9]). Let U be a semi-perfect Grothendieck category with
generating set of finitely generated object. Then U is locally PP and perfect (resp.
semi-artinian) if and only if A is equivalent to [I, A,;]" (resp. [1, A1’y with functors
T;, such that \py;;: Ty,(B)—> Tyi(P) for k>j>i (resp. k<j<i) is monomorphic,
for any minimal object B in T ;(P) and PEU,, where U,’s are semi-simple categories
with generating sets.

Proof. We assume that 2 is locally PP and {P,} is a generating set of com-
pletely indecomposable projectives. Making use of Lemma 1 and the proof of
Theorem 4 in [9] we know that U is equivalent to [, A,]” (resp.[7, A,]’) and that
{PO—S8,(P.)}? (resp. {S(P:,)}) is a generating set in [Z, %] (resp. [1, A1),
where {P,,} is a generating set of ¥U; and P,, is minimal. Since fE[P, P’
is monmomorphic by Lemma 1, we have the conditions in the theorem. The
converse is also clear from the structure of [1, A,]” (resp. [, A,]’) and Lemma 1.

ReMARK. If we replace a minimal objects B in the above condition by any
finite coproduct of B, , it is equivalent to the condition (*)— 1) in Theorem 3 in [9].
Hence, this fact gives us the defference between semi-hereditaty and locally PP.
We have immediately from Lemma 1. [9], Propositions 3 and 5 and their proofs

Theorem 2. Let U be asin Theorem 1 and {P,} a generating set of completely
indecomposable projectives. If W is locally PP, then the following are equivalent.

1) All P, are J-nilpotent.

2) 1L(P,)< oo for all .

3) U is semi-artinian.

Futhermore, the following are equivalent.

1) rL(P,)<oo for all a.
2) W is perfect, (cf. [9], Theorem 6).

3. QF-3 categories

Let A be a Grothendieck category with generating set of projectives {P,}. An
object C in U is called faithful if for any non-zero morphism f: P,—>Pg, there
exists g& [Pg, C] such that gf +0. Let {Qg} be another generating set of projec-

2) see[8], §3.
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tives and f'+0<[Q,, Q;]. Since O, HO,/=>IPP, and Q;PQs'=>PPs, we
J J’
have a non-zero morphim f: 33 P P,—> PP such that f|Q,=f" and f|Q,’=0.
J J’/

Hence, there exist «, B such that (pg f|P,)=£0, where pg is the projection of
2@ Ps to Pg. Then we have g’&[Pg, C] such that g/(psf|P,)=+=0. Hence,
7

&'psf+0. Let i, and iy, be inclusions. Peut g'ppig;=g E[05, C]. Then
& Pefio,=& Poiesf'=gf" and Ker f=0Q,. Therefore, gf’+0. Thus, we have
shown that the faithfulness of C dose not depend on generating sets of projectives.

Let (€°, Ab) be the contravariant additive functor category, where € is the
small pre-additive category {P,}. Then U is equivalent to (A°, 4b). Hence C'is
faithful and only if the corresponding functor in the above is a faithful functor.
Furthermore, (€°, 4b) is eqivalent to My, where R is the induced ring from
{P,}. Then faithful functors correspond to faithful modules in 3.

An object M is called a minimal faithful if M is faithful and every faithful
object is a coretract of M. According to R.M. Thrall [13], we call 2 QF-3 if A
contains a minimal faithful object M or equivalently, if M3 has a minimal
faithful module.

From now on we shall assume that A is a Grothendieck category with
generating set of small projectives P,. Further, we shall assume that % is a
locally PP and semi-perfect category and hence, we may assume that all P, are
completely indecomposable and P,avPg for a=+ 0.

Every object 4 in U has an injective hull of 4 in A (see [11], p. 89, Theorem
3.2). We denote it by E(4). If EQIP P,) is projective, A is called QF-3*+
(see [2]). !

Let O be an injective envelope of R in M3 and M a minimal faithful module
in M{. Then M is a retract of Q and hence, M is injective. Furthermore, since
R is faithful, M is also a retract of R. Therefore, M is projective, and injective
and we may assume that M is a right ideal of R.

Since R is semi-perfect, Rzg @ e R and e, Re,’s are local rings. In the

proof of theorem 4 in [9], we considered indecomposable projective objects P in
M} such that [P, e, R]=0 for all e, RA&=P. We call such P belonging to the first
block. Contrary, if [e,R, P]=0, P is called belonging to the last bolck.

Lemma 2. Let A be a locally PP and QF-3 semi-perfect Grothendieck
category and R the induced ring. Then a minimal faithful object is a coproduct of
es; R’s which belong to the first block.

Proof. Since M is injective and a retract of > e, R, M=> De, R by
I J

[14], Lemma 2. Further, since e, R is injective [e, R, eR]=0 by Lemma 1 if
es,RAzeR. Hence, ¢, R belongs to the first block.
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Lemma 3. Let U be as above and >) Pe; R a minimal faithful ideal. Then
J
Jor any 8 1 there exist p(8) in J such that ey Res= ().

Proof. Let x be a non-zero element in e; Re;.  Since D) @Pe;R= > Pe;Re,
I J,Io%

is faithful, ey, Resx+0 for some ¢(3).
Let e; be as above. We put R(2)={v| <1, ¢; Re,=+0}.

Lemma 4. Let U be as above and further perfect. Then R(7) contains the
last element & in R(Z) namely, e; Res=+=0 and e; R belongs to the last block.

Proof. We assume that R(1) does not contain the last element in R(1).
Put N= 21 @e,R/( 2] e,Re,)D 2 De; R and put N,= 3] De,R/(2]e, Re,), and
YERM) ey j=2 reR) 82y
N,=2 ®e;R. We shall show that N is faithful in MMz, Let x=723]x,,
i>2

xpEegReg and x,3+0. If p(a)+1, we take 0= ySepsRe,=N, Then
Yx=12 YX,6E > Deycsy Reg and yx=+0 by Theorem 1, since e;Re; is a division
ring by Lemma 1. We assume ¢(a)=1. Then a=R(1) and there exists
yEe,Re, and 0% yx,g=e, Res. Hence, B R(1). Since R(1) does not have the
last element, we obtain v in R(1) such that 3<v. Hence { y—{—(e;i e,Re,)}x+0.

Therefore, N is faithful and N contains a submodule N, which is isomorphic to
e,R. Then N,=nR~e,R and ne,=n. Since e;Re,=0 for j>2, n€N,. Let

n= 2 Py, Ty, Ee,R/( 3] e, Re,). Then n(e,Rey)=0 for ¥ =max (7v,). However,
i=1 v;<¢e
e,(e,Re;)+=0. Which is a contradiction.

Theorem 3 ([4], Theorem 1). Let A be a perfect or semi-perfect and semi-
artinian and locally PP-Grothendieck category with a generating set of small preojec-
tives {Gy};. If W is QF-3, there exist non-isomor phic indecomposable and projective
objects {P,} ; (resp. {Qg} s) such that
1) {P,} (resp. {Qg}) is an isomorphic representative class of the projectives in the
first (resp. last) block,

2) ?‘EBP.” is a minimal faithful and injective object and

3) each P, contains the unique minimal subobject S, which is isomorphic to Q,.
Hence [S,: Ay)=1 and S, is projective in My where Ay=[Q,, Q. is a division
ring. Furthermore, any indecomposable projective is isomorphic to a subobject in
some P,,.

Proof. We shall prove the theorem on the induced ring R=73Pe,R;
esRAveg R if a+B. We know from Lemmas 2 and 3 that > @ e; R is a minimal
J

faithful ideal, e; R belongs to the first block and e; R contains a submodule ¢;Re,,
where v; is the last element in R({). Since ey Re,=0 for E1v;, 1;,=¢;Rey is a
right ideal. Put A;=e,Re,, then A; is a division ring by Lemma 1. ¢;R is
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indecomposable and injective. On the other hand, any A;-submodule of 1, is
a R-module. Hence, [r;: A;]=1 and 1, is the unique minimal subideal in e;R.
Since t;,~ey Rey,=e, R, 1; is projective. Furthermore, r;41; if i=j, since
e;R4&e,;R; and ¢; R, e, R are injective hull of t; and t;, respectively. Let e;R
be in the last block. Then e, Re;+0 and @(8) J. Hence, ey Res = Tocs)-
Therefore, {ey, R} is an isomorphic respresentative class of projectives in the last
block. Let éeI—]. Then e,.,Re,+0 by Lemma 3. Hence, [e.R, ey, R]+0,
which means that e, R does not belong to the first block. Furthermore, ¢, R is
ismorphic into e, R by Lemma 1.

Lemma 5. Let R be the induced ring from a locally PP-Grothendieck
category with generating set {P,} as above. We assume that {e;R}; is a set of
injective objects such that E=E(R) in W}, is an essential extension of 2 @ e;RED,

Then any f < [eg R, E] is either zero or monomorphic, where e; R*%: )—EEBe R and
eg s any primitive idempotent.

Proof. We assume f=0. Then r=f "‘(Z”]e,-,R)zizo for some ¢;,. Since
t=1
> e; R is injective, f |t is extended to g [eg R, D) ¢, R]. Then g is monomorphic
t=1 t=1

by Lemma 1. Therefore, f is monomorphic.

Theorem 4. Let N be a perfect, locally PP-Grothendieck category with
generating set of small projectives. Then U is QF-3* if and only if every projective
P, in the first block are injective and for any indecomposable projective P, there exists
P, in {P,} that [P, P,]#=0. Hence, {P,} is an isomorphic reprensentative class of
all projective and injective indecomposable objects.

Proof. Let R be the induced ring from completely indecomposable
projectives P,. We assume U is QF-3*. Then E=E(R) is isomorphic to
2 De,, REP, Tt is clear that e, R belongs to the first block from Lemma 1.

I

For any projective eg R, E(eg R)CE. Hence, [¢sR, e, R]=0 for some j, which
implies {e,, R} consist of all projectives in the first block. ~Conversely, we assume
that all projectives {e; R}, in the first block are injective and have the property
in the theorem. Since [egR, ¢; R]4=0 for any egR, ED >} Pe; R¥:°DR for

K7

suitable indices K;. We assume E =+ 2 De; REP, Then there exists g&
[exR, E] such that Imgd 31Pe,RX5. > On the other hand, we obtain
g'E[exR, E|] such that g’| g7'(E,)=g from the proof of Lemma 5, where E, is a

finite coproduct of e;R’s. Then (g—g")|E,=0. Therefore, g=g’ by Lemma 5,
which is a contradiction.

RemArk. The fact [egR, e, R]#0 is equivalent to the validity of Lemma 3
for the above .
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Theorem 4'. Let U be a semi-perfect, semi-artinian and locally PP-Grothen-
dieck category with generating set of small projectives. Then U is QF-3" if and only
if A contains projectives P, in the first block and all of such P, are injective and

for any indecomposable projective P, there exists P, such that [P, P,]40. Hence,
{P.} consist of all projective and injective indecomposable objects. In this case N
s QF-3, (cf. [2], Proposition 2 and [12], Proposition 3.1).

Proof. We assume U is QF-3". Let S be the socle of E=E(R) and
S=21PS,,where S,’s are minimal objects in E. Then E=E(S) and E,=E(Sy)
is imdecomposable and projective by the assumption. Hence, from [8],
Corollary 1 to Lemma 2 E,~eyR, which belongs to the first block. Let ¢gR
be any indecomposable ideal. Then E(esR)CE. Hence, [¢R, e,R] 30 by
Lemma 1 and the proof of Lemma 5. Since each e, R has the non-zero socle,
A is QF-3 by the standard argument (cf. the proof of Lemma 7 below). The
converse is similarly proved as in the proof of Theorem 4.

Lemma 6. Let N be as in Theorem 3 (resp. Theorem 4') and e, R in the
first block. Let 7 be the last (resp. first) element in R(1). Then R(1)=C(»n). If A
is as Theorem 4, R(1)Y2C(v) for any yER(1l) and for any & and &'<(1) there
exists € in R(1) such that e; Re,~0 and eyRe,=+0, where R(1)’={a| €R(1), a <}
and C(n)={8| <1, esRe,+0}.

Proof. Let v be in R(1) and 8 be in (I —R(1))". Then eys Res=+=0
and @(8)#+=1. We assume e;Re,+0. Then ey ReyD (e Res)(esRey)+£0 by
Theorem 1. We take non-zero element x, y in e,,Rey and e, Re,, respectively.
Consider a mapping vr: xR — YR such that {r(xr)=yr. Then + is well defined
and R-homomorphic by Theorem 1. Hence, [eys R, e,R]=40, which is a
contradiction. Therefore, R(1)YDC(v). Let x be a non-zero element in e, Re,.
Then xR is a projective and indecomposable ideal in e, R by the assumption.

Hence, ngeqR for some g. Put yr(x)=e,r. Then Jr(x)=yr(xe,)=e,rey. This
implies ¢g<<«y (resp. ¢>7). Similarly, we have ¢>v (resp. ¢<v). We assume
R(1) contains the last (resp. first) elemeny ». Then e, Re,~xRe,=(the socle of
e,R)=0. Hence, R(1)=C(»). Let veR(1). Then ¢,R and ey R are mono-
morphic to e, R. Since ¢, R is injective, their images have a non-zero intersection
1. Hence, te, =0 for some €. Therefore, ey, Re, 40 and e,/Re, 0.

Lemma 7 (cf. [12]). Let A be a division ring and I a well ordered set. Let
{e;;} 1 be a set of matrix units. Put R= ) @e;;A. Then e, R is injective and

i<j/ET
hence, R is hereditary and QF-3 in M. Ris QF=3 if and only of I contains the
last element.

Proof. We first note that each e;; R contains only right ideals of form e;; R
i<jand [e;R, e; R]~A. Let
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O— N—M

lr

e, R

be a given exact diagram in IMj. We shall extend f to M by the standard
argument. We obtain a maximal extension f,: N,— e,,R such that N, DN and
foIN=f. If M =+N,, there exists m in M such that me;; e N,, since {e;; R} is a
generating set. Put M'=N,+me;;R and 1={x|Ee;; R, mx&N,}. Then 1t is
a right ideal in ¢;; R. Hence, r~¢;;R for some j >i. We define g: t—e¢,, R by
setting g(x)=f,(mx) for x&t. Then e,;|t and g are in [t, e, R]~e;; A= A.
Hence, g=3(e,; |t) for some § in A, namely g(x)=3Je,;x for any x in . Therefore,
we have an extension f: M’—e,,R by f,/(n,+mx)=f(n,)+ Se,;x. Hence,
N, =M. We know from [8], Lemma 7 and [9], Proposition 1 that R is perfect
and J(R)= 22ﬂ€9e,-,A. Since J(R) is projective, R is hereditary by [9],

Lemma 3. Therefore, R is QF-3* by Theorem 4. If R is QF-3, ¢;,R is a
minimal faithful module by Theorem 3. Hence, I has the last element by
Theorem 3. Conversely, I has the last element, then e, R contains the unique
submodule e,y R. It is clear that e,, R is faithful module. Let M be a faithful
module in IMMNE. Then there exists m in M such that me,,+0. Hence, we have
a monomorphism f of e,; R to M by f(e,,r)=me,;v. Therefore, R is QF-3.

Lemma 8. Let A be a division ring and {e;;}; a set of matrix units. Put
S=31D Ae;; and R=3 @ Ae;;. Then
I

iz
1) R is semi-hereditary.
2) R is semi-hereditary and QF-3 (or QF-3") if and only if I has the last
element.
3) R is hereditary and QF-3* (or QF-3) if and only if I is finite, (cf. [12]).

Proof. 1) Let t be a right ideal generated by {x,, ,, ---, %,}. Since
x;=2)%;e, and x;e,ET, we may assume that x,E Re,, where ¢, =e¢,,. Let
o
a;=max(q;). Considering Re,, as a A-vector space, we may assume &, **+, &;

are linearly independent over A. If i‘,xiriz() for r,€R and x,r,+0, then

i=1

r,e,%+0 for E<a,. Considering in S, we have 3 x;¢e,,7.¢.,,=0 and e,,7,e, 0.
Therefore, 2)x; R=>Px,;R. Put a,=max ({a;} —a,). We consider a vector
space V, generated by {‘Z‘ D x; Re,, x;e,,}. We may assume V, =31 D x; Re,,

Dy, AD-- Dy, A, where y,=x,e,, for some k. We shall show that SPx; R+
21y;R=>1Px; RO > Dy,R. We have already shown that 31y, R=31Py;R.
Let XY, =23y,;7,/5r;, r/ER. If /%0, r/es+0 for some &. Then
multiplying e.,, in the above, we have >3 x;e,7;6/4,= > V;€,,7/ €/ s, and
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b ?ie/y,ERe,,, 8,=e,, 7 e/,,+0. Hence, 31y,8, =21 x;€,,7;6/4, > x;Re,,,
which is a contradication. On the other hand, x; R~e, R, y;R~e,,R. Repea-
ting this argument, we show that t is projective.

2) Weassume that I has the last element @. We shall show that e,,R is
injective as an analogy of Lemma 7. Let r be a right ideal in some egg R. Put
R(x)={v|el, te,,#0}. If R(r) contains the last element § in R(r), then
T;= > eggs Reyyy~ess R.  Let € be the least element in / —R(x). If €is nota

<38

limit element, R(t) contains the element. We assume € is limit. Then t=Ut,.
<e

We shall show [, e,,R]~Ae,,. Letfc][r,e,sR] and put fy=f|1/E [Ty, €,,R]
~[es// R, e,,R]. Then f/=238,e,, for some §7&A. For & & we have §,¢,,
=f/(en’)=fens’)=f"(€s’)=08"e,y. Hence, §/=8,. If we put §=38,, f=3e,p.
Thus, we have prepared necessary facts to use the proof of Lemma 7. Theref-
ore, e,,R is injective in Mz and R is QF-3* and QF-3 by Theorem 4. The
converse is clear from 1) and Theorems 3 and 4'.

3) If Iisfinite, R is a hereditary and QF-3 artinian ring by [4], Theorem 3.
We assume that R is hereditary and QF-3 or OF-3*. Then I has the last element
by Theorem 4. We assume that / contains a limit number a. Consider

J(esR) =§y€B esyA. Let xzé; €ay;0; Then x =37 €4y ,8;6y.11y,EJ(esR)J(R)
C J*(exR). Hence, J(e,R)=]*(esR), which implies J(e,R) is not projective by
[8], Proposition 2. Therefore, I does not contain the limit number, but contain

the last element, Hence, I is finite.
From the above proof and [9] Lemma 3 we have

Corollary. Let R be as above. Then R is hereditary if and only if |I| <R,
and does not contain the last element.

Theorem 5. Let A be a perfect or semi-perfect and semi-artiniam, and locally
PP-Grothendieck category with generating set of small projectives. If U is QF-3*
or QF-3, then A is equivalent to TIN,,, where W,’s are of the same type as N and
W, is not expressed as a product of full subcategories.

Proof. Let R be the induced ring from A and >3 e; R the coproduct of
projectives in the first block. We shall show e,Re/=0 for either £&R(),
& &ER() or EER(E), €eR(). If EER(?) e, R is monomorphic to a submodule
of e;R. Hence, e, Re/=0 if &’€R(7). Next, we assume &’ER(7). If ¢,Re/+0
for e&ER(7), 04e,Re,/e, Rey, Ce, Re,, for some v,ER(7) (or the last (resp. first)
element in R(z)) by Lemma 1, which contradicts to a fact R*(?)DC(y;). Put
R,= 3 eRes. Then R=31DR; as a ring by Theorems 3, 4 and 4’. Itis

2,8’ ERG)DE

clear that each R;is QF-3* or QF-3 and directly indecomposable. Hence, we
have the theorem.
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From the above theorem, we may restrict ourselves to a case of indecompo-
sable categories if  is as in the theorem.

Theorem 6. Let N be an indecomposable semi-perfect Grothendieck category
with generating set of finitely generated objects. Then we have

1) U is perfect, (semi-) hereditary and QF-3* (resp. QF-3) if and only if W is
equivalent to [I, M,]", where I is a well ordered set (resp. with last element).

2) U is semi-artinan, hereditary and QF-3* (or QF-3) if and only if U is
equivalent to [I, ML), where I is a finite set

3) W is semi-artinian, semi-hereditary and QF-3* (or QF-3) if and only if A
is equivalent to [I, M)}, where I is a well ordered set with last element. Where A
is a division ring and functors T, in [I, M ] are equal to 19, (cf. [2'], Theorem 3.2).

Proof. [I,M,]” is perfect, hereditary and QF-3* by Lemma 7 and [9],
Theorem 3. We assume that I contains the last element. [I, M,]” is QF-3 by
Lemma 7. If I is finite, [I, M,])’ is semi-primary, hereditary and QF-3* (and
OF-3) by Lemma 8. Finally, [, ,]’ is semi-artinian, semi-hereditary and
OF-3* (QF-3) by Lemma 8 and [9], Proposition 1. Next, we assume that U is
one of the forms in the theorem. Let R be the induced ring: RzgeBe,-R.

Then ¢, R in the case 1) and e,R in cases 2) and 3) are in the first block by
Theorems 4 and 4', respectively, where « is the last element in I. Since,
A is indecomposable, e, Re, (resp. e Re,) =0 for any yel by Theorem 5,
Lemma 3 and Remark. Let 2 be herediary (cases 1) and 2)). If [e; Rey: Ay]>
2 (resp. [egRey: Ay]>2) for any v I, there exist linearly independent elements
x, y over Ay=eyRe,. Then xR+ yR=xR®PyR by [9], Theorem 3, which con-
tradicts to the indecomposability of e,R and e¢,R. Let g, b be non-zero elements
in e, Rey. As the proof of Lemma 6, a mapping r: aR— bR such that yr(a)=b
gives a R-homomorphism. Furthermore, yr is extended in [e, R, e, R]= A,
Hence b=3a for some §&A,. Therefore, [e;Re,: A]]=1. Similarly, we obtain
[esRey: Ag]=1. Next, we assume U is semi-hereditary and QF-3" (case 3)).
Then e, R is in the first block and injective. Let x, y be non-zero elements in
e,Re,. Then xR+4yR is a projective right ideal in e, R. Since e, R contains

the unique minimal module and R is semi-perfect, xR—I—yRiesR for some S 1.
Put yr7(e;)=%, then 2= e, Re; and x=2r, y=2r' for r, ¥ =R. Hence, r=3§ and
x=2zesre;, y==zesr'e;. 'Therefore [e,Re,: Ay]=1. Similarly to the above, we
can show [e,Rey: Ay]J=1. Thus, in any cases e,Re, (resp. e,Re,) is a simple
A.-module. Hence, if e, Re,+0, e,Re, (? e, Re,Ce,Re, implies [e,Re,: A,]=

[e.Rey: Ay]=1 from Theorem 1. Let x&=0&e¢; Re;,. Then A, is isomorphic to

A; by &: §;x=xE(8;). First we choose non-zero elements m,; in e, Re;,. Then

e; R is monomorphic to 33 m,,A by the multiplication of m,; from the left side.
k2>j

Hence, we can choose m ; in e; Re, such that m, ;m ;,=m,; (if e; Re,0). Then
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my(m; ;m)=m,;m = m,,=m; ;m;. Therefore, m;;m;e=my if m;;+0 and
m;;#0. Thus, R is a subring of >@e;; A (resp. 21 @e;; A) such that all of
i<j i>j

elements of some (7, j)-entries may be equal to zero, where A~A;. We assume
e;Re;=0 (in cases 1) and 2)). Then 71 (resp.i=4=a) and there exists ¥ from
Lemma 6 such that ¢;Re,=0, e;Rey3=0. Put e=e,+e;;+e;;+ey (resp.e=
e +e;;te;;+eas). Then eRe=e, ADe,;ADe, ;AD e,,A De;;ADeyADe,; ,AD
eyA@DepnA is hereditary by [9], Corolalry to Lemma 2 if R is hereditary.
However, we can easily see that eRe is not hereditary (cf. [6], Theorem 1).
Therefore, Rzg‘_i,eae,-jA, (resp. Rzg@e; ;4). Finally, we assume that R is

semi-hereditay (case 3)). Let y<8 bein I. Then since m,y R+m;R is projec-
tive, myy R+m4; R=2R as before, where 2=e,Re;. Hence, zR=m ;R DOm,yR.
Therefore, 0=Fm,y=mysesery implies esRey£0. Thus, A is equivalent to
[Z, M,])’. The remainimg parts are clear from Theorems 3, 4 and 4’ and
Lemma 8.
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