ON THE FREE QUADRATIC EXTENSIONS OF A COMMUTATIVE RING

Kazuo KITAMURA

(Received May 24, 1972)

Let R be a commutative ring with unit element 1 . A quadratic extension of R is an R-algebra which is a finitely generated projective R-module of rank 2. Let $Q(R)$ be the set of all R-algebra isomorphism classes of quadratic extensions of R, and $Q_{s}(R)$ the set of all R-algebra isomorphism classes of separable quadratic extensions of R. In [2], it was shown that the product in $Q_{s}(R)$, in the sense of [1], [4] and [5], is extended to $Q(R)$, and $Q(R)$ is an abelian semigroup with unit element. In this note, we study the quadratic extensions of R which are free R-modules. We shall call them the free quadratic extensions of R. Let $Q_{f}(R)$ and $Q_{f s}(R)$ be the sets of all classes which are free R-modules in $Q(R)$ and $Q_{s}(R)$, respectively. We shall show that $Q_{f}(R)$ is an abelian semigroup with unit element, and $Q_{f s}(R)$ is an abelian group consisting of all invertible elements in $Q_{f}(R)$. For some special rings, we shall determine the structures of $Q_{f}(R)$ and $Q_{f s}(R)$. We remark that $Q_{f s}(R), Q_{s}(R)$ and $\operatorname{Pic}(R)_{2}$; the group of isomorphism classes [U] of R-module U such that $U \otimes_{R} U \cong R$, are closely related by the exact sequence $0 \rightarrow Q_{f s}(R) \rightarrow Q_{s}(R) \rightarrow \operatorname{Pic}(R)_{2}$.

Let R be any commutative ring with unit element 1 . For a free quadratic extension S of R, we can write $S=R \oplus R x$ and $x^{2}=a x+b$ for some a, b in R, then we denote it by $S=(R, a, b)$, and by $[R, a, b]$ the R-algebra isomorphism class containing (R, a, b).

Lemma 1. The following two conditions a) and b) are equivalent;
a) $(R, a, b) \cong(R, c, d)$ as R-algebras,
b) there exist an invertible element α in R and an element β in R such that $c=\alpha$ $(a-2 \beta)$ and $d=\alpha^{2}\left(\beta a+b-\beta^{2}\right)$.

If (R, a, b) and (R, c, d) satisfy a) or $b)$, then we have
c) $c^{2}+4 d=\alpha^{2}\left(a^{2}+4 b\right)$ for some invertible element α in R.

Moreover, if 2 is invertible in R, then we have the converse.
Proof. $\quad a) \rightarrow b): \quad$ Let $\sigma:(R, a, b)=R \oplus R x \rightarrow(R, c, d)=R \oplus R y$ be an R-algebra isomorphism, and set $\sigma(x)=\alpha y+\beta$ and $\sigma^{-1}(y)=\alpha^{\prime} x+\beta^{\prime}$. Sinec $y=\sigma \cdot \sigma^{-1}$ $(y)=\alpha^{\prime} \alpha y+\alpha^{\prime} \beta+\beta^{\prime}$, we have $\alpha^{\prime} \alpha=1$, that is, α and α^{\prime} are invertible. The equalities $(\sigma(x))^{2}=(\alpha y+\beta)^{2}=\alpha(\alpha c+2 \beta) y+\alpha^{2} d+\beta^{2}$ and $\sigma\left(x^{2}\right)=\sigma(a x+b)=\alpha a y$
$+b+\beta a$ imply that $\alpha c+2 \beta=a$ and $\alpha^{2} d+\beta^{2}=b+\beta a$. Then we have $c=\alpha^{\prime}(a-$ 2β) and $d=\alpha^{\prime 2}\left(\beta a+b-\beta^{2}\right)$.
$b) \rightarrow a)$: Define a mapping $\sigma:(R, a, b)=R \oplus R x \rightarrow(R, c, d)=R \oplus R y$ by $\sigma(x)=\alpha^{-1} y+\beta$, then σ is an R-algebra isomophism.
$b) \rightarrow c)$ is obvious. If 2 is invertible, setting $\beta=\frac{1}{2}\left(a-\alpha^{-1} c\right)$, we see that $c)$ implies b).

The following lemma is well known.
Lemma 2. (R, a, b) is R-separable if and only if $a^{2}+4 b$ is invertible in R.
We shall define a product in $Q_{f}(R)$ by $[R, a, b] \cdot[R, c, d]=\left[R, a c, a^{2} d+b c^{2}\right.$ $+4 b d]$. From the following Lemma 3, it is easily seen that $Q_{f}(R)$ is an abelian semigroup with unit element $[R, 1,0]$.

Lemma 3. (Lemma 3 in [2]). If $(R, a, b) \cong\left(R, a^{\prime}, b^{\prime}\right)$ and $(R, c, d) \cong(R$, $\left.c^{\prime}, d^{\prime}\right)$ are isomorphisms as R-algebras, then so is $\left(R, a c, a^{2} d+b c^{2}+4 b d\right) \cong\left(R, a^{\prime} c^{\prime}\right.$, $\left.a^{\prime 2} d^{\prime}+b^{\prime} c^{\prime 2}+4 b^{\prime} d^{\prime}\right)$.

A separable quadratic extension S of R has a unique automorphism $\sigma=\sigma$ (S) of S such that $S^{\sigma}=\{\mathrm{x} \in S ; \sigma(x)=x\}=R$. In [1], [4] and [5], the product $S_{1} \star S_{2}$ of separable quadratic extension S_{1} and S_{2} of R was defined as the fixed subalgebra $\left(S_{1} \otimes_{R} S_{2}\right)^{\sigma_{1} \otimes \sigma}$, where $\sigma_{i}=\sigma\left(S_{i}\right)$.

Lemma 4 (Proposition 4 in [2]). Let (R, a, b) and (R, c, d) be separable quadratic extensions of R. Then qwe have $[R, a, b] \cdot[R, c, d]=[(R, a, b) \star(R, c, d)]$.

Theorem 1. An element $[R, a, \dot{d}]$ of $Q_{f}(R)$ is invertible if and only if $[R$, $a, b]$ is contained in $Q_{f s}(R)$. Therefore, $Q_{f s}(R)$ is the set of all invertible elements in $Q_{f}(R)$. It is an abelian group of exponent 2.

Proof. Let $[R, a, b]$ be any element of $Q_{f s}(R)$. By Lemma 2, $a^{2}+4 b$ is invertible in R. Set $\alpha=\left(a^{2}+4 b\right)^{-1}$ and $\beta=-2 b$, then we have $\alpha\left(a^{2}-2 \beta\right)=1$ and $\alpha^{2}\left(\beta a^{2}+\left(2 a^{2} b+4 b^{2}\right)-\beta^{2}\right)=0$, hence we have $\left(R, a^{2}, 2 a^{2} b+4 b^{2}\right) \cong(R, 1,0)$ by Lemma 1. Since $[R, a, b]^{2}=\left[R, a^{2}, 2 a^{2} b+4 b^{2}\right]$, we have $[R, a, b]^{2}=[R, 1,0]$, so $[R, a, b]$ is invertible in $Q_{f}(R)$. Conversely, we assume $[R, a, b] \cdot[R, c, d]=[R$, $1,0]$, then we have $1=\alpha^{2}\left\{(a c)^{2}+4\left(a^{2} d+b c^{2}+4 b d\right)\right\}=\alpha^{2}\left(a^{2}+4 b\right)\left(c^{2}+4 d\right)$ for some invertible element α in R. Thus, $a^{2}+4 b$ is invertible in R, therefore, $[R, a, b]$ is contained in $Q_{f s}(R)$.

Theorem 2. Let $\left\{R_{\lambda} ; \lambda \in \Lambda\right\}$ be a family of commutative rings with unit elements, and $R=\prod_{\lambda \in \Lambda} R_{\lambda}$ a direct product of $\left\{R_{\lambda} ; \lambda \in \Lambda\right\}$. Then we have isomorphisms $Q_{f}(R) \cong \prod_{\lambda \in \Lambda} Q_{f}\left(R_{\lambda}\right)$ and $Q_{f s}(R) \cong \prod_{\lambda \in \Lambda} Q_{f s}\left(R_{\lambda}\right)$ by correspondence $\left[R, \prod_{\lambda \in \Lambda} a_{\lambda}, \prod_{\lambda \in \Lambda} b_{\lambda}\right]$ $\stackrel{f}{\mapsto} \prod_{\lambda \in \Lambda}\left[R_{\lambda}, a_{\lambda}, b_{\lambda}\right]$.

Proof, Let $\left(R, \prod_{\lambda \in \Lambda} a_{\lambda}, \prod_{\lambda \in \Lambda} b_{\lambda}\right) \cong\left(R, \prod_{\lambda \in \Lambda} c_{\lambda}, \prod_{\lambda \in \Lambda} d_{\lambda}\right)$. Then, there exist $\alpha=\prod_{\lambda \in A} \alpha_{\lambda}$
and $\beta=\prod_{\lambda \in \Lambda} \beta_{\lambda}$ such that α is invertible in $R, \Pi c_{\lambda}=\alpha\left(\Pi a_{\lambda}-2 \beta\right)$ and $\Pi d_{\lambda}=\alpha^{2}(\beta$ $\left.\Pi a_{\lambda}+\Pi b_{\lambda}-\beta^{2}\right)$. It is equivalent to existence of α_{λ} and β_{λ} in R_{λ} such that α_{λ} is invertible, $c_{\lambda}=\alpha_{\lambda}\left(a_{\lambda}-2 \beta_{\lambda}\right)$ and $d_{\lambda}=\alpha_{\lambda}{ }^{2}\left(\beta_{\lambda} a_{\lambda}+b_{\lambda}-\beta_{\lambda}{ }^{2}\right)$ for all $\lambda \in \Lambda$, namely, $\prod_{\lambda \in \Lambda}\left(R_{\lambda}, a_{\lambda}, b_{\lambda}\right) \cong \prod_{\lambda \in \Lambda}\left(R_{\lambda}, c_{\lambda}, d_{\lambda}\right)$. Thus f is injective. It is clear that f is an epimorphism. Therefore, we have an isomorphism $Q_{f}(R) \cong \prod_{\lambda \in \Lambda} Q_{f}\left(R_{\lambda}\right)$ as semigroups, so we have the isomorphism $Q_{f s}(R) \cong \prod_{\lambda \in \Lambda} Q_{f s}\left(R_{\lambda}\right)$ as groups by Theorem 1 .

Let $U(R)$ be the unit group of a ring R, and $U^{2}(R)$ the set $\left\{u^{2} ; u \in U(R)\right\}$. We define a relation \sim in R as follows; for a and b in $R, a \sim b$ if there exist c and d in $U^{2}(R)$ such that $a c=b d$. Then the relation \sim is an equivalence relation and we denote by $R / U^{2}(R)$ the quotient R / \sim. The multiplication in R induces a multiplication in $R / U^{2}(R)$, and $R / U^{2}(R)$ is an abelian semigroup with unit element [1], where [a] denotes the class of a in $R / U^{2}(\mathrm{R})$. It is clear that the set of all invertible elements in $R / U^{2}(R)$ is $U(R) / U^{2}(R)$. We define a mapping $D: Q_{f}(R) \rightarrow R / U^{2}(R)$ by $D([R, a, b])=\left[a^{2}+4 b\right]$, and this is homomorphism, which carries $[R, 1,0]$ and $[R, 0,0]$ to [1] and [0], respectively. Indeed, by Lemma $1, D$ is well defined, and $D([R, a, b] \cdot[R, c, d])=\left[(a c)^{2}+4\left(a^{2} d+b c^{2}+4 b d\right)\right]$ $=\left[a^{2}+4 b\right]\left[c^{2}+4 d\right]$.

Theorem 3. If 2 is invertible in R, then D is an isomorphism and this induces an isomorphism $Q_{f s}(R) \cong U(R) / U^{2}(R)$ as groups. (cf. Proposition 3.3 in [1])

Proof. By Lemma 1, $[R, a, b]=[R, c, d]$ in $Q_{f}(R)$ if and only if $\left[a^{2}+4 b\right]$ $=\left[c^{2}+4 d\right]$ in $R / U^{2}(R)$. Thus D is a monomorphism. For any element a in $R, D\left(\left[R, 0, \frac{a}{4}\right]\right)=[a]$, therefore D is surjective. Thus D is an isomorphism. Furthermore, by Theorem 1, D induces an isomorphism $Q_{f s}(R) \cong U(R) / U^{2}(R)$ as groups.

In the case where 2 is not invertible in R, we give a sufficient condition such that D ia a monomorphism;

Theorem 4. If R is a unique factorization domain of charactaristic $\neq 2$, or a ring such that $2 R$ is a prime ideal and 2 is a non-zero-divisor, then D is a monomorphism.

Proof. In the first place, we remark that if $a=a^{\prime}+2 r$ then $(R, a, b) \cong(R$, $\left.a^{\prime}, r a+b-r^{2}\right)$ and $a^{2}+4 b=a^{\prime 2}+4\left(r a+b-r^{2}\right)$. Let $D([R, a, b])=D([R, c, d])$, that is, $a^{2}+4 b=\alpha^{2}\left(c^{2}+4 d\right)$ for some invertible element α in R. Since $(R, a, b) \cong$ $\left(R, a / \alpha, b / \alpha^{2}\right)$, we may assume that $a^{2}+4 b=c^{2}+4 d$. If $a-c \in 2 R$, we may put $a=c$, and so we have $b=d$. Thus, if $a-c \in 2 R, D$ is a monomorphism. Now, we remain only to show that $a^{2}+4 b=c^{2}+4 d$ implies $a-c \in 2 R$. Let R be a unique factorization domain. If $b=d$, the implication is clear, Let $b \neq d$. Put
$2=p_{1}{ }^{e} \cdot p_{2}{ }_{2}{ }_{2} \cdots p_{n}{ }^{e} n$ the prime factorization of 2 . For each i, $(1 \leqq i \leqq n)$, let f_{i} be an integer such that $a+c=p_{i}{ }^{f} \cdot s_{i}$ and $p_{i} X s_{i}$. Then from $4 \mid(a+c)(a-c)$, we
 other hand, if $f_{i}>e_{i}$, we have $p_{i}{ }^{e} i \mid a-c$ because of $a-c=p_{i}{ }_{i} \cdot s_{i}-2 c$. Thus we have $p_{i}{ }^{e} i \mid a-c$ for every $i,(1 \leqq i \leqq n)$. Therefore, $a-c \in 2 R$. Let R be a ring such that $2 R$ is a prime ideal. Since $(a+c)(a-c)=4(d-b)$ is in $2 R$, if $a-c \notin$ $2 R$ then $a+c=2 r$ for some r in R, and so $a-c=2(r-c)$. It is a contradiction. Thus, $a-c \in 2 R$.

Corollary 1. Let \boldsymbol{Z} be the ring of rational integers. $Q(\boldsymbol{Z})$ is isomorphic to a multiplicative subsemigroup $\{n ; n=4 r$ or $n=4 r+1, r \in \boldsymbol{Z}\}$ of \boldsymbol{Z}. Therefore, Q_{s} (\boldsymbol{Z}) is trivial. (cf. Proposition 4 in [3]).

Corollary 2. Let $R=Z[i]$ be the ring of Gaussian integers. $Q(R)=Q_{f}(R)$ is isomorphic to the subsemigroup $\{[\alpha] \in R /\{1,-1\} ; \alpha=4 b, 4 b+1,4 b+2 i$ for all $b \in R\}$ of $R / U^{2}(R)=\boldsymbol{Z}[i] /\{1,-1\} . \quad$ And $Q_{s}(R)$ is trivial.

Proof. Sinec $R / 2 R=\{\overline{0}, \overline{1}, \bar{i}, \overline{1+i}\}$, we get $Q(R)=\{[R, 0, b],[R, 1, b]$, $[R, i, b],[R, 1+i, b] ; b \in R\}$. Therefore, we have $Q(R) \cong \operatorname{Im} D=\{[\alpha] \in R /\{1$, $-1\} ; \alpha=4 b, 4 b+1,4 b+2 i$ for all b in $R\}$, hence $Q_{s}(R)$ is trivial..

Remark 1. In Theorem 4, we can not omit the condition that 2 is a non-zero-divisor. For example, let $R=\boldsymbol{Z} /(4)$, then we have $Q(R)=\{[R, \overline{0}, \overline{0}],[R$, $\overline{0}, \overline{1}],[R, \overline{0}, \overline{2}],[R, \overline{0}, \overline{3}],[R, \overline{1}, \overline{0}],[R, \overline{1}, \overline{1}]\}, Q_{s}(R)=\{[R, \overline{1}, \overline{0}],[R, \overline{1}, \overline{1}]\}, D$ $(Q(R))=\{\overline{0}, \overline{1}\} \subset \boldsymbol{Z} /(4)$ and $D\left(Q_{s}(R)\right)=\{\overline{1}\} \subset \boldsymbol{Z} /(4)$. Then D is neither monomorphic nor epimorphic.

Remark 2. In the case where R is not a unique factorization domain, we can not omit the condition in Theorem 4 that $2 R$ is a prime ideal. For example, let $R=\boldsymbol{Z}[\sqrt{5}]$. Then we have $[R, \sqrt{5},-1] \neq[R, 1,0]$ but $D([R, \sqrt{5},-1])$ $=D([D, 1,0])=[1] . \quad D$ is not a monomorphism.

Theorem 5. Let $K=G F\left(p^{n}\right)$ be finite field, then $Q(K)$ is isomorphic to the multiplicative semigroup $\boldsymbol{Z} /(3)$. Further, the isomorphism induces an isomorphism $Q_{s}(K) \cong\{\overline{1},-\overline{1}\}=U(\boldsymbol{Z} /(3))$.

Proof. The case $\mathrm{p} \neq 2$. In the first place, we note that $(R, a, b) \cong\left(R, 0, a^{2}\right.$ $+4 b$) and $U(K)=K^{*}=K-\{0\}$. From Theorem 3 and $\left(K^{*}: K^{* 2}\right)=2$, we have $Q(K)=\{[K, 0,0],[K, 0,1],[K, 0, \alpha]\}$, where α is an element K^{*} which is not contained in $K^{* 2}$. By the correspondence $[K, 0,0] \mapsto \overline{0},[K, 0,1] \mapsto \overline{1}$ and $[K, 0, \alpha] \mapsto-\overline{1}$, we have an isomorphism $Q(K) \cong \boldsymbol{Z} /(3)$ as multiplicative semigroups, and it induces $Q_{s}(K) \cong\{\overline{1},-\overline{1}\}=U(\boldsymbol{Z} /(3))$ as groups.

The case $p=2$. Since $a^{2}+a=a(a+1)$ for a in K, we have $\#\left\{a^{2}+a ; a \in K\right\}$ $=2^{n-1}<\#(K)$, where $\#(\mathrm{~K})$ denotes the number of elements in K . Then, there
exists α in K such that $\alpha \notin\left\{a^{2}+a ; a \in K\right\}$, and the quadratic equation $x^{2}+x+$ $\alpha=0$ has no roots in K. Then, we can see the equalities $\#\left\{a^{2}+a ; a \in K\right\}=\#\left\{a^{2}\right.$ $+a+\alpha ; a \in K\}=2^{n-1}$ and $\left\{a^{2}+a ; a \in K\right\} \cap\left\{a^{2}+a+\alpha ; a \in K\right\}=\phi$. For, if c $=a^{2}+a$ and $c=b^{2}+b+\alpha$ for some a, b in K, then $(a+b)^{2}+(a+b)+\alpha=0$. It is a contradiction. Therefore, we have $K=\left\{a^{2}+a ; a \in K\right\} \cup\left\{a^{2}+a+\alpha ; a \in K\right\}$, (disjoint sum), namely, any element a in K verifies either $\beta^{2}+\beta+a=0$ or $\beta^{2}+\beta$ $+a+\alpha=0$ for some β in K. On the other hand, by Lemma $1,(K, 1,0) \simeq(K$, $1, a)$ if and only if there exists β in K such that $\beta^{2}+\beta+a=0$. And ($K, 1, \alpha$) $\cong(K, 1, a)$ if and only if there exists β in K such that $\beta^{2}+\beta+a+\alpha=0$. Accordingly, we have $Q_{s}(K)=\{[K, 1,0],[K, 1, \alpha]\}$. Furthermore, since $U^{2}(K)=U$ $(K),(K, 0,0) \cong(K, 0, a)$ for all a in K, hence $Q(K)=\{[K, 0,0],[K, 1,0],[K, 1$, $\alpha]\}$. By the correspondence $[K, 0,0] \mapsto \overline{0},[K, 1,0] \mapsto \overline{1}$ and $[K, 1, \alpha] \mapsto-\overline{1}$ we have the isomorphism $Q(K) \cong \boldsymbol{Z} /(3)$, and it induces $Q_{s}(K) \cong\{\overline{1},-\overline{1}\}=U(\boldsymbol{Z} /(3))$.

Remark 3. Let $\boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C} be the fields of rational numbers, real numbers and complex numbers, respectively. By the same argument as the proof of Theorem 5 (in case $\mathrm{p} \neq 2$), we can see that $Q(\boldsymbol{R})=\{[\boldsymbol{R}, 0,0],[\boldsymbol{R}, 0,1],[\boldsymbol{R}, 0,-1]\}$, $Q(\boldsymbol{C})=\{[\boldsymbol{C}, 0,0],[\boldsymbol{C} .1,0]\}$. Further, $Q_{s}(\boldsymbol{Q})$ is an infinite ableian group of exponent $2, Q_{s}(\boldsymbol{R})$ is a group of order 2 and $Q_{s}(\boldsymbol{C})$ is trivial.

Remark 4. In the case $R=\operatorname{GF}\left(2^{n}\right)$, the homomorphism D is not a monomorphism but an epimorphism.

Theorem 6. Let $R=\boldsymbol{Z} /(n)$, and let $n=p_{1}{ }^{e}{ }_{1} \cdot p_{2}{ }_{2}{ }_{2} \cdots p_{r}{ }^{e} r$ be the prime factorization of n. Then $Q_{f s}(R)$ is the abelian group of type $(2,2, \cdots, 2), r$-times.

Proof. It is enough to prove that $Q_{s}\left(\boldsymbol{Z} /\left(p^{e}\right)\right)$ is the group of order 2 for any prime integer p. In the case $p \neq 2$, by Theorem $3, Q_{s}\left(\boldsymbol{Z} /\left(p^{e}\right)\right)$ is isomorphic to the group $U\left(\boldsymbol{Z} /\left(p^{e}\right)\right) / U^{2}\left(\boldsymbol{Z} /\left(p^{e}\right)\right)$. The index $\left(U\left(\boldsymbol{Z} /\left(p^{e}\right)\right): U^{2}\left(\boldsymbol{Z} /\left(p^{e}\right)\right)\right)$ is 2, since $U\left(\boldsymbol{Z} /\left(p^{e}\right)\right)$ is a cyclic group of order $\varphi\left(p^{e}\right)=(p-1) p^{e-1}$. Thus, $Q_{s}\left(\boldsymbol{Z} /\left(p^{e}\right)\right)$ is the group of order 2. In the case $p=2$, put $\boldsymbol{Z} /\left(2^{e}\right)=R$. We shall remark that $\left\{\bar{a}^{2}\right.$ $-\bar{a} ; \bar{a} \in R\}=2 R$. In fact, let $f: 2 R \rightarrow\left\{\bar{a}^{2}-\bar{a} ; \bar{a} \in R\right\}$ be a mapping defined by f $(\bar{a})=\bar{a}^{2}-\bar{a} . \quad$ If $f(\bar{a})=f(\bar{b})$, we have $(a-b)(a+b-1) \equiv 0 \bmod 2^{e}$. Since $2 X a+b$ -1 , we have $2^{e} \mid a-b$, hence $\bar{a}=\bar{b}$, Furthermore, $\left\{\bar{a}^{2}-\bar{a} ; \bar{a} \in R\right\}$ and $2 R$ are finite sets and $\left\{\bar{a}^{2}-\bar{a} ; \bar{a} \in R\right\} \subseteq 2 R$. Hence, $\left\{\bar{a}^{2}-\bar{a} ; \bar{a} \in R\right\}=2 R$. Now, we shall show that $(R, \overline{1}, \overline{a+2}) \cong(R, \overline{1}, \bar{a})$ for all integer $a . \quad(R, \overline{1}, \overline{a+2}) \cong(R, \overline{1}, \bar{a})$ if and only if there exist an odd integer α and an integer β such that $1 \equiv \alpha(1-$ 2β) and $a \equiv \alpha^{2}\left(\beta+a+2-\beta^{2}\right) \bmod 2^{e}$, namely, there exists an integer β such that $(4 a+1) \beta^{2}-(4 a+1) \beta-2 \equiv 0 \bmod 2^{e}$. Since $\left\{\bar{a}^{2}-\bar{a} ; \bar{a} \in R\right\}=2 R$, we can take an integer β such that $\bar{\beta}^{2}-\bar{\beta}=2(\overline{4 a+1})^{-1}$, and we have $(4 a+1) \beta^{2}-(4 a+1) \beta-2 \equiv$ 0 mod 2^{e}. Hence, we have $(R, \overline{1}, \overline{a+2}) \cong(R, \overline{1}, \bar{a})$ for all integer a. Accordingly we have $(R, \overline{1}, \overline{2 a}) \cong(R, \overline{1}, \overline{0})$ and $(R, \overline{1}, \overline{2 \mathrm{a}+1}) \cong(R, \overline{1}, \overline{1})$ for all integer a.

But $[R, \overline{1}, \overline{0}] \neq[R, \overline{1}, \overline{1}]$. Therefore, $Q_{s}(R)$ is the group of order 2.
Remark 5. Let $R=\boldsymbol{Z} /\left(2^{e}\right)$. Then we have following;
i) if $e=1, Q(R)=\{[R, \overline{0}, \overline{0}],[R, \overline{1}, \overline{0}],[R, \overline{1}, \overline{1}]\}$.
ii) if $e \geqq 2, Q(R)=\left\{\left[R, \overline{0}, \bar{a}_{i}\right] ; i=1,2, \cdots, r\right\} \cup\{[R, \overline{1}, \overline{0}],[R, \overline{1}, \overline{1}]\}$, (disjoint sum), where $\left\{\bar{a}_{1}, \bar{a}_{2}, \cdots, \bar{a}_{r}\right\}$ is the representatives of $R / U^{2}(R)$.

Proof. i) is a special case of Theorem 5.
ii) $(R, \overline{0}, \bar{a}) \cong(R, \overline{0}, \bar{b})$ if and only if there exist an odd integer α and an integer β such that $2 \beta \equiv 0$ and $b \equiv \alpha^{2}\left(a-\beta^{2}\right) \bmod 2^{e}$. Put $\beta \equiv 2^{e-1} n \bmod 2^{e}$ and $2 \nmid n$, then we have $\beta^{2} \equiv 0 \bmod 2^{e}$. Therefore, $(R, \overline{0}, \bar{a}) \cong(R, 0, \bar{b})$ if and only if $\bar{b}=\bar{\alpha}^{2} \bar{a}$ for some $\bar{\alpha}$ in $U(R)$, namely, $[\bar{a}]=[\bar{b}]$ in $R / U^{2}(R)$.

Remark 6. There is a commutative ring R with the homomorphism D : $Q_{f}(R) \rightarrow R / U^{2}(R)$ which is not a monomoprhism but the restriction $D \mid Q_{f s}(R)$ is a monomorphism. For example, if $R=\boldsymbol{Z} /\left(2^{e}\right)$, $(e \geqq 3)$, then we have $D([R, \overline{1}$, $\overline{0}])=[\overline{1}], D([R, \overline{1}, \overline{1}])=[\overline{5}]$ and $[\overline{1}] \neq[\overline{5}]$ in $U(R) / U^{2}(R)$. Thus, the restriction $D \mid Q_{f s}(R)$ is a monomorphism. But, we have $[R, \overline{0}, \overline{0}] \neq\left[R, \overline{0}, \overline{2}^{e-2}\right]$ and D $([R, \overline{0}, \overline{0}])=D\left(\left[R, \overline{0}, \overline{2}^{e-2}\right]\right)=[\overline{0}]$, Then D is not a monomorphism.

Osaka Kyoiku University

References

[1] H. Bass: Lectures on Topics in Algebraic K-theory, Tata Inst. Fund. Research, Bombay, 1967.
[2] T. Kanzaki: On the quadratic extensions and the extended Witt ring of a commutative ring, Nagoya Math. J. 49 (1973), 127-141.
[3] A. Micali et E. Villamayor: Sur les algèbres de Clifford. II., J. Reine Angew. Math. 242 (1970), 61-90.
[4] A. Micali et E. Villamayor: Algèbres de Clifford et groupe de Brauer, Ann. Sci. Ecole Norm. Sup. 4^{e} ser. 4 (1971), 285-310.
[5] P. Revoy: Sur les deux premiers invariants d'une forme quadratique, Ann. Sci. Ecole Norm. Sup. 4^{e} ser. 4 (1971), 311-319.

