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Introduction.

Complex powers of a pseudo-differential operator have been defined by
Seeley [15] and Burak [2] for the elliptic case, and defined by Nagase-Shinkai
[12] and Hayakawa-Kumano-go [5] for a more general case containing semi-ellip-
tic operators.

In the present paper we shall construct complex powers of a hypoelliptic
system of pseudo-differential operators, and apply those powers to the generalized
Dirichlet problem and the index theory.

The plan of the paper is as follows. In Section 1 we describe well-known
results on the theory of pseudo-differential operators which has been developed
in Hérmander [6], [7], Kumano-go [9] and Grushin [4]. In Section 2 the strong
(or uniform) continuity and the analyticity of pseudo-differential operators with
respect to a parameter are examined by means of their symbols. In Section 3 we
construct complex powers P, of a hypoelliptic system P which belongs to a

subclass of Hérmander’s in [6], p. 164 (c.f. also Subin [16]).

Section 4 treats the generalized Dirichlet problem for an operator P which
admits complex powers P,. 'The Sobolev space H; p associated with P is defined,
and a subspace V' of Hj p is defined as the completion of C5(Q) in the norm of
H, p for an open set O of R”. We seek the solution of Pu=f for f& L*Q) in the
space V. Then, the Lax-Milgram theorem can be applied effectively.

Finally Section 5 is the supplement to the first author’s paper [10] where the
vanishing theorem of the index is proved when an operator P is slowly varying
in the sense of [4] and has complex powers.

We try here to reduce the index theory of a hypoelliptic operator Q of
order m to an elliptic operator of order O (studied in [4]) when the symbol
a(Q)(x, £) is equally strong to the symbol o(P)(x, £) of an operator P which
admits complex powers.

Throughout the present paper we shall treat strict algebras of pseudo-
differential operators, and investigate the topology of the symbol class precisely
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in Sections 2 and 3. The analyticity of complex powers P, with respect to z is
used essentially in order to determine the domain of the adjoint operator P¥.
The symbols of complex powers are defined by the Dunford integral for the
symbols of parametrices R(¢) for P—{I. We have to note that for a scalar operator
P we can give complex powers of P in the concrete form as in [12], if the ar-
gument of the symbol o(P)(x, &) is well defined. This fact is interesting when
we recall the proof of the vanishing theorem of the index by Seely [14] and Niren-
berg [13] for an elliptic operator on a compact manifold.

1. Notation and definitions

Let x=(x,, --+, x,,) be a point of the n-dimensional Euclidean space Rj;, and
let S denote the space of C~-functions which together with all their derivatives

decrease faster than any power of |x| :(i x3)/* as |x|—>co. By S%B4(0=8<p
=1

=<1) we denote the set of all C~-symblos p(x, £) in RjXx R} satisfying, for any
multi-index a=(a,, **+, t,,) and B=(B,, -**, B),

(L1) | pSgx, E) SC,p EY™P1o+1% on REX R}
for a constant C, g, wehre
(%, &) = 0tDop(x, £), 0f = Og}--0%:
Df = (i 0J0 x)sew+(—i 00 ), <E> = (1421 )"

and for a p(x, £)e S" ; we define a pseudo-differential operator P=p(x, D,), de-
noted also by P& S% 5, with the symbol o(P)(x, £) = p(«, &) by

Pu(x) = Seix-Ep(x, E)a(g)d;::v MES (.X"g = x1§1+'"+xn‘§n) )

where #(£) denotes the Fourier transform of u(x) which is defined by #(&)=fe™*"
u(x)dx, and 2¢=(2~)""dg. We set

§T=N8%(=0 S%.8), S%,5=US% .
For two pseudo-differential operators P and Q, P=(Q(mod S~) means that
o(P)(x, &) —a(Q) (%, E)E 555 -
For any real number s, we define a continuous operator A°: S—S by
neu) = [e=traeds.

It is easy to see that A° belongs to S§ , and can be extended uniquely to an ope-
rator of &’ into itself by the relation

<Nu, v> =<u, N°v)> forueS, ves.
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Let Hi={ucsS’; A*ucL¥R:)} be a Hilbert space provided with the
s-norm ||u||;=|| A\°ul||.2 for u H,, where ||-||;2 denotes the L?*-norm. We set

H .= UH,H.= NH;.

For a p(x, £) 8% 5, we define semi-norms | p|,, , by

(1.2) | £ |m,r = max sup {1 B (x, E) | KEYcmPiai+aiBny |

le+BIsk (%,

then, S’ ; makes a Fréchet space with these semi-norms.

DerFINITION 1.1, We say that a sequence {p;(x, £)}%-, of S ; converges to
a p(x, £) of 8%, in SP 5 weakly, if {p;(x, £)}75-, is a bounded set of S ; and

(1.3)  p;B(x, E)—pE(x, &) as j—oo uniformly on Ry x K

for any «, @ and any compact set K of R}. We denote it by

P D mpy P5 B) in ST, asjmce.

Remark. If (1.3) holds for a¢=/B=0, then, we have (1.3) for any « and .
In fact, if we use a well-known inequality

(14)  1F)1P=C max (1 £0)) fmax (1£0))+max (| 70D} [0, 1)

for any C*-function f(f) on [0, 1], then, setting f(£)=p;(x, E+ta)—p(x, E+ta)
for |a|=1, we get

2,9, E)—p(x, &) as j—co uniformly on Ry xX K,
and so we get

D%, E)—=pE(x, &) as j—oo uniformly on Rjx K
for any « and .

Lemma 1.2 (c.f. [7], p. 88). If a sequence {p;(x, £)}%5-, of S" s converges
to a p(x, &) of S5 in S 5 weakly, then, p (x, £)—p(x, E) as j—oo in the topology
of St for any m’>m.

Proof. We may assume p(x, £)=0. Then, the statement is clear from the
inequality

max sup {1 ;B (x, £)| gy~ ~Ploi+s1p1}

l@+BI<k (x, &

—(m/ -
< max sup {|p]§ (%, E) | (gD -pai+aiB)
1@ +BISk (o EREX

+ map  sup {1 p;8(x, E)|CEYOmP1=+81PD}Y max (E)T ™.

|@+BISk (x,£ERY x(Rg\K) gecRg\m
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DeriniTION 1.3. i) By S% ; we denote the set of all symbols p(x, &) for
which (1.1) holds for bounded functions C, g(x), instead of constants C, g, such
that

(1.5)  Cup(x) >0 as |x| > oo,
(We denote it also by p(x, D,)Eé’";,s).

ii) We say that a symbol p(x, £)(€S% ;) is slowly varying, when py(x, £) e
Sp388l for any B+0.

REMARK. In the inequality (1.4) we set f(£)=p(x, E4+27<E)fax) for || =1
(resp. p(x+27't<E>2B, £) for |B|=1). Then, we have (1.5) for |a|=1 (resp.
|B|=1) and so for any « and B, if (1.5) holds only for a=g8=0.

Lemma 1.4. For any p(x, £)=S" 5 and real s we have
(1.6)  [lp(x, DJulls <C | plmilltllssm  for uEHeipm,
where C and k are constants independent of p(x, £) and u.

Proof is omitted (c.f. Theorem 3.5 of [6] and Corollary 1 of Theorem 5.2
of [9]).

Lemma 1.5 (Grushin [4]). i) Let P€S% ; and QES”';,&. Then, we have
POESE™ and QPESTI™.

il) Let PES" s and Q< Sps.  Assume that P and Q are slowly varying, Then,
we have that PQ( S7t™) is slowly varying. Moreover, if we write PQ=Ry+ Ry
with

o(Ra)(x, ) = 33— oY E)o( Qo 8)
then we have
(17) RyeSpim-e-on

Proof. i) By Theorem 1.1 in [9] we have

(18)  o(PO)(x, )= [Dp"a(P)(w, g-+n) (Jer <> "oa(Q) (s, E)du)dn

for any even integer #,=n-+1. Then, writing for large R>0

[errecad> () (x-+, £)dw
— j'w'gRe-iw-v<w>"‘oa-(Q)(x+ﬂ), §)dw+g [gRe-iw.n<w>—n00_(Q)(x+w’ E)dw ,

lw

we can easily see that PQEg’ngm', and also get QP S’L"_;"" in the same way.
ii) By the similar way to i) we can see by (1.8) that PQ is slowly varying. If we
write
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#(Q)(x-+1, £) = o(Q)(x, 13w, Q-+, Er,

then, from (1.8) we have
o(R/) (%, £)
= [@oma(P) s, g4n)([eriercad (S| (@t tw, £ty duyd

= };S<Dn>”o(ian,.)a(1>) (x, f‘l"?)(Se'iw-ﬂ<w>-"oslo'(Q)( x+tw, E)dtdw)dy .

Since cr(Q)(])(x—l—tw £)—>0 as |x|—>oco together with all their derivatives,
we see that R, ES"‘“""“’ ®  If we use Taylor’s expansion of order N for

a(Q)(x+w,£), we get (1.7) for any N. Q.E.D.

Lemma 1.6. Let P belong to ,S")"z's. Then, P is compact from H.,, into Hy
for any s>5'.

Proof. We write ||Pu||/=|| A°Pul||_¢s_s’>> Then, by Lemma 1.5, we have
Q:/\‘PESO',‘i_‘;"‘. Take a Cg-function a(x) such that a(x)=1(|x|<1) and
a(x)=0 (|x| =2), and set Q,—a(éx)Q for 0<<é<<1. Then, noting | D3a(éx)| =
Cx>"'*" for a constant C, independent of & we see that {o(Q,) (¥, £)}r<e<:
makes a bounded set in S33™ and o(Q,)(x, £) > o(Q)(%, ) in the topology of
S3%™ because of QES”"'. Hence, we have

a(A"E1Q,) (x, £)—a(A*'P)(x, £) in the topology of Si ;™.

Since A-¢~*"Q,: H,,,,—H, is compact, we get by Lemma 1.4 that P: H,,,,—
Hy is compact. Q.E.D.

2. Topology of symbol class

Throughout what follows we shall often use a Cg-function Y+(£) such that

1(1E1=1)
(2.1) 0=Y(&)<1 and Y(§) = 0 (I£122).
Consider {yr(€£)}, 0<&<1. Then we have
0=<Vr(€£)<1 and (&) = {1 (1E1=€7)
(2.2) - - 0 (1&€1=2¢7)

|05 Yr(EE) | < ColE>™'™
for a constant C, independent of &, which means that

(2.3) 1lr(8’g‘)—> lin S§,as€—0.

Lemma 2.1 Let P,€S™,, j=1,2, -, and Q=S¥ .
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Suppose that for a P S ;
@4 oP) O o PnE)  in STy
Then we have

(P, E) ey o PO, E)  in SEF™

(2.5) mim/
a(QP))(, E) k)ff(QP)(x £ in S5

and

(2.6) o(P§)(x, &) (W?]:)o(P(*)) (%, &) in S%;,

where P*° is defined by

2.7y  (Pu,v) = (u, P®v)  for u,veS (c.L.[9], p. 36).

Proof. From Corollary 2 of Theorem 4.1 in [9] we see that o(P,;Q)(x, £)
and o(QP,)(x, £) are bounded in Sp2;™ and that o(P§¥)(x, ) is bounded in
S% 5. By means of Theorem 1.1 in [9] we have

o(P;0)(x, &)
_ S(D,,>"oa(P N, §+71)(Se"""”<w>"'o #(0) (x-+w, E)dw)dn

for any even integer n,=>n-+1. We write

o(P,Q)( )
= Dono® ) ) e o (©) (-t B

mISR

+|  @Omo(P ), Etn) e [e D s
miZR

<a(0) (x+w, £))dw)dn .

Then, if we take a large / such that the second term is absolutely integrable and
fix a large R, we see that

a(P;0)(x, £)—a(PQ)(x, &) on R;Xx K uniformly

for any compact set K of Ri. Hence we get the half part of (2.5). For o(QP;)
(%, £) we get the assertion in the same way. For o(P§*)(x, £) we use the formula

in [9];

o(P) (3, £) = | [y D ymo(P) (x4, £+ m)du)d,
and get (2.6).
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Lemma 2.2. Let P,eS%;,j=1,2,--. Suppose that

o(P)) (@, E) g o(P) (v, £) in %4 for a PEST,

Then, for any s, we have
(2.8)  |IPju—Pu||;—0(j—>c0) foruesH,,,, .
Proof. By Lemma 2.1 we have
o(A(P;—P))(x, E)M)O in S35™.
Then, using a function Jr(§) of (2.1), we have
IP ju—Pul|s=|| A*(P;—P)ull,
§”/\S(P]_"P)‘I’((?Dx)u”o"i_”/\S(PJ_P)(I—‘II‘(EDx))uHO .
By Lemma 1.4 we have

IA*(P;—PYWr(EDJull, <C | a(N*(P;—P)) (%, £) Y (EE) | s.m, | [l lsm

and

IA*(P;—P)(1—=Y(ED,)ully=C | a(A(P;—P)) (%, &) | sm, e [[(1—(ED )l ls4m -
Then, noting |a(A*(P;—P))(%, )Y (EE)| s+m,;—0 (j—>o0) for any fixed £€>0,
and

A= VAED Nl = [ 11— () 1B a(E) |

= Slslgg—l<§>2(s+m) |a(E)|2dE—-0 (6—-0),
we get (2.8). oED.

Lemma 2.3. Let P, 8% ; for x€Q (an open set of C). Suppose that o
(P,)(x, &) is an analytic function of = in Q in the topology of S™; 5.

Then we have, for any Q& S,
i) o(P,O)(x, £) and o(QP,)(x, £) are analytic functions of z in Q in the topology
of SPi™ for any Q& SP.
ily For uesHg,,,, P,uis an analytic function of z in Q in the topology of H,.

Proof is omitted.

3. Complex powers

DeFintTION 3.1.  For an /X! matrix P& .S" s(m>0) we say that operators
P,,zeC, (€S %;) are complex powers of P, when P, satisfy the following con-
ditions (c.f. [10]):

i)  For a monotone increasing function m(s) such that

m(s)—>— o0 (s> —c0), m(0) = 0, m(s)>co(s—>c0),
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we have P,& S7'{®#, where Re z denotes the real part of z.

i) P=I (1dent1ty operator), P =P (original operator).

iii) For any real s, o(P,)(x, £) is an analytic function of 2 (Re 2<s,) in the
topology of S5§'o.

iv) For any real s,

a(P;)(x, E) o‘(PsO) (%, &) in ST§’0

as s 1 s, along the real axis.
v) P, Pzz_leJr,z (mod S~=) in the sense:
o(P,P.,,—P, ..,) (% £) is an analytic function of 2, and 2, in the topology of
S35 for any real $oe

First we state a result obtained by Nagase-Shinkai [12] in a modified form
for our aim.

Theorem 3.2°. Let P=p(x, D,) be a single operator of class S 5. Assume
that the symbol p(x, E) satisfies conditions:
A) | p(x, E)| =cLED™ for constant ¢,>0 and T(0<<T<1),
B) (%, E)p(x, £)7H | <ca,pEDT TP

and

C) arg p(x, E)(the argument of p(x, £)) is well-defined

for large |E|. Then, for m(s)=7ms(s<0) and =ms(s=0), we can define complex
powers P, of P by

o(P,)(x, §)
=p(0, O {1+ 3 Chup2)p(x, £) PR, ) pER(x, D)},

l@|=|gl=k2

where p(x, £)*=e" 12 PO, a=(a', -+, a¥), B=(B", -+, B¥)

and Cy , ¢(2) are polynomials in 2.

Proof is given in [12] for, so called, A-elliptic operators. But, we can see
that the discussion there works in our case, if we note

|0:DEp(x, £)7+ p(x, £)%| SC, 4 p<CED P11 H0IE!

and
| p(x, £)7 pSgR(%, £)| SCai piKEY 1V j =1, .o k,
for large |£].
Our main theorem of this section is stated as follows.

Theorem 3.2. Let p(x, £)=(p;u(x, £)) be an I X | matrix of symbols p 1(x, E)
of class S' 5, m>0, such that for some positive constants C,,c,, Cy »p and 7(0<T
<1)

G.1)  MI(p(x, §)—LEN) 7= CLE>™™

and
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(32)  IpB(x, E)(p(x, E)—LI) | S C,y g p<ED- 1IN

for large |E| uniformly on E,, where ||+ || denotes a matrix norm and E,={;C;
dis (§,(—o0,0])<c,}. Then, we can construct complex powers P, = p (x, D,) of
P=p(x, D,) such that

(3.3) P,eSi%Re* for Re <0, Si¥e* for Re 320,
that is, m(s)=7ms for s<0, =ms for s=0.

RemARK. We may assume that p(x, £) satisfies conditions (3.1) and (3.2)
for every £. In fact, if we set p.(x, &)=p(x, £)+EY(€E)I for a C7-function
V(&) of (2.1), then, for a small fixed >0, p,(x, &) staisfies (3.1) and (3.2)
uniformly on &, for any £, and we have complex powers P, , of P,. Set P,=
P, .+%P—P,,,). Then, noting P=P, =P, ,, we get required powers of P.

For the proof of Theorem 3.2 we need several lemmas.

Lemma 3.3. Let §\(x,£), -+, §,(x, &) be eigen-values of p(x, §) which satisfies
(3.1) for £=0. Then, there exists a positive constant C, such that

(B4)  CIE™=L(x, ) =CLE™, j=1, -+, L.
Proof. We write
det (p(x, £)—E1) = (= 1) {E'+ - +q,(x E)F 74+, E)} -

Then, noting |g,(x, £)| =C<EX™, j=1, .-+, 1, for a constant C, we get easily
the right half of (3.4). The left half is proved in the same way, if we use
det (t;‘ll_P(x’ E)"‘):O’ ]=1! T l) and, “P(x: E)_lll §00<E>—Tm . Q.E.D.

Lemma 3.4. Let p(x, £)(ES% ;) satisfy conditions (3.1) and (3.2). Then,
for any A(>C,) we have

I(p(x, &)—ED)I=BIE| ™
on B, = {{EC; 5| =AKE™ or |§| 24T},

for a constant B, where C, is a constant of Lemma 3.3.

(3.5)

Proof. We write
det (pla, B)—tD)=(— 1Y TIE—E,(x )
By Lemma 3.3 we have
[§—E(x, &)
>{|§,-(x, E) =181 2CKE™— 81 2(4/Ci—1)|E] for [§] =ATKE™
18] —18(x, &) = [E] —CKE™=(1—C\/A)|E] for |F] = ALE™.
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Hence, we have
|det (p(x, £)—EI)| =C|E]’ on B 4 .

Noting [/(p(x, )—LD)l|Sconst. [£| for |£]ZAE™, we get [(p(x, )—LI)|
=B'|§|7 for |§| = AL
Using
E(p(x, £)—LD)™" = p(x, E)(E —p(% )7,
we have in the same way
I(B(x, &)= ED) I =Ip(x, E)INE ™ —p(x E)) 7N ]
SCLE™ETHE =B |G| for [§] =A7KE™.

Hence, we have proved (3.5) Q.E.D.
Now following Hormander [6], p. 165, we shall construct a parametrix for
p(x, £)—CI. We define ¢,(¢; , £),j=0, 1, ---, inductively by

(6 altsn = (o H—LD",
6N aGno=—{F 3 Lo oD 0-1Dat; % 8.

=0 1ei=w-; !

Lemma 3.5. Let p(x, £)€S% y(m>0) satisfy conditions (3.1) and (3.2).
Then, q,(8; x, ), j=0, 1, -+, defined by (3.6) and (3.7) are analytic functions of §
on B,V E¢ 4 and belong to S;7*~*~%7 for any fixed { €E,, moreover satisfy

(3.8)  lgo(&; % ENI=CKE>™,

(39) g, Bt %, BIISC, g o Ey-m-PIolaBI-0-0 (j=0, 1, )
uniformly on =,, and '

(3.10) lg(&; x ENI=ColE| ™,

(3.11)  lg;B(E; %, ENI=CT a6 0| TICED-PIITORIZR=0 (7=0,1, ),
(3.12)  lg;®(&; %, ENI=CaplC| - XEYm-PIHRI-C-DF (it |atB|+0),
(3.13)  lg; B % EN=CTaplf|EM-P1mtopI-=i - (j=1)

uniformly on 5, Eg 5.

Proof. The estimate (3.8) is clear by (3.1), and (3.9) is proved by induction
in view of (3.2). We write

(p(x, £)—81)" = £ {p(x, &) (p(x, £)—EN)'—1I} .

Then, from (3.1) and (3.2) we get (3.10) on E,, and by Lemma 3.4 we get on
Eg¢a. For |a|=1 we have

08¢, = —q.9tp-q9,  Dzg,=— q.Dzp-q,
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and so
(3.14) ¢ = 30 Crsi " piang,  4oD A o
where the summation is taken under the condition
1sk<|atBl, at-tat=a, Bretp=4.

Hence, using (3.1) we have (3.9), (3.11) and (3.12) for j=0. From (3.7) we can
see that ¢;(3) also have the form (3.14) and get (3.9), (3.11)—(3.13) in general.
Q.E.D.

Now we construct a parametrix 7({; x, D,)(€S:3") of p(x, D,)—¢I as
follows: Let (&) be a Cy-function in R} such that

(3.15) @(E)=0 (l&l=1) and @E)=1 (I£]=2),
and set as in Theorem 2.7 of [6]

(3.16) r(tsx E) = at3 % D+ 5 ('O, % §)
for an appropriate increasing sequence ,—>co. Then, by Lemma 3.5, we have

(3.17) ;% E)eS. 5 for LEE,,
and moreover we have

(3.18)  [Ir{B(&; x, E)| S Cy g<ED—m= 12142181 ynifomly on E,,
and

(3.19)  [IFR(E; x BISCplE | CE>-roreem,
(3.20) [Ir®(E; %, ENISCL | E|EPmPIOH3BL | 4B 40,
(3:21)  |Ir@(E; x, E)—qoiB(&; , E)| S CL| | ~KEDH - P-B-Piai+aIBI

uniformly on B,V E; ,.
Let A be a positive number of Lemma 3.4 such that 4-'<c, for a constant
¢, of Theorem 3.2, and let T'; 4 be a counterclockwisely oriented curve defined by

Teu = {LEC; |E] = AEY™ or = A7EY™, dis (¢5(— oo, 0) 24}
V {E — é‘]:l:lA_ly _R1§§1§_R2} )
where R, and R, are positive numbers satisfying
| =R, +id7"| = A<ED™ and | —R,+id™| = A7<E™

respectively. 'Then, we have

(3.22)

Lemma 3.6. For a complex number z we define symbols p,(x, &) by

(23) puw D)= 5|, CEm )L
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Then, for a function m(s)=7ms(s<<0) and=ms(s=0), we have 1)—iv) of Definition
3.1 for p.(x, &).

Proof. Since

PR ) =L o m par,
we have by (3.19)

13w Bll= Cxeemmal | jgyresicgy-menimar |

Then, estimating the cases: Re 2<<0 and Re 2>0 separately, and noting
Ds(%, E)— ps,(x, &) uniformly on Rzx K as s 15,

for any compact set K of R}, we have i) and iv). Next, we write
pln = L[ eaoar+ L] e —a@t.
Then, by (3.21) we see that the second term can be deformed to

o[ e —a)dr  whenRes<2,

T'ga

and vanishes for =0 and =1, where
(324) T,={teC;dis(§;(—,0])=47"}.

Hence, noting that the first term defines p(x, £)* we get ii) of Definition 3.1.
Since
2 b3
dz

we get the last assertion in the same way. Q.E.D.

(5 8) = 5ol Jog (T, ),

Lemma 3.7. Let R(§)=r({; x, D) EE,) be the parametrix of P=p(x, D,)
defined by (3.16). Then we have for {0,

(3:25)  R(EIR(E,) = (5.—E)H(R(E)—RE))+(E—E) K, )

where K(8,,L,)E S~ is a pseudo-differential operator with the symbol k(§,, ,; %, £)
which satisfies, for any real number s and multi-index «, 3,

(3.26)  [|RB(E1, Eo5 %, ENI=Claps| 61l M EITKEY .
Proof. For some K ({,), K,(£,) of class S~ we have
R(E,)(P—E.]) = I+ K(§,) and (P—EI)R(E,) = I+ K, () -
Then, we have

R(CI)R(CZ) (Cz_§1) = R(gz)-R(§1)+K(g1 ’ gz) ’
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where K(¢,, £,)=K,(£)R(E.)—R(&)K,(¢,). Hence, by (3.19) we have only prove
for symbols k,(¢;; x, &) of K (), j=1, 2,

(3.27)  [Ik;B(E 5 %, EN=Cjaps|L;17KEY for any a, B, 5.

By Theorem 1.1 of [9] we can write for any integer N
ky(&y; x, &) = o(R(E)(P—E. D)) (x, E)—1
(328) - E 1 6 r(§1’ X, E)D (P(x’ g) §11)+RN(C1’ X, ‘E) I

1RI<N o
—IN(CM X, E)""RN(En X, E) b}
where
Ryt 3, 8) = [<DoN 33 ([ (1—0v-01r(t,3 5, £+ tn)a)
(3.29) 1= oyl *Jo
- (ermrcay - pla-tw, &)t Dawyn

for any even number n,=n-+1. Using (3.16) and interchanging the order of
summation, we can write

Iy= 3] x gq,D"(p &)1
10]<H j+|@I<N ¢
pX H(@,(5)—1)g,)Dz(p—E.1)
16| <N ;+|w1<N

j=t

23— 0Upi(£)g;)Da(p—E.])

O <N ,+|m12N
N>j21

3 L 0%pE),)DAp—tD) =LA LA LA, .

X<V j=N

From (3.6) and (3.7) we have
(3.31) I,=0.

(3.30)

Using (3.12), we have
(3.32) 1|0t DEL||< const. <EX°|L,| ~(<EX™18,]) < comst. |E| TKE™
for any real number s, and

I03DELIIS const. |1,]=*CE>" PPN (CE™+ [, [CEm-mI+om)

(3.33) < const. |&,|I(EYM-P-ON=PIaI+3IBI

Similarly we have
(3.34) ||03DEL|| < const. |§,|TIKEYH M- P-DN-Plal+EIBl

Finally we have to estimate Ry({,; x, £) .
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Since
<D0 (L, %, E4-1n)) = 2 Cg, gt P2 Py Par (8 , E+1m)

1B, +Bol="y
and
T Prem i = (40, ) Piem i

integrating by parts we have only to estimate

({oueer(ts , £--0n) (om0t 2 oo (p--w, ©)— L))

{or+Per(C,s o, £ tn)(ﬁe—"wmazrﬂl(<w>-”o(p(x+w, §—&0)dw)} dn

5I”l|§<£>/2

{0y *Per (85 x. E-+-1m)

S!"l Z<E>/2
: (Se"'“"”<Dw>2’6”m“Bl(<W>“"°(P(x+W, §—Ed)dw)tdn=Jit ..

Then, noting C-(ED>ZE+t)SCLE) for a constant C>0 when |7| <{ED[2
and 0<#<1, we have by (3.20)

”]1(§1§ X, E)”é const. |§1| —2<E>m"MN+WD+”(<§>M+8N+ |Cl‘)
< const. |{,|IKEDHR-P-ON

Taking a large integer / we have

185 %, E)lI< comst. |§,| = EX™#+"((EDMHN 4 |E,])

< const. |§,|IEYmRA-DEREN
Hence, fixing / such as m—2I(1—8)+N <2m—(p—8)N, we have
RN (L5 %, E)|< const. |§,|CEYHn-P-N
and also have
(3.35)  IIRN(B(Ey; x, E)I< comst. | §,|TiCE PmHn-P- DN -plal+8IBl

Consequently from (3.28)—(3.35) we have (3.27) for j=1 for a large N, and for
J=2 analogously, which completes the proof. Q.E.D.

Proof of Theorem 3.2. Let P,=p,(x, D,) be operators defined by (3.23).
Then, by Lemma 3.6 we have i)-iv) of Definition 3.1. For the proof of v) we
consider the case: Re 2,<0, j=1, 2.

Set

I, = {{eC; dis (&, (—oo, 0]) = ¢,/2} ,
I, = {{eC;dis (&, (—ee, 0]) = ¢,/3} .
Then, by means of (3.19) and Lemma 3.7 we have

PP, u(x)
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= e 5{2”5 Enr(t,; x, s)dc,}P, u(E)dE

1
- 27t S r, 1 IR(?;I)P zzu(x)dgl

<z‘,17 )5 gf 2 2R(EIR(E, Ju(x)dE A,

1

— L[, e R,
7Tt
+< 1 )s S g,lg,wtzc&

27 .—0,

r,p2, K(81 Eo)u(*)
=P, .. u(x)+ <ZE> SPI S oK B gy gy,
Hence, we get iv) when Re 2,;<0, j=1, 2.
Next we consider P,P—P,,,. For any N, using (3.16), we write

oPP) w0 E) = 33 ., Dl )+l E)

= L{ DI LSI‘;,ACZQJ‘W)Pcmdé‘

27[1 |#| <N j+i@|<N (X!
1 2N
1Sy i< o) Srs'}‘ 0t (@ (8)—1)g;)pcmd?
iz
1 -
i jifaten o S e AC 0U 2, (E)4;)Padl
N>jz1
= 1 .
+|¢§N j=2_zv' al Spg’Ag 65(¢j(§)9j)?(¢)d§} +7. 5
=1 S AL LA LA+,
C 2mi

where 7, ,& STt 2= =N gnd, by the similar way to the estimation of Ry(,;
%, £) in the proof of Lemma 3.7, is an analytic function of z (Re 2<s,) in the to-
pology of Sp§fo+™-*=-HNfor any s,. Using (3.7) we have

N-1 &

1
11322 Z 'QJ P(as)

p=0 j=0 |aj=p-jC.

N-1

1
~E{E .3, o retat—uite)

=0

N -

=218qu.

=0

...

It is clear that sl’g I dt e S~=, and is an analytic function of 2 in the topology of
A

Sio; for any s,. By the similar way to the proof of Lemma 3.6, we see that
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S I'e t* I d¢ and S Ie &*I1dE belong to SpiRe®+m-P-5N and are analytic in 2
,A ,A

(Re 2<s,) in SPEF+™=@=ON for any 5,. Now we write

S e, dE 1l B)

1
Pz+1(x: "E) = % SFS,A 4

Then, by (3.11) we see that 7., y(x, £) belongs to S7§Re#*~®="N and is analytic
in 2 (Re 2<<s,) in Sp§fo™-®-HN for any 5,. Consequently we see, by taking large
N, that o(P,P—P,,,)(x, £) is analytic in 2 in the topology of S3% for any s,.
Then, we see that, for any positive integer k&,

O-(Psz—Pz+k)(x7 E)

= o((P,P—P,)P* ") (x, £)+++ +0(Prss-P—Poss) (%, )
is analytic in 2 in the topology of S3% for any s,. Hence, for any z, and z,, if
we fix a positive integer & such that Re z,—k<0, j=1, 2, then writing

lepzz_le+zz = le(Pzz'—Pzz—szZk)+(P21“le—kPk)Pzz—2kP2k
+Pzl—kPk(Pzz—zk_P—szz—k)PZk+le—k(PkP—k_I)Pzz—kP2k
+(Pzr‘szz—k_Pz1+zz—2k)P2k+(P;1+zz—2kP2k_Pz1+zz)

we see that o(P, P,,—P, . ,,) (%, £) is analytic in z, and 2, in the topology of S50,
for any s,. Thus the proof is complete. Q.E.D.

4. Generalized Dirichlet problem

Let p(x, £) be an I x ! matrix of symbols p;.(x, £) which satisfies the as-
sumption of Theorem 3.2, and let P,=p_(x, D,) be complex powers of P defined
there.

We define a Hilbert space H; p by
H,p= {ucH_.; PucL’

provided with the norm: [jull, p= {||Psu|[2+||D(D,)u|2}*”, where ®(£) is a fixed
function of S such that ®(£)>0 in R}.
Then we have

Theorem 4.1. For any real number s, there exist constants Cs and C;
such that

1) Cillullems = lulls,p < Csl [l ns for s=0,
(Cillullms < llulls,p < Col[tlrms for s<0 .
Proof. Noting P, S7*i(s=0), P,e S7"(s<<0) and &(D,) S, we have the

right halves of (4.1) by means of Lemma 1.4. For s=0 we write

[llems = [IA™ully = [IA™(P-Ps—K)ully
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where K;&S= which is defined by P_,P,=I+K,. Then noting A™P_,
€89 and A™K,eS5-", we have by Lemma 1.4

22l roms = | AT P o(Pstt)l o+ 1| A ™ Kl < C3' (|1 Pstel o+ 0] | ms ) -
On the other hand, for any £>0, there exists a constant C, such that
(12t s -1 < [l | s+ Cel |D(D )l

so, if we fix £>0 such that C;’,<<1/2, we have

5 e S CL(P a4 €| DDl
Hence, we have C}|[u||,pms=<|lulls p for s=0. Writing [lu||,,s=||A"(P_-P;—Kj)
ull,, we can also prove the statement for s<C0 in this manner. Q.E.D.
Lemma 4.2. Let P(€S% ;) be a formally self-adjoint in the sense
(Pu,v) = (u, Pv)  foru,veS,

and satisfy the condition of Theorem 3.2, and let P, be complex powers of P defined
there. Then, we have

4.2) P, =Pz (mod S~~),
where P,*(& 8% ;) is defined by
(Pu, v)=(u, P,*v)  foru,veS.

Proof. By the assumption it is clear that (P*¥)*>= P* for any positive
integer k. If we can prove

4.3) P, *®=P; for Re2<0,
then, by v) of Definition 3.1, it follows that for A(Re 2<<k)
P OO=(PyP,_)*® = P, ;0P 0= P;_,Py¥
=P;_f(P*)* = P;_P*=P;_,P,=P; (mod S~~).

Hence, we have only to prove (4.3). Let R (§{)=r({; x, D,) be the parametrix of
P—¢I. Since I=((P—EDR(E))*=R(§)*(P—EI), R(5)™ is the parametrix of
P—ZI. Now, using the path T, of (3.24), we have for u, v S

(P, ) = (o=t L[ £t w0008 Y@y, o)

1 2 B i
= ﬁgrog (R(g)u, v)d¢ ‘— Z—M.SPOQ‘ (u, R(E)*®0)dE
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= [ g RO .
Then we get
P, %y = 2%” ( Srogzmjdf)

— — L=t ([ o7 oE = anae,

T 2mi
so that we have

o(P, %) = — L(Spoé‘z,,(*)(g; X, g)dg) = Q%SFOCE,(*)(E; x, £)d¢ .

27t

Noting r*(&; x, £) is a parametrix of P—{I, we have (4.3). Q.E.D.

Theorem 4.3. Let L be an I X1 matrix of pseudo-differential operators of
class 8™ s(m>0), and set

P = (L+L®)2, 0 = (L—L*%)/2.

Assume that o(P)(x, £) satisfies the assumption of Theorem 3.2 and P_;QP _,& S} ;,
where P, is complex powers defined by Theorem 3.2. Then, there exist constants C
and \, such that

(44)  |(Lu, o) =Cllullypllolls,p  foru,0€S
and
(4.5)  Re (Lu,u)=|lull} p— A llulls  forusS.
RemARrk 1°. 1) Assume that Q=.S5;%. Then, we have
P_yOP_;.8;,;, since P S;7”.

ii) For the single case we assume that Re o(L)(x, £) satisfies

A) Re o(L)(x, &) ZcE™,

B)' |32D2r(L)(x, £)-(Re o(L)(x, £))"| Scu oCE)-"1o1 0P

and

C’) are Re o(L)(x, &) is well-defined

for large |£| instead of conditions A)-B) of Theorem 3.2°. Then, by using
the asymptotic expansion fomula of o(P,)(x, &), we can see that the operator L
satisfies the conditions of Theorem 4.3.

Remark 2°. The inequality (5.4) is a generalization of Garding’s inequa-
lity to hypoelliptic operators, which is different form [3], [9], [11], [17] where the
positivity as in A)’ is not assumed, but the space is limited to the usual Sobolev
space.

Proof of Theorem 4.3. We can write for u,ve S
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(Lu, v) = (Pu, v)+(Qu, v)

(4.6)
= (P, P{*0)+(P_4OP_y(Py), Py®v)+(Ku, v)

for some K&S™. Then, from Lemma 4.2 and the assumption P_;QP ;€ S; ,,
we have

(4.7)  |(Lu, v)| =Cllully pllolly,p for u, vE€S

for a constant C. On the other hand, using Lemma 4.2 again and noting
Re (Qu, u)=0, we have

(4.8)  Re (Lu, u) = (Pu, u)=lullf p—Nollull2
for a constant A,. Q.E.D.

Now, let V be the closure of Cg(Q) in Hj p for an open set Q of R}, and set

49) By, v] = (P, Pe¥o)+(P_QP_y(Pi), Pi%0)+ (K, v)-+ 7\, ©)
for u,vel .

Then, we have

Theorem 4.4 (Generalized Dirichlet problem). Let L be a matrix of
operators of class S"s 5 (m>>0) which satisfies conditions of Theorem 4.3. Then, for
any f € L*(Q), we can find a unique element uc V such that

(L+Nu=f inQ
for any N=\,, where \, is a constant determined in Theorem 4.3.
Proof. Consider B,[u, v] for u,v€V. Then, from (4.6)-(4.9) we have

| Bi[u, v]| = Cillully,pllollyp »
Re By[u, u]=||ull} p for u,vel .

(4.10) {

Then, by means of the Lax-Milgram theorem (see, for example, [1], p. 98), we
have a unique element &V such that

By[u, v] = (f, v) for any ve V.
In particular for v C7(Q) we have from (4.6) and (4.9)
B,[u, v] = (Lu, v)+\(u, v)
Hence, we have (L+A)u=fin Q. Q.E.D.

ReMARK. Consider a neighborhood U(x,) of a point x, on the boundary
80 of Q. Assume that 9Q is smooth and P is elliptic of order m, (>0) in U(x,)
in the sense
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|o(P) (%, £)| 2 CLE™,

(4.11) { _
|o(P)@(, £)| < Co p<EX™?1®1*818Lin U(x,)

for large |£|. Then, for any a(x)eC(U(x,)), we have
(4.12) ausH,,
and concerning the trace of au, we have
(4.13)  B)(au)|40 =0, 0= j<(m,—1)/2,
where 0, denotes the normal derivative for 0Q. In fact, we can write for some
Kes-~
au = aP _y(Pyw)+aKu = (aP _3; \¥") (N ¥ Pyw)+aKu .

Then, noting Pyue L* we have A ¥ Puec Hy, , and in view of (4.11) we have
aP_iA¥*»&Sp ;. Consequently we have (4.12), and noting supp uCQ, we get
(4.13).

ExampLE. Consider a single operator
L = a(x) A" +(1—a(x)) A™,
where m, m’(m>m’) are positive number and a(x) is a C~-function such that
a(x) = 0(|x| =1/2), = 1(|x]| =1), 0<a(x)<1(1/2< | x| <1)
and for a fixed o1
| Dza(x)/a(x)| =<C,| |x] — % | ~71%! for any « .

Then, setting 7=m’'/m, we can see that o(L)(x, £) satisfies A) and B) of Defini-
tion 3.2° for any 0<<8<1 and p=1, so that Theorem 4.3 is applied to this
operator L.

5. Index theory

First we describe results obtained in [10] with complete proofs. Let P be
a system of pseudo-differential operators of class S7' ;, which maps H_.. into
itself, more precisely H,.,, into H, boundedly for any real s.

Consider P as the closed operator of L(=H,) into itself with the domain
9(P) defined by

(5.1)  DP)= {ucL?; Pucl? .

Then, the adjoint operator P*: L*—L*? is defined as follows. For a veL? if
there exists g& L? such that

(5.2) (Pu,v)=(u,g) forany ucs9(P),
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we say that v belongs to the domain 9D(P*) of P* and define P*s=g. On the
other hand we have defined the formal adjoint P of class S ; by

(5.3)  (Pu,v) = (u, P*0) for any u, v S.
Then, considering P* as the closed operator L* into itself as above, we have
(54) DP®)= {vel’; P*vel?}.

Concerning P* and P we have

Lemma 5.1. Let P be a system of operators of class S 5. Then, as the
operator of L? into itself, the operator P*° is an extension of P¥*, so that we have

(5.5)  DP*)CDP*).
Proof. Assume ve 9(P*). Then, noting 9H(P)DS, we have
(u, P*v) = (Pu, v) = (u, P**v) .

In the above the right half is guaranteed, if we take a sequence v;(€S)—
v in L? and, considering # as an element of H,,, apply Lemma 1.4. Then, we
have P*v=P“*ye L?, which means that v& P(P*). Q.E.D.

Lemma 5.2. Let P(€S% ;) have complex powers P, in the sense of Defini-
tion 3.1. Then, we have, for any 2,€C, P, *>=P,* as the operator of L* into
itself.

Proof. By means of Lemma 5.1 we have only to prove
(5.6) (P.u,v) = (u, P, *0) for ue PP, ), ve PP, *) .

By i) of Definition 3.1 for a large N we have Pu€H g, ,, for uc 9(P, ) so,
using Lemma 1.4, we have
(Pu, P, *v) = (P,Pu, v) = (P.P,u, v)

5.7
5.7) +((P.,P.—P.P, )u, v) for uc D(P, ), ve D(P,*) (Re s<—N) .

From Lemma 2.3 and iii) of Definition 3.1 we have (P,u, P, *v) is analytic in
z when Re 2<0, and from Lemma 2.2 and iv) of Definition 3.1 we have
lim (P, P, *v)=(u, P, *v). Since P, uc L?, we also have that (PP, u, v) is
S»-0

analytic in 2 when Re 2<<0 and lim (P,P,,u, v)=(P,u, v). Setting 5,=0 in v)

of Definition 3.1 and writing P, P,—P,P, =(P, P,—P, ..)+(P,..—P.P,), we
can see that (P, P,—P,P, )u, v) is analytic in 2 and lim ((P,,P;— PP, )Ju, v)=0.
$5>-0

Then. letting 2——0 on the real line in (5.7), we get (5.6). Q.E.D.

Lemma 5.3. Let p,(x, &), j=0,1,2, -, be a sequence of slowly varying
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symbols of class S'hi; (resp. Sc';,',is) such that m; | — oo as j—>oo. Then we can con-
struct a slowly varying symbol p(x, E)E S™ s(resp. S"s s) such that

(58)  plx )2 p,(x, EST, resp. ST
and is slowly varying for any N (c.f. [4]).
Proof. Take C~-functions (&) and yr(x, &) such that
(5.9) {¢(E) =0(lE1=1), = 1(|£122),
Y(x, &) = 0(lx| + 161 =<1), = 1(|x| + £ 22).
Then, setting p(x, £)=p,(x, &)+ iq)(t;"g‘)\}r(t;“x, t7'E)p;(x, £) for an appropriate
t;—>oo(j—>o0), we get a required]:;mbol. Q.E.D.

Lemma 5.4 (c.f. Prop. 2.1 of [8]). Let {P,} e, be a family of operators
of class S" s such that o(P,)(x,£) is a continuous function of t in S% ;. Suppose
there exist two families {Q,},ero11 and {K,} iepo, 11 i1 S 5 such that Q,P,=I+K,, Q,
is strongly continuous in t, and K, is uniformly continuous in t and compact as opera-
tors from L? into itself. Then, it follows that

dim ker P,<<co and Re P, is closed
and that
index P,=dim ker P,~codim Re P,

is upper semi-continuous in t, where ker P, denotes the kernel of P, and Re P, denotes
the range of P,.

Proof. For ucker P, we have
0=0,Pu=u+t+Ku.

Then, we can easily see that dim ker P,<<co, sicne K, is compact. If we write
Li=ker P,® (ker P,)*, then, for the closedness of Re P, we have only to prove

(5.10)  |lullo<C,||Psull, for uc D(P,) A (ker P,

for a constant C,.
Assume that there exists a sequence {u,}%-, of D(P,) (ker P,)* such that
1=||u,||,=v||Pu,||,- Then, we have

0<~Q,Pu,=u,+Ku,.
Since K, is compact, by taking a subsequence we may assume that
K, — vin L? for ave L.

Then we have v&ker P, and consequently 0=(v, u,)—||||>=1, which derives
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the contradiction.
For the proof of the upper semi-continuity of index P, we first get the state-
ment:

(5.11) Ift,—t,€[0, 1], u,—>u, in L? P, u,—f, in L? then, P,u,=f,,

which means that the graph {(¢, », P,u) tel,ue 9(P,)} isclosed. Foranyve
H,, we have

(Prgtty, v) = (ty, P, *0) = hm (uy, P, F0) = 11m (P,v »» 0) = (fo, 9),
since u,—>u, in L? and P,v(*’v—>P(,2"v in L*=H by Lemma 1.4 and the continuity
of o(P,)(x, £) in S 5. Hence we get (5.11).

Now let W be a finite dimensional subspace of L? and set A,= {uc D(P,);
PucsW}. Then we can easily get

(5.12)  ||Pull,=C|lull, for u A,

for a constant C independent of &[0, 1].

Assume there exist sequences {t,}%-, and orthonormal systems {u{®, ---, u{"}
of A, for a fixed / such that ¢,—t,&[0, 1]. Then, writing Q, P, u{’=uj"+
(K, K,O)u P+K,us, j=1, ---, I, we may assume that K, u$’—v; and P, u—

w,€W for j=1,---,1 by laklng a subsequence, since K, is compact and
P, u €W (finite dimensional) with (5.12). Hence from (5.11) we have P, u;
=w; for u;=—v;4-Q,w;. It is clear that u,, -+, u, is orthonormal, which

means that dim A, is upper simi-continuous in 2. Then, for any W,c(Re P, )™,
we have

dim A, > lim dim A,=lim {dim ker P,+dim (Re P,) A W}

t>ty t>t,

= lim {dim ker P,+dim W,—dim (Re P,)"}.

t>ty

Since dim A= dim ker P, , this means that index P, = 11m inex P,. Q.E.D.

Theorem 5.5. Let P be an IX1 matrix of operators of class S y(m>0)
such that o(P)(x, &) satisfies conditions (3.1) and (3.2) for large |x|+ |E| uni-
formly on E,. Assume that o(P)(x, £) is slowly varying and that, for B0,
(3.2) holds with a bounded function C,,p(x) such as C, ,g(x)—0(|x|—>0c0).
Then, we can construct complex powers P, such that o(P,)(x, &) is slowly varying
and

(5.13)  0(P.,Poy—P,p1n) (3 E)ES™(= N S}y).

ReEMARK. We may assume that o(P)(x, £) satisfies (3.1) and (3.2) for every
x and £. In fact, for a Cy-function (x, £) such that 0<+y(x, £)<1, and (¥, £)
=1(|x|+&|=1),=0(|x|+ |E|<2), We set P,=P-&'vy(&x, ED,)], Then, for
a small fixed £,>0, o(P,)(x, £) satisfy conditions (3.1) and (3.2) for every x and
g, and has complex powers P, ,. Weset P,.=P, ,+z(P—P, ;). Then, noting
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P—P, ,=P—P, =&"v(Ewx, ED, )] es -, we see that P, are required powers.

gg,1

Proof. Instead r({; x, &) of (3.16) we consider, using functions (&) and ¥
(%, E) of (5.9),

(G14) 7855, 8) = a6 3 O+ 97OV, 17°,(E5 5, 6)

for an appropriate increasing sequence {¢;}%_,. Then, we may assume that

p(x, £) defined by (3.23) is slowly varying and that
(5.15)  o(P,)(x, £)—o(P) (x, £)° € SmRe 2-cP-0,

Now, for any N, we define R,, ,, y EShite st Re2y

by (Repen)(® §)= 2 i,,( P) P (%, §)o(Pe)a (%, §).  Then, by ii) of

<N
Lemma 1.5, we have

(5.16) P,P,—R, ., nE S‘.’mne 2)+mRe 2)-(P-ON

Noting o(P)(x, £)*10(P)(x, &)z = o(P)(x, £)"";, we have
(5.17)  o(R,, ., n) (%, E)—c(P)(x, E)* +zze§zu.(8Re 2)+(Rez)-(P-8)
Hence, if we write

(S_ma) lepzz_le+z2 = (lepzz_Rzl,zz,N)+(Rzl,zz,N‘Pz1+zy) )
then, using (5.16), (5.17) and (5.15) for 2=2,+=z,, we get (5.13). Q.E.D.

Theorem 5.6. Let P be an X1 matrix of operators of class S™ 5, m>0,
which are slowly varying. Assume that the symbol o(P)(x, £) satisfies conditions
(3.1) and (3.2) for large |x|+ |E| uniformly on =,. Then, the operator P as the
map from L? into itself with the domain 9 (P)= {ucsL?; Puc L*} is Fredholm type
and we have

(5.18) index P=dim ker P—codim Re P = 0.

Proof. Let P, be complex powers of P defined in Theorem 5.5. For
te[0, 1], consider {P,},c; and set Q,=P_,. Then, by iv) of Definition 3.1,
O, is strongly continuous in ¢ as L*-operators. Moreover, if we write Q,P,=
P_,P,=I+K,, then, by means of (5.13), K,E§‘°° and consequently, by Lemma
1.4 and Lemma 1.6, K, is uniformly continuous in ¢ and compact as operators
from L? into itself. Hence, we can apply Lemma 5.4 and we have that index P,
is upper semi-continuous in ¢. Now, using .Lemma 5.2, we note that ker P,=
(Re P,*)"=(Re P,*)", (Re P,)"=ker P,*=ker P,*®, so that index P,= — index
P*,  Since (P,P_,)*=P_, P, setting Q,=P_,*, we have also that index
P,“* is upper semi-continuous in #. Hence we get that index P, is continuous,
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so is constant in [0, 1]. Then, index P=index P,, t € [0, 1],=index /=0.
Q.E.D.

Lemma 5.7. Let P and O be X1 matrices of operators of class S 5 such
that P has complex powers P, and Q has the parametrix Q_,. Assume that QP _,
and PQ_, are of class S, 5. Then, for P,'/=QP_,,,, we have

(5.19) P,/*=P,/®,
Proof. We write
P,=PP_,,.,=(PQ_)P, (mod S~) and P,'=(QP_)P, (mod S-~),
then we can see that
(5.20) P,ueL?if and only if P,'uc L* foruc H _...
If we write, for some K&S~=, P,/=(QP_,)P,+K, then we have
(5.21) P,/ = P,*(QP_)*+K*

Now we assume that ve 9(P,'*), i.e.,, vEL? and P,”*ve L’. Since o(QP_))*
€S, s, by means of (5.21) we have

(OP_)*ve L? and P,*(QP_)*veL?.

Then, noting P,*’=P_* by Lemma 5.2, we have (QP_))*ve 9(P,*), so that,
for any ue 9(P,’), we have, noting uc 9(P,) by (5.20),

(u, P,/ ®0) = (u, P,"(QP_)*v)+(u, K*0)

= (P,u, (QP_))*v)4(u, K*v)

= (OP_,P,u, v)+(Ku,v) = (P,'u, v),

which means that v 9(P,’*). Hence, by Lemma 5.1 we have
P,/®=P,"*, Q.E.D.

DeFINITION 5.8.  For /x [ matrices P and Q of class S ; we say that o(P)
(%, £) and o(Q)(x, &) are equally strong, when they satisfy with each other

(5.22)  [lo(Q)B (%, E)a(P) (%, E)7||= Co p(x)<ED- 11 21P
and
(5.23)  [lo(P)B(x, £)o(Q) (%, E) = Cq p(x)<EDPI2IH2IBI

for large |x|+ |£|, where we assume that, for 8+0, C, g(x)—0 and C, g(x)—0
as |x|—oo.
Then we have
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Lemma 5.9. Let P and Q be I x I matrices of class S™ J(m>0). Assume that
a(P)(x, &) and o(Q)(x, ) satisfy conditions (3.1) and (3.2) for {=0 and are equally
strong. Then, for parametrices P_, of P and Q _, of Q (which can be defined by (3.6),
(3.7) and (3.16) by setting {=0, c.f. also [6]), we have that o(P_,)(x, £) and o(Q-,)
(x, &) are slowly varying and that

QP_,€S°,; and PQ_,€ S5,

Proof. We expand for large N
a(QP-)(x, &) = > — U(Q)”’(x E)a (P -1)car(%,E)+Ru(x, £)

such that Ry(x, £)eS;5 ;. Then, noting the form (3.14) and using (5.22) we see
that o(QP_,) (%, £)€ S, ;. Analogously, using (5.13), we get o(PQ_,)(x, £)E
o QE.D.

Theorem 5.10. Let P and Q be I X I matrices of class S"y s (m>0). Assume
that o(P)(x, £) and o(Q)(x, &) are slowly varying and equally strong, and that
P has complex powers P,. Then, QP_,,(0=t<1) is Fredholm type as the
L*-operator, and we have

(5.24) index Q = index QP_,,, = index QP _, .
Moreover we have

(5.25) index Q = index Q,,

where Q, is defined by

7(Qu) (%, £) = (™', 7 'E)or (Q)(< >’ <g>) ot )(<x> <E>>

with the function \r(x, £) of (5.9) and a large fixed constant ¢ >0, which is an elliptic
operator of class S3, and is slowly varying (c.f. [4]).

Proof. Set P,/=QP_,,, and let Q_, be a parametrix of Q. Then, Q,'=
P,_,Q-, is a parametrix of P,” and belongs to S; ;. If we write Q,'P,'=I+K,’,
then by Lemma 1.6 we have K,’S-~. By Lemma 5.7 we have P,’*=P,/*®=
P_ /0¥ and Q,/®=0_ P _* isa parametrix of P,/*. Then, in the
same way to the proof of Theorem 5.6, we get (5.24). By means of Lemma 1.5
we can write for large N

o(QP-)(x, &) = > — U(Q)"”’(x, E)o (P 1)car(%; E)F-7n(x, )

such that 7 (x, )‘;‘)ES o9~%. Then, noting that
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7(Q)(w, E)(@(P-) (3, )%, B (P) (s, ) ) = S8
and

a(OQ) (%, E)o(P-)m(x, E)E §;,‘8"5’ for || =1,
we have

o(QP-))(x, &) = Y(c7'x, c7'E)a(Q) (%, E)a(P) (%, §) '+ Ry(x, &),

where R(x, £)E S 2%-®  Since by Lemma 1.6 R(x, D,) is compact on L% we
have index QP_,=index P,’, where P,’ is defined by

o(Py))(%, &) = Y(c'x, cT'E)a(Q) (x, E)o(P)(x, §)7" .

Now consider a family of symbols

Q) B = ¥ B ((5) = (o55) £)oP)

g 3 G
(5) "= (5) o)

It is easy to see that {o(Q,) (%, &)} ,<.<, makes a bounded set in S; ; and Q,=P,’.
Furthermore we have with a constant C' >0

C < |deta(Q)(x, E)|=C for large |x|+|£E] .

As the regularizers for O, we adopt operators Q_, defined by o(Q_,)(x, &)=+
(¢,7'%, ¢,7'E)a(Q,) (x, E) (€ S; 5) for a large constant ¢,>0. For a fixed v L?
we wtite
Q—eu_Q-eo = Q-—e(l_ws)u'i_(Q—e‘l"Su“—\b‘sQ—eu)
+‘P8(Q—e—Q—eo)u"i—(\PBQ'Bou_Q‘eo‘!’su)_i_Q—eo(‘pB_ l)u ’
where yry(x) = Jr(8x), §>0, with a function Jr(§) of (2.1). Then by Lemma 2.2
we have for any fixed §>0 )
IWrs(Q-e—Q-e)ullo > 0 as &€ —¢&,,

and other terms tend to zero in L? as § | 0 uniformly in & Hence we see that
0., is strongly continuous in L? and by Lemma 5.4 we have

index P,/ = index Q, = index Q, . Q.E.D.
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