STRUCTURE PRESERVING GROUP ACTIONS ON STABLY ALMOST COMPLEX MANIFOLDS

Robert E. STONG

(Received June 2, 1972)

1. Introduction

Conner and Floyd in [1, 2] introduced the notion of periodic maps preserving a complex structure, applying bordism methods quite successfully. In a discussion with Gary Hamrick it became apparent that a somewhat weaker notion was also quite plausible, and the object of this note is to analyze this weaker structure.

Being given a manifold with boundary V and a differentiable action $\phi: G \times V \rightarrow V$, with G a finite group, the differential $d \phi: G \times \tau(V) \rightarrow \tau(V)$ induces a G action on the tangent bundle to V. Being given a real representation $\theta: G \times W \rightarrow W$ of G on a vector space W, one may form a G-bundle $W \times V \xrightarrow{\boldsymbol{\pi}} V$, where G acts by $\theta \times \phi$ on $W \times V$. Then the Whitney sum of $\tau(V)$ and the bundle π has a G-action given by $d \phi$ and θ. Thinking of $E(\tau(V) \oplus \pi)$ as identified with $E(\tau(V)) \times W$, the action is $d \phi \times \theta$.

A bundle map $J: \tau(V) \oplus \pi \rightarrow \tau(V) \oplus \pi$ which covers the identity map on V and such that $J^{2}=-1$ in the fibers gives $\tau(V) \oplus \pi$ a complex structure and if J commutes with the G action $d \phi \times \theta, \tau(V) \oplus \pi$ becomes a complex G-bundle over V.

If $\psi: G \times T \rightarrow T$ is a complex representation of G one may form the bundle $\bar{\pi}: T \times V \rightarrow V$ with G action given by $\psi \times \phi$, and if $i: T \rightarrow T$ is the function with $i^{2}=-1$ giving the complex structure, $\tau(V) \oplus \pi \oplus \bar{\pi}$ is a complex G bundle if G acts by $d \phi \times \theta \times \psi$ and the complex structure is $J \times i$.

A stably almost complex structure on $\left(V^{\prime}, \phi\right)$ preserved by G would then be an equivalence class of systems (W, θ, J), where two $\operatorname{such}(W, \theta, J)$ and $\left(W^{\prime}, \theta^{\prime}, J^{\prime}\right)$ are equivalent if there are complex representations (T, ψ, i) and $\left(T^{\prime}, \psi^{\prime}, i^{\prime}\right)$ so that $\tau(V) \oplus \pi \oplus \bar{\pi}$ and $\tau(V) \oplus \pi^{\prime} \oplus \bar{\pi}^{\prime}$ are equivalent complex G-bundles.

The boundary of V inherits a stably almost complex structure preserved by G for $\left.\tau(\partial V) \cong \tau(V)\right|_{\partial V} \oplus 1$ as G-bundles, where 1 is the trivial line bundle coming from the trivial representation of G.

It is clear that this differs from the Conner-Floyd approach in which (W, θ) and (T, ψ) are restricted to be trivial representations.

One may form bordism groups using the new structure preserving actions, which will be denoted $\omega_{*}^{U}\left(G, \mathscr{F}^{\prime}, \mathscr{F}^{\prime}\right)$ given by G actions preserving a complex structure which are \mathscr{F}-free and such that the boundary action is \mathscr{F}^{\prime}-free, where, $\mathscr{F}, \mathscr{F}^{\prime}$ are families in G as in Conner-Floyd [3]. The corresponding groups using the Conner-Floyd definition of "structure preserving" will be denoted $\Omega_{*}^{U}\left(G, \mathscr{F}, \mathscr{F}^{\prime}\right)$, and the forgetful homomorphism will be denoted by

$$
\rho: \Omega_{*}^{U}\left(G, \mathscr{F}^{\prime}, \mathscr{F}^{\prime}\right) \rightarrow \omega_{*}^{U}\left(G, \mathscr{F}, \mathscr{F}^{\prime}\right)
$$

The remainder of this paper will be devoted to analyzing $\omega_{*}^{U}\left(G, \mathscr{F}^{\prime}, \mathscr{F}^{\prime}\right)$ and ρ in the case when G is cyclic of prime order. Surprisingly, the cases $G=\mathrm{Z}_{2}$ and $G=Z_{p}$ with p odd are considerably different, which is not the case for the Conner-Floyd groups.

2. Structure preserving involutions

Now consider the special case $G=Z_{2}$, writing (V, ϕ) as (V, t) where t is the involution generating the Z_{2} action. There are three families for Z_{2}, the empty family ϕ, the family Free $=\{\{1\}\}$, and the family All of all subgroups. Letting $\omega_{*}^{U}\left(Z_{2}, \mathscr{F}\right)=\omega_{*}^{U}\left(Z_{2}, \mathscr{F}, \phi\right)$, the groups of interest are related by an exact sequence

where i, j are induced by inclusion of families and ∂ by taking the boundary.
First, to analyze $\omega_{*}^{U}\left(Z_{2}\right.$, All, Free), consider an involution ($\left.V, t\right)$ on an n dimensional manifold, with t acting freely on ∂V with J the complex operator on $\tau(V) \oplus k \oplus l$ with involution $d t \oplus 1 \oplus(-1)$, where k, l denote trivial bundles of dimensions k and l respectively.

The fixed point set of t in V is a disjoint union of closed submanifolds F^{n-q} of dimension $n-q$, with normal bundles ν_{q}. A neighborhood of the fixed set of t may be identified with the disjoint union of the disc bundles $D\left(\nu_{q}\right)$, and since t acts freely on the complement of this neighborhood, one may cut the remainder away up to cobordism.

Along F^{n-q}, the bundle $\tau(V) \oplus k \oplus l$ decomposes into the eigen-bundles of $d t \oplus 1 \oplus(-1)$ which are preserved by J, so that $\tau\left(F^{n-q}\right) \oplus k$, the +1 eigen-bundle, and $\nu^{q} \oplus l$, the (-1) eigen-bundle are complex bundles. Thus F^{n-q} is a stably almost complex manifold and ν_{q} is a q-plane bundle with a stable complex structure.

Letting B_{q} be the bundle over $B O_{q}$ induced from the fibration $B U \rightarrow B O$, the bundle ν_{q} is induced by a map into B_{q}. Thus one has:

Proposition 2.1. $\quad \omega_{n}^{U}\left(Z_{2}\right.$, All, Free $) \cong \underset{q=0}{\underset{\oplus}{\oplus}} \Omega_{n-q}^{U}\left(B_{q}\right)$.
The group $\Omega_{n}^{U}\left(Z_{2}\right.$, All, Free $) \cong \underset{q=0}{(n / 2)} \Omega_{n-2 q}^{U}\left(B U_{q}\right)$ and the restriction homomorphism ρ is induced by the obvious maps $B U_{j} \rightarrow B_{2 j}$.

The homology of the space B_{q} was computed in [4], and is torsion free, so $\Omega_{*}^{U}\left(B_{q}\right)$ is computable explicitly. Since the homomorphism $\Omega_{*}^{U}\left(B U_{j}\right) \rightarrow \Omega_{*}^{U}(B U)$ is a monomorphism onto a direct summand, and factors through ρ, one has:

Proposition 2.2. $\omega_{*}^{U}\left(Z_{2}\right.$, All, Free $)$ is a free Ω_{*}^{U} module and the restriction

$$
\rho: \Omega_{*}^{U}\left(Z_{2}, \text { All, Free }\right) \rightarrow \omega_{*}^{U}\left(Z_{2}, \text { All, Free }\right)
$$

is a monomorphism onto a direct summand.
Turning to $\omega_{*}^{U}\left(Z_{2}\right.$, Free), consider an involution (V, t) on an n-dimensional manifold, with t acting freely and with J the complex operator on $\tau(V) \oplus k \oplus l$ with involution $d t \oplus 1 \oplus(-1)$. By identifying x and $t(x)$ in V, one obtains the orbit space V / t and a quotient map $\pi: V \rightarrow V / t$, with V / t also being an n-dimen -sional manifold. Since $d t \oplus 1 \oplus(-1)$ covers t which is free, $d t \oplus 1 \oplus(-1)$ is free and the orbit space $E(\tau(V) \oplus k \oplus l) /(d t \oplus 1 \oplus(-1))$ may be indentified with the total space of the bundle $\tau(V / t) \oplus k \oplus l \xi$ where ξ is the line bundle associated with the double cover $\pi: V \rightarrow V / t$. Since J commutes with $d t \oplus 1 \oplus(-1)$, one has induced a complex structure on $\tau(V / t) \oplus k \oplus l \xi$ and a complex structure on $\tau(V) \oplus k \oplus l \xi$ induces a complex structure on $\tau(V) \oplus k \oplus l$, which is the bundle induced by π, commuting with the action.

Now $2 \xi \cong \xi \otimes_{R}$ C has a complex structure, so a complex structure on $\tau(V / t)$ $\oplus k \oplus l \xi$ is equivalent to a stable complex structure on $\tau(V / t)$ if l is even, or to a stable complex structure on $\tau(V / t) \oplus \xi$ if l is odd. Since the parity of l for V and ∂V is the same, $\omega_{*}^{U}\left(Z_{2}\right.$, Free $)$ decomposes into two direct summands, $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{+}$and $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{-}$for l even and odd respectively.

First considering $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{+}$, the class of V, if ∂V is empty, is completely determined by the stably almost complex manifold V / t with its double cover V. Hence $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{+} \cong \Omega_{*}^{U}(R P(\infty))$, by assigning to the class of V the class of the map $V / t \rightarrow R P(\infty)$ classifying the double cover. The homomorphism ρ sends $\Omega_{*}^{U}\left(Z_{2}\right.$, Free $)$ into $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{+}$and composing to $\Omega_{*}^{U}(R P(\infty))$ is the usual isomorphism for computing $\Omega_{*}^{U}\left(Z_{2}\right.$, Free).

For $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{-}$, one has a classifying map $V / t \stackrel{f}{\rightarrow} R P(\infty)$ with ξ induced from the canonical bundle λ over $R P(\infty)$. The tangent bundle of $\mathrm{D}(\xi)$, the disc bundle, is the pullback of $\tau(V / t) \oplus \xi$, so that $D(\xi)$ is a stably almost complex manifold. One then has the map $(D \xi, S \xi) \rightarrow(D \lambda, S \lambda) \rightarrow(T \lambda, *) \simeq(R P(\infty), *)$ where S is the sphere bundle and T is the Thom space, which defines a homomorphism from $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{-}$into the reduced bordism group $\widetilde{\Omega}_{*+1}^{U}(R P(\infty))$. By
applying transverse regularity arguments with $R P(\infty)$ considered as the Thom space of λ, one may reverse this process to recover V, so $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{-}$ $\cong \widetilde{\Omega}_{*+1}^{U}(R P(\infty))$.

Combining these results gives:
Proposition 2.3. $\omega_{*}^{U}\left(Z_{2}\right.$. Free $) \cong \Omega_{*}^{U}(R P(\infty)) \oplus \widetilde{\Omega}_{*+1}^{U}(R P(\infty))$ and ρ sends $\Omega_{*}^{U}\left(Z_{2}\right.$, Free $)$ isomorphically onto the first summand.

Note. The Smith homomorphism is much more reasonably defined in $\omega_{*}^{U}(Z$, Free $)$ than in Conner-Floyd's groups. Specifically, if (M, t) is a structure preserving involution, then splitting M gives a submanifold M^{\prime} invariant under t whose normal bundle in M is the trivial line bundle of the non-trivial representation. Thus the Smith homomorphism maps the summands $\omega_{*}^{U}\left(\mathrm{Z}_{2}, \text { Free }\right)^{+}$ and $\omega_{*}^{U}\left(\mathrm{Z}_{2}, \text { Free }\right)^{-}$into each other. In particular

$$
\Delta: \omega_{n}^{U}\left(\mathrm{Z}_{2}, \text { Free }\right)^{+}=\Omega_{n}^{U}(R P(\infty)) \rightarrow \omega_{n-1}^{U}\left(Z_{2}, \text { Free }\right)^{-}=\widetilde{\Omega}_{n}^{U}(R P(\infty))
$$

is the reduction homomorphism, and

$$
\Delta: \omega_{n}^{U}\left(Z_{2}, \text { Free }\right)^{-}=\widetilde{\Omega}_{n+1}^{U}(R P(\infty)) \rightarrow \omega_{n-1}^{U}\left(Z_{2}, \text { Free }\right)^{+}=\Omega_{n-1}^{U}(R P(\infty))
$$

is obtained by dualizing $\xi \oplus \xi$.
To compute $\omega_{*}^{U}\left(\mathrm{Z}_{2}\right.$, All $)$, one makes use of the exact sequence of the families. Being given a map $F^{n-q} \rightarrow B_{q}$ representing an element of $\omega_{n}^{U}\left(Z_{2}\right.$, All, Free), the bundle $\nu_{q} \oplus l$ is complex over F^{n-q} and hence $q+l$ is even. Thus along the boundary of $D\left(\nu_{q}\right), q+l$ must also be even, and the homomorphism

$$
\partial: \omega_{n}^{U}\left(\mathrm{Z}_{2}, \text { All, Free }\right) \rightarrow \omega_{n-1}^{U}\left(Z_{2}, \text { Free }\right)
$$

sends $\underset{q \text { odd }}{\oplus} \Omega_{n-q}^{U}\left(B_{q}\right)$ into $\omega_{n-1}^{U}\left(Z_{2}, \text { Free }\right)^{-}$and $\underset{q \text { even }}{\oplus} \Omega_{n-q}^{U}\left(B_{q}\right)$ into $\omega_{n-1}^{U}\left(Z_{2}, \text { Free }\right)^{+}$.
The diagram

commutes, and $\rho \partial$ is known to map onto $\widetilde{\Omega}_{n-1}^{U}(R P(\infty))$. The summand Ω_{n-1}^{U} complementary to $\widetilde{\Omega}_{n-1}^{U}(R P(\infty))$ is realized as the manifolds $M \times Z_{2}$ with M stably almost complex and t interchanging the two copies of M. Applying i and the augmentation $\varepsilon: \omega_{n-1}^{U}\left(Z_{2}\right.$, All $) \rightarrow \Omega_{n-1}^{U}$ which takes the cobordism class of the underlying manifold, one obtains $2[M]$. Thus i is monic on this summand and
the image of ∂ in $\omega_{n-1}^{U}\left(Z_{2}, \text { Free }\right)^{+}$is precisely $\widetilde{\Omega}_{n-1}^{U}(R P(\infty))$.
Now considering $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{-} \simeq \widetilde{\Omega}_{*+1}^{U}(R P(\infty))$, one notes that $\widetilde{\Omega}_{*}^{U}(R P(\infty))$ is generated as Ω_{*}^{U} module by the inclusion maps $R P(2 i+1) \rightarrow R P(\infty)$ which are obtained by Thomifying the inclusion $R P(2 i) \rightarrow R P(\infty)$, for which the induced double cover is the antipodal involution on $\mathrm{S}^{2 i}$. The complex structure imparted may be considered as that given by considering $\mathrm{S}^{2 i} \subset \mathrm{C}^{i+1}$, where C^{i+1} has the involution given by multiplication by -1 , and the complex stucture given by multiplication by $\sqrt{-1}$, imparting the appropriate structure to $\tau\left(S^{2 i}\right) \oplus 1 \oplus 1$. The same construction gives an involution on $D^{2 i+1} \subset \mathrm{C}^{i+1}$ with appropriate structure on $\tau\left(D^{2 i+1}\right) \oplus 0 \oplus 1$. Thus these classes are in the image of ∂, and since ∂ is a Ω_{*}^{U} module homomorphism, $\omega_{*}^{U}\left(Z_{2}, \text { Free }\right)^{-}$is contained in the image of ∂.

Thus one has compatible splittings for the sequences to obtain a commutative diagram

$$
\begin{aligned}
& 0 \rightarrow \Omega_{n}^{U} \rightarrow \Omega_{n}^{U}\left(Z_{2}, \mathrm{All}\right) \rightarrow \underset{q \text { even }}{\oplus} \Omega_{n-q}^{U}\left(B U_{q / 2}\right) \rightarrow \widetilde{\Omega}_{n-1}^{U}(R P(\infty)) \rightarrow 0 \\
& 1 \downarrow \\
& 0 \rightarrow \Omega_{n}^{\prime} \rightarrow \omega_{n}^{U}\left(Z_{2}, \mathrm{All}\right) \rightarrow \underset{q}{\oplus} \Omega_{n-q}\left(B_{q}\right) \rightarrow \widetilde{\Omega}_{n-1}^{U}(R P(\infty)) \oplus \widetilde{\Omega}_{n}^{U}(R P(\infty)) \rightarrow 0
\end{aligned}
$$

in which both ρ^{\prime} and $\rho^{\prime \prime}$ are monomorphisms onto direct summands, and 1 is the identity.

Rather than belabor the point further, one has:
Proposition 2.4. $\rho: \Omega_{*}^{U}\left(Z_{2}\right.$, All $) \rightarrow \omega_{*}^{U}\left(Z_{2}\right.$, All $)$ is a monomorphism.

3. Maps of odd prime period

Now consider the case $G=Z_{p}$ with p an odd prime, again writing (V, ϕ) as (V, t) where t is a diffeomorphism of period p. Again there are three families: ϕ, Free, and All and one has an exact sequence

$$
\omega_{*}^{U}\left(Z_{p}, \text { All, Free }\right)
$$

To begin, consider $\omega_{*}^{U}\left(Z_{p}\right.$, Free). If ($\left.V, t\right)$ is a free action of Z_{p} on an n-manifold with $d t \times s$ acting on $\tau(V) \oplus \pi$, where π is given by the representation (W, θ), then one may form the orbit space V / Z_{p} which is an n-manifold with $p r: V \rightarrow V / Z_{p}$ the projection. Since $d t \times s$ acts freely on $E(\tau(V) \oplus \pi)$, $E(\tau(V) \oplus \pi) / Z_{p} \rightarrow V / Z_{p}$ is a vector bundle and complex structures preserved by $d t \times s$ are given by complex structures on the quotient bundle.

Now (W, θ) may be decomposed by means of the irreducible representations
into a direct sum of subrepresentations W_{0}, which is trivial, and W_{k} for $1 \leq \mathrm{k} \leq$ $(p-1) / 2$ where W_{k} is a complex vector space in which s acts as multiplication by $\exp \left(\frac{2 \pi i k}{p}\right)$. In particular, $E(\pi) / Z_{p} \rightarrow V \mid Z_{p}$ is then the Whitney sum of a trivial bundle ξ_{0} with fiber W_{0} and the complex vector bundles ξ_{k} with fiber W_{k} associated with the p-fold cover $V \rightarrow V / Z_{p}$. Thus $E(\tau(V) \oplus \pi) / Z_{p}$ is the total space of the bundle $\tau\left(V / Z_{p}\right) \oplus \xi_{0} \oplus\left(\oplus \xi_{k}\right)$. Since $\left(\oplus \xi_{k}\right)$ has been given a complex structure, the complex structures on $\tau(V)$ preserved under the action are given precisely by stably almost complex structures on V / Z_{p}. Thus a structure preserving Z_{p} action is just a principal Z_{p} bundle over a stably almost complex manifold. Assigning to ($V, t)$ the map $V \mid Z_{p} \rightarrow B Z_{p}$ classifying the cover then defines an isomorphism of $\omega_{*}^{U}\left(Z_{p}\right.$, Free) with $\Omega_{*}^{U}\left(B Z_{p}\right)$. When applied to structure preserving actions of Z_{p} in the sense of Conner and Floyd, one also obtains an isomorphism and so one obtains:

Proposition 3.1 The restriction homomorphism $\quad \rho: \Omega_{*}^{U}\left(Z_{p}\right.$, Free $) \rightarrow$ $\omega_{*}^{U}\left(Z_{p}\right.$, Free $)$ is an isomorphism.

In the commutative diagram

it is known that the image of ∂^{\prime} is $\widetilde{\Omega}_{*}^{U}\left(B Z_{p}\right)$, and the composite

$$
\Omega_{*}^{U} \rightarrow \omega_{*}^{U}\left(Z_{p}, \text { Free }\right) \xrightarrow{i} \omega_{*}^{U}\left(Z_{p}, \text { All }\right) \xrightarrow{\varepsilon} \Omega_{*}^{U}
$$

is multiplication by p on the complementary summand, so the image of ∂ is precisely $\widetilde{\Omega}_{*}^{U}\left(B Z_{p}\right)$.

Thus one has a splitting, giving the diagram

$$
\begin{aligned}
0 \rightarrow \Omega_{*}^{U} \rightarrow \Omega_{*}^{U}\left(Z_{p}, \text { All }\right) \rightarrow \Omega_{*}^{U}\left(Z_{p}, \text { All, Free }\right) \rightarrow \tilde{\Omega}_{*}^{U}\left(B Z_{p}\right) \rightarrow 0 \\
\downarrow_{\Omega_{*}}^{U} \rightarrow \omega_{*}^{U}\left(Z_{p}, \text { All }\right) \rightarrow \omega_{*}^{U}\left(Z_{p}, \text { All, Free }\right) \rightarrow \widetilde{\Omega}_{*}^{U}\left(B Z_{p}\right) \rightarrow 0 .
\end{aligned}
$$

Now consider the group $\omega_{*}^{U}\left(Z_{p}\right.$, All, Free). Letting ($\left.V, t\right)$ be an action which is free on ∂V, the fixed point set of V is a disjoint union of closed submanifolds F^{n-q} with normal bundles ν_{q} and V may be replaced by the disc bundles of the ν_{q}. At points of F^{n-q}, the bundle $\tau \oplus \pi$ decomposes into $\tau\left(F^{n-q}\right) \oplus \xi_{0}$, where ξ_{0} is the trivial bundle of W_{0}, which is the trivial eigen-bundle, and bundles $\left(\nu_{q}\right)_{k} \oplus \xi_{k}$, where ξ_{k} is the trivial bundle with fiber W_{k} and $\left(\nu_{q}\right)_{k}$ is a sub-bundle
of $\nu_{q} \mid F^{n-q}$, giving the eigen-bundle corresponding to multiplication by $\exp \left(\frac{2 \pi i k}{p}\right)$
for $1 \leq k \leq(p-1) / 2$. Considered as a complex Z_{p} bundle, the bundle $\tau \oplus \pi$ decomposes into complex sub-bundles η_{0}, the trivial eigen-bundle, and $\eta_{j}, 1 \leq \mathrm{j} \leq p-1$ on which $d t \times s$ acts as multpilication by $\exp \left(\frac{2 \pi i j}{p}\right)$. Taking the parts of the complex decomposition which give the real decomposition, one has $\eta_{0} \cong \tau\left(F^{n-q}\right) \oplus \xi_{0}$. so F^{n+q} is stably almost complex, and $\left(\nu_{q}\right)_{k} \oplus \xi_{k} \cong \eta_{k} \oplus \eta_{j}$ where $(p-1) / 2 \leq j \leq p-1$ and $\exp \left(\frac{2 \pi i j}{p}\right)$ is the complex conjugate of $\exp \left(\frac{2 \pi i k}{p}\right)$, or $j=p-k$.

After stabilization, the bundles η_{k} and η_{p-k} are stable complex bundles subject only to the condition that $\eta_{k} \oplus \eta_{p-k}$ should be stably isomorphic as complex bundle with $\left(\nu_{q}\right)_{k}$. Thus, the class of (V, t) is completerly determined by the bordism classes $F_{(r)}^{n-q} \rightarrow B U_{r_{1}} \times B U \times \cdots \times B U_{r_{(p-1 / 2)}} \times B U$ where $r_{1}+\cdots+r_{(p-1 / 2)}$ $=q / 2$, where $F_{(r)}^{n-q}$ are the portions of F^{n-q} over which $\left(\nu_{q}\right)_{k}$ has real dimension $2 r_{k}$, the map into $B U_{r_{k}}$ classifying $\left(\nu_{q}\right)_{k}$, and that into the k-th $B U$ factor classifying η_{k}. Thus, one has

Proposition $3.2 \omega_{n}^{U}\left(Z_{p}\right.$, All, Free $)$ is isomorphic to

$$
\underset{(r)}{\oplus} \Omega_{n-2 r}^{U}\left(B U_{r_{1}} \times B U \times \cdots \times B U r_{(p-1 / 2)} \times B U\right),
$$

the sum being over all sequences $(r)=\left(r_{1}, \cdots, r_{(p-1 / 2)}\right)$ of non-negative integers, and with $r=r_{1}+\cdots+r_{(p-1 / 2)}$.

In order to analyze $\rho: \Omega_{n}^{U}\left(Z_{p}\right.$, All Free $) \rightarrow \omega_{*}^{U}\left(Z_{p}\right.$, All, Free $)$,one may simply note that analogously $\Omega_{n}^{U}\left(Z_{p}\right.$, All, Free $)$ is isomorphic to

$$
\underset{(s, t)}{\oplus} \Omega_{n-2 r}^{U}\left(B U_{s_{1}} \times B U_{t_{1}} \times \cdots \times B U_{s_{(p-1 / 2)}} \times B U_{t(p-1 / 2)}\right)
$$

where $\frac{q}{2}=r=s_{1}+\cdots+s_{(p-1 / 2)}+t_{1}+\cdots+t_{(p-1 / 2)}$ and the map of $F_{(s, t)}^{n-q}$ into $B U_{s_{k}}$ classifies η_{k} and into $B U_{t_{k}}$ classifies η_{p-k}, with $\left(\nu_{q}\right)_{k} \cong \eta_{k} \oplus \eta_{p-k}$ in this case. The map ρ is then induced by the maps $\bigcup_{s_{k}+t_{k}=r_{k}} B U_{s_{k}} \times B U_{t_{k}} \rightarrow B U_{r_{k}} \times B U$ given by the Whitney sum map $B U_{s_{k}} \times B U_{t_{k} \rightarrow B U_{r_{k}}}^{\stackrel{s_{k}+t_{k}=r_{k}}{ }}$ and by $B U_{s_{k}} \times B U_{t_{k}} \xrightarrow{p r} B U_{s_{k}} \xrightarrow{\sigma} B U$ where $p r$ is the projection and σ is stabilization.

One may then observe that ρ is anything but monic, for many summands in $\Omega_{n}^{U}\left(Z_{p}\right.$, All, Free) map to the same summand in $\omega_{n}^{U}\left(Z_{p}\right.$, All, Free). (One need only look at the terms with $n=2 r$ in which many copies of Z map to a single copy of Z). Since, by the commutative diagram, the kernels of the homomorphisms $\rho: \Omega_{n}^{U}\left(Z_{p}\right.$, All, Free $) \rightarrow \omega_{n}^{U}\left(Z_{p}\right.$, All, Free $)$ and $\rho: \Omega_{n}^{U}\left(Z_{p}\right.$, All $) \rightarrow \omega_{n}^{U}\left(Z_{p}\right.$, All $)$ are isomorphic, one sees that $\rho: \Omega_{n}^{U}\left(Z_{p}\right.$, All $) \rightarrow \omega_{n}^{U}\left(Z_{p}\right.$, All $)$ is also not monic.

The homomorphism ρ is also not epic, for the map
$\underset{s_{k}+t_{k}=r_{k}}{U} B U_{s_{k}} \times B U_{t_{k} \rightarrow} \rightarrow B U_{r_{k}} \times B U$ factors through $B U_{r_{k}} \times B U_{r_{k}}$. One can, of course, compute $\rho: \Omega_{n}^{U}\left(Z_{p}\right.$, All, Free $) \rightarrow \omega_{n}^{U}\left(Z_{p}\right.$, All, Free $)$ explicitly since the groups and map are completely known, but it hardly seems worthwhile,.

As a final note, one should consider the reason why the Z_{2} and Z_{p} cases, p odd, are so different. Clearly the problem is the dissimilarity between the nature of real representations in the two cases. In studying $\Omega_{*}^{U}(G, *, *)$ only the complex representations really play a role, while in $\omega_{*}^{U}(G, *, *)$ both types enter.

University of Virginia

References

[1] P.E. Conner and E.E. Floyd: Cobordism theories, (mimeographed), A.M.S. Seattle Conference, 1963.
[2] P.E. Conner and E.E. Floyd: Periodic maps which preserve a complex structure, Bull. Amer. Math. Soc. 70 (1964), 574-579.
[3] P.E. Conner and E.E. Floyd: Maps of odd period, Ann. of Math. 84 (1966), 132 -156.
[4] R.E. Stong: On the cobordism of pairs, Pacific J. Math. 38 (1971), 803-816.

