COMPLEX POWERS OF HYPOELLIPTIC PSEUDODIFFERENTIAL OPERATORS WITH APPLICATIONS

Dedicated to Professor Yukinari Toki on his 60th birthday

Hitoshi KUMANO-GO and Chisato TSUTSUMI
(Received April 5, 1972)

Introduction.

Complex powers of a pseudo-differential operator have been defined by Seeley [15] and Burak [2] for the elliptic case, and defined by Nagase-Shinkai [12] and Hayakawa-Kumano-go [5] for a more general case containing semi-elliptic operators.

In the present paper we shall construct complex powers of a hypoelliptic system of pseudo-differential operators, and apply those powers to the generalized Dirichlet problem and the index theory.

The plan of the paper is as follows. In Section 1 we describe well-known results on the theory of pseudo-differential operators which has been developed in Hörmander [6], [7], Kumano-go [9] and Grushin [4]. In Section 2 the strong (or uniform) continuity and the analyticity of pseudo-differential operators with respect to a parameter are examined by means of their symbols. In Section 3 we construct complex powers P_{z} of a hypoelliptic system P which belongs to a subclass of Hörmander's in [6], p. 164 (c.f. also Subin [16]).

Section 4 treats the generalized Dirichlet problem for an operator P which admits complex powers P_{z}. The Sobolev space $\mathrm{H}_{s, P}$ associated with P is defined, and a subspace V of $H_{\imath, P}$ is defined as the completion of $C_{0}^{\infty}(\Omega)$ in the norm of $H_{\frac{1}{2}, P}$ for an open set Ω of R^{n}. We seek the solution of $P u=f$ for $f \in L^{2}(\Omega)$ in the space V. Then, the Lax-Milgram theorem can be applied effectively.

Finally Section 5 is the supplement to the first author's paper [10] where the vanishing theorem of the index is proved when an operator P is slowly varying in the sense of [4] and has complex powers.

We try here to reduce the index theory of a hypoelliptic operator Q of order m to an elliptic operator of order 0 (studied in [4]) when the symbol $\sigma(Q)(x, \xi)$ is equally strong to the symbol $\sigma(P)(x, \xi)$ of an operator P which admits complex powers.

Throughout the present paper we shall treat strict algebras of pseudodifferential operators, and investigate the topology of the symbol class precisely
in Sections 2 and 3. The analyticity of complex powers P_{z} with respect to z is used essentially in order to determine the domain of the adjoint operator P_{z}^{*}. The symbols of complex powers are defined by the Dunford integral for the symbols of parametrices $R(\zeta)$ for $P-\zeta I$. We have to note that for a scalar operator P we can give complex powers of P in the concrete form as in [12], if the argument of the symbol $\sigma(P)(x, \xi)$ is well defined. This fact is interesting when we recall the proof of the vanishing theorem of the index by Seely [14] and Nirenberg [13] for an elliptic operator on a compact manifold.

1. Notation and definitions

Let $x=\left(x_{1}, \cdots, x_{n}\right)$ be a point of the n-dimensional Euclidean space R_{x}^{n}, and let \mathcal{S} denote the space of C^{∞}-functions which together with all their derivatives decrease faster than any power of $|x|=\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2}$ as $|x| \rightarrow \infty$. By $S_{\rho, \delta}^{m}(0 \leqq \delta<\rho$ $\leqq 1$) we denote the set of all C^{∞}-symblos $p(x, \xi)$ in $R_{x}^{n} \times R_{\xi}^{n}$ satisfying, for any multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right)$,

$$
\begin{equation*}
\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{a, \beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|} \text { on } R_{x}^{n} \times R_{\xi}^{n} \tag{1.1}
\end{equation*}
$$

for a constant $C_{\infty, \beta}$, wehre

$$
\begin{aligned}
& p_{(\beta)}^{(\alpha)}(x, \xi)=\partial_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi), \partial_{\xi}^{\alpha}=\partial_{\xi}^{\alpha_{1}} \cdots \partial_{\xi n}^{\alpha_{n}} \\
& D_{x}^{\beta}=\left(-i \partial / \partial x_{1}\right)^{\beta_{1}} \cdots\left(-i \partial / \partial x_{n}\right)^{\beta_{n}},\langle\xi\rangle=\left(1+\sum_{j=1}^{n} \xi_{j}^{2}\right)^{1 / 2},
\end{aligned}
$$

and for a $p(x, \xi) \in S_{\rho, \delta}^{m}$ we define a pseudo-differential operator $P=p\left(x, D_{x}\right)$, denoted also by $P \in S_{p, \delta}^{m}$, with the symbol $\sigma(P)(x, \xi)=p(x, \xi)$ by

$$
P u(x)=\int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi, u \in \mathcal{S} \quad\left(x \cdot \xi=x_{1} \xi_{1}+\cdots+x_{n} \xi_{n}\right)
$$

where $\hat{u}(\xi)$ denotes the Fourier transform of $u(x)$ which is defined by $\hat{u}(\xi)=\int e^{-i x \cdot \xi}$ $u(x) d x$, and $d \xi=(2 \pi)^{-n} d \xi$. We set

$$
S^{-\infty}=\bigcap_{m} S_{1,0}^{m}\left(=\bigcap_{m} S_{\rho, \delta}^{m}\right), S_{\rho, \delta}^{\infty}=\bigcup_{m} S_{\rho, \delta}^{m} .
$$

For two pseudo-differential operators P and $Q, P \equiv Q\left(\bmod S^{-\infty}\right)$ means that

$$
\sigma(P)(x, \xi)-\sigma(Q)(x, \xi) \in S_{\rho, \delta}^{-\infty}
$$

For any real number s , we define a continuous operator $\wedge^{s}: \mathcal{S} \rightarrow \mathcal{S}$ by

$$
\wedge^{s} u(x)=\int e^{i x \cdot \xi}\langle\xi\rangle^{s} \hat{u}(\xi) d \xi
$$

It is easy to see that \wedge^{s} belongs to $S_{1,0}^{s}$ and can be extended uniquely to an operator of \mathcal{S}^{\prime} into itself by the relation

$$
\left\langle\wedge^{s} u, v\right\rangle=\left\langle u, \wedge^{s} v\right\rangle \quad \text { for } u \in \mathcal{S}^{\prime}, v \in \mathcal{S}
$$

Let $H_{s}=\left\{u \in \mathcal{S}^{\prime} ; \wedge^{s} u \in L^{2}\left(R_{x}^{v}\right)\right\}$ be a Hilbert space provided with the s-norm $\|u\|_{s}=\left\|\wedge^{s} u\right\|_{L^{2}}$ for $u \in H_{s}$, where $\|\cdot\|_{L^{2}}$ denotes the L^{2}-norm. We set

$$
H_{-\infty}=\bigcup_{s} H_{s}, H_{\infty}=\bigcap_{s} H_{s} .
$$

For a $p(x, \xi) \in S_{p, \delta}^{m}$, we define semi-norms $|p|_{m, k}$ by

$$
\begin{equation*}
|p|_{m, k}=\max _{|\alpha+\beta| \leq k} \sup _{(x, \xi)}\left\{\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right|\langle\xi\rangle^{-(m-\rho|\alpha|+\delta|\beta|}\right\}, \tag{1.2}
\end{equation*}
$$ then, $S_{\rho, \delta}^{m}$ makes a Frechet space with these semi-norms.

Definition 1.1. We say that a sequence $\left\{p_{j}(x, \xi)\right\}_{j=1}^{\infty}$ of $S_{\rho, \delta}^{m}$ converges to a $p(x, \xi)$ of $S_{\rho, \delta}^{m}$ in $S_{\rho, \delta}^{m}$ weakly, if $\left\{p_{j}(x, \xi)\right\}_{j=1}^{\infty}$ is a bounded set of $S_{\rho, \delta}^{m}$ and

$$
\begin{equation*}
p_{j(\beta)}^{(\alpha)}(x, \xi) \rightarrow p_{(\beta)}^{(\alpha)}(x, \xi) \text { as } j \rightarrow \infty \text { uniformly on } R_{x}^{n} \times K \tag{1.3}
\end{equation*}
$$

for any α, β and any compact set K of R_{ξ}^{n}. We denote it by

$$
p_{j}(x, \xi) \underset{(\text { weak })}{\longrightarrow} p(x, \xi) \quad \text { in } S_{p, \delta}^{m} \quad \text { as } j \rightarrow \infty
$$

Remark. If (1.3) holds for $\alpha=\beta=0$, then, we have (1.3) for any α and β. In fact, if we use a well-known inequality

$$
\begin{equation*}
\left|f^{\prime}\left(t_{0}\right)\right|^{2} \leqq C \max _{t \in[0,1]}(|f(t)|)\left\{\max _{t \in[0,1]}(|f(t)|)+\max _{t \in[0,1]}\left(\left|f^{\prime \prime}(t)\right|\right)\right\}\left(t_{0} \in[0,1]\right) \tag{1.4}
\end{equation*}
$$

for any C^{2}-function $f(t)$ on $[0,1]$, then, setting $f(t)=p_{j}(x, \xi+t \alpha)-p(x, \xi+t \alpha)$ for $|\alpha|=1$, we get

$$
p_{j}{ }^{(\alpha)}(x, \xi) \rightarrow p^{(\alpha)}(x, \xi) \quad \text { as } j \rightarrow \infty \text { uniformly on } R_{x}^{n} \times K,
$$

and so we get

$$
p_{j(\beta)}^{(\alpha)}(x, \xi) \rightarrow p_{(\beta)}^{(\alpha)}(x, \xi) \quad \text { as } j \rightarrow \infty \text { uniformly on } R_{x}^{n} \times K
$$

for any α and β.
Lemma 1.2 (c.f. [7], p. 88). If a sequence $\left\{p_{j}(x, \xi)\right\}_{j=1}^{\infty}$ of $S_{\rho, \delta}^{m}$ converges to a $p(x, \xi)$ of $S_{\rho, \delta}^{m}$ in $S_{\rho, \delta}^{m}$ weakly, then, $p_{j}(x, \xi) \rightarrow p(x, \xi)$ as $j \rightarrow \infty$ in the topology of $S_{\rho, \delta}^{m^{\prime}}$ for any $m^{\prime}>m$.

Proof. We may assume $p(x, \xi)=0$. Then, the statement is clear from the inequality

$$
\begin{aligned}
& \max _{|\alpha+\beta| \leq k} \sup _{(x, \xi)}\left\{\left|p_{j(\beta)}^{(\alpha)}(x, \xi)\right|\langle\xi\rangle^{-\left(m^{\prime}-\rho|\alpha|+\delta|\beta|\right)}\right\} \\
& \quad \leqq \max _{|\alpha+\beta| \leq k} \sup _{(x, \xi) \in R_{x}^{n} \times K}\left\{\left|p_{j(\beta)}^{(\alpha)}(x, \xi)\right|\langle\xi\rangle^{-\left(m^{\prime}-\rho|\alpha|+\delta|\beta|\right)}\right\} \\
& \quad+\operatorname{map}_{|\alpha+\beta| \leq k} \sup _{(x, \xi) \in R_{x}^{n} \times\left(R_{\xi}^{n} \backslash K\right)}\left\{\left|p_{j(\beta)}^{(\alpha)}(x, \xi)\right|\langle\xi\rangle^{-(m-\rho|\alpha|+\delta|\beta|)}\right\} \max _{\xi \in\left(R_{\xi}^{n} \backslash K\right)}\langle\xi\rangle^{-\left(m^{\prime}-m\right)} .
\end{aligned}
$$

Definition 1.3. i) By $\stackrel{\circ}{S}_{p, \delta}^{m}$ we denote the set of all symbols $p(x, \xi)$ for which (1.1) holds for bounded functions $C_{a, \beta}(x)$, instead of constants $C_{a, \beta}$, such that

$$
\begin{equation*}
C_{a, \beta}(x) \rightarrow 0 \quad \text { as }|x| \rightarrow \infty . \tag{1.5}
\end{equation*}
$$

(We denote it also by $p\left(x, D_{x}\right) \in{\stackrel{S}{\rho}{ }_{\rho, \delta}^{m} \text {). }}_{\text {. }}$
ii) We say that a symbol $p(x, \xi)\left(\in S_{\rho, \delta}^{m}\right)$ is slowly varying, when $p_{(\beta)}(x, \xi) \in$ $S_{P, \delta}^{m+\delta}(\beta)$ for any $\beta \neq 0$.

Remark. In the inequality (1.4) we set $f(t)=p\left(x, \xi+2^{-1} t\langle\xi\rangle^{\rho} \alpha\right)$ for $|\alpha|=1$ (resp. $p\left(x+2^{-1} t\langle\xi\rangle^{-\delta} \beta, \xi\right.$) for $|\beta|=1$). Then, we have (1.5) for $|\alpha|=1$ (resp. $|\beta|=1)$ and so for any α and β, if (1.5) holds only for $\alpha=\beta=0$.

Lemma 1.4. For any $p(x, \xi) \in S_{\rho, \delta}^{m}$ and real s we have

$$
\begin{equation*}
\left\|p\left(x, D_{x}\right) u\right\|_{s} \leqq C|p|_{m, k}\|u\|_{s+m} \quad \text { for } u \in H_{s+m} \tag{1.6}
\end{equation*}
$$

where C and k are constants independent of $p(x, \xi)$ and u.
Proof is omitted (c.f. Theorem 3.5 of [6] and Corollary 1 of Theorem 5.2 of [9]).

Lemma 1.5 (Grushin [4]). i) Let $P \in S_{\rho, \delta}^{m}$ and $Q \in \stackrel{\circ}{S}_{\rho, \delta}^{m}$. Then, we have $P Q \in \stackrel{\circ}{S}_{P, \delta}^{m+m^{\prime}}$ and $Q P \in \stackrel{\circ}{S_{P, \delta}^{m+m^{\prime}}}$.
ii) Let $P \in S_{\rho, \delta}^{m}$ and $Q \in S_{\rho, \delta}^{m \prime}$. Assume that P and Q are slowly varying, Then, we have that $P Q\left(\in S_{P, 8}^{m+m^{\prime}}\right)$ is slowly varying. Moreover, if we write $P Q=R_{N}+R_{N}^{\prime}$ with

$$
\sigma\left(R_{N}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} \sigma(P)^{(\alpha)}(x, \xi) \sigma(Q)_{(\infty)}(x, \xi)
$$

then we have

$$
\begin{equation*}
R_{N}^{\prime} \in \stackrel{\circ}{S_{\rho, \delta}^{m+m^{\prime}}-(\rho-\delta) N} \tag{1.7}
\end{equation*}
$$

Proof. i) By Theorem 1.1 in [9] we have

$$
\begin{equation*}
\sigma(P Q)(x, \xi)=\int\left\langle D_{\eta}\right\rangle^{n_{0}} \sigma(P)(x, \xi+\eta)\left(\int e^{-i w \cdot n}\langle w\rangle^{-n_{0}} \sigma(Q)(x+w, \xi) d w\right) d \eta \tag{1.8}
\end{equation*}
$$

for any even integer $n_{0} \geqq n+1$. Then, writing for large $R>0$

$$
\begin{aligned}
& \int e^{-i w \cdot \eta}\langle w\rangle^{-n_{0}}(Q)(x+w, \xi) d w \\
& =\int_{|w| \leqq R} e^{-i w \cdot \eta}\langle w\rangle^{-n} n_{0 \sigma}(Q)(x+w, \xi) d w+\int_{|w| \geqq R} e^{-i w \cdot n}\langle w\rangle^{-n_{0 \sigma}}(Q)(x+w, \xi) d w,
\end{aligned}
$$

we can easily see that $P Q \in{\stackrel{\circ}{S_{p, \delta}^{m}}}_{m+m^{\prime}}$, and also get $Q P \in \stackrel{S}{P}_{\rho, \delta}^{m+m^{\prime}}$ in the same way. ii) By the similar way to i) we can see by (1.8) that $P Q$ is slowly varying. If we write

$$
\sigma(Q)(x+w, \xi)=\sigma(Q)(x, \xi)+\sum_{j=1}^{n} w w_{j}^{1} \sigma(Q)_{(j)}(x+t w, \xi) d t
$$

then, from (1.8) we have

$$
\begin{aligned}
& \sigma\left(R_{1}^{\prime}\right)(x, \xi) \\
& =\int\left\langle D_{\eta}\right\rangle^{n_{0}} \sigma(P)(x, \xi+\eta)\left(\int e^{-i w \cdot n}\langle w\rangle^{-n_{0}}\left(\sum_{j=1}^{n} w_{j} \int_{0}^{1} \sigma(Q)_{(j)}(x+t w, \xi) d t\right) d w\right) d \eta \\
& =\sum_{j=1}^{n} \int\left\langle D_{\eta}\right\rangle^{n_{0}}\left(i \partial_{\eta_{j}}\right) \sigma(P)(x, \xi+\eta)\left(\int e^{-i w \cdot n}\langle w\rangle^{-n_{0}} \int_{0}^{1} \sigma(Q)_{(j)}(x+t w, \xi) d t d w\right) d \eta
\end{aligned}
$$

Since $\sigma(Q)_{(j)}(x+t w, \xi) \rightarrow 0$ as $|x| \rightarrow \infty$ together with all their derivatives, we see that $R_{1}^{\prime} \in S_{\rho, \delta}^{m}{ }^{m} m^{\prime}-(\rho-\delta)$. If we use Taylor's expansion of order N for $\sigma(Q)(x+w, \xi)$, we get (1.7) for any N.
Q.E.D.

Lemma 1.6. Let P belong to $S_{\rho, \delta}^{m}$. Then, P is compact from H_{s+m} into $H_{s^{\prime}}$ for any $s>s^{\prime}$.

Proof. We write $\|P u\|_{s^{\prime}}=\left\|\wedge^{s} P u\right\|_{-\left(s-s^{\prime}\right)}$. Then, by Lemma 1.5, we have $Q=\wedge^{s} P \in S_{\rho, \delta}^{s+m}$. Take a C_{0}^{∞}-function $a(x)$ such that $a(x)=1(|x| \leqq 1)$ and $a(x)=0(|x| \geqq 2)$, and set $Q_{8}=a(\varepsilon x) Q$ for $0<\varepsilon<1$. Then, noting $\left|D_{x}^{\alpha} a(\varepsilon x)\right| \leqq$ $C_{o b}\langle x\rangle^{-|\infty|}$ for a constant C_{∞} independent of ε, we see that $\left\{\sigma\left(Q_{\varepsilon}\right)(x, \xi)\right\}_{0<8<1}$ makes a bounded set in $S_{\rho, \delta}^{s+m}$ and $\sigma\left(Q_{\varepsilon}\right)(x, \xi) \rightarrow \sigma(Q)(x, \xi)$ in the topology of $S_{\rho, \delta}^{s+m}$ because of $Q \in \dot{S}_{\rho, \delta}^{s+m}$. Hence, we have

$$
\sigma\left(\wedge^{-\left(s-s^{\prime}\right)} Q_{\mathrm{\varepsilon}}\right)(x, \xi) \rightarrow \sigma\left(\wedge^{s^{\prime}} P\right)(x, \xi) \text { in the topology of } S_{\rho, \delta}^{s^{\prime}+m}
$$

Since $\wedge^{-\left(s-s^{\prime}\right)} Q_{8}: H_{s+m} \rightarrow H_{0}$ is compact, we get by Lemma 1.4 that $P: H_{s+m} \rightarrow$ $H_{s^{\prime}}$ is compact.
Q.E.D.

2. Topology of symbol class

Throughout what follows we shall often use a C_{0}^{∞}-function $\psi(\xi)$ such that

$$
0 \leqq \psi(\xi) \leqq 1 \text { and } \psi(\xi)= \begin{cases}1 & (|\xi| \leqq 1) \tag{2.1}\\ 0 & (|\xi| \geqq 2)\end{cases}
$$

Consider $\{\psi(\varepsilon \xi)\}, 0 \leqq \varepsilon \leqq 1$. Then we have

$$
\left\{\begin{array}{l}
0 \leqq \psi(\varepsilon \xi) \leqq 1 \text { and } \psi(\varepsilon \xi)= \begin{cases}1 & \left(|\xi| \leqq \varepsilon^{-1}\right) \\
0 & \left(|\xi| \geqq 2 \varepsilon^{-1}\right)\end{cases} \tag{2.2}\\
\left|\partial_{\xi}^{\alpha} \psi(\varepsilon \xi)\right| \leqq C_{o}\langle\xi\rangle^{-|\infty|}
\end{array}\right.
$$

for a constant C_{a} independent of ε, which means that

$$
\begin{equation*}
\psi(\varepsilon \xi) \underset{(\text { weak })}{\longrightarrow} 1 \text { in } S_{1,0}^{0} \text { as } \varepsilon \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Lemma 2.1 Let $P_{j} \in S_{\rho, \delta}^{m}, j=1,2, \cdots$, and $Q \in S_{\rho, \delta}^{m \prime}$.

Suppose that for a $P \in S_{p, \delta}^{m}$

$$
\begin{equation*}
\sigma\left(P_{j}\right)(x, \xi) \underset{(\mathrm{weak})}{\longrightarrow} \sigma(P)(x, \xi) \quad \text { in } S_{\rho, \delta}^{m} \tag{2.4}
\end{equation*}
$$

Then we have

$$
\begin{cases}\sigma\left(P_{j} Q\right)(x, \xi) \underset{(\mathrm{weak})}{\longrightarrow} \sigma(P Q)(x, \xi) & \text { in } S_{P, \delta}^{m+m^{\prime}} \tag{2.5}\\ \sigma\left(Q P_{j}\right)(x, \xi) \underset{(\mathrm{weak})}{ } \sigma(Q P)(x, \xi) & \text { in } S_{P, \delta}^{m+m^{\prime}}\end{cases}
$$

and

$$
\begin{equation*}
\sigma\left(P_{\jmath}^{(*)}\right)(x, \xi) \underset{(\text { weak })}{ } \sigma\left(P^{(*)}\right)(x, \xi) \quad \text { in } S_{\rho, \delta}^{m} \tag{2.6}
\end{equation*}
$$

where $P^{(*)}$ is defined by

$$
\begin{equation*}
(P u, v)=\left(u, P^{(*)} v\right) \quad \text { for } u, v \in \mathcal{S}(\text { c.f. [9], p. 36). } \tag{2.7}
\end{equation*}
$$

Proof. From Corollary 2 of Theorem 4.1 in [9] we see that $\sigma\left(P_{j} Q\right)(x, \xi)$ and $\sigma\left(Q P_{j}\right)(x, \xi)$ are bounded in $S_{P, \delta}^{m+m^{\prime}}$ and that $\sigma\left(P_{j}^{(*)}\right)(x, \xi)$ is bounded in $S_{\rho, \delta}^{m}$. By means of Theorem 1.1 in [9] we have

$$
\begin{aligned}
& \sigma\left(P_{j} Q\right)(x, \xi) \\
& =\int\left\langle D_{\eta}\right\rangle_{0}^{n_{0}} \sigma\left(P_{j}\right)(x, \xi+\eta)\left(\int e^{-i w \cdot \eta}\langle w\rangle^{-n_{0}} \sigma(Q)(x+w, \xi) d w\right) d \eta
\end{aligned}
$$

for any even integer $n_{0} \geqq n+1$. We write

$$
\begin{aligned}
& \sigma\left(P_{j} Q\right)(x, \xi) \\
& =\int_{|\eta| \leq R}\left\langle D_{\eta}\right\rangle^{n_{0}} \sigma\left(P_{j}\right)(x, \xi+\eta)\left(\int e^{-i w \cdot \eta}\langle w\rangle^{-n_{0}} \sigma(Q)(x+w, \xi) d w\right) d \eta \\
& \quad+\int_{|n| \leq R}\left\langle D_{\eta}\right\rangle^{n_{0}} \sigma\left(P_{j}\right)(x, \xi+\eta)\langle\eta\rangle^{-2 l}\left(\int e ^ { - i w \cdot \eta } \langle D _ { w } \rangle ^ { 2 l } \left(\langle w\rangle^{-n_{0}}\right.\right. \\
& \quad \cdot \sigma(Q)(x+w, \xi)) d w) d \eta .
\end{aligned}
$$

Then, if we take a large l such that the second term is absolutely integrable and fix a large R, we see that

$$
\sigma\left(P_{j} Q\right)(x, \xi) \rightarrow \sigma(P Q)(x, \xi) \text { on } R_{x}^{n} \times K \text { uniformly }
$$

for any compact set K of R_{ξ}^{n}. Hence we get the half part of (2.5). For $\sigma\left(Q P_{j}\right)$ (x, ξ) we get the assertion in the same way. For $\sigma\left(P_{j}^{(*)}\right)(x, \xi)$ we use the formula in [9];

$$
\sigma\left(P_{j}^{(*)}\right)(x, \xi)=\int\left(\int e^{-i w \cdot \eta}\langle w\rangle^{-n_{0}}\left\langle D_{\eta}\right\rangle^{n_{0}} \sigma\left(P_{j}\right)(x+w, \xi+\eta) d w\right) d \eta
$$

and get (2.6).

Lemma 2.2. Let $P_{j} \in S_{p, \delta}^{m}, j=1,2, \cdots$. Suppose that

$$
\sigma\left(P_{j}\right)(x, \xi) \underset{(w e a k)}{ } \sigma(P)(x, \xi) \text { in } S_{\rho, \delta}^{m} \text { for a } P \in S_{\rho, \delta}^{m}
$$

Then, for any s, we have

$$
\begin{equation*}
\left\|P_{j} u-P u\right\|_{s \rightarrow 0}(j \rightarrow \infty) \text { for } u \in H_{s+m} \tag{2.8}
\end{equation*}
$$

Proof. By Lemma 2.1 we have

$$
\sigma\left(\wedge^{s}\left(P_{j}-P\right)\right)(x, \xi) \underset{(\mathrm{weak})}{\longrightarrow} 0 \text { in } S_{\rho, \delta}^{s+m}
$$

Then, using a function $\psi(\xi)$ of (2.1), we have

$$
\begin{aligned}
& \left\|P_{j} u-P u\right\|_{s}=\left\|\wedge^{s}\left(P_{j}-P\right) u\right\|_{0} \\
& \leqq\left\|\wedge^{s}\left(P_{j}-P\right) \psi\left(\varepsilon D_{x}\right) u\right\|_{0}+\left\|\wedge^{s}\left(P_{j}-P\right)\left(1-\psi\left(\varepsilon D_{x}\right)\right) u\right\|_{0}
\end{aligned}
$$

By Lemma 1.4 we have

$$
\left\|\wedge^{s}\left(P_{j}-P\right) \psi\left(\varepsilon D_{x}\right) u\right\|_{0} \leq C\left|\sigma\left(\wedge^{s}\left(P_{j}-P\right)\right)(x, \xi) \cdot \psi(\varepsilon \xi)\right|_{s+m, l}\|u\|_{s+m}
$$

and

$$
\left\|\wedge^{s}\left(P_{j}-P\right)\left(1-\psi\left(\varepsilon D_{x}\right)\right) u\right\|_{0} \leqq C\left|\sigma\left(\wedge^{s}\left(P_{j}-P\right)\right)(x, \xi)\right|_{s+m, l}\left\|\left(1-\psi\left(\varepsilon D_{x}\right)\right) u\right\|_{s+m}
$$

Then, noting $\left|\sigma\left(\wedge^{s}\left(P_{j}-P\right)\right)(x, \xi) \cdot \psi(\varepsilon \xi)\right|_{s+m, l} \rightarrow 0(j \rightarrow \infty)$ for any fixed $\varepsilon>0$, and

$$
\begin{aligned}
& \left\|\left(1-\psi\left(\varepsilon D_{x}\right)\right) u\right\|_{s+m}^{2}=\int|(1-\psi(\varepsilon \xi))|^{2}\left(\langle\xi\rangle^{s+m}|\hat{u}(\xi)|\right)^{2} d \xi \\
& \leqq \int_{|\xi| \geq \varepsilon^{-1}}\langle\xi\rangle^{2(s+m)}|\hat{u}(\xi)|^{2} d \xi \rightarrow 0 \quad(\varepsilon \rightarrow 0)
\end{aligned}
$$

we get (2.8).
Q.E.D.

Lemma 2.3. Let $P_{z} \in S_{p, \delta}^{m}$ for $z \in \Omega$ (an open set of \boldsymbol{C}). Suppose that σ $\left(P_{z}\right)(x, \xi)$ is an analytic function of z in Ω in the topology of $S_{p, \delta}^{m}$.

Then we have, for any $Q \in S_{p, \delta}^{m \prime}$,
i) $\sigma\left(P_{z} Q\right)(x, \xi)$ and $\sigma\left(Q P_{z}\right)(x, \xi)$ are analytic functions of z in Ω in the topology of $S_{p, \delta}^{m+m^{\prime}}$ for any $Q \in S_{\rho, \delta}^{m^{\prime}}$.
ii) For $u \in H_{s+m}, P_{z} u$ is an analytic function of z in Ω in the topology of H_{s}.

Proof is omitted.

3. Complex powers

Definition 3.1. For an $l \times l$ matrix $P \in S_{\rho, \delta}^{m}(m>0)$ we say that operators $P_{z}, z \in \boldsymbol{C},\left(\in S_{\rho, \delta}^{\infty}\right)$ are complex powers of P, when P_{z} satisfy the following conditions (c.f. [10]):
i) For a monotone increasing function $m(s)$ such that

$$
m(s) \rightarrow-\infty(s \rightarrow-\infty), m(0)=0, m(s) \rightarrow \infty(s \rightarrow \infty)
$$

we have $P_{z} \in S_{\rho, \delta}^{m(\operatorname{Re} z)}$, where $\operatorname{Re} z$ denotes the real part of z.
ii) $P_{0}=I$ (identity operator), $P_{1}=P$ (original operator).
iii) For any real $s_{0} \sigma\left(P_{z}\right)(x, \xi)$ is an analytic function of $z\left(\operatorname{Re} z<s_{0}\right)$ in the topology of $S_{p, 8}^{m\left(s s^{\prime}\right)}$.
iv) For any real s_{0}

$$
\sigma\left(P_{s}\right)(x, \xi) \underset{(\text { weak })}{\longrightarrow} \sigma\left(P_{s_{0}}\right)(x, \xi) \text { in } S_{P, \delta}^{m\left(\delta_{0}\right)}
$$

as $s \uparrow \mathrm{~s}_{0}$ along the real axis.
v) $\quad P_{z_{1}} P_{z_{2}} \equiv P_{z_{1}+z_{2}}\left(\bmod S^{-\infty}\right)$ in the sense:
$\sigma\left(P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}}\right)(x, \xi)$ is an analytic function of z_{1} and z_{2} in the topology of $S_{\rho, \delta}^{s_{0},}$ for any real s_{0}.

First we state a result obtained by Nagase-Shinkai [12] in a modified form for our aim.

Theorem 3.2 ${ }^{\circ}$. Let $P=p\left(x, D_{x}\right)$ be a single operator of class $S_{p, \delta}^{m}$. Assume that the symbol $p(x, \xi)$ satisfies conditions:
A) $|p(x, \xi)| \geqq c_{0}\langle\xi\rangle^{\tau m}$ for constant $c_{0}>0$ and $\tau(0<\tau \leqq 1)$,
B) $\left|p_{(\beta)}^{(\alpha)}(x, \xi) p(x, \xi)^{-1}\right| \leqq c_{\alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|}$
and
C) $\arg p(x, \xi)($ the argument of $p(x, \xi))$ is well-defined
for large $|\xi|$. Then, for $m(s)=\tau m s(s<0)$ and $=m s(s \geqq 0)$, we can define complex powers P_{z} of P by

$$
\begin{aligned}
& \sigma\left(P_{z}\right)(x, \xi) \\
& =p(x, \xi)^{z}\left\{1+\sum_{|\alpha|=|\beta|=k \geq 2} C_{k, \alpha, \beta}(z) p(x, \xi)^{-k} p_{\left(\beta^{2}\right)}^{(\alpha 1)}(x, \xi) \cdots p_{\left(\beta^{k}\right)}^{\alpha k}(x, \xi)\right\},
\end{aligned}
$$

where $p(x, \xi)^{z}=e^{z \log p(x, \xi)}, \alpha=\left(\alpha^{1}, \cdots, \alpha^{k}\right), \beta=\left(\beta^{1}, \cdots, \beta^{k}\right)$
and $C_{k, \alpha, \beta}(z)$ are polynomials in z.
Proof is given in [12] for, so called, λ-elliptic operators. But, we can see that the discussion there works in our case, if we note

$$
\left|\partial_{\xi}^{\alpha} D_{x}^{\beta} p(x, \xi)^{z} \cdot p(x, \xi)^{-z}\right| \leqq C_{z, \alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|}
$$

and

$$
\left|p(x, \xi)^{-1} p_{\left(\beta^{j}\right)}^{\left(\alpha^{j}\right)}(x, \xi)\right| \leqq C_{a^{j}, \beta} \beta^{j}\langle\xi\rangle^{-\rho\left|\omega^{j}\right|+\delta\left|\beta^{j}\right|}, j=1, \cdots, k,
$$

for large $|\xi|$.
Our main theorem of this section is stated as follows.
Theorem 3.2. Let $p(x, \xi)=\left(p_{j k}(x, \xi)\right)$ be an $l \times l$ matrix of symbols $p_{j k}(x, \xi)$ of class $S_{\rho, \delta}^{m}, m>0$, such that for some positive constants $C_{0}, c_{0}, C_{0, \infty, \beta}$ and $\tau(0<\tau$ $\leqq 1)$

$$
\begin{equation*}
\left\|(p(x, \xi)-\zeta I)^{-1}\right\| \leqq C_{0}\langle\xi\rangle^{-\tau m} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|p(\beta)(x, \xi)(p(x, \xi)-\zeta I)^{-1}\right\| \leqq C_{0, \alpha, \beta}^{(\alpha)}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|} \tag{3.2}
\end{equation*}
$$

for large $|\xi|$ uniformly on Ξ_{0}, where $\|\cdot\|$ denotes a matrix norm and $\Xi_{0}=\{\zeta \in \boldsymbol{C}$; dis $\left.(\zeta,(-\infty, 0]) \leqq c_{0}\right\}$. Then, we can construct complex powers $P_{z}=p_{z}\left(x, D_{x}\right)$ of $P=p\left(x, D_{x}\right)$ such that

$$
\begin{equation*}
P_{z} \in S_{P, \delta}^{T m R e z} \text { for Re } z<0, \quad S_{P, \delta}^{m \mathrm{Re} z} \text { for } \operatorname{Re} z \geqq 0, \tag{3.3}
\end{equation*}
$$

that is, $m(s)=\tau m s$ for $s<0,=m s$ for $s \geqq 0$.
Remark. We may assume that $p(x, \xi)$ satisfies conditions (3.1) and (3.2) for every ξ. In fact, if we set $p_{\varepsilon}(x, \xi)=p(x, \xi)+\varepsilon^{-1} \psi(\varepsilon \xi) I$ for a C_{0}^{∞}-function $\psi(\xi)$ of (2.1), then, for a small fixed $\varepsilon_{0}>0, p_{\varepsilon_{0}}(x, \xi)$ staisfies (3.1) and (3.2) uniformly on Ξ_{0} for any ξ, and we have complex powers $P_{\varepsilon_{0}, z}$ of $P_{\mathrm{z}_{0}}$. Set $P_{z}=$ $P_{\mathrm{\varepsilon}_{0}, z}+z\left(P-P_{\varepsilon_{0}, 1}\right)$. Then, noting $P \equiv P_{\varepsilon_{0}}=P_{\mathrm{\varepsilon}_{0,1}}$, we get required powers of P.

For the proof of Theorem 3.2 we need several lemmas.
Lemma 3.3. Let $\zeta_{1}(x, \xi), \cdots, \zeta_{l}(x, \xi)$ be eigen-values of $p(x, \xi)$ which satisfies (3.1) for $\zeta=0$. Then, there exists a positive constant C_{1} such that

$$
\begin{equation*}
C_{1}^{-1}\langle\xi\rangle^{\tau m} \leqq\left|\zeta_{j}(x, \xi)\right| \leqq C_{1}\langle\xi\rangle^{m}, j=1, \cdots, l . \tag{3.4}
\end{equation*}
$$

Proof. We write

$$
\operatorname{det}(p(x, \xi)-\zeta I)=(-1)^{l}\left\{\zeta^{l}+\cdots+q_{j}(x, \xi) \zeta^{l-j}+\cdots+q_{l}(x, \xi)\right\}
$$

Then, noting $\left|q_{j}(x, \xi)\right| \leqq C\langle\xi\rangle^{j m}, j=1, \cdots, l$, for a constant C, we get easily the right half of (3.4). The left half is proved in the same way, if we use $\operatorname{det}\left(\zeta_{j}^{-1} I-p(x, \xi)^{-1}\right)=0, j=1, \cdots, l$, and $\left\|p(x, \xi)^{-1}\right\| \leqq C_{0}\langle\xi\rangle^{-\tau m}$.
Q.E.D.

Lemma 3.4. Let $p(x, \xi)\left(\in S_{\rho, \delta}^{m}\right)$ satisfy conditions (3.1) and (3.2). Then, for any $A\left(>C_{1}\right)$ we have

$$
\begin{align*}
& \left\|(p(x, \xi)-\zeta I)^{-1}\right\| \leqq B|\zeta|^{-1} \\
& \quad \text { on } \Xi_{\xi, \mathbf{A}}=\left\{\zeta \in C ;|\zeta| \leqq A^{-1}\langle\xi\rangle^{\tau m} \text { or }|\zeta| \geqq A\langle\xi\rangle^{m}\right\} \tag{3.5}
\end{align*}
$$

for a constant B, where C_{1} is a constant of Lemma 3.3.
Proof. We write

$$
\operatorname{det}(p(x, \xi)-\zeta I)=(-1)^{i} \prod_{j=1}^{l}\left(\zeta-\zeta_{j}(x, \xi)\right)
$$

By Lemma 3.3 we have

$$
\begin{aligned}
& \left|\zeta-\zeta_{j}(x, \xi)\right| \\
& \geqq\left\{\begin{array}{l}
\left|\zeta_{j}(x, \xi)\right|-|\zeta| \geqq C_{1}^{-1}\langle\xi\rangle^{\tau m}-|\zeta| \geqq\left(A / C_{1}-1\right)|\zeta| \text { for }|\zeta| \leqq A^{-1}\langle\xi\rangle^{\tau m} \\
|\zeta|-\left|\zeta_{j}(x, \xi)\right| \geqq|\zeta|-C_{1}\langle\xi\rangle^{m} \geqq\left(1-C_{1} \mid A\right)|\zeta| \text { for }|\zeta| \geqq A\langle\xi\rangle^{m} .
\end{array}\right.
\end{aligned}
$$

Hence, we have

$$
|\operatorname{det}(p(x, \xi)-\zeta I)| \geqq C|\zeta|^{l} \text { on } \Xi_{\xi, \mathrm{A}}
$$

Noting $\|(p(x, \xi)-\zeta I)\| \leqq$ const. $|\zeta|$ for $|\zeta| \geqq A\langle\xi\rangle^{m}$, we get $\left\|(p(x, \xi)-\zeta I)^{-1}\right\|$ $\leqq B^{\prime}|\zeta|^{-1}$ for $|\zeta| \geqq A\langle\xi\rangle^{m}$.

Using

$$
\zeta(p(x, \xi)-\zeta I)^{-1}=p(x, \xi)^{-1}\left(\zeta^{-1}-p(x, \xi)^{-1}\right)^{-1}
$$

we have in the same way

$$
\begin{aligned}
& \left\|(p(x, \xi)-\zeta I)^{-1}\right\| \leqq\left\|p(x, \xi)^{-1}\right\|\left\|\left(\zeta^{-1}-p(x, \xi)^{-1}\right)^{-1}\right\||\zeta|^{-1} \\
& \quad \leqq C_{0}\langle\xi\rangle^{-\tau m}\left|\zeta^{-1}\right|^{-1}|\zeta|^{-1} \leqq \mathrm{~B}^{\prime \prime}|\zeta|^{-1} \text { for }|\zeta| \leqq A^{-1}\langle\xi\rangle^{\tau m}
\end{aligned}
$$

Hence, we have proved (3.5)
Q.E.D.

Now following Hörmander [6], p. 165, we shall construct a parametrix for $p(x, \xi)-\zeta I$. We define $q_{j}(\zeta ; x, \xi), j=0,1, \cdots$, inductively by

$$
\begin{align*}
& q_{0}(\zeta ; x, \xi)=(p(x, \xi)-\zeta I)^{-1} \tag{3.6}\\
& q_{N}(\zeta ; x, \xi)=-\left\{\sum_{j=0}^{N-1} \sum_{|\alpha|=N-j} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} q_{j}(\zeta ; x, \xi) D_{x}^{\alpha}(p(x, \xi)-\zeta I)\right\} q_{0}(\zeta ; x, \xi) \tag{3.7}
\end{align*}
$$

Lemma 3.5. Let $p(x, \xi) \in S_{\rho, \delta}^{m}(m>0)$ satisfy conditions (3.1) and (3.2). Then, $q_{j}(\zeta ; x, \xi), j=0,1, \cdots$, defined by (3.6) and (3.7) are analytic functions of ζ on $\Xi_{0} \cup \Xi_{\xi, \Delta}$ and belong to $S_{\rho, \delta}^{-\tau m-(\rho-\delta) j}$ for any fixed $\zeta \in \Xi_{0}$, moreover satisfy

$$
\begin{align*}
& \left\|q_{0}(\zeta ; x, \xi)\right\| \leqq C_{0}\langle\xi\rangle^{-\tau m} \tag{3.8}\\
& \left\|q_{j(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{j, \infty, \beta}\langle\zeta\rangle^{-\tau m-\rho|\alpha|+\delta|\beta|-(\rho-\delta) j} \quad(j=0,1, \cdots) \tag{3.9}
\end{align*}
$$

uniformly on Ξ_{0}, and
(3.10) $\left\|q_{0}(\zeta ; x, \xi)\right\| \leqq C_{o}^{\prime}|\zeta|^{-1}$,
(3.11) $\quad\left\|q_{j(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{j, \alpha, \beta}^{\prime}|\zeta|^{-1}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|-(\rho-\delta) j} \quad(j=0,1, \cdots)$,
(3.12) $\quad\left\|q_{j}{ }_{(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{j, \alpha, \beta}^{\prime \prime}|\zeta|^{-2}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|-(\rho-\delta) j} \quad(j+|\alpha+\beta| \neq 0)$,

$$
\begin{equation*}
\left\|q_{j(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{j, a, \beta}^{\prime \prime \prime}|\zeta|^{-3}\langle\xi\rangle^{2 m-\rho|\alpha|+\delta|\beta|-(\rho-\delta) j} \quad(j \geqq 1) \tag{3.13}
\end{equation*}
$$

uniformly on $\Xi_{0} \cup \Xi_{\xi, \mathrm{A}}$.
Proof. The estimate (3.8) is clear by (3.1), and (3.9) is proved by induction in view of (3.2). We write

$$
(p(x, \xi)-\zeta I)^{-1}=\zeta^{-1}\left\{p(x, \xi)(p(x, \xi)-\zeta I)^{-1}-I\right\}
$$

Then, from (3.1) and (3.2) we get (3.10) on Ξ_{0}, and by Lemma 3.4 we get on $\Xi_{\xi, \Delta}$. For $|\alpha|=1$ we have

$$
\partial_{\xi}^{\alpha} q_{0}=-q_{0} \partial_{\xi}^{\alpha} p \cdot q, \quad D_{x}^{\alpha} q_{0}=-q_{0} D_{x}^{\alpha} p \cdot q_{0}
$$

and so

$$
\begin{equation*}
q_{0(\beta)}^{(\alpha)}=\sum C_{l, \dot{\beta}^{1}, \cdots, \beta^{k}}^{\alpha 1} q_{0} p_{\left(\beta^{\prime}\right)}^{\left(\alpha^{1}\right)} q_{0} \cdots q_{0} p_{\left(\beta^{k}\right)}^{\left(\alpha^{k}\right)} q_{0}, \tag{3.14}
\end{equation*}
$$

where the summation is taken under the condition

$$
1 \leqq k \leqq|\alpha+\beta|, \quad \alpha^{1}+\cdots+\alpha^{k}=\alpha, \quad \beta^{1}+\cdots+\beta^{k}=\beta
$$

Hence, using (3.1) we have (3.9), (3.11) and (3.12) for $j=0$. From (3.7) we can see that $q_{j(\beta)}^{(\alpha)}$ also have the form (3.14) and get (3.9), (3.11)-(3.13) in general.
Q.E.D.

Now we construct a parametrix $r\left(\zeta ; x, D_{x}\right)\left(\in S_{\rho, \delta}^{-\tau m}\right)$ of $p\left(x, D_{x}\right)-\zeta I$ as follows: Let $\varphi(\xi)$ be a C_{0}^{∞}-function in R_{ξ}^{n} such that

$$
\begin{equation*}
\varphi(\xi)=0 \quad(|\xi| \leqq 1) \quad \text { and } \quad \varphi(\xi)=1 \quad(|\xi| \geqq 2) \tag{3.15}
\end{equation*}
$$

and set as in Theorem 2.7 of [6]

$$
\begin{equation*}
r(\zeta ; x, \xi)=q_{0}(\zeta ; x, \xi)+\sum_{j=1}^{\infty} \varphi\left(t_{j}^{-1} \xi\right) q_{j}(\zeta ; x, \xi) \tag{3.16}
\end{equation*}
$$

for an appropriate increasing sequence $t_{j} \rightarrow \infty$. Then, by Lemma 3.5, we have (3.17) $r(\zeta ; x, \xi) \in S_{\rho, \delta}^{-\tau m}$ for $\zeta \in \Xi_{0}$,
and moreover we have

$$
\begin{equation*}
\left\|r_{(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{a, \beta}\langle\xi\rangle^{-\tau m-\rho|\alpha|+\delta|\beta|} \text { unifomly on } \Xi_{0} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\|r_{(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{\alpha, \beta}^{\prime}|\zeta|^{-1}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|}, \tag{3.19}\\
& \left\|r_{(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{\alpha, \beta}^{\prime \prime}|\zeta|^{-2}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|},|\alpha+\beta| \neq 0, \\
& \left\|\boldsymbol{r}_{(\beta)}^{(\alpha)}(\zeta ; x, \xi)-q_{0(\beta)}^{(\alpha)}(\zeta ; x, \xi)\right\| \leqq C_{\alpha, \beta}^{\prime \prime \prime}|\zeta|^{-3}\langle\xi\rangle^{2 m-(\rho-\delta)-\rho|\alpha|+\delta|\beta|}
\end{align*}
$$

uniformly on $\Xi_{0} \cup \Xi_{\xi, \Delta}$.
Let A be a positive number of Lemma 3.4 such that $A^{-1}<c_{0}$ for a constant c_{0} of Theorem 3.2, and let $\Gamma_{\xi, \mathbf{A}}$ be a counterclockwisely oriented curve defined by

$$
\begin{align*}
\Gamma_{\xi, \Delta} & =\left\{\zeta \in C ;|\zeta|=A\langle\xi\rangle^{m} \text { or }=A^{-1}\langle\xi\rangle^{\tau m}, \operatorname{dis}(\zeta ;(-\infty, 0]) \geqq A^{-1}\right\} \\
& \cup\left\{\zeta=\zeta_{1} \pm i A^{-1} ;-R_{1} \leqq \zeta_{1} \leqq-R_{2}\right\} \tag{3.22}
\end{align*}
$$

where R_{1} and R_{2} are positive numbers satisfying

$$
\left|-R_{1}+i A^{-1}\right|=A\langle\xi\rangle^{m} \text { and }\left|-R_{2}+i A^{-1}\right|=A^{-1}\langle\xi\rangle^{\tau m}
$$

respectively. Then, we have
Lemma 3.6. For a complex number z we define symbols $p_{z}(x, \xi)$ by

$$
\begin{equation*}
p_{z}(x, \xi)=\frac{1}{2 \pi i} \int_{\Gamma_{\xi, \mathbf{A}}} \zeta^{z} r(\zeta ; x, \xi) d \zeta \tag{3.23}
\end{equation*}
$$

Then, for a function $m(s)=\tau m s(s<0)$ and $=m s(s \geqq 0)$, we have i$)-\mathrm{iv})$ of Definition 3.1 for $p_{z}(x, \xi)$.

Proof. Since

$$
p_{z(\beta)}^{(\alpha)}(x, \xi)=\frac{1}{2 \pi i} \int_{\Gamma_{\xi, \mathbf{A}}} \zeta^{z} r_{(\beta)}^{(\alpha)}(\zeta ; x, \xi) d \zeta,
$$

we have by (3.19)

$$
\left\|p_{z(\beta)}^{(\alpha)}(x, \xi)\right\| \leqq \frac{C_{a, \beta}^{\prime}}{2 \pi} e^{2 \pi|\mathrm{Im} z|} \int_{\Gamma \xi, \mathrm{A}}|\zeta|^{\operatorname{Re} z-1}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|}|d \zeta|
$$

Then, estimating the cases: $\operatorname{Re} z<0$ and $\operatorname{Re} z \geqq 0$ separately, and noting

$$
p_{s}(x, \xi) \rightarrow p_{s_{0}}(x, \xi) \text { uniformly on } R_{x}^{n} \times K \text { as } s \uparrow s_{0}
$$

for any compact set K of R_{ξ}^{n}, we have i) and iv). Next, we write

$$
p_{z}(x, \xi)=\frac{1}{2 \pi i} \int_{\Gamma \xi, \mathrm{A}} \zeta^{z} q_{0}(\zeta) d \zeta+\frac{1}{2 \pi i} \int_{\Gamma \xi, \mathrm{A}} \zeta^{z}\left(r(\zeta)-q_{0}(\zeta)\right) d \zeta
$$

Then, by (3.21) we see that the second term can be deformed to

$$
\frac{1}{2 \pi i} \int_{\Gamma_{0}} \zeta^{z}\left(r(\zeta)-q_{0}(\zeta)\right) d \zeta \quad \text { when } \operatorname{Re} z<2
$$

and vanishes for $z=0$ and $=1$, where

$$
\begin{equation*}
\Gamma_{0}=\left\{\zeta \in \boldsymbol{C} ; \operatorname{dis}(\zeta ;(-\infty, 0])=A^{-1}\right\} \tag{3.24}
\end{equation*}
$$

Hence, noting that the first term defines $p(x, \xi)^{z}$ we get ii) of Definition 3.1. Since

$$
\frac{d}{d z} p_{z(\beta)}^{(\alpha)}(x, \xi)=\frac{1}{2 \pi i} \int_{\Gamma_{\xi, \Delta}} \log \zeta \cdot \zeta^{z} r_{(\beta)}^{(\alpha)}(\zeta ; x, \xi) d \zeta,
$$

we get the last assertion in the same way.
Q.E.D.

Lemma 3.7. Let $R(\zeta)=r\left(\zeta ; x, D_{x}\right)\left(\zeta \in \Xi_{0}\right)$ be the parametrix of $P=p\left(x, D_{x}\right)$ defined by (3.16). Then we have for $\zeta_{1} \neq \zeta_{2}$

$$
\begin{equation*}
R\left(\zeta_{1}\right) R\left(\zeta_{2}\right)=\left(\zeta_{2}-\zeta_{1}\right)^{-1}\left(R\left(\zeta_{2}\right)-R\left(\zeta_{1}\right)\right)+\left(\zeta_{2}-\zeta_{1}\right)^{-1} K\left(\zeta_{1}, \zeta_{2}\right) \tag{3.25}
\end{equation*}
$$

where $K\left(\zeta_{1}, \zeta_{2}\right) \in S^{-\infty}$ is a pseudo-differential operator with the symbol $k\left(\zeta_{1}, \zeta_{2} ; x, \xi\right)$ which satisfies, for any real number s and multi-index α, β,

$$
\begin{equation*}
\left\|k_{(\beta)}^{(\alpha)}\left(\zeta_{1}, \zeta_{2} ; x, \xi\right)\right\| \leqq C_{a, \beta, s}\left|\zeta_{1}\right|^{-1}\left|\zeta_{2}\right|^{-1}\langle\xi\rangle^{s} \tag{3.26}
\end{equation*}
$$

Proof. For some $K_{1}\left(\zeta_{1}\right), K_{2}\left(\zeta_{2}\right)$ of class $S^{-\infty}$ we have

$$
R\left(\zeta_{1}\right)\left(P-\zeta_{1} I\right)=I+K_{,}\left(\zeta_{1}\right) \text { and }\left(P-\zeta_{2} I\right) R\left(\zeta_{2}\right)=I+K_{2}\left(\zeta_{2}\right)
$$

Then, we have

$$
R\left(\zeta_{1}\right) R\left(\zeta_{2}\right)\left(\zeta_{2}-\zeta_{1}\right)=R\left(\zeta_{2}\right)-R\left(\zeta_{1}\right)+K\left(\zeta_{1}, \zeta_{2}\right)
$$

where $K\left(\zeta_{1}, \zeta_{2}\right)=K_{1}\left(\zeta_{1}\right) R\left(\zeta_{2}\right)-R\left(\zeta_{1}\right) K_{2}\left(\zeta_{2}\right)$. Hence, by (3.19) we have only prove for symbols $k_{j}\left(\zeta_{j} ; x, \xi\right)$ of $K_{j}\left(\zeta_{j}\right), j=1,2$,
(3.27) $\left\|\left.\left|k_{j(\beta)}^{(\alpha)}\left(\zeta_{j} ; x, \xi\right) \| \leqq C_{j, \alpha, \beta, s}\right| \zeta_{j}\right|^{-1}\langle\xi\rangle^{s}\right.$ for any α, β, s.

By Theorem 1.1 of [9] we can write for any integer N

$$
\begin{align*}
& k_{1}\left(\zeta_{1} ; x, \xi\right)=\sigma\left(R\left(\zeta_{1}\right)\left(P-\zeta_{1} I\right)\right)(x, \xi)-I \\
& =\sum_{\mid \alpha_{1}<N} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} r\left(\zeta_{1} ; x, \xi\right) D_{x}^{\alpha}\left(p(x, \xi)-\zeta_{1} I\right)+R_{N}\left(\zeta_{1} ; x, \xi\right)-I \tag{3.28}\\
& \equiv I_{N}\left(\zeta_{1} ; x, \xi\right)+R_{N}\left(\zeta_{1} ; x, \xi\right)
\end{align*}
$$

where

$$
\begin{align*}
& R_{N}\left(\zeta_{1} ; x, \xi\right)=\int\left\langle D_{\eta}\right\rangle^{n_{0}} N \sum_{|\eta|=N} \frac{\eta^{\gamma}}{\gamma!}\left(\int_{0}^{1}(1-t)^{N-1} \partial \xi \gamma\left(\zeta_{1} ; z, \xi+t \eta\right) d t\right) \tag{3.29}\\
& \cdot\left(\int e^{-i w \cdot \eta}\langle w\rangle^{-n_{0}}\left(p(x+w, \xi)-\zeta_{1} I\right) d w\right) d \eta
\end{align*}
$$

for any even number $n_{0} \geqq n+1$. Using (3.16) and interchanging the order of summation, we can write

$$
\begin{align*}
I_{N} & =\sum_{|\alpha|<N} \sum_{j+|\alpha|<N} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} q_{j} D_{x}^{\alpha}\left(p-\zeta_{1} I\right)-I \\
& +\sum_{|\alpha|<N} \sum_{\substack{j+|x|<N \\
j \geq 1}} \frac{1}{\alpha!} \partial_{\xi}^{\alpha}\left(\left(\varphi_{j}(\xi)-1\right) q_{j}\right) D_{x}^{\alpha}\left(p-\zeta_{1} I\right) \\
& +\sum_{|\alpha|<N} \sum_{\substack{j+|\alpha| \geq N \\
N>j \geq 1}} \frac{1}{\alpha!} \partial_{\xi}^{\alpha}\left(\varphi_{j}(\xi) q_{j}\right) D_{x}^{\alpha}\left(p-\zeta_{1} I\right) \tag{3.30}\\
& +\sum_{|\alpha|<N} \sum_{j=N}^{\infty} \frac{1}{\alpha!} \partial_{\xi}^{\alpha}\left(\varphi_{j}(\xi) q_{j}\right) D_{x}^{\alpha}\left(p-\zeta_{1} I\right) \equiv I_{1}+I_{2}+I_{3}+I_{4} .
\end{align*}
$$

From (3.6) and (3.7) we have
(3.31) $\quad I_{1}=0$.

Using (3.12), we have
(3.32) $\| \partial_{\xi}^{\alpha} D_{x}^{\beta} I_{2}| | \leqq$ const. $\langle\xi\rangle^{s}\left|\zeta_{1}\right|^{-2}\left(\langle\xi\rangle^{m}+\left|\zeta_{1}\right|\right) \leqq$ const. $\left|\zeta_{1}\right|^{-1}\langle\xi\rangle^{m+s}$
for any real number s, and

$$
\begin{align*}
\left\|\partial_{\xi}^{\alpha} D_{x}^{\beta} I_{3}\right\| & \leqq \text { const. }\left|\zeta_{1}\right|^{-2}\langle\xi\rangle^{-(\rho-\delta) N}\left(\langle\xi\rangle^{m}+\left|\zeta_{1}\right|\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}\right) \\
& \leqq \text { const. }\left|\zeta_{1}\right|^{-1}\langle\xi\rangle^{2 m-(\rho-\delta) N-\rho|\alpha|+\delta|\beta|} \tag{3.33}
\end{align*}
$$

Similarly we have
(3.34) $\quad \| \partial_{\xi}^{\alpha} D_{x}^{\beta} I_{4}| | \leqq$ const. $\left|\zeta_{1}\right|^{-1}\langle\xi\rangle^{2 m-(\rho-\delta) N-\rho|\alpha|+\delta|\beta|}$.

Finally we have to estimate $R_{N}\left(\zeta_{1} ; x, \xi\right)$.

Since
and

$$
\eta^{\gamma-\beta_{1}} e^{-i w \cdot \eta}=\left(i \partial_{w}\right)^{\gamma-\beta_{1}} e^{-i w \cdot \eta},
$$

integrating by parts we have only to estimate

$$
\begin{aligned}
& \int\left\{\partial \xi^{\gamma+\beta_{2}} r\left(\zeta_{1} ; x, \xi+t \eta\right)\left(\int e^{-i w \cdot \eta} \partial_{w}^{\gamma}-\beta_{1}\left(\langle w\rangle^{-n_{0}}\left(p(x+w, \xi)-\zeta_{1} I\right)\right) d w\right)\right\} d \eta \\
& =\int_{|\eta| \leqq\langle\xi\rangle / 2}\left\{\partial \xi^{\gamma+\beta_{2}} r\left(\zeta_{1} ; x, \xi+t \eta\right)\left(\int e^{-i w \cdot \eta} \partial_{w}^{\gamma-\beta_{1}}\left(\langle w\rangle^{-n_{0}}\left(p(x+w, \xi)-\zeta_{1} I\right)\right) d w\right)\right\} d \eta \\
& \quad+\int_{|\eta| \geqq\langle\xi\rangle / 2}\left\{\langle\eta\rangle^{-2 l} \partial_{\xi}^{\gamma+\beta_{2}} r\left(\zeta_{1} ; x . \xi+t \eta\right)\right. \\
& \left.\quad \cdot\left(\int^{-i w \cdot \eta}\left\langle D_{w}\right\rangle^{2 l} \partial_{w}^{\gamma-\beta_{1}}\left(\langle w\rangle^{-n_{0}}\left(p(x+w, \xi)-\zeta_{1} I\right)\right) d w\right)\right\} d \eta \equiv J_{1}+J_{2} .
\end{aligned}
$$

Then, noting $C^{-1}\langle\xi\rangle \leqq\langle\xi+t \eta\rangle \leqq C\langle\xi\rangle$ for a constant $C>0$ when $|\eta| \leqq\langle\xi\rangle / 2$ and $0 \leqq t \leqq 1$, we have by (3.20)

$$
\begin{aligned}
\left\|J_{1}\left(\zeta_{1} ; x, \xi\right)\right\| & \leqq \text { const. }\left|\zeta_{1}\right|^{-2}\langle\xi\rangle^{m-\rho(N+|\alpha|)+\boldsymbol{n}}\left(\langle\xi\rangle^{m+\delta N}+\left|\zeta_{1}\right|\right) \\
& \leqq \text { const. }\left|\zeta_{1}\right|^{-1}\langle\xi\rangle^{2 \boldsymbol{m + n - (\rho - \delta) N}} .
\end{aligned}
$$

Taking a large integer l we have

$$
\begin{aligned}
\left\|J_{2}\left(\zeta_{1} ; x, \xi\right)\right\| & \leqq \text { const. }\left|\zeta_{1}\right|^{-2}\langle\xi\rangle^{m-2 l+n}\left(\langle\xi\rangle^{2 l \delta+N}+\left|\zeta_{1}\right|\right) \\
& \leqq \text { const. }\left|\zeta_{1}\right|^{-1}\langle\xi\rangle^{m-2 l(1-\delta)+n+N} .
\end{aligned}
$$

Hence, fixing l such as $m-2 l(1-\delta)+N \leqq 2 m-(\rho-\delta) N$, we have

$$
\left\|R_{N}\left(\zeta_{1} ; x, \xi\right)\right\| \leqq \text { const. }\left|\zeta_{1}\right|^{-1}\langle\xi\rangle^{2 m+n-(\rho-\delta) N}
$$

and also have

$$
\begin{equation*}
\left\|R_{N(\beta)}^{(\alpha)}\left(\zeta_{1} ; x, \xi\right)\right\| \leqq \text { const. }\left|\zeta_{1}\right|^{-1}\langle\xi\rangle^{2 m+n-(\rho-\delta) N-\rho|\alpha|+\delta|\beta|} . \tag{3.35}
\end{equation*}
$$

Consequently from (3.28)-(3.35) we have (3.27) for $j=1$ for a large N, and for $j=2$ analogously, which completes the proof.
Q.E.D.

Proof of Theorem 3.2. Let $P_{z}=p_{z}\left(x, D_{x}\right)$ be operators defined by (3.23). Then, by Lemma 3.6 we have i)-iv) of Definition 3.1. For the proof of v) we consider the case: $\operatorname{Re} z_{j}<0, j=1,2$.

Set

$$
\begin{aligned}
& \Gamma_{1}=\left\{\zeta \in \boldsymbol{C} ; \operatorname{dis}(\zeta,(-\infty, 0])=\mathrm{c}_{0} / 2\right\}, \\
& \Gamma_{2}=\left\{\zeta \in C ; \operatorname{dis}(\zeta,(-\infty, 0])=\mathrm{c}_{0} / 3\right\} .
\end{aligned}
$$

Then, by means of (3.19) and Lemma 3.7 we have

$$
P_{z_{1}} P_{z_{2}} u(x)
$$

$$
\begin{aligned}
= & \int e^{i x \cdot \xi}\left\{\frac{1}{2 \pi i} \int_{\Gamma_{1}} \zeta_{1}^{z_{1}} r\left(\zeta_{1} ; x, \xi\right) d \zeta_{1}\right\} P_{z_{2}} u(\xi) d \xi \\
= & \frac{1}{2 \pi i} \int_{\Gamma_{1}} \zeta_{1}^{z_{1}} R\left(\zeta_{1}\right) P_{z_{2}} u(x) d \zeta_{1} \\
= & \left(\frac{1}{2 \pi i}\right)^{2} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \zeta_{1}^{z_{1} \zeta_{2}^{z}}{ }^{z} R\left(\zeta_{1}\right) R\left(\zeta_{2}\right) u(x) d \zeta_{2} d \zeta_{1} \\
= & \frac{1}{2 \pi i} \int_{\Gamma_{2}} \zeta_{2}^{z_{1}+z_{2}} R\left(\zeta_{2}\right) u(x) d \zeta_{2} \\
& +\left(\frac{1}{2 \pi i}\right)^{2} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \zeta_{1}^{z_{1} \zeta_{2}^{z_{2}}} \frac{K\left(\zeta_{1}, \zeta_{2}\right) u(x)}{\zeta_{2}-\zeta_{1}} d \zeta_{2} d \zeta_{1} \\
= & P_{z_{1}+z_{2}} u(x)+\left(\frac{1}{2 \pi i}\right)^{2} \int_{\Gamma_{1}} \int_{\Gamma_{2}} \zeta_{1}^{z_{1}} \zeta_{2}^{z_{2}} \frac{K\left(\zeta_{1}, \zeta_{2}\right) u(x)}{\zeta_{2}-\zeta_{1}} d \zeta_{2} d \zeta_{1}
\end{aligned}
$$

Hence, we get iv) when $\operatorname{Re} z_{j}<0, j=1,2$.
Next we consider $P_{z} P-P_{z+1}$. For any N, using (3.16), we write

$$
\begin{aligned}
& \sigma\left(P_{z} P\right)(x, \xi)=\sum_{|\alpha|<N N} \frac{1}{\alpha!} p_{z}^{(\alpha)}(x, \xi) p_{(\alpha)}(x, \xi)+r_{z, N}(x, \xi) \\
& =\frac{1}{2 \pi i}\left\{\sum_{|\alpha|<N} \sum_{j+|\alpha|<N} \frac{1}{\alpha!} \int_{\Gamma \xi, \mathbf{A}} \zeta^{z} q_{j}^{(\alpha)} p_{(\alpha)} d \zeta\right. \\
& +\sum_{|\alpha|<N} \sum_{\substack{j+||\alpha|<N \\
j \geqq 1}} \frac{1}{\alpha!} \int_{\Gamma \xi, \Delta} \zeta^{z} \partial_{\xi}^{\alpha}\left(\left(\varphi_{j}(\xi)-1\right) q_{j}\right) p_{(\alpha)} d \zeta \\
& +\sum_{|\alpha|<N} \sum_{\substack{+||\alpha| \geq N \\
N>j \geqq 1}} \frac{1}{\alpha!} \int_{\Gamma \xi, \Delta} \zeta^{z} \partial_{\xi}^{\alpha}\left(\varphi_{j}(\xi) q_{j}\right) p_{(\alpha)} d \zeta \\
& \left.+\sum_{|\alpha|<N} \sum_{j=N}^{\infty} \frac{1}{\alpha!} \int_{\Gamma \xi, A} \zeta^{z} \partial_{\xi}^{\alpha}\left(\varphi_{j}(\xi) q_{j}\right) p_{(\alpha)} d \zeta\right\}+r_{z, N} \\
& \equiv \frac{1}{2 \pi i} \int_{\Gamma_{\xi, A}} \zeta^{z}\left(I_{1}+I_{2}+I_{3}+I_{4}\right) d \zeta+r_{z, N},
\end{aligned}
$$

where $r_{z, A} \in S_{\rho, \delta}^{m(R e z)+m-(\rho-\delta) N}$ and, by the similar way to the estimation of $R_{N}\left(\zeta_{1}\right.$; $x, \xi)$ in the proof of Lemma 3.7, is an analytic function of $z\left(\operatorname{Re} z<s_{0}\right)$ in the topology of $S_{\rho, \delta}^{m\left(s s^{\prime}\right)+m-(\rho-\delta) N}$ for any s_{0}. Using (3.7) we have

$$
\begin{aligned}
& I_{1}=\sum_{\mu=0}^{N-1} \sum_{j=0}^{\mu} \sum_{|\alpha|=\mu-j} \frac{1}{\alpha!} q_{j}^{(\alpha)} p_{(\alpha)} \\
& =\sum_{\mu=0}^{N-1}\left\{\sum_{j=1}^{\mu-1} \sum_{|\alpha|=\mu-j} \frac{1}{\alpha!} q_{j}^{(\alpha)} p_{(a)}+q_{\mu}(p-\mu I)+\zeta q_{\mu}\right\} \\
& =\sum_{\mu=0}^{N-1} \zeta q_{\mu}
\end{aligned}
$$

It is clear that $\int_{\Gamma \xi, A} I_{2} d \zeta \in S^{-\infty}$, and is an analytic function of z in the topology of $S_{\rho, \delta}^{s_{0}^{0}}$ for any s_{0}. By the similar way to the proof of Lemma 3.6, we see that
$\int_{\Gamma_{\xi, A}} \zeta^{z} I_{3} d \zeta$ and $\int_{\Gamma_{\xi, A}} \zeta^{z} I_{4} d \zeta$ belong to $S_{\rho, \delta}^{m(\operatorname{Re} z)+\boldsymbol{m}-(\rho-\delta) N}$ and are analytic in z $\left(\operatorname{Re} z<s_{0}\right)$ in $S_{\rho, \delta}^{m\left(\delta_{0}\right)+m-(\rho-\delta) N}$ for any s_{0}. Now we write

$$
p_{z+1}(x, \xi)=\frac{1}{2 \pi i} \int_{\Gamma \xi, A} \sum_{j=0}^{N-1} \zeta^{z+1} q_{j} d \zeta+r_{z+1, N}^{\prime}(x, \xi) .
$$

Then, by (3.11) we see that $r_{z+1, N}^{\prime}(x, \xi)$ belongs to $S_{\rho, \delta}^{m(R e z+1)-(\rho-\delta) N}$ and is analytic in $z\left(\operatorname{Re} z<s_{0}\right)$ in $S_{\rho, \delta_{0}}^{m\left(s_{0}+1\right)-(\rho-\delta) N}$ for any s_{0}. Consequently we see, by taking large N, that $\sigma\left(P_{z} P-P_{z+1}\right)(x, \xi)$ is analytic in z in the topology of $S_{\rho, \delta}^{s_{0}}$ for any s_{0}. Then, we see that, for any positive integer k,

$$
\begin{aligned}
& \sigma\left(P_{z} P^{k}-P_{z+k}\right)(x, \xi) \\
& =\sigma\left(\left(P_{z} P-P_{z+1}\right) P^{k-1}\right)(x, \xi)+\cdots+\sigma\left(P_{z+k-1} P-P_{z+k}\right)(x, \xi)
\end{aligned}
$$

is analytic in z in the topology of $S_{\rho}^{s_{0}, \delta}$ for any s_{0}. Hence, for any z_{1} and z_{2}, if we fix a positive integer k such that $\operatorname{Re} z_{j}-k<0, j=1,2$, then writing

$$
\begin{aligned}
& P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}}=P_{z_{1}}\left(P_{z_{2}}-P_{z_{2}-2 k} P^{2 k}\right)+\left(P_{z_{1}}-P_{z_{1}-k} P^{k}\right) P_{z_{2}-2 k} P^{2 k} \\
& \quad+P_{z_{1}-k} P^{k}\left(P_{z_{2}-2 k}-P_{-k} P_{z_{2}-k}\right) P^{2 k}+P_{z_{1}-k}\left(P^{k} P_{-k}-I\right) P_{z_{2}-k} P^{2 k} \\
& \quad+\left(P_{z_{1}-k} P_{z_{2}-k}-P_{z_{1}+z_{2}-2 k} P^{2 k}+\left(P_{z_{1}+z_{2}-2 k} P^{2 k}-P_{z_{1}+z_{2}}\right)\right.
\end{aligned}
$$

we see that $\sigma\left(P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}}\right)(x, \xi)$ is analytic in z_{1} and z_{2} in the topology of $S_{\rho}^{s_{0}}, \delta$ for any s_{0}. Thus the proof is complete.
Q.E.D.

4. Generalized Dirichlet problem

Let $p(x, \xi)$ be an $l \times l$ matrix of symbols $p_{j k}(x, \xi)$ which satisfies the assumption of Theorem 3.2, and let $P_{z}=p_{z}\left(x, D_{x}\right)$ be complex powers of P defined there.

We define a Hilbert space $H_{s, P}$ by

$$
H_{s, P}=\left\{u \in H_{-\infty} ; P_{s} u \in L^{2}\right\}
$$

provided with the norm: $\|u\|_{s, P}=\left\{\left\|P_{s} u\right\|_{0}^{2}+\left\|\Phi\left(D_{x}\right) u\right\|_{0}^{2}\right\}^{1 / 2}$, where $\Phi(\xi)$ is a fixed function of \mathcal{S} such that $\Phi(\xi)>0$ in R_{ξ}^{n}.

Then we have
Theorem 4.1. For any real number s, there exist constants C_{s} and C_{s}^{\prime} such that

$$
\left\{\begin{array}{l}
C_{s}^{\prime}\|u\|_{T m s} \leqq\|u\|_{s, P} \leqq C_{s}\|u\|_{m s} \text { for } s \geqq 0, \tag{4.1}\\
C_{s}^{\prime}\|u\|_{m s} \leqq\|u\|_{s, P} \leqq C_{s}\|u\|_{T m s} \text { for } s<0 .
\end{array}\right.
$$

Proof. Noting $P_{s} \in S_{\rho, \delta}^{m s}(s \geqq 0), P_{s} \in S_{\rho, \delta}^{\tau m s}(s<0)$ and $\Phi\left(D_{x}\right) \in S^{-\infty}$, we have the right halves of (4.1) by means of Lemma 1.4. For $s \geqq 0$ we write

$$
\|u\|_{\tau m s}=\left\|\wedge^{\tau m s} u\right\|_{0}=\left\|\wedge^{\tau m s}\left(P_{-s} P_{s}-K_{s}\right) u\right\|_{0}
$$

where $K_{s} \in S^{-\infty}$ which is defined by $P_{-s} P_{s}=I+\mathrm{K}_{s}$. Then noting $\wedge^{\tau m s} P_{-s}$ $\in S_{\rho, \delta}^{0}$ and $\wedge^{\tau m s} K_{s} \in S^{-\infty}$, we have by Lemma 1.4

$$
\|u\|_{\tau m s} \leqq\left\|\wedge^{\tau m s} P_{-s}\left(P_{s} u\right)\right\|_{0}+\left\|\wedge^{\tau m s} K_{s} u\right\|_{0} \leqq C_{s}^{\prime \prime}\left(\left\|P_{s} u\right\|_{0}+\|u\|_{\tau m s-1}\right) .
$$

On the other hand, for any $\varepsilon>0$, there exists a constant C_{ε} such that

$$
\|u\|_{T m s-1} \leqq \varepsilon\|u\|_{\tau m s}+C_{\varepsilon}\left\|\Phi\left(D_{x}\right) u\right\|_{0}
$$

so, if we fix $\varepsilon_{0}>0$ such that $C_{s}^{\prime \prime} \varepsilon_{0}<1 / 2$, we have

$$
\frac{1}{2}\|u\|_{\tau m s} \leqq C_{s}^{\prime \prime}\left(\left\|P_{s} u\right\|_{0}+C_{\varepsilon_{0}}\left\|\Phi\left(D_{x}\right) u\right\|_{0}\right)
$$

Hence, we have $C_{s}^{\prime}\|u\|_{T m s} \leqq\|u\|_{s, P}$ for $s \geqq 0$. Writing $\|u\|_{m s}=\| \wedge^{m s}\left(P_{-s} P_{s}-K_{s}\right)$ $u \|_{0}$, we can also prove the statement for $s<0$ in this manner.
Q.E.D.

Lemma 4.2. Let $P\left(\in S_{p, \delta}^{m}\right)$ be a formally self-adjoint in the sense

$$
(P u, v)=(u, P v) \quad \text { for } u, v \in \mathcal{S}
$$

and satisfy the condition of Theorem 3.2, and let P_{z} be complex powers of P defined there. Then, we have

$$
\begin{equation*}
P_{z}{ }^{(*)} \equiv P_{\bar{z}}\left(\bmod S^{-\infty}\right) \tag{4.2}
\end{equation*}
$$

where $P_{z}{ }^{(*)}\left(\in S_{\rho, \delta}^{m}\right)$ is defined by

$$
\left(P_{z} u, v\right)=\left(u, P_{z}{ }^{(*)} v\right) \quad \text { for } u, v \in \mathcal{S} .
$$

Proof. By the assumption it is clear that $\left(P^{k}\right)^{(*)}=P^{k}$ for any positive integer k. If we can prove

$$
\begin{equation*}
P_{z}{ }^{(*)} \equiv P_{\bar{z}} \text { for } \operatorname{Re} z<0, \tag{4.3}
\end{equation*}
$$

then, by v) of Definition 3.1, it follows that for $k(\operatorname{Re} z<k)$

$$
\begin{aligned}
P_{z}{ }^{(*)} & \equiv\left(P_{k} P_{z-k}\right)^{(*)}=P_{z-k}{ }^{(*)} P_{k}{ }^{(*)} \equiv P_{\bar{z}-k} P_{k}^{(*)} \\
& \equiv P_{\bar{z}-k}\left(P^{k}\right)^{(*)}=P_{\bar{z}-k} P^{k} \equiv P_{\bar{z}-k} P_{k} \equiv P_{\bar{z}}\left(\bmod S^{-\infty}\right) .
\end{aligned}
$$

Hence, we have only to prove (4.3). Let $R(\zeta)=r\left(\zeta ; x, D_{x}\right)$ be the parametrix of $P-\zeta I$. Since $I \equiv((P-\zeta I) R(\zeta))^{(*)}=R(\zeta)^{* *}(P-\bar{\zeta}), R(\zeta)^{(*)}$ is the parametrix of $P-\bar{\xi}$. Now, using the path Γ_{0} of (3.24), we have for $u, v \in \mathcal{S}$

$$
\begin{aligned}
& \left(P_{z} u, v\right)=\left(\int e^{i x \cdot \xi}\left(\frac{1}{2 \pi i} \int_{\Gamma_{0}} \zeta^{z} r(\zeta ; x, \xi) d \zeta\right) \hat{u}(\xi) d \xi, v\right) \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{0}} \zeta^{z}(R(\zeta) u, v) d \zeta=\frac{1}{2 \pi i} \int_{\Gamma_{0}} \zeta^{z}\left(u, R(\zeta)^{(*)} v\right) d \zeta
\end{aligned}
$$

$$
=\int u(x)\left(\frac{1}{2 \pi i} \int_{\Gamma_{0}} \zeta^{z} \overline{\overline{R(\zeta)^{(*)} v(x)}} d \zeta\right) d x
$$

Then we get

$$
\begin{aligned}
& P_{z}{ }^{(*)} v=\overline{\frac{1}{2 \pi i}\left(\int_{\Gamma_{0}} \zeta^{z} \overline{R(\zeta)^{(*)} v(x)} d \zeta\right)} \\
& =-\frac{1}{2 \pi i} \int e^{i x \cdot \xi} \hat{v}(\xi)\left(\int_{\Gamma_{0}} \zeta^{z} \overline{r^{(*)}(\zeta ; x, \xi) d \zeta}\right) d \xi
\end{aligned}
$$

so that we have

$$
\sigma\left(P_{z}{ }^{(*)}\right)=-\frac{1}{2 \pi i}\left(\overline{\int_{\Gamma_{0}} \zeta^{z} r^{(*)}(\zeta ; x, \xi)} d \zeta\right)=\frac{1}{2 \pi i} \int_{\Gamma_{0}} \zeta^{\bar{z}} r^{(*)}(\xi ; x, \xi) d \zeta .
$$

Noting $r^{(*)}(\xi ; x, \xi)$ is a parametrix of $P-\zeta I$, we have (4.3).
Q.E.D.

Theorem 4.3. Let L be an $l \times l$ matrix of pseudo-differential operators of class $S_{\rho, \delta}^{m}(m>0)$, and set

$$
P=\left(L+L^{(*)}\right) / 2, Q=\left(L-L^{(*)}\right) / 2 .
$$

Assume that $\sigma(P)(x, \xi)$ satisfies the assumption of Theorem 3.2 and $P_{-\frac{1}{2}} Q P_{-\frac{1}{2}} \in S_{P, \delta}^{0}$, where P_{z} is complex powers defined by Theorem 3.2. Then, there exist constants C and λ_{0} such that
(4.4) $\quad|(L u, v)| \leqq C \mid\|u\|_{£, P}\|v\|_{\Sigma, P} \quad$ for $u, v \in \mathcal{S}$
and

$$
\begin{equation*}
\operatorname{Re}(L u, u) \geqq\|u\|_{2, P}^{2}-\lambda_{0}\|u\|_{0}^{2} \quad \text { for } u \in \mathcal{S} . \tag{4.5}
\end{equation*}
$$

Remark 1^{0}. i) Assume that $Q \in S_{\rho, \delta}^{\tau m}$. Then, we have

$$
P_{-\frac{1}{2}} Q P_{-\frac{1}{2}} \in S_{\rho, \delta \delta}^{0}, \quad \text { since } P_{-\frac{1}{2}} \in S_{\rho, \delta}^{-\tau m / 2} .
$$

ii) For the single case we assume that $\operatorname{Re} \sigma(L)(x, \xi)$ satisfies
A) ${ }^{\prime} \operatorname{Re} \sigma(L)(x, \xi) \geqq c_{0}\langle\xi\rangle^{\tau m}$,
B) ${ }^{\prime}\left|\partial_{\xi}^{\alpha} D_{x}^{\beta} \sigma(L)(x, \xi) \cdot(\operatorname{Re} \sigma(L)(x, \xi))^{-1}\right| \leqq c_{\alpha, \beta}\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|}$
and
$\left.\mathrm{C}^{\prime}\right)$ are $\operatorname{Re} \sigma(L)(x, \xi)$ is well-defined
for large $|\xi|$ instead of conditions A)-B) of Theorem 3.2°. Then, by using the asymptotic expansion fomula of $\sigma\left(P_{z}\right)(x, \xi)$, we can see that the operator L satisfies the conditions of Theorem 4.3.

Remark 2°. The inequality (5.4) is a generalization of Gårding's inequality to hypoelliptic operators, which is different form [3], [9], [11], [17] where the positivity as in A)' is not assumed, but the space is limited to the usual Sobolev space.

Proof of Theorem 4.3. We can write for $u, v \in \mathcal{S}$

$$
\begin{align*}
& (L u, v)=(P u, v)+(Q u, v) \\
& =\left(P_{\frac{1}{2}} u, P_{\frac{1}{2}}^{(*)} v\right)+\left(P_{-\frac{1}{2}} Q P_{-\frac{1}{2}}\left(P_{\frac{1}{2}} u\right), P_{\frac{1}{2}}(*) v\right)+(K u, v) \tag{4.6}
\end{align*}
$$

for some $K \in S^{-\infty}$. Then, from Lemma 4.2 and the assumption $P_{-\frac{1}{2}} Q P_{-\frac{1}{2}} \in S_{\rho, 8}^{0}$, we have

$$
\begin{equation*}
|(L u, v)| \leqq C\|u\|_{\Sigma, P}\|v\|_{\frac{1}{2}, P} \text { for } u, v \in \mathcal{S} \tag{4.7}
\end{equation*}
$$

for a constant C. On the other hand, using Lemma 4.2 again and noting $\operatorname{Re}(Q u, u)=0$, we have

$$
\begin{equation*}
\operatorname{Re}(L u, u)=(P u, u) \geqq\|u\|_{i, P}^{2}-\lambda_{0}\|u\|_{0}^{2} \tag{4.8}
\end{equation*}
$$

for a constant λ_{0}.
Q.E.D.

Now, let V be the closure of $C_{0}^{\infty}(\Omega)$ in $H_{i, P}$ for an open set Ω of R_{x}^{n}, and set

$$
\begin{gather*}
B_{\lambda}[u, v]=\left(P_{\frac{1}{2}} u, P_{\frac{1}{2}}(*) v\right)+\left(P_{-\frac{1}{2}} Q P_{-\frac{1}{2}}\left(P_{\frac{1}{2}} u\right), P_{\frac{1}{2}}(*) v\right)+(K u, v)+\lambda(u, v) \tag{4.9}\\
\text { for } u, v \in V .
\end{gather*}
$$

Then, we have
Theorem 4.4 (Generalized Dirichlet problem). Let L be a matrix of operators of class $S_{p, \delta}^{m}(m>0)$ which satisfies conditions of Theorem 4.3. Then, for any $f \in L^{2}(\Omega)$, we can find a unique element $u \in V$ such that

$$
(L+\lambda) u=f \quad \text { in } \Omega
$$

for any $\lambda \geqq \lambda_{0}$, where λ_{0} is a constant determined in Theorem 4.3.
Proof. Consider $B_{\lambda}[u, v]$ for $u, v \in V$. Then, from (4.6)-(4.9) we have

$$
\left\{\begin{array}{l}
\left|B_{\lambda}[u, v]\right| \leqq C_{\lambda}\|u\|_{\frac{1}{2}, P}\|v\|_{\frac{1}{2}, P}, \tag{4.10}\\
\operatorname{Re} B_{\lambda}[u, u] \geqq\|u\|_{\frac{2}{2}, P}^{2} \quad \text { for } u, v \in V
\end{array}\right.
$$

Then, by means of the Lax-Milgram theorem (see, for example, [1], p. 98), we have a unique element $u \in V$ such that

$$
B_{\lambda}[u, v]=(f, v) \quad \text { for any } v \in V
$$

In particular for $v \in C_{0}^{\infty}(\Omega)$ we have from (4.6) and (4.9)

$$
B_{\lambda}[u, v]=(L u, v)+\lambda(u, v)
$$

Hence, we have $(L+\lambda) u=f$ in Ω.
Q.E.D.

Remark. Consider a neighborhood $U\left(x_{0}\right)$ of a point x_{0} on the boundary $\partial \Omega$ of Ω. Assume that $\partial \Omega$ is smooth and P is elliptic of order $m_{0}(>0)$ in $U\left(x_{0}\right)$ in the sense

$$
\left\{\begin{array}{l}
|\sigma(P)(x, \xi)| \geqq C_{0}\langle\xi\rangle^{m_{0}}, \tag{4.11}\\
\left|\sigma(P)_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqq C_{a, \beta}\langle\xi\rangle^{m_{0}-\rho|\alpha|+\delta|\beta|} \quad \text { in } U\left(x_{0}\right)
\end{array}\right.
$$

for large $|\xi|$. Then, for any $a(x) \in C_{0}^{\infty}\left(U\left(x_{0}\right)\right)$, we have

$$
\begin{equation*}
a u \in H_{\frac{1}{2} m_{0}} \tag{4.12}
\end{equation*}
$$

and concerning the trace of $a u$, we have

$$
\begin{equation*}
\left.\partial_{n}^{3}(a u)\right|_{\partial \Omega}=0,0 \leqq j<\left(m_{0}-1\right) / 2 \tag{4.13}
\end{equation*}
$$

where ∂_{n} denotes the normal derivative for $\partial \Omega$. In fact, we can write for some $K \in S^{-\infty}$

$$
a u=a P_{-\frac{1}{2}}\left(P_{\frac{1}{2}} u\right)+a K u=\left(a P_{-\frac{1}{2}} \wedge^{\frac{1}{2} m_{0}}\right)\left(\wedge^{\left.-\frac{1}{2} m_{0} P_{\frac{1}{2}} u\right)+a K u . ~ . ~}\right.
$$

Then, noting $P_{\frac{1}{2}} u \in L^{2}$ we have $\wedge^{-\frac{1}{2} m_{0}} P_{\frac{1}{2}} u \in H_{\frac{1}{2} m_{0}}$, and in view of (4.11) we have $a P_{-\frac{1}{2}} \wedge^{\frac{1}{2} m_{0}} \in S_{\rho, \delta}^{0}$. Consequently we have (4.12), and noting supp $u \subset \bar{\Omega}$, we get (4.13).

Example. Consider a single operator

$$
L=a(x) \wedge^{m}+(1-a(x)) \wedge^{m^{\prime}}
$$

where $m, m^{\prime}\left(m>\mathrm{m}^{\prime}\right)$ are positive number and $a(x)$ is a C^{∞}-function such that

$$
a(x)=0(|x| \leqq 1 / 2),=1(|x| \geqq 1), 0<a(x)<1(1 / 2<|x|<1)
$$

and for a fixed $\sigma \geqq 1$

$$
\left|D_{x}^{\alpha} a(x) / a(x)\right| \leqq C_{a}| | x\left|-\frac{1}{2}\right|^{-\sigma\left|\alpha_{\alpha}\right|} \text { for any } \alpha
$$

Then, setting $\tau=m^{\prime} / m$, we can see that $\sigma(L)(x, \xi)$ satisfies A) and B) of Definition 3.2° for any $0<\delta<1$ and $\rho=1$, so that Theorem 4.3 is applied to this operator L.

5. Index theory

First we describe results obtained in [10] with complete proofs. Let P be a system of pseudo-differential operators of class $S_{\rho, \delta}^{m}$, which maps $H_{-\infty}$ into itself, more precisely H_{s+m} into H_{s} boundedly for any real s.

Consider P as the closed operator of $L^{2}\left(=H_{0}\right)$ into itself with the domain $\mathscr{D}(P)$ defined by

$$
\begin{equation*}
\mathscr{D}(P)=\left\{u \in L^{2} ; P u \in L^{2}\right\} \tag{5.1}
\end{equation*}
$$

Then, the adjoint operator $P^{*}: L^{2} \rightarrow L^{2}$ is defined as follows. For a $v \in L^{2}$, if there exists $g \in L^{2}$ such that

$$
\begin{equation*}
(P u, v)=(u, g) \quad \text { for any } u \in \mathscr{D}(P) \tag{5.2}
\end{equation*}
$$

we say that v belongs to the domain $\mathscr{D}\left(P^{*}\right)$ of P^{*} and define $P^{*} v=g$. On the other hand we have defined the formal adjoint $P^{(*)}$ of class $S_{\rho, \delta}^{m}$ by

$$
\begin{equation*}
(P u, v)=\left(u, P^{(*)} v\right) \quad \text { for any } u, v \in \mathcal{S} \tag{5.3}
\end{equation*}
$$

Then, considering $P^{(*)}$ as the closed operator L^{2} into itself as above, we have

$$
\begin{equation*}
\mathscr{D}\left(P^{(*)}\right)=\left\{v \in L^{2} ; P^{(*)} v \in L^{2}\right\} . \tag{5.4}
\end{equation*}
$$

Concerning P^{*} and $P^{(*)}$ we have
Lemma 5.1. Let P be a system of operators of class $S_{\rho, \delta}^{m}$. Then, as the operator of L^{2} into itself, the operator $P^{(*)}$ is an extension of P^{*}, so that we have

$$
\begin{equation*}
\mathscr{D}\left(P^{*}\right) \subset \mathscr{D}\left(P^{(*)}\right) \tag{5.5}
\end{equation*}
$$

Proof. Assume $v \in \mathscr{D}\left(P^{*}\right)$. Then, noting $\mathscr{D}(P) \supset \mathcal{S}$, we have

$$
\left(u, P^{*} v\right)=(P u, v)=\left(u, P^{(*)} v\right)
$$

In the above the right half is guaranteed, if we take a sequence $v_{j}(\in \mathcal{S}) \rightarrow$ v in L^{2} and, considering u as an element of H_{m}, apply Lemma 1.4. Then, we have $P^{*} v_{v=} P^{(*)} v \in L^{2}$, which means that $v \in \mathscr{D}\left(P^{(*)}\right)$.
Q.E.D.

Lemma 5.2. Let $P\left(\in S_{\rho, \delta}^{m}\right)$ have complex powers P_{z} in the sense of Definition 3.1. Then, we have, for any $z_{0} \in \boldsymbol{C}, P_{z_{0}}{ }^{(*)}=P_{z_{0}}{ }^{*}$ as the operator of L^{2} into itself.

Proof. By means of Lemma 5.1 we have only to prove

$$
\begin{equation*}
\left(P_{z_{0}} u, v\right)=\left(u, P_{z_{0}}{ }^{(*)} v\right) \text { for } u \in \mathscr{D}\left(P_{z_{0}}\right), v \in \mathscr{D}\left(P_{z_{0}}{ }^{(*)}\right) \tag{5.6}
\end{equation*}
$$

By i) of Definition 3.1 for a large N we have $P_{z} u \in H_{m(\operatorname{Rez})}$ for $u \in \mathscr{D}\left(P_{z_{0}}\right)$ so, using Lemma 1.4, we have

$$
\begin{align*}
& \left(P_{z} u, P_{z_{0}}{ }^{(*)} v\right)=\left(P_{z_{0}} P_{z} u, v\right)=\left(P_{z} P_{z_{0}} u, v\right) \tag{5.7}\\
& \quad+\left(\left(P_{z_{0}} P_{z}-P_{z} P_{z_{0}}\right) u, v\right) \text { for } u \in \mathscr{D}\left(P_{z_{0}}\right), v \in \mathscr{D}\left(P_{z_{0}}{ }^{(*)}\right)(\operatorname{Re} z<-N) .
\end{align*}
$$

From Lemma 2.3 and iii) of Definition 3.1 we have $\left(P_{z} u, P_{z_{0}}{ }^{(*)} v\right)$ is analytic in z when $\operatorname{Re} z<0$, and from Lemma 2.2 and iv) of Definition 3.1 we have $\lim _{s \rightarrow-0}\left(P_{s} u, P_{z_{0}}{ }^{(*)} v\right)=\left(u, P_{z_{0}}{ }^{(*)} v\right)$. Since $P_{z_{0}} u \in L^{2}$, we also have that $\left(P_{z} P_{z_{0}} u, v\right)$ is analytic in z when $\operatorname{Re} z<0$ and $\lim _{s \rightarrow-0}\left(P_{s} P_{z_{0}} u, v\right)=\left(P_{z_{0}} u, v\right)$. Setting $s_{0}=0$ in v) of Definition 3.1 and writing $P_{z_{0}} P_{z}-P_{z} P_{z_{0}}=\left(P_{z_{0}} P_{z}-P_{z_{0}+z}\right)+\left(P_{z_{0}+z}-P_{z} P_{z_{0}}\right)$, we can see that $\left(\left(P_{z_{0}} P_{z}-P_{z} P_{z_{0}}\right) u, v\right)$ is analytic in z and $\lim _{s \rightarrow-0}\left(\left(P_{z_{0}} P_{s}-P_{s} P_{z_{0}}\right) u, v\right)=0$. Then. letting $z \rightarrow-0$ on the real line in (5.7), we get (5.6).
Q.E.D.

Lemma 5.3. Let $p_{j}(x, \xi), j=0,1,2, \cdots$, be a sequence of slowly varying
 struct a slowly varying symbol $p(x, \xi) \in S_{\rho, \delta}^{m}\left(r e s p . S_{\rho, \delta}^{m}\right)$ such that

$$
\begin{equation*}
p(x, \xi)-\sum_{j=1}^{N-1} p_{j}(x, \xi) \in S_{\rho, \delta}^{m_{N}},\left(\text { resp. } \stackrel{S}{\rho}, \delta, \delta_{m_{N}}^{m_{N}}\right) \tag{5.8}
\end{equation*}
$$

and is slowly varying for any N (c.f. [4]).
Proof. Take C^{∞}-functions $\varphi(\xi)$ and $\psi(x, \xi)$ such that

$$
\left\{\begin{array}{l}
\varphi(\xi)=0(|\xi| \leqq 1),=1(|\xi| \geqq 2) \tag{5.9}\\
\psi(x, \xi)=0(|x|+|\xi| \leqq 1),=1(|x|+|\xi| \geqq 2)
\end{array}\right.
$$

Then, setting $p(x, \xi)=p_{0}(x, \xi)+\sum_{j=1}^{\infty} \varphi\left(t_{j}^{-1} \xi\right) \psi\left(t_{j}^{-1} x, t_{j}^{-1} \xi\right) p_{j}(x, \xi)$ for an appropriate $t_{j} \rightarrow \infty(j \rightarrow \infty)$, we get a required symbol.
Q.E.D.

Lemma 5.4 (c.f. Prop. 2.1 of [8]). Let $\left\{P_{t}\right\}_{t \in[0,1]}$ be a family of operators of class $S_{\rho, \delta}^{m}$ such that $\sigma\left(P_{t}\right)(x, \xi)$ is a continuous function of t in $S_{\rho, \delta}^{m}$. Suppose there exist two families $\left\{Q_{t}\right\}_{t \in[0,1]}$ and $\left\{K_{t}\right\}_{t \in[0,1]}$ in $S_{\rho, \delta}^{0}$ such that $Q_{t} P_{t}=I+K_{t}, Q_{t}$ is strongly continuous in t, and K_{t} is uniformly continuous in t and compact as operators from L^{2} into itself. Then, it follows that

$$
\text { dim ker } P_{t}<\infty \text { and } \operatorname{Re} P_{t} \text { is closed }
$$

and that

$$
\text { index } P_{t} \equiv \operatorname{dim} k e r P_{t} \text {-codim } \operatorname{Re} P_{t}
$$

is upper semi-continuous in t, where ker P_{t} denotes the kernel of P_{t} and $\operatorname{Re} P_{t}$ denotes the range of P_{t}.

Proof. For $u \in \operatorname{ker} P_{t}$ we have

$$
0=Q_{t} P_{t} u=u+K_{t} u
$$

Then, we can easily see that $\operatorname{dim} \operatorname{ker} P_{t}<\infty$, sicne K_{t} is compact. If we write $L^{2}=\operatorname{ker} P_{t} \oplus\left(\operatorname{ker} P_{t}\right)^{\perp}$, then, for the closedness of $\operatorname{Re} P_{t}$ we have only to prove

$$
\begin{equation*}
\|u\|_{0} \leqq C_{t}\left\|P_{t} u\right\|_{0} \text { for } u \in \mathscr{D}\left(P_{t}\right) \cap\left(\operatorname{ker} P_{t}\right)^{\perp} \tag{5.10}
\end{equation*}
$$

for a constant C_{t}.
Assume that there exists a sequence $\left\{u_{\nu}\right\}_{\nu=1}^{\infty}$ of $\mathscr{D}\left(P_{t}\right) \cap\left(\text { ker } P_{t}\right)^{\perp}$ such that $1=\left\|u_{\nu}\right\|_{0} \geqq \nu\left\|P_{t} u_{\nu}\right\|_{0}$. Then, we have

$$
0 \leftarrow Q_{t} P_{t} u_{\nu}=u_{\nu}+K_{t} u_{\nu}
$$

Since K_{t} is compact, by taking a subsequence we may assume that

$$
K_{t} u_{v} \rightarrow v \text { in } L^{2} \text { for a } v \in L^{2} .
$$

Then we have $v \in \operatorname{ker} P_{t}$ and consequently $0=\left(v, u_{n}\right) \rightarrow\|v\|^{2}=1$, which derives
the contradiction.
For the proof of the upper semi-continuity of index P_{t} we first get the statement:

$$
\begin{equation*}
\text { If } t_{\nu} \rightarrow t_{0} \in[0,1], u_{\nu} \rightarrow u_{0} \text { in } L^{2}, P_{t_{\nu}} u_{\nu} \rightarrow f_{0} \text { in } L^{2}, \text { then, } P_{t_{0}} u_{0}=f_{0} \tag{5.11}
\end{equation*}
$$

which means that the graph $\left\{\left(t, u, P_{t} u\right) ; t \in I, u \in \mathscr{D}\left(P_{t}\right)\right\}$ is closed. For any $v \in$ H_{m} we have

$$
\left(P_{t_{0}} u_{0}, v\right)=\left(u_{0}, P_{t_{0}}{ }^{(*)} v\right)=\lim _{\nu \rightarrow \infty}\left(u_{\nu}, P_{t_{\nu}}{ }^{(*)} v\right)=\lim _{\nu \rightarrow \infty}\left(P_{t_{\nu}} u_{\nu}, v\right)=\left(f_{0}, v\right),
$$

since $u_{\nu} \rightarrow u_{0}$ in L^{2} and $P_{t_{\nu}}{ }^{(*)} v \rightarrow P_{t_{0}}^{(*)} v$ in $L^{2}=H_{0}$ by Lemma 1.4 and the continuity of $\sigma\left(P_{t}\right)(x, \xi)$ in $S_{\rho, \delta}^{m}$. Hence we get (5.11).

Now let W be a finite dimensional subspace of L^{2} and set $\Delta_{t}=\left\{u \in \mathscr{D}\left(P_{t}\right)\right.$; $\left.P_{t} u \in W\right\}$. Then we can easily get

$$
\begin{equation*}
\left\|P_{t} u\right\|_{0} \leqq C\|u\|_{0} \text { for } u \in \Delta_{t} \tag{5.12}
\end{equation*}
$$

for a constant C independent of $t \in[0,1]$.
Assume there exist sequences $\left\{t_{\nu}\right\}_{\nu=1}^{\infty}$ and orthonormal systems $\left\{u_{1}^{(\nu)}, \cdots, u_{l}^{(\nu)}\right\}$ of $\Delta_{t_{\nu}}$ for a fixed l such that $t_{\nu} \rightarrow t_{0} \in[0,1]$. Then, writing $Q_{t_{\nu}} P_{t_{\nu}} u_{j}^{(\nu)}=u_{j}^{(\nu)}+$ $\left(K_{t_{\nu}}-K_{t_{0}}\right) u_{j}^{(\nu)}+K_{t_{0}} u_{j}^{(\nu)}, j=1, \cdots, l$, we may assume that $K_{t_{0}} u_{j}^{(\nu)} \rightarrow v_{j}$ and $P_{t_{\nu}} u_{j}^{(\nu)} \rightarrow$ $w_{j} \in W$ for $j=1, \cdots, l$ by taking a subsequence, since $K_{t_{0}}$ is compact and $P_{t_{\nu}} u_{j}^{(\nu)} \in W$ (finite dimensional) with (5.12). Hence from (5.11) we have $P_{t_{0}} u_{j}$ $=w_{j}$ for $u_{j}=-v_{j}+Q_{t_{0}} w_{j}$. It is clear that u_{1}, \cdots, u_{l} is orthonormal, which means that $\operatorname{dim} \Delta_{t}$ is upper simi-continuous in t. Then, for any $W_{0} \subset\left(\operatorname{Re} P_{t_{0}}\right)^{\perp}$, we have

$$
\begin{aligned}
\operatorname{dim} \Delta_{t_{0}} & \geqq \varlimsup_{t \rightarrow t_{0}} \operatorname{dim} \Delta_{t}=\varlimsup_{t \rightarrow t_{0}}\left\{\operatorname{dim} \operatorname{ker} P_{t}+\operatorname{dim}\left(\operatorname{Re} P_{t}\right) \cap W_{0}\right\} \\
& \geqq \lim _{t \rightarrow t_{0}}\left\{\operatorname{dim} \operatorname{ker} P_{t}+\operatorname{dim} W_{0}-\operatorname{dim}\left(\operatorname{Re} P_{t}\right)^{\perp}\right\}
\end{aligned}
$$

Since $\operatorname{dim} \Delta_{t_{0}}=\operatorname{dim}$ ker $P_{t_{0}}$, this means that index $P_{t_{0}} \geqq \varlimsup_{t \rightarrow t_{0}} \operatorname{inex} P_{t}$. Q.E.D.
Theorem 5.5. Let P be an $l \times l$ matrix of operators of class $S_{\rho, \delta}^{m}(m>0)$ such that $\sigma(P)(x, \xi)$ satisfies conditions (3.1) and (3.2) for large $|x|+|\xi|$ uniformly on Ξ_{0}. Assume that $\sigma(P)(x, \xi)$ is slowly varying and that, for $\beta \neq 0$, (3.2) holds with a bounded function $C_{0, \alpha, \beta}(x)$ such as $C_{0, \alpha, \beta}(x) \rightarrow 0(|x| \rightarrow \infty)$. Then, we can construct complex powers P_{z} such that $\sigma\left(P_{z}\right)(x, \xi)$ is slowly varying and

$$
\begin{equation*}
\sigma\left(P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}}\right)(x, \xi) \in \dot{S}^{-\infty}\left(\underset{s}{ } \cap \stackrel{\circ}{S}_{\rho, \delta}^{s}\right) \tag{5.13}
\end{equation*}
$$

Remark. We may assume that $\sigma(P)(x, \xi)$ satisfies (3.1) and (3.2) for every x and ξ. In fact, for a C_{0}^{∞}-function $\gamma(x, \xi)$ such that $0 \leqq \gamma(x, \xi) \leqq 1$, and $\gamma(x, \xi)$ $=1(|x|+|\xi| \geqq 1),=0(|x|+|\xi| \leqq 2)$, We set $P_{\varepsilon}=P+\varepsilon^{-1} \gamma\left(\varepsilon x, \varepsilon D_{x}\right) I$, Then, for a small fixed $\varepsilon_{0}>0, \sigma\left(P_{\varepsilon_{0}}\right)(x, \xi)$ satisfy conditions (3.1) and (3.2) for every x and ξ, and has complex powers $P_{\varepsilon_{0}, z}$. We set $P_{z}=P_{\varepsilon_{0}, z}+z\left(P-P_{\varepsilon_{0}, 1}\right)$. Then, noting
$P-P_{\varepsilon_{0}, 1}=P-P_{\varepsilon_{0}}=\varepsilon_{0}^{-1} \gamma\left(\varepsilon_{0} x, \varepsilon_{0} D_{x}\right) I \in \dot{S}^{-\infty}$, we see that P_{z} are required powers.
Proof. Instead $r(\zeta ; x, \xi)$ of (3.16) we consider, using functions $\varphi(\xi)$ and ψ (x, ξ) of (5.9),

$$
\begin{equation*}
r(\zeta ; x, \xi)=q_{0}(\zeta ; x, \xi)+\sum_{j=1}^{\infty} \varphi\left(t_{j}^{-1} \xi\right) \psi\left(t_{j}^{-1} x, t_{j}^{-1} \xi\right) q_{j}(\zeta ; x, \xi) \tag{5.14}
\end{equation*}
$$

for an appropriate increasing sequence $\left\{t_{j}\right\}^{\infty}{ }_{j=1}^{\infty}$. Then, we may assume that $p_{z}(x, \xi)$ defined by (3.23) is slowly varying and that

$$
\begin{equation*}
\sigma\left(P_{z}\right)(x, \xi)-\sigma(P)(x, \xi)^{z} \in S_{\rho, \delta}^{m(\operatorname{Re} z)-(\rho-\delta)} \tag{5.15}
\end{equation*}
$$

Now, for any N, we define $R_{z_{1}, z_{2}, N} \in S_{\rho, \delta}^{\left.m_{(1)}^{(R e} z_{1}\right)+m_{(R e}\left(\operatorname{Re} z_{2}\right)}$
by $\left(R_{z_{1}, z_{2}, N}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} \sigma\left(P_{z_{1}}\right)^{(\alpha)}(x, \xi) \sigma\left(P_{z_{2}}\right)_{(\alpha)}(x, \xi)$. Then, by ii) of
Lemma 1.5, we have

$$
\begin{equation*}
P_{z_{1}} P_{z_{2}}-R_{z_{1}, z_{2}, N} \in \dot{S}_{\rho, \delta}^{m\left(\operatorname{Re} z_{1}\right)+m_{\left(\operatorname{Re} z_{2}\right)-(\rho-\sigma) N}} \tag{5.16}
\end{equation*}
$$

Noting $\sigma(P)(x, \xi)^{z_{1}} \sigma(P)(x, \xi)^{z_{2}}=\sigma(P)(x, \xi)^{z_{1}+z_{2}}$, we have

$$
\begin{equation*}
\sigma\left(R_{z_{1}, z_{2}, N}\right)(x, \xi)-\sigma(P)(x, \xi)^{z_{1}+z_{2}} \in \stackrel{\circ}{S} \rho, \delta_{m\left(\operatorname{Re} z_{1}\right)+\left(\operatorname{Re} z_{2}\right)-(\rho-\delta)} . \tag{5.17}
\end{equation*}
$$

Hence, if we write

$$
\left(S^{-\infty} \ni\right) P_{z_{1}} P_{z_{2}}-P_{z_{1}+z_{2}}=\left(P_{z_{1}} P_{z_{2}}-R_{z_{1}, z_{2}, N}\right)+\left(R_{z_{1}, z_{2}, N}-P_{z_{1}+z_{2}}\right),
$$

then, using (5.16), (5.17) and (5.15) for $z=z_{1}+z_{2}$, we get (5.13).
Q.E.D.

Theorem 5.6. Let P be an $l \times l$ matrix of operators of class $S_{p, \delta}^{m}, m>0$, which are slowly varying. Assume that the symbol $\sigma(P)(x, \xi)$ satisfies conditions (3.1) and (3.2) for large $|x|+|\xi|$ uniformly on Ξ_{0}. Then, the operator P as the map from L^{2} into itself with the domain $\mathscr{D}(P)=\left\{u \in L^{2} ; P u \in L^{2}\right\}$ is Fredholm type and we have
(5.18) index $P \equiv \operatorname{dim}$ ker $P-\operatorname{codim} \operatorname{Re} P=0$.

Proof. Let P_{z} be complex powers of P defined in Theorem 5.5. For $t \in[0,1]$, consider $\left\{P_{t}\right\}_{t \in I}$ and set $Q_{t}=P_{-t}$. Then, by iv) of Definition 3.1, Q_{t} is strongly continuous in t as L^{2}-operators. Moreover, if we write $Q_{t} P_{t}=$ $P_{-t} P_{t}=I+K_{t}$, then, by means of (5.13), $K_{t} \in \dot{S}^{-\infty}$ and consequently, by Lemma 1.4 and Lemma 1.6, K_{t} is uniformly continuous in t and compact as operators from L^{2} into itself. Hence, we can apply Lemma 5.4 and we have that index P_{t} is upper semi-continuous in t. Now, using Lemma 5.2, we note that ker $P_{t}=$ $\left(\operatorname{Re} P_{t}{ }^{*}\right)^{\perp}=\left(\operatorname{Re} P_{t}{ }^{(*)}\right)^{\perp},\left(\operatorname{Re} P_{t}\right)^{\perp}=\operatorname{ker} P_{t}{ }^{*}=\operatorname{ker} P_{t}{ }^{(*)}$, so that index $P_{t}=-\operatorname{index}$ $P_{t}{ }^{(*)}$. Since $\left(P_{t} P_{-t}\right)^{(*)}=P_{-t}{ }^{(*)} P_{t}{ }^{(*)}$, setting $Q_{t}=P_{-t}{ }^{(*)}$, we have also that index $P_{t}{ }^{(*)}$ is upper semi-continuous in t. Hence we get that index P_{t} is continuous,
so is constant in $[0,1]$. Then, index $P=\operatorname{index} P_{t}, t \in[0,1],=$ index $I=0$.
Q.E.D.

Lemma 5.7. Let P and Q be $l \times l$ matrices of operators of class $S_{\rho, \delta}^{m}$ such that P has complex powers P_{z} and Q has the parametrix Q_{-1}. Assume that $Q P_{-1}$ and $P Q_{-1}$ are of class $S_{\rho, \delta}^{0}$. Then, for $P_{z}{ }^{\prime}=Q P_{-1+z}$, we have

$$
\begin{equation*}
P_{z}{ }^{\prime *}=P_{z}{ }^{\prime(*)} \tag{5.19}
\end{equation*}
$$

Proof. We write

$$
P_{z} \equiv P P_{-1+z} \equiv\left(P Q_{-1}\right) P_{z}^{\prime}\left(\bmod S^{-\infty}\right) \text { and } P_{z}^{\prime} \equiv\left(Q P_{-1}\right) P_{z}\left(\bmod S^{-\infty}\right),
$$

then we can see that

$$
\begin{equation*}
P_{z} u \in L^{2} \text { if and only if } P_{z}{ }^{\prime} u \in L^{2} \text { for } u \in H_{-\infty} . \tag{5.20}
\end{equation*}
$$

If we write, for some $K \in S^{-\infty}, P_{z}{ }^{\prime}=\left(Q P_{-1}\right) P_{z}+K$, then we have

$$
\begin{equation*}
P_{z}^{\prime(*)}=P_{z}^{(*)}\left(Q P_{-1}\right)^{(*)}+K^{(*)} . \tag{5.21}
\end{equation*}
$$

Now we assume that $v \in \mathscr{D}\left(P_{z}{ }^{\prime \prime}{ }^{(*)}\right)$, i.e., $v \in L^{2}$ and $P_{z}{ }^{\prime \prime}{ }^{(*)} v \in L^{2}$. Since $\sigma\left(Q P_{-1}\right)^{(*)}$ $\in S_{\rho, \delta}^{0}$, by means of (5.21) we have

$$
\left(Q P_{-1}\right)^{(*)} v \in L^{2} \text { and } P_{z}{ }^{(*)}\left(Q P_{-1}\right)^{(*)} v \in L^{2} .
$$

Then, noting $P_{z}{ }^{(*)}=P_{z}{ }^{*}$ by Lemma 5.2, we have $\left(Q P_{-1}\right)^{(*)} v \in \mathscr{D}\left(P_{z}{ }^{*}\right)$, so that, for any $u \in \mathscr{D}\left(P_{z}{ }^{\prime}\right)$, we have, noting $u \in \mathscr{D}\left(P_{z}\right)$ by (5.20),

$$
\begin{aligned}
& \left(u, P_{z}{ }^{\prime(*)} v\right)=\left(u, P_{z}{ }^{(*)}\left(Q P_{-1}\right)^{(*)} v\right)+\left(u, K^{(*)} v\right) \\
& =\left(P_{z} u,\left(Q P_{-1}\right)^{(*)} v\right)+\left(u, K^{(*)} v\right) \\
& =\left(Q P_{-1} P_{z} u, v\right)+(K u, v)=\left(P_{z}^{\prime} u, v\right)
\end{aligned}
$$

which means that $v \in \mathscr{D}\left(P_{z}{ }^{*}\right)$. Hence, by Lemma 5.1 we have $P_{z}{ }^{\prime}(*)=P_{z}{ }^{\prime *}$.
Q.E.D.

Definition 5.8. For $l \times l$ matrices P and Q of class $S_{\rho, \delta}^{m}$ we say that $\sigma(P)$ (x, ξ) and $\sigma(Q)(x, \xi)$ are equally strong, when they satisfy with each other
(5.22) $\left\|\sigma(Q)_{(\beta)}^{(\alpha)}(x, \xi) \sigma(P)(x, \xi)^{-1}\right\| \leqq C_{a, \beta}(x)\langle\xi\rangle^{-\rho|a|+\delta|\beta|}$
and

$$
\begin{equation*}
\left\|\sigma(P)_{(\beta)}^{(\alpha)}(x, \xi) \sigma(Q)(x, \xi)^{-1}\right\| \leqq C_{\alpha, \beta}^{\prime}(x)\langle\xi\rangle^{-\rho|\alpha|+\delta|\beta|} \tag{5.23}
\end{equation*}
$$

for large $|x|+|\xi|$, where we assume that, for $\beta \neq 0, C_{\alpha, \beta}(x) \rightarrow 0$ and $C_{\alpha, \beta}^{\prime}(x) \rightarrow 0$ as $|x| \rightarrow \infty$.

Then we have

Lemma 5.9. Let P and Q be $l \times l$ matrices of class $S_{\rho, 8}^{m}(m>0)$. Assume that $\sigma(P)(x, \xi)$ and $\sigma(Q)(x, \xi)$ satisfy conditions (3.1) and (3.2) for $\zeta=0$ and are equally strong. Then, for parametrices P_{-1} of P and Q_{-1} of Q (which can be defined by (3.6), (3.7) and (3.16) by setting $\zeta=0$, c.f. also [6]), we have that $\sigma\left(P_{-1}\right)(x, \xi)$ and $\sigma\left(Q_{-1}\right)$ (x, ξ) are slowly varying and that

$$
Q P_{-1} \in S_{\rho, \delta}^{0} \text { and } P Q_{-1} \in S_{\rho, \delta}^{0}
$$

Proof. We expand for large N

$$
\sigma\left(Q P_{-1}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} \sigma(Q)^{(\alpha)}(x, \xi) \sigma\left(P_{-1}\right)_{(\alpha)}(x, \xi)+R_{N}(x, \xi)
$$

such that $R_{N}(\mathrm{x}, \xi) \in S_{\rho, \delta}^{0}$. Then, noting the form (3.14) and using (5.22) we see that $\sigma\left(Q P_{-1}\right)(x, \xi) \in S_{\rho, \delta}^{0}$. Analogously, using (5.13), we get $\sigma\left(P Q_{-1}\right)(x, \xi) \in$ $S_{\rho, \delta}^{0}$.

Theorem 5.10. Let P and Q be $l \times l$ matrices of class $S_{p, \delta}^{m}(m>0) . \quad$ Assume that $\sigma(P)(x, \xi)$ and $\sigma(Q)(x, \xi)$ are slowly varying and equally strong, and that P has complex powers P_{z}. Then, $Q P_{-1+t}(0 \leqq t \leqq 1)$ is Fredholm type as the L^{2}-operator, and we have

$$
\begin{equation*}
\text { index } Q=\text { index } Q P_{-1+t}=\text { index } Q P_{-1} \tag{5.24}
\end{equation*}
$$

Moreover we have

$$
\begin{equation*}
\text { index } Q=\text { index } Q_{0} \tag{5.25}
\end{equation*}
$$

where Q_{0} is defined by

$$
\sigma\left(Q_{0}\right)(x, \xi)=\psi\left(c^{-1} x, c^{-1} \xi\right) \sigma(Q)\left(\frac{c x}{\langle x\rangle}, \frac{c \xi}{\langle\xi\rangle}\right) \sigma(P)\left(\frac{c x}{\langle x\rangle}, \frac{c \xi}{\langle\xi\rangle}\right)^{-1}
$$

with the function $\psi(x, \xi)$ of (5.9) and a large fixed constant $c>0$, which is an elliptic operator of class $S_{1,0}^{0}$ and is slowly varying (c.f. [4]).

Proof. Set $\mathrm{P}_{t}{ }^{\prime}=Q P_{-1+t}$ and let Q_{-1} be a parametrix of Q. Then, $Q_{t}{ }^{\prime}=$ $P_{1-t} Q_{-1}$ is a parametrix of $P_{t}{ }^{\prime}$ and belongs to $S_{\rho, \delta}^{0}$. If we write $Q_{t}{ }^{\prime} P_{t}{ }^{\prime}=I+K_{t}{ }^{\prime}$, then by Lemma 1.6 we have $K_{t}{ }^{\prime} \in S^{-\infty}$. By Lemma 5.7 we have $P_{t}{ }^{\prime *}=P_{t}{ }^{\prime(*)}=$ $P_{-1+t}{ }^{(*)} Q^{(*)}$ and $Q_{t}{ }^{\prime(*)}=Q_{-1}{ }^{(*)} P_{1-t}{ }^{(*)}$ is a parametrix of $P_{t}{ }^{\prime(*)}$. Then, in the same way to the proof of Theorem 5.6, we get (5.24). By means of Lemma 1.5 we can write for large N

$$
\sigma\left(Q P_{-1}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} \sigma(Q)^{(\alpha)}(x, \xi) \sigma\left(P_{-1}\right)_{(\alpha)}(x, \xi)+r_{N}(x, \xi)
$$

such that $r_{N}(x, \xi) \in \dot{S}_{\rho, \delta}^{-(\rho-\delta)}$. Then, noting that

$$
\sigma(Q)(x, \xi)\left(\sigma\left(P_{-1}\right)(x, \xi)-\psi\left(c^{-1} x, c^{-1} \xi\right) \sigma(P)(x, \xi)^{-1}\right) \in S_{\rho, \delta}^{0(\rho-\delta)}
$$

and

$$
\sigma(Q)^{(\alpha)}(x, \xi) \sigma\left(P_{-1}\right)_{(\alpha)}(x, \xi) \in \grave{S}_{\rho, \delta}^{-(\rho-\delta)} \quad \text { for }|\alpha| \geqq 1
$$

we have

$$
\sigma\left(Q P_{-1}\right)(\mathrm{x}, \xi)=\psi\left(c^{-1} x, c^{-1} \xi\right) \sigma(Q)(x, \xi) \sigma(P)(x, \xi)^{-1}+R_{0}(x, \xi)
$$

where $R_{0}(x, \xi) \in \stackrel{\circ}{S}_{\rho, \delta}^{-(\rho-\delta)}$. Since by Lemma $1.6 R_{0}\left(x, D_{x}\right)$ is compact on L^{2}, we have index $Q P_{-1}=$ index $P_{0}{ }^{\prime}$, where $P_{0}{ }^{\prime}$ is defined by

$$
\sigma\left(P_{0}^{\prime}\right)(x, \xi)=\psi\left(c^{-1} x, c^{-1} \xi\right) \sigma(Q)(x, \xi) \sigma(P)(x, \xi)^{-1}
$$

Now consider a family of symbols

$$
\begin{aligned}
& \sigma\left(Q_{\varepsilon}\right)(x, \xi)=\psi\left(c^{-1} x, c^{-1} \xi\right) \sigma(Q)\left(\left(\frac{c}{\langle x\rangle}\right)^{1-\varepsilon} x,\left(\frac{c}{\langle\xi\rangle}\right)^{1-\varepsilon} \xi\right) \sigma(P) \\
& \quad\left(\left(\frac{c}{\langle x\rangle}\right)^{1-\varepsilon} x,\left(\frac{c}{\langle\xi\rangle}\right)^{1-\varepsilon} \xi\right) .
\end{aligned}
$$

It is easy to see that $\left\{\sigma\left(Q_{\varepsilon}\right)(x, \xi)\right\}_{0 \leq \varepsilon \leq 1}$ makes a bounded set in $S_{\rho, \delta}^{0}$ and $Q_{1}=P_{0}{ }^{\prime}$. Furthermore we have with a constant $C>0$

$$
C^{-1} \leqq\left|\operatorname{det} \sigma\left(Q_{\varepsilon}\right)(x, \xi)\right| \leqq C \quad \text { for large }|x|+|\xi| .
$$

As the regularizers for Q_{ε} we adopt operators $Q_{-\varepsilon}$ defined by $\sigma\left(Q_{-\varepsilon}\right)(x, \xi)=\psi$ $\left(c_{1}^{-1} x, c_{1}^{-1} \xi\right) \sigma\left(Q_{\varepsilon}\right)(x, \xi)^{-1}\left(\in S_{\rho, \delta}^{0}\right)$ for a large constant $c_{1}>0$. For a fixed $u \in L^{2}$ we wtite

$$
\begin{aligned}
& Q_{-\varepsilon} u-Q_{-\varepsilon_{0}} u=Q_{-\varepsilon}\left(1-\psi_{\delta}\right) u+\left(Q_{-\varepsilon} \psi_{\delta} u-\psi_{\delta} Q_{-\varepsilon} u\right) \\
& \quad+\psi_{\delta}\left(Q_{-\varepsilon}-Q_{-\varepsilon_{0}} u+\left(\psi_{\delta} Q_{-\varepsilon_{0}} u-Q_{-\varepsilon_{0}} \psi_{\delta} u\right)+Q_{-\varepsilon_{0}}\left(\psi_{\delta}-1\right) u,\right.
\end{aligned}
$$

where $\psi_{\delta}(x)=\psi(\delta x), \delta>0$, with a function $\psi(\xi)$ of (2.1). Then by Lemma 2.2 we have for any fixed $\delta>0$

$$
\left\|\psi_{\delta}\left(Q_{-\varepsilon}-Q_{-\varepsilon_{0}}\right) u\right\|_{0} \rightarrow 0 \text { as } \varepsilon \rightarrow \varepsilon_{0}
$$

and other terms tend to zero in L^{2} as $\delta \downarrow 0$ uniformly in ε. Hence we see that $Q_{-\varepsilon}$ is strongly continuous in L^{2} and by Lemma 5.4 we have
index $P_{0}{ }^{\prime}=$ index $Q_{\varepsilon}=$ index Q_{0}.
Q.E.D.

Osaka University

Bibliography

[1] S. Agmon: Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical Studies, Princeton, N. J., 1965.
[2] T. Burak: Fractional powers of elliptic differential operators, Ann. Scuola Norm. Sup. Pisa 22 (1968), 113-132.
[3] K.O. Friedrichs: Pseudo-differential Operators. An Introduction, Lecture Notes, Courant Institute, New York University, 1968.
[4] V.V. Grushin: Pseudo-differential operators on R^{n} with bounded symbols, Functional Anal. Appl. 4 (1970), 202-212.
[5] K. Hayakawa and H. Kumano-go: Complex powers of a sysetem of pseudo-differential operators, Proc. Japan Acad. 47 (1971), 359-364.
[6] L. Hörmander: Pseudo-differential operators and hypoelliptic equations, Singular Integrals, Proc. Symposia Pure Math. 10 (1976), 138-183.
[7] L. Hörmander: Fourier integral operators. I, Acta Math. 127 (1971), 79-183.
[8] L. Hörmander: On the index of pseudo-differential operators, Elliptishe Differential Gleichungen, Vol. II, Akademie-Verlag, Berlin (1971), 127-146.
[9] H. Kumano-go: Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo 17 (1970), 31-50.
[10] H. Kumano-go: On the index of hypoelliptic pseudo-differential operators on R^{n}, Proc. Japan Acad. 48 (1972), 402-407.
[11] P.D. Lax and L. Nirenberg: On stability for difference schemes; a sharp form of Gårding's inequality, Comm. Pure Appl. Math. 19 (1966), 473-492.
[12] M. Nagase and K. Shinkai: Complex powers of non-elliptic operators, Proc. Japan Acad. 46 (1970) ,779-783.
[13] L. Nirenberg: Pseudo-differential operators, Global Analysis, Proc. Symposia Pure Math. 16 (1968), 149-167.
[14] R.T. Seeley: Regularization of singular integral operators on compact manifolds, Amer. J. Math. 83 (1961), 265-275.
[15] R.T. Seeley: Complex powers of an elliptic operator, Singular Integrals, Proc. Symposia Pure Math. 10 (1967), 288-307.
[16] M.A. Šubin: Pseudo-differential operators in R^{n}, Soviet Math. Dokl. 12 (1971), 147-151.
[17] R. Vaillancourt: A simple proof of Lax-Nirenberg theorems, Comm. Pure Appl. Math. 23 (1970), 151-163.

