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Let R be a commutative ring with unit element 1. A quadratic exten-
sion of R is an J?-algebra which is a finitely generated projective J?-module of rank

2. Let Q(R) be the set of all ί?-algebra isomorphism classes of quadratic exten-
sions of R, and QS(R) the set of all Λ-algebra isomorphism classes of separable
quadratic extensions of R. In [2], it was shown that the product in QS(R), in the
sense of [1], [4] and [5], is extended to Q(R), and Q(R) is an abelian semigroup
with unit element. In this note, we study the quadratic extensions of R which
are free .R-modules. We shall call them the free quadratic extensions of R. Let
Qf(R) and Qfs(R) be the sets of all classes which are free Λ-modules in Q(R)
and QS(R), respectively. We shall show that Qf(R) is an abelian semigroup
with unit element, and Qfs(R) is an abelian group consisting of all invertible
elements in Qf(R). For some special rings, we shall determine the structures

of Qf(R) and Qfs(R). We remark that Qfs(R), QS(R) and Pίc(R\\ the group of
isomorphism classes [U] of JR-module U such that U®RU^R, are closely related

by the exact sequence 0 -> Qfs(R) -> QΛ(R) -> Pic(R)2.
Let R be any commutative ring with unit element 1. For a free quadratic

extension S of R, we can write S=R@Rx and x2=ax-\-b for some a, b in R,

then we denote it by S=(R, a, δ), and by [R, a, b] the /?-algebra isomorphism
class containing (jR, a, b).

Lemma 1. The following two conditions a) and b) are equivalent;

a) (R, a, b)^(R, cy d) as R-algebras,
b) there exist an invertible element a in R and an element β in R such that c=a
(0-2/3) and d=a\βa+b-β2).

If (R, a} b) and (R, c, d) satisfy a) or b), then we have

c) c2+4d=a2(a2+4b)for some invertible element a in R.
Moreover, if 2 is invertible in R, then we have the converse.

Proof, a] -> b): Let σ: (R, a, b)=R®Rx -> (R, cy d)=R@Ry be an R-al-

gebra isomorphism, and set σ(x)=ay-\-β and σ~l(y)=a'x-\-β'. Sinec y=σ σ~1

(y}=a'ayjf.a'β-\-β'^ we have a'a=ly that is, α and a' are invertible. The

equalities (σ(x))2=(ay+β)2=a(ac+2β)y+a2d+β2 and σ(x2)=σ(ax+b)=aay
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+b+βa imply that ac+2β=a and a2d+β2=b+βa. Then we have c=a'(a—
2/3) and d=a'\βa+b-β2).

b)^a): Define a mapping σ: (R, a, b)=Rξ&Rx -» (R, c, d)=R®Ry by
σ(x)=a~1y+βy then σ is an Λ-algebra isomophism.

b) -> £) is obvious. If 2 is invertible, setting /?— -y (#— α~Y), we see that

c) implies b).

The following lemma is well known.

Lemma 2. (R, a, b) is R-separable if and only if a2+4b is invertible in R.

We shall define a product in Qf(R) by [R, ay i] [Λ, c, d] = [R, ac, a2d+bc2

-\-4bd]. From the following Lemma 3, it is easily seen that Qf(R) is an abelian
semigroup with unit element [R, 1,0].

Lemma 3. (Lemma 3 in [2]). // (R, a, b)^(R, a' y b') and (R, c, d)^(R,
c' 3 d') are isomorphisms as R-algebrasy then so is (R, ac, a2d-\-bc2-\-4bd)^(R, a'c',
a'2d'+brc'2+4b'd').

A separable quadratic extension S of R has a unique automorphism σ=σ
(S) of S such that Sσ={xeS; σ(x)=χ}=R. In [1], [4] and [5], the product
S^Sz of separable quadratic extension Sl and S2 of R was defined as the fixed
subalgebra (S1(g)JeS2)

<rι®σ2, where σi=σ(Si).

Lemma 4 (Proposition 4 in [2]). Let (R, a, b) and (R, c, d) be separable
quadratic extensions of R. Then we have [R, ay b] [R, cy d] = [(R9a, b)^(R} c, d)].

Theorem 1. An element \Ry ay b] of Qf (R) is invertible if and only if \Ry

ay b] is contained in Qfs(R). Therefore, Qfs(R) is the set of all invertible elements

in Qf(K). It is an abelian group of exponent 2.

Proof. Let [R, ay b] be any element of Qfs(R). By Lemma 2, a2+4b is
invertible in R. Set a= (a2+4b)'1 and β=—2b, then we have a (a2— 2/8)= 1
and a2(βa2+(2a2b+4b2)-β2)=0, hence we have (R, a\ 2a2b+4 b2)^(R, 1, 0) by
Lemma 1. Since [R, ay b]2=[R, a\ 2a2b+4b2], we have [R, ay b]2=[Ry 1, 0], so
[R, ay b] is invertible in Qf(R). Conversely, we assume [R, ay b] [R, c, d]= [R,
1, 0], then we have I=a2{(ac)2+4(a2d+bc2+4bd)}=a2(a2+4b)(c2+4d) for some
invertible element a in R. Thus, a2-\-4b is invertible in R, therefore, [Ryayb\ is
contained in Qfs(R).

Theorem 2. Let {Rλ λ e Λ} be a family of commutative rings with unit
elements, and R=ΠRλ a direct product of {Rλ; λeΛ}. Then we have isomor-

phisms Qf(R)^ Π@X*λ) and Qfs(R}^}\Qfs(Rλ} by correspondence [R, Π«λ,
•f λSΛ " λ(ΞΛ λ^Λ λ

βλ, bλ].

Proof, Let (R, Π«λ, Π*λ)=(^ U^, ΐίdλ). Then, there exist α=Π«λjveA λeA λeΛ λeA λeΛ
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and β=ΐ[βλ such that α is invertible in R, ΐ[cλ=a(ΐ[aλ—2β) and ΐ[dλ=a2(β
λ£-Λ

λ— β2}- It is equivalent to existence of αλ and βx in Rλ such that αλ

is invertible, cλ=aλ(aλ—2βλ) and dλ=aλ

2(βλaλ+bλ—βλ

2) for all λeΛ, namely,

Π(^λ> #λ> W ~ ΠORλ, c\y ^λ) Thus / is injective. It is clear that / is an epimor-
\£Λ λFΛ

phism. Therefore, we have an isomorphism Qf(R)^f[Qf(Rλ) as semigroups,
λf-Λ

so we have the isomorphism Q/5(J?)^ΠQ/5(^λ) as groups by Theorem 1.
λ<=Λ

Let U(R) be the unit group of a ring R, and U\R) the set {u2 u<= U(R)}.

We define a relation ~ in R as follows; for a and i in R, a~~b if there exist c
and rf in U\R) such that ac=bd. Then the relation ~^ is an equivalence rela-
tion and we denote by R/U2(R) the quotient R/~. The multiplication in R
induces a multiplication in RIU2(R), and R/U2(R) is an abelian semigroup with
unit element [1], where [a] denotes the class of a in jR/£72(R). It is clear that
the set of all invertible elements in R/U2(R) is U(R)IU\R). We define a map-
ping!) : Qf(R)-*RIU2(R) by D([R, ay b])=[<?+4b], and this is a homomorphism,
which carries [R, 1, 0] and [R} 0, 0] to [1] and [0], respectively. Indeed, by
Lemma 1, D is well defined, and D([R,a,b] [R,c, d])=[(ac)2+4(a2d+bc2+4bd)]
= [a2+4b][c2+4d].

Theorem 3. If 2 is invertible in R, then D is an isomorphism and this induces

an isomorphism Qfs(R)^U(R)IU2(R) as groups, (cf. Proposition 3.3 in [1])

Proof. By Lemma 1, [R, a, b] = [R, c, d] in Q^R) if and only if [a2+4b]
= [c2-\-4d] in R/U2(R). Thus D is a monomorphism. For any element a in

7?, Z)( I R, 0, -j- 1 )=[«], therefore D is surjective. Thus D is an isomorphism.

Furthermore, by Theorem 1, D induces an isomorphism Qfs(R)^U(R)/U2(R)
as groups.

In the case where 2 is not invertible in R, we give a sufficient condition
such that D ia a monomorphism

Theorem 4. If R is a unique factorization domain of charactaristίc^2,
or a ring such that 2R is a prime ideal and 2 is a non-zero-divisor, then D is a mono-
morphism.

Proof. In the first place, we remark that if a=a'-\-2r then (Ry a, b)^(R,
a', ra+b-r2) and a2+4b=a'2+4(ra+b-r2). Let D([R, a, b])=D([R, c, d}\
that is, a2 + 4b=a2(c2+4d) for some invertible element α in R. Since (R, a, b)^
(R, a/a, h/a2), we may assume that a2+4b=c2-\-4d. If a—c^2R, we may put
a=c, and so we have b=d. Thus, if a—c^2R, D is a monomorphism. Now,
we remain only to show that a2-}-4b=c2-{-4d implies a—c^2R. Let I? be a
unique factorization domain. If b=d, the implication is clear, Let δφrf. Put
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2=pί

eι p2

e2 ~pn

en the prime factorization of 2. For each /, (1^/^n), let/,- be
an integer such that aj

rc=p/ί si and piXs{. Then from 4\(a + c)(a — c)y we

have p2erfi \ a—c. If /t <̂ ., we have pfi \ a—c because of 2ei—fi^ei. On the

other hand, if/ t >£t , we have^)/ί|α— c because of a—c=pi

ft si—2c. Thus we

have^,Λ |α— c for every j, (l^i^n). Therefore, a—c^2R. Let R be a ring

such that 2R is a prime ideal. Since (a+c)(a— c)=4(d— V) is in 2R, if a— c^

2R then α+^^^r for some r in /?, and so a— c= 2(r— c). It is a contradiction.
Thus, a—c<=2R.

Corollary 1. Let Z be the ring of rational integers. Q(Z] is ίsomorphίc to a

multiplicative subsemigroup {n\ n=4r or n=4r+l, r^Z} of Z. Therefore, Qs

(Z) is trivial, (cf. Proposition 4 in [3]).

Corollary 2. Let R=Z[ί] be the ring of Gaussian integers. Q(R)=Qf(R)
is isomorphic to the subsemigroup {[α]eΛ/{l, —1}; α=4i, 46+1, 4b-{-2i for all

b<=R} ofRIU*(R)=Z[i\l{l, -1}. And QS(R) is trivial.

Proof. Sinec RβR=$, T,"ζ ί+ί}, we get Q(R)={[R, 0, 6], [,R, 1, fi],

[/?,/,&], [Λ, l + i,δ]; ie^}. Therefore, we have Q(R)^ImD= {[α]eΛ/{l,
— 1}; α=4ή, 4i+l, 4i+2z for all b in #}, hence QS(R) is trivial..

REMARK 1. In Theorem 4, we can not omit the condition that 2 is a non-

zero-divisor. For example, let R=ZI(4), then we have Q(R)={[R,Ό,0\, [R,

0, 1], [R, 0, 2], [R, 0, 3], [R, I, 0], [R, ϊ, T]}, ρ,(Λ)={[Λ, I, 0], [Λ, I, T]}, Z)

(g(JR))={0, I}cZ/(4) and D(ρ,(Λ))={I}cZ/(4). Then D is neither mono-
morphic nor epimorphic.

REMARK 2. In the case where R is not a unique factorization domain, we

can not omit the condition in Theorem 4 that 2R is a prime ideal. For example,

letΛ=Z[v/T]. Then we have [Λ, VT, -1]Φ[Λ, 1, 0] but D ([Λ, χ/T,-l])
=Z)([Z), 1, 0])=[1]. D is not a monomorphism.

Theorem 5. Let K=GF(pn) be finite field, then Q(K) is isomorphic to the
multiplicative semigroup Z/(3). Further, the isomorphism induces an isomorphism

Proof. The case pφ2. In the first place, we note that (R, a, b)^(R, 0, a2

+4b) and U(K)=K*=K-{0}. From Theorem 3 and (K*: ^*2)=2, we

have Q(K)={[K, 0, 0], [K, 0, 1], [K, 0, #]}, where a is an element K* which
is not contained in J£*2. By the correspondence [K, 0, 0] h^O, [K, 0, 1] ι->ϊ and

[K, 0, α]ι->— T, we have an isomorphism Q(K)^Z/(3) as multiplicative semig-

roups, and it induces ρs(^)^{I, — I} — ί/(Z/(3)) as groups.

The case^>=2. Since a2+a=a(a+l) for α in K, we have if {a2-\-a\ a<=K}

), where #(K) denotes the number of elements in K, Then, there
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exists a in K such that a<ζ{a2-\-a; a^K}, and the quadratic equation
α=0 has no roots in K. Then, we can see the equalities ${a2-\-a\ a^K}=#{a2

+a+a\ a^K}=2n~l and {a2+a\ aeK}Γ\{az+a+a; a<=ΞK} = φ. For, if c
=a2+a and c=b2+b+a for some ay b in K, then (a+b)2+(a+b)+a=Q. It is
a contradiction. Therefore, we have K={a2-}-a] a^K} [1 {a2 -\-a-\-a\ a^K},
(disjoint sum), namely, any element a in K verifies either β2-\-β-{-a=0 or β2-\-β
-\-a-\- a= 0 for some β in K. On the other hand, by Lemma 1, (K, 1, Q)^(K,
1,0) if and only if there exists β in K such that /92+/3+fl— 0. And (K, 1, α)
~(K, I, a) if and only if there exists β ΊnK such that β2-\-β-\-a-\- α— 0. Accord-
ingly, we have Q,(K)={[K, 1, 0], [K, 1, a]}. Furthermore, since U2(K)=U
(K), (K, 0, 0)^(K9 0, a) for all β in K, hence 0(/fQ= {[ϋΓ, 0, 0], [K, 1, 0], [AT, 1,
a]}. By the correspondence [K, 0, 0] ι->0, [ίΓ, 1 , 0] ι-» ϊ and [K, 1, α] h-» — I we
have the isomorphism Q(K)^Z/(3), and it induces QS(K)^ {I, — I}— E7(Z/(3)).

REMARK 3. Let Q, Λ and C be the fields of rational numbers, real numbers
and complex numbers, respectively. By the same argument as the proof of
Theorem 5 (in case p Φ 2), we can see that Q(R)= {[R, 0, 0], [Ry 0, 1], [Λ, 0, — 1]} ,
Q(C)={[C, 0, 0], [C. 1, 0]}. Further, Q3(Q) is an infinite ableian group of ex-
ponent 2, QS(R) is a group of order 2 and £)5(C) ^s trivial.

REMARK 4. In the case .R=GF(2W), the homomorphism D is not a mono-
morphism but an epimorphism.

Theorem 6. LetR=Zl(n), and let n^p^ p^- p/r be the prime factori-
zation of n. Then Qfs(R) is the abelian group of type (2, 2, , 2), r-times.

Proof. It is enough to prove that Qs(Zl(pe}} is the group of order 2 for any
prime integer p. In the case ^>Φ2, by Theorem 3, Os(Z/(pe)) is isomorphic to
the group U(Z/(pe))/U2(Zl(pe)). The index ( U(Z\(pe}} : U2(Zl(pe))) is 2, since
U(Zl(pe}) is a cyclic group of order φ(pe}=(p-ϊ)pe~λ Thus, Qs(Z/(pe)) is the
group of order 2. In the case p=2, put Z/(2e)=R. We shall remark that {<z2

— ά\ ά^R}=2R. In fact, let/: 2R->{ά2 — ά\ ά^R} be a mapping defined by/
(5)=β2-α. Iff(ά)=f(b), we have (0-δ)(fl+δ-l) = 0 morf 2e. Since 2/^+δ
— 1, we have 2e\a—b, hence <z=δ, Furthermore, {<22— a] ά^R} and 27? are
finite sets and {a2— ά\ a<=R}S:2R. Hence, {a2— a', ά<=R}=2R. Now, we

shall show that (R, I, ά+2)^(R, I, 5) for all integer a. (R, I, a+2)^(R, I, 5)
if and only if there exist an odd integer α and an integer β such that 1 Ξα(l —
2/3) and αΞα2(/3+α+2— β2) mod2e, namely, there exists an integer β such that
(4a+l)β2— (4a+l)β— 2 = 0 mod 2e. Since {a2— a] a<=R}=2R, we can take an

integer β such that β2-β=2(4a+l)~\ and we have (4a+l)β2-(4a+l)β-2 =

0 mod 2e. Hence, we have (R, T, a+ 2)^(Ry I, a) for all integer a. According-

ly we have (R, I, 2a)^(R, T, 0) and (R, I, 2a+l) ̂ (R, I, I) for all integer a,
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But [R, ϊ, 0]Φ [R, I, T]. Therefore, QS(R) is the group of order 2.

REMARK 5. Let R=Zl(2e}. Then we have following
i) if e=l, Q(R)={[R, 0, 0], [R, I, 0], [/?, T, T]}.
ii) if ^2, ρ(Λ)={[JZ, 0, flj; ί=l, 2, ..-, r} U {[#, 1, 0], [Λ, 1, 1]}, (disjoint
sum), where {ά^ ά2, •••, #r} is the representatives of R/U2(R).

Proof, i) is a special case of Theorem 5.
ii) (7?, 0, ά)^(Ry 0, b) if and only if there exist an odd integer a and

an integer β such that 2/3 = 0 and b = a2(a—β2) mod 2e. Put β = 2e~1n mod 2e

and 2Xn, then we have β2 = 0 mod 2e. Therefore, (R, 0, a)^(R, 0, b) if and
only if b=a2ά for some a in [/(/?), namely, [ά] = [5] in R/U2(R).

REMARK 6. There is a commutative ring 7? with the homomorphism D:

Qf(R)->RIU\R) which is not a monomoprhism but the restriction D \ Qfs(R) is
a monomorphism. For example, if 7?—Z/(2 e ), (£^3), then we have D([R, T,

0])=[ϊ], D([R, I, T])-[S] and [T]Φ[5] in U(R)/U\R). Thus, the restriction

D\Qfs(R) is a monomorphism. But, we have [R, 0, 0]Φ[Λ, 0, 2e~2] and D

([R, 0, 0])=J5([J?, 0, 2e~2])=-[D], Then D is not a monomorphism.
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