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We are familiar to study rings S with identity if we are interested in homo-
logical method on the ring theory. On the other hand, it seems for us that the
theory of categories is some kind of generalization of the structure of S-modules.
Especially, Grothendieck categories 2 with generating sets of small projective are
exactly generalizations of the category Mg of S-modules.

Recentely, the author has pointed out in [13], by making use of [6] and
Freyd’s theorem (see [16]) that U is equivalent to a full subcategory Mz* of M,
where R is the induced ring from 2 (see the definition in §1). In general, R
does not contain the identity element, but R contains a set of mutually orthogonal
idempotents {e,} such that R=>P e, R=>1P Re,,.

It is natural from the reason of birth of R that M ;" has very similar pro-
perties to those in Mg. However, there are slightly different properties between
them. For instance, let A be a division ring and T the ring of column finite
matrices over A with degree a. Let {e;;} be the set of matrix units. Put R’
(resp. R’)zEEBe,-J. A (resp. ;j@e“ A). If || is finite, then R?, R” have the

same properties. If |a] is R,, then R/ and R” do not have identities and R’ is
semi-artinian and hereditary and R” is perfect and hereditary., (see Theorem 3
in §5).

In this paper, we shall generalize above properties in a semi-perfect Groth-
endieck category and give types of hereditary and perfect or hereditary and semi-
artinian categories in Theorems 3, 4, 5 and 6. 'They are generalizations of [3],
Theorem 4.1, [14], Theorem 5 and [8], Theorem 5 in semi-primary hereditary
rings. Finally, we shall show in Theorem 7 that a semi-perect Grothendieck
category with bounded connected sequences (see §4) is a special type of sub-
category of perfect and hereditary (or semi-artinian and hereditary) category and
vice versa.

In this paper we do not assume that a ring R contains the identity element.
We use the categorical terminology in [16]. By Y, we denote the category of
right R-modules and by Ab we denote the category of the abelian groups.
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1. Preliminary results

Let A be a Grothendieck category with a generating set of small projective,
then 2 is equivalent, by Freyd’s theorem (see [16], Theorem 5.3) to a contrava-
riant functor category (€°, Ab) of an additive small category €. On the other
hand, in this case P. Gabriel showed in [6] that (€°, Ab) is equivalent to the
full subcategory of modules over a ring R as follows:

Put RZCEEQGB[C,,, Cg] as modules and we make R a ring by compoxitions

of morphisms. We denote the identity morphism of [C, C] by I.. Then
{Ic}ces is a set of mutually orthogonal idempotents and R=>'PI.R. By
c

Mz* we donte the full subcategory in the category MMy of right R-modules,
whose objects consist of all R-modules 4 such that AR=A. Then we note that
A=>3®AI; and every R-submodule of 4 is in Mg*. Similarly, we can define
2. We know from [6], Proposition 2 in p. 347 that (€, Ab) (resp. (€°, Ab)) is
equivalent to I* (resp. Mz").

Conversely, let S be a ring, which is not necessarily to have the identity.
We assume that .S contains a set of mutually orthogonal idempotents {e,} such
that S=>1P e, S=>1P Se,. Itis easily to check that {¢,S} is a generating set
of small projective in Ms+. Hence, WM™ is equivaient to (€’°, Ab), where €’ is
the pre-additive category {e;S} in Mg*. Further S~3 P[e,S, eS]. Therefore,
we call such a ring S an induced ring from a category and {e,} is called a set of
generating idempotents.

We shall use frequently some homological method over S in this paper.
Hence, we shall give here some notes concerning with this method.

Let S be as above. We consider every things in Mg+

N.0. Every sub or factor modules of A is in M*.

N.1. P s projective if and only if P is a retract of a free S-module F. So-
metimes we use a fact F :Z_‘,@uSzg@ ue,S, where {u} is a base.

N.2. For any elements x, y of A in Ms*, there exist idempotents e,, e, and e
in S such that xe,—x, ye,—y and e;—ee;=ee.
N.3. AQS~A, (use N.2). However, Homg(S, 4)~I1Ae,.
N
N.3". AQA[I~A|Al for any left ideal | in S.
N
N.4. Tors(, ) commuts with direct imit, (cf. [2]).
Let A be an object in 2. By S, we denote [4, A] and J( ) meanes the
Jacobson radical.

2. Perfect categories

Recentely, we have defined perfect (resp. semi-perfect) categories in [13].
We shall reproduce perfect categories as a form of induced ring from .
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Following to Mares [15], a projective object P is called semi-perfect if every
factor object of P has a projective cover. If any coproduct of copies of P is
semi-perfect, P is called perfect. A Grothendieck category 2 is called perfect
(resp semi-perfect) if every (resp. finitely generated) object has a projective cover.
If a ring S has the identity, then the fact that .S is semi-perfect is equivalent to a
fact that M is semi-perfect. However, if S does not contain the identity then
the above statement is false (seeTheorem 1 below).

Let ebe an idempotent in S. Following to [17] we call e local if eSe is a Jocal
ring or equivalently if Se (or eS) is completely indecomposable.

We have immediately from [11] and [15]

Theorem 1. Let R be an induced ring from a category. Then the following
are equivalent.

1) R is semi-perfect as an R-module in M ™.

2) R=2®f,R, where {f,} is a set of mutually orthogonal local idempotents
and {f,R} is right semi-T-nilpotent with respect to J(R).

3) R[J(R) is semi-simple as an R-module in WM™ and idempotents can be lifted
modulo J(R) and J(R) is small in R.

Proof. We note that P==J(P! for every non-zero projective module P by
[13], Proposition 2 or [1], Proposition 2.7. Hence, 1) < 3) is obtained from [15],
Theorem 4.3 and 5.1. 1) —»2). Let R=>)Pe,R. Since ¢,R is also semi-

perfect, emR:ﬁ@ faR by [15], Corollary 4.4, where {f,} is a set of mutually

orthogonal and local idempotents. Furthermore, {f, R}, is right semi-7-
nilpotent by [11], Theorem 7. 2) — 1) is clear from [11], Theorem 7.

On the other hand, for M * we have immediately from [13], Proposition 5
and its corollary

Theorem 2. Let R be an induced ring from a category. Then the following
are equivalent.

1) M*g is semi-perfect.

1) gWM* is semi-perfect.

2) R=3®f.R

2"y R=3® Rf,/, where {f,} and {f,’} are sets of mutually orthogonal and
local indempotents (cf. [1], Theorem 2.1).

Let S be the ring of upper tri-angular matrices with infinite degree over a
division ring and {e;;},<; be the complete set of matrix units. Put R=>Pe;,S.
Then R is semi-perfect as a right R-module but not as a left R-module. On the
other hand, xM* is semi-perfect.

We have already noted in [13], Remark that Theorem P in [1] are valid for an
induced ring R. If we use N.O~N.4 and the idea given in [13], we can show that
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Theorem P is true for R.  We state here only its some parts, which we shall use
later.

Theorem 2’ (Theorem P in [1]). Let R be as above. The following are equi-
valent.

1) Mg* is perfect.

2) R=XPf,R, where {f,} is a set of mutually orthogonal and local idzm-
potents and {f,R} is a right T-nilpotent system with respect to J(R), (the last con-
dition is equivalent to J(R) being T-nilpotent).

3) Every right R-module in " has the same weak as projective dimension.

3 Categories of commutative diagrams

We recall, in this section, the concept of categories of (generalized) commu-
tative diagrams in [9] and give relations between it and rings of (generalized)
tri-angular matix rings in [8].

Let I be a linearly ordered set (1, 2, -+, n) and {2(;},;c; be a set of abelian
categories. We assume that there exist functors T';;: % -, for <j such that
1) T, is cokernel preserving, 2) there exist natural transformations vr; 2 T; ;7T
— Ty such that v, T j(Vrjrr)="riestrs j; for i<j<k<<l. We define a category
A=[7, A,}* of commutative diagrams as follows: The objects 4 in A consist of
all n-tuple (4,, 4,, -+, 4,.); A;€¥U; with arrows d’;,=d, T, ; such that d; ; T;.(d ;1)
=d ;i\, ; for i<j<<k. The morphisms [4, Bly consist of all #-tuple (£, f2, -, f4);
f:€[4;, Bily, such that f,d; AT; ,=d; BT, (f,) for i<j, (see [9], p. 245). isan
abelian category from [9], Proposition 1.1. We assume that 2; has a projective
class &; (see [16], p. 136). We define adjoint functors S;, T; betweem A, and A
as follows: Sy(A,)=(T.(4.), -+, Ti-1(4;), 4;, 0, -+, 0) with arrow dy,=Ir,.ap
for h<<i and d, .=+, ,; for e<f<i, and Ty(A)=A4;, where A=(4,, 4,, -+, 4,,).
Thus, A has a projective class N 7';7'(€;) whose projectives are of the form >
S;(P;) and their retracts, where P; is &;-projective by [9], Proposition 1.2". We
note that if we take &; as the class of all epimorphisms in ; then N T;7%(€;) is
also the class of all epimorphisms in 2 by [9], Proposition 1.1. Therefore, in
this case &-projective means usual projective.

We shall generalize the above category. Let I be a well orded setand {2},
a family of Grothendieck categories. We assume that functois T';; for i<j (resp.
T., for i>>j) are coproduct and cokernel preserving. We shall define A=[7, A}’
as above, namely objects of % are of forms (4,, ++-, 4,, -+-) with arrows d; T, ; for
i<j,i,j 1. Similarly, we define A=[I, A,]" with T ;» For any ordinal number
a in I, we put A*=[I7, A}, where I*=(1, ---, ). Now we assume that all ¥,
have generating sets of completely indecomposable and small projective {P;,}.
Then S;(P;o)=(T1i(P;a), s Ti-1:{(Pis), Piay 0, -+, 0)=P, is a member of gene-
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rating set of small projective in 2 by [16], p. 121, Proposition 1.5. Similarly,
SiP:)=(0, -, P;yy T:11i(P;a), --)=P, is one in A. We have natural imbedding
functors 4, : A% A, (P, : A*—->A) such that Yr,(AP) = (4,, -+, Ay, 0, -+, 0), where
A®P=(4,, -, 4,), 4;€U;. Making use of +,, we may sassume that 2 is the
colimit of A%, We note that +r,(P®) is projective in U if so is P in A%, however
Po(P) is not projective. It is clear that 9 and 9 are Grothendieck categories
by [9], Proposition 1.1.

Let R and R® be induced rings from 2 and A, respectively. Put P =
Si(P;,). Since [Py, Pf™]=0 if n>m, R™= 31 > P[P, P§”] is a ring of

iSj<n @,B
generalized lower tri-angular matrices over rings Ri:azﬁ@ [P, Pi ~> P

[P;4 Pig]. The natural immbedding +; induces the natural imbedding: R%
SR=3""P [P, P§’]. Similarly, the induced ring R from 9 is the ring of
5<t @,B

upper tri-angular matrices over R;.
Conversely, let S=>1 e,S be the induced ring with generating idempo-
I

tents. We assume S is lower tri-angular, namely {e,} is ranged as {¢”} such
that ¥ Seg”=0 if n<<m. Put S,=> P e5”Seg” and M,,,,=>"P e’ Sey™ for
@,B @,8

n>m. Let =[], M, ")’ with functor T;(—)=(—)@M ;. Then Ms* is
Sj

equivalent to 2 and S and S; are induced rings from % and *Jﬁslf, respectively.
From the above, we have

Lemma 1. Let A and A” be as above and R, R™ be the induced rings from
A and N*, respectively. Then A=lim A” and R=lim R™.

Let %A be a Grothendieck category. We call U semi-simple if every object
is a coproduct of minimal objects. 2 is called hereditary (resp. semi-hereditary)
if every sub-(resp. finitely generated) object of projective is also projective.
Finally, U is called semi-artinian if every non-zero object has the non-zero socle.
It is clear that 2 has a generating set and is semi-simple if and only if the
induced ring R from % is a directsum of minimal right ideals.

Therefore, we have nothing to study for semi-simple categories.

Proposition 1. Let I be a well ordered set and {U,} <, a set of semi-simple
categories with generating sets. Then W=[1, N,)’ is semi-artinian and semi-perfect

and N=[I, W,]" is perfect.

Proof. Let {P;,} be a generating set of minimal projective in %,. Since
[S{(Piw)s S{P:i)]ot=[Piw Pisloi» Ps’=S«P;,) is small projective by [13], Co-
rollary 1 to Lemma 2. Furthermore, [P, Pg”]=0 for i>j and [P{", P§"]=
[P, J(Pg”)] for i<j. Hence, {Pi"} is a left T-nilpotent system with respect
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to J(A). Therefore, A is semi-artinian and semi-prefect by [13], Proposition 3
and Corollary to Theorem 4. Similarly, we know by [13], Corollary to Theorem
4 that U is perfect.

Lemma 2 ([19]). Let S be an induced ring from a category and e an idem-
potent. If SeS is projective in Mg™*, then Se is projective in Mg,

Proof. Homg(eS, S)=Se by N.3 and the trace ideal 75(eS)=SeS. We
quote here Silver’s proof in [19], Theorem 2.5. Let 0> K —Se® eS T, SeS—0
Vi
be exact, where T=Homg(eS, eS)=eSe. A diagram;

T™®1
Se(?eS@ Se ——— SeS@Se
1 1Qu e
Se <«  SeSe
is commutative, where y is the multiplication. Since Se is S-projective by N.1,

p is isomorphic by N.3. On the other hand, Se=SeSe. Hence, T®1 is iso-
morphic. Therefore, K %) Se=0, which implies K® SeS=0 by 7. Since
S

(eS)SeS=eS, eS @ SeS~eS. Hence, Se@eS~SeQ@ eS (? SeS~SeS <§> SeS is
T T

S-projective by the assumption, (which is obtained from the first exact sequence
by taking @ SeS). Noting Se @ Se~eSe, we can prove from the proof of [19],
S S

Lemma 2.8 that Se is projective in g,

Corollary ([18], [8]). Let S and e as above. If S is hereditary in WM™, then
eSe is hereditary in M g,.

Proof. Let t be a right ideal in eSe. Since tS is S-projective, r=teSe is
a coretract of copies of Se. Hence, t is eSe-projective by the lemma.

4. J-nilpotent and connected sequence

In the structure theorems of semi-primary and hereditary rings the nilpo-
tency of the radical is very important. (cf. [4], [8] and [14]). We define the nilpo-
tency of projective object in a catrgory.

Let A be a semi-perfect Grothendieck category with a generating set of
(completely indecomposable and) small projective {P,}. For an object 4 in 2
we put J*(A)=J(J"'(4)). If J"(A)=0 for some m, we call A J-niplotent. If
7' (4)=£0, J*(A)=0, n is called the index of A. Next, we generalize the notion
of a connected sequence of idempotents in [14]. A sequence (P, P,:-+, P,) is
called a left comnected sequence if [P;.,, J(P,)]%0 for i=1,-,n—1 and n is
called the length of the sequence. Similarly, a sequence (P,, P,, ---, P,) is called
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a right connected sequence, if [P;, J(P;,,)]=0 for i=1, .--,n—1. By IC(P,) (resp.
rC(P,)) we denote all left (resp. right) connected sequences such thar P,=P,,.
A sequence in IC(P,) with maximal lenght is called a maximal sequence. By
1L(P,) (resp. rL(P,)) we denote the lenght of maximal sequences of P,,, (if IC(P,)
has non maximal sequences, IL(P,)=c0).

We note that if P,’s are completey indecomposable and projective, [P,, Pg]=
[P, J(Pg)] if P,APg by [13]., Corollary to Lemma 2. From now on when we
consider connected sequences, we take completely indecomposable projective
objects, unless otherwise stated.

Proposition 2. Let A be a J-nilpotent object of index n. Take {A;}7:}
(4,=A4) and f,€[A;, J(A;-))). Then f,-- f,=0. Especially, if A is projective,
then J(S,4)"=0.

Proof. We assume f;--f,(4,..)C]" " (4;). Then f,_, fi fo(4,:)C
J (AN T 0 Ai) =] A,). Hence, f-f,=0. 1f Ais pro-
jective, [4, J(4A)] 2J(Sa) by [20], Lemma. Therefore, J(S4)*=0.

Corollary. Let 2 be a semi-perfect Grothendieck category with a generating
set of small projective P,. If all P, are J-nilpotent, N is semi-artinian. Moreover,
if the indeces are bounded, U is perfect.

Proof. We may assume that P,’s are completely indecomposable by [13],
Corollary 1 to Theorem 4. Hence, % is semi-artinian by Proposition 2 and [13],
Proposition 3. If the indeces are bounded, 2 is perfect by [13], Lemma 6.

Proposition 3. Let A be a Grothendieck category with a generating set of
samll objects. We assume that U is semi-hereditary. Then for amy completely
indecomposable projective, P,

1) Any non-zero element in [P,, P,] is monomorphic.

2) If P;is J-nilpotent of index n;, then [P, P,|=0 if n,>n, or n,=n,, P,7
P, and moreover [P, J(P,)]=0.

3) If P, is J-nilpotent, IL(P,) < the index of P, If U is hereditaty and
perfect, then [P,, Pg]l==0 implies [Py, P,]=0 for any non-isomorphic completely
indecomposable projecitves P,, Pg and [P,, J(P,)]=0.

Proof. 1). P, is finitely generated by [13], Corollary to Lemma 2. Hence
Im f is projective by the assumption for f&[P,, P,]. Therefore, f=0 or fis
monomorphic, since P, is indecomposable. 2). Since J(P)DJ(Q) for PDQ,
[P, J(P)]=0. Similarly. [P,, P,]=0 if n,>n, or P,A&xP,, since J(P,) is unique
maximal in P,. 3). It is clear from 1) and Proposition 2. The last statement
is clear from Proposition 2 and [13], Lemma 6.
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For the connected sequences we obtain similarly from the definition

Proposition 4. Let A and P; be as above. We assume IL(P;)=n; (resp.
rL(P,)=m;). If n,>mn, (resp. m,<<m,) or n,=n, (resp. m=m,) P,A&P,, then
[Py Pz]:0 and [P J(P1)] 0.

5. Perfect and hereditary categories

Let R be a ring with identity. We showed in [3], [8] and [14] that every
hereditary semi-primary ring is a ring of lower triangular matrices over semi-
simple artinian rings. We also studied hereditary categories of commutative
diagrams in [9] (cf. Lemma 2). On the other hand, we defined perfect categories
in the pervious section. Using them, we shall study, in this section, perfect
categories with some assumptions, which is a generalization of [8].

First, we give an example. Let A bea division ring and S the ring of column
finite matrices with countably infinite degree over A. Let {e;;} be the completely
set of matrix units. Put R:Z]j@e,- jS:;; De;,R, (resp. R:,Ej De;;S). Then

R=UR, (resp. R=U R,), where R,=>P e; ;R (resp. R=3>® e;;R). R, and
i<n i<n

R, are hereditary by [5] or [8], Theorem 1. Moreover, ¢;;R is J-nilpotent of
index 7. We shall show from Theorem 3 below that R and R are hereditary in
Me* and My, respectively. We note that 1L(e;;R)=z, but rL(e;;R)= oo, (resp.
rL(e;;R)=i, but 1L(e;; )= ).

Lemma 3 ([18], Proposition 1). Let {A;}, be a set of division rings and R
the induced ring from [I, M ]’. If the radical N of R is projective in My™*, then
R is hereditary.

Proof. Let R= E@e R. Then N=>'®Pe,Res and 1 —E@e Reg is

a>p
projective by the assumption and [13], Lemma 7. It is clear that every minimal
object in Mp" is isomorphic to some e, R/t,=A,. From the assumption hd.
e,R[t,<1. We shall show by the standard argument that R is hereditary. Let
M be an object in Mg+ and 0—-M —-Q,—0,— 0 exact with Q, injective. Then
0=Ext*(A,;, M)=Ext' (A;, Q,). We shall show that Q, is injective in Mz*. Let

0 — B

)
A4 >
| f

O,

be an exact sequence. We take a maximal extension f,: 4,04—0Q,. If A,%B,
there exists b in B such that (hbR+A4,)/A4, is minimal, since R is semi-artinian by
Proposition 1. Hence, t1={r| R, br& A } is a maximal right ideal. We define
g:1—0Q, by g(r)=f,(br). Since Ext' (R/r, Q,)=0, 0<[t, Q,] < [R, Q,] is exact
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and we have g’[R, O,] such that g’|t=g. Since BEM;", there exists an
idempotent e in R such that be=b. Put ¢,=¢’(e) and f,(a,+br)=f(a,)+qr. If
bre A, f,(br)=f,(ber)=g(ery=g’(er)==q,r. Hence, we have an extension of 4,.
Therefore, A;=B and Q, is injective. Thus, R is hereditary.

The above proof suggests us

Corollary. Let R be aninduced ring from a category and M an object in M ™.
Then M fis injective if and only if any element in [, M] is extended to [R, M] for any
right ideal t of R.

In the first step, we shall generalize the conditions in [9], Theorem 3.12.
For [, A,] with functors T,

()’ 1) Arapy: ToeTpy—>T,y is monomorphic for all a>B>v,

2) For any given numbers o=, <, < <a,=f3
Toa(Pa) = Toa;Taz0/(Pa)D Toa K*(Ps)) D+ D Ta,_(K* (L)) DKL) ,
where P, is any object in W, and K;i(P,) are defined inductively from the above
equality and this equality is given through \r,g,.

(resp. (x)! replacing a>B>v and a,<o,<--<a, in (*)" by a<<S<v and
o>, > >ay,).

Theorem 3. ([9]). Let I be a well ordered set and Ixe=(1,2, -+, n, ---) the
set of natural numbers. Let {2}, be a set of semi-simple Grothendieck categories

with generating sets. If A=[I, A" (resp. [I, A,)’) is hereditary, then functors
T, satisfy (¥) (resp. (x)!). Comversely, A=[I, A,]" (resp. A=[IRo; A,]*)" satisfies
the condition (), then N and A are hereditary.

Proof. Let {P;,} be a generating set of minimal objects in ; and R=
2B [P, Py] be the induced ring from A with functors T, where P®=

i<i
S{P;,). We assume that 2 and hence, R are hereditary. Since ¥, is semi-
simple with generating set, % is a coproduct of simple categories 2;,. We may
assume that P;, is a generator in ,,. Furthermore, A=[I, A" ~[I", A;, ]
with functors T";, ;s such that T";, ;5. =0, T' s »0,=PmBm T msina, for n<m
and T; ;=31 T";,, ;s,» where 7 is the inclusion 2, to U, and p is the projection
of A, to W,e . Let n,<n,<---<m,, be given numbers of I and A™"=[(n,, --n,,),

A,1". Pute(n,, a,-):Z’] 1p, o, in R for any finite number of P, ,. Let R™ be
i=1 L i®i

the induced subring of R from A™. Then R(n,a;)=e(n;, a;)Re(n;, a;)=

e(n;, ot;)R™e(n;, ;). Furthermore, R™=Ue(n;, a;)Re(n;, at;), where (n;, o)

runs over all (n;, ;) and n; may be overlaped, and M= U Me(n;, ;) for M &

Met and Me(n;, a;)eMe*(n;, ;). On the other hand, R(n;, ;) is hereditary

1) If [I| >80 or |I|=R, and I contains the last element, [/, %;]’ is, in general, not
hereditary by Lemma 8 in the forth comming paper of the same title IIL,
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by Corollary to Lemma 2. Hence, w.gl.dim R(n;, a;)<1. Therefore, w.gl.dim
R™<1 by[7], Proposition 1. It is clear that %™ is perfect. Thus, R™ is hereditary
by Theorem 2’. Therefore, the condition (*) is obtained from [9], Theorem 3.12.
Similarly, we obtain (x)? for hereditary categories [, %;]’. Conversely, we assume
A=[I, A,]" satisfies (*)”. Then from the above R=U R(n;), where R(n;)=
[(ny +++, n,), A;]” for any finite subset (n,, ++-, n,) of I. R(n;) is hereditary by [9],
Theorem 3.12. Therefore, 2 is hereditary from the above arguments and a fact
that 9 is perfect. Next, we consider 2. Let R=31P €40, R be the induced ring
and Rn=§@em‘_R. Then ](R):.,.ZQ.@ CpgRems, a0d L,= 3T De,, Repm,, 1S

projective, in My * by [9], Theorem 2.13 and hence, projective in Mz* by the
structure of A. Therefore, J(R)=>1P1, is projective. Thus, A is hereditary
by Lemma 3.

Theorem 4. Let N be a semi-perfect Grothendieck category with a generating
set of small projectives. If U is perfect and hereditary, then U is equivalent to
(1, A;]" with functors T;;, which satisfy the condition (x)". If U is semi-artinian
and hereditary, then W is equivalent to [I, N} with functors T, ;, which satisfy the
condition (x)’, where I is a well ordered set and W,'s are semi-simple categories with
generating sets.

Proof. We assume that 2 is perfect and hereditary. Let {P,} bea generating
set of indecomposable projective objects in . Since A is perfect, there exists
P, such that [P,, Pg]=0 for all P,axPg and [Py, J(P,)]=0 for all P, by Proposition
3. We denote all of such a type P, by P{°. If we take out all of {PJ’} from
{P,}, we can find .projectives Pg such that [Pg, P,]=0 if Pga&P, and P, {P,} —
{P§"}. We denote such Pg by P§®. We can define P inductively. Then the
induced ring R from ¥ is a ring of tri-angular matrices: R=_Z_“_EB[P;”, P§P].

Hence, % is equivalent to A=[I, Ms*]” with functors T; (—)=(—) (? X2 [Ps?,

P5”], where S;=31P[P®, Py”] is semi-simple. On the other hand T;; is
coproduct and cokernel preserving. Hence, T,’s satisfy (*)” by Theorem 3.
The remaining part is proved similarly to the above.

The above proof suggests us

Proposition 5. Let A be a Grothendieck category with a generating set of
completely indecomposable and samll projective {P,};. ThenlL(P,) (resp. rL(P,))
is bounded for any a €1 if and only if N is equivalent to [I%, A, (resp. [I*, U],
where W,’s are semi-simple categories with generating sets. Therefore, if 1L(P,)
(resp. rL(P,) is bounded for any a, then U is semi-artinian (resp. perfect) and P, is
J-nilpotent for all o

Theorem 5. Let U be a semi-perfect Grothendieck category with a generating
set of projective and samll objects P,. Then N is semi—hereditary and all Pq are J-
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nilpotent if and only if U is equivalent to [I*o, A\ with functors T}, which satisfy
the condition (%)l in Theorem 3, where W,’s are semi-simple categories with generating
sets.

Proof. It is clear from the defintion of [I®o, %,])’, Proposition 3,3, The-
orem 4 and Proposition 5.

Theorem 6. Let U and {P,} be as in Theorem 5. If U is semi-hereditary,
then the following are equivalent.

1) All P, are J-nilpotent.

2) IL(P,)<oo for any a, (P, may not be indecomposable).
Furthermore the following are equivalent.

1) All P, are J-nilpotent and U is perfect.

2) IL(P,) and rL(P,) are bounded for any o, (P, may not be indecomposable).

Proof. It is clear from Theorems 4 annd 5, and Konig Graph theorem
and Krull-Remak-Schmidt’s theorem, since P,’s are small.

Theorem 7. Let U be a semi-perfect Grothendieck category with a generating
set of completely indecomposable projective and small objects P,. Then the following
are equivalent.

1) A is equivalent to a category of commutative diagrams [I®o, U]l (resp.
[I®o, A,]") over semi-simple categories U ; with generating sets.

2) IL(P,)<oo (resp. rL(P,)<co) for all .

3) There exists a fully imbedding functor @ of W to a hereditary category of
commutative diagrams B=[I*, W,]" with functors T;; over semi-simple categories
A/ such that [P,[I(P,), PoI(PJG~Tp(P)e((P), #(P)p((P)e=[(P.]
I(P,), P,)(P,)]s, (resp. changing [ 1 by [ 1), where P, is a projective cover of
@(P,) in B and {P,} is a generatinga set.

Proof. 1) — 2)is clear from the observation in §3. 2) — 1). It is proved
by Proposition 5. 1) —3). Let A~[I*, A’ with functor T,,(i<j). Let A,
be a minimal object in A;. Then P;=8(4,)=(T(4;), Tx(4.), -+, Ti-1s(4;)
A;,0--+) is a member of a generating set in A. Let B=[I*o, A,], with functor
T./= 2 Tyl Ti, DT, changing arrows for d;,(3¢;,..;, Tisy Ti;

i1 <igRiy<d
@1T;;), where ¢;,..;, are natural transformations T';; -+ T;,,—T;;. We have a
faithful functor @: A—-B from [9], p 197. Put P,=S/(B;) in B. Since J(P;)
=(T,(4;), -, Ti-1{(4,), 0, )=p(J(P;)) except arrows and J(P;)=(T,/(4,),"*,
T';-1(A4:), 0, ), [PfI(Py), Pi[I(P)]y~[4;, A, ~[P:[J(P;), P;[J(Py)lg. 1f we
take the natural morphism f: P,—>@(P;), which is induced from 1,,, fis epi-
morphic amd P; is a projective cover of @(P;), since J(¢(P,)) is unique
maximal in @(P;). Fruthermore, B is hereditary from Theorem 4 and [10],
Corollary to Theorem 10. 3) —2). We assume that there exists @ as in 3). If
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[P,, Pg]lu=0 for P,A&Pj, then [Py, P3]+0 and P, P;, since P,’s are projective
covers of ¢(P,)’s. Further, [P,, J(P,)]g is isomorphic to a submodule of
[#(P.), PP [P(Py), JP,)a since p(J(P.)+p(P,), P, is a projetive
cover of @(P,) and P, is indecomposable. On the other hand, [@(P,), J(¢(Pa))]
is induced from [P,, J(P,)]=0 since 1L(P,)<<co. Hence, 1L(P,)<1L(P,)<co.
We have similar results for [I%o, 2.]".

Finally, if we restruct ourselves to a ring with identity, we have immediately
from Proposition 5.

Proposition 6. Let R be semi-perfect ring with identity. and {e;}}., be a
complete set of mutually orthogonal and local idempotents. Then the following are
equivalent.

1) rL(e;R) (or rL(Re;))<<oo for any i.

2) IL(e;R) (or IL(Re;))<co for any i.

3) R s generalized tri-angular matrix ring over semi-smiple artinan rings.

In such a case, R is semi-primary. Especially, if R isright (left) perfect and hereditary
R is a semi-primary ring.

RemARk. It is clear that Theorems 3,6 and 7 are generalizations of [3],
Theorem 4.1, [14], Theorem 5 and [8], Theorem 5. However, we drop the
assertion gl.dim R/N?*< oo, because it seems to us that it does not contain a special
categorical meaning. If we want this result, we may consider the ring induced
from a category.

Let A be a divsion ring and 7, the ring of lower tri-angular matrices over
A with degree #n. Then =z M, is a hereditary and perfect category and
generators are J-nilpotent, whose indeces are not bounded. Let S be the ring
of lower tri-angular matrices over A with countable infinite degree and {e;;} the
set of matrix units. We condider a subset ¢/ as follows: if '=1;'=1, if i'=2,
j/=2and if =3, ;'=1,2,3. We assume 7/<<3. If ’n(n+1)/2 for any =,
j’=1. If i’=n(n+1)/2 for some n, j* are {(n—1)(n—2)/2}+3 nearest numbers
from 7, except n(n—1)/2, (n—1)(n—2)/2, ---, (for instance, if ’=15, j’=15, 14,
<+, 11,799, ... 7,65). Put R=3" ey A. Then we can easily check that M5+
is heredetary, perfect and all P, are J-nilpotent without boundary and further,
M " can not be expressed as a coproduct of two full subcategories.
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