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An abelian variety defined over an algebraic number field K naturally yields
a formal group of the same dimension over K> whose coefficients are integral at
almost all primes of K. Let us see how this is obtained in case of dimension
one. Let E be an elliptic curve, namely an abelian variety of dimension one,
over K and ω(φθ) be a differential of the first kind on E. If an element x of
K(E) is a local parameter at the origin of E, ω has a power series expansion of
the form gE(x)dx, where gE(x) is an algebraic function in i£[[#]] w ^ h £#(0)φ0.
By replacing ω by its constant multiple if necessary, we may assume gE(0)=ί.
Thus we can write ω = dfE(x) where fE{x)=gE{x) and fE{x)=xΛ G^[[x]].
Let FE{x, y)=fE\fE(x) + fE(y)). Then the (commutative) formal group FE is
nothing other than the completion of the group law of E relative to the
parameter x. To see it one has only to note that dfE(x) is an invariant
differential on the formal group FE as is easily verified.

Now we ask if one can find non-algebraic formal groups (of dimension one)
over Ky whose coefficients are integral at almost all primes of K, by some analytic
means. In that case we require that formal groups should be constructed
globally and finitely. To do this one of the most natural ideas would be to
replace an algebraic function gE(x) by a solution of a suitable algebraic differential
equation with coefficients in UΓ[Λ?]. Since gE(x) is a solution of a linear algebraic
differential equation of the first order under a suitable choice of xy we should
primarily be concerned with linear equations. Moreover equations should be
of Fuchsian type in view of a recent work [7] of Katz.

In this paper we study a formal group F(x, y) whose invariant differential
is g{x)dx with a generalized hypergeometric functiong{x). Let N^ 2 be a natural
number and S a subset of {1/iV, 2/N, •••, (N- l)/N). Put

fΛ(0) = 1
\ for

and A(n) = Π A Jin). Let g{x) = ΣA(n)x»», f(x) = \*g{t)dt and F{x, y) =f~ι(f(x)
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+f(y)) The power series F is a formal group over Q. Our first aim is to
study when F is integral at a prime p with p>N. Put

a{n) = {^((* ϊ)/^) i f ( » -
lθ otherwise.

^ It turns out that whether F is ^-integral or not depends

only on the residue class of p mod Ny and we get an explicit condition for p-
integrality of F (Theorem 1 and Theorem 2). Let d be the smallest positive
integer such t\ιa.tpd = \ (mod N) and put q=pd. Then lim «(?v)/«(^v~1) has a

limit ξp in iJ^. Assume that ί1 is />-integral. Then orάpξp^d— 1. If ord ,̂
ξp^dy F is of infinite height at />, namely isomorphic to the additive group
over Zp. But if orάpξp=d— 1, F is of Lubin-Tate type as a formal group over
Zp and the ^-th power endomorphism of its reduction F is the image of q/ξp

under the natural imbedding of Zp into End F.
Now by examining the condition for ^-integrality of JP, one can prove that

if the set {Nθ\ Θ^S} contains all reduced residues mod N> then F is ^-integral
for every p>iV(Theorem 3). For JV=3, 4, 6, for example, we get formal
groups over Z[l/N] which are isomorphic to completions of elliptic curves over
Z[l[N], But in most cases we get formal groups which are not isomorphic to
completions of algebraic formal groups over rings of finite type over Z. It
would be an interesting problem to ask if our formal group can be simultaneously
non-algebraic and of finite height at almost all p.

An important question is left behind: What is the ^>-adic integer ξp} In
studying ξp we may assume S consists of a single number ijN. For i= 1 it is
not hard to see f = (— \fq-^N. For 2<,i^N— 1 we can prove that ξp is one
of the eigenvalues of the #-th power endomorphism of the Jacobian variety of
the Fermat curve xN+yN= 1 over GF(g), at least for almost all p. Hence ξp is
some Jacobi sum by Davenport-Hasse [1] (at least for almost all p). We do not
give the proof of this fact here, since it needs a detailed study of the completion
of the Jacobian of the Fermat curve over Zp. The detailed account on ξp will
be published elsewhere.

Our method in this paper is essentially elementary. In many cases the
proof consists of a series of congruences modulo a power of p. Our basic con-
gruences are those on binomial type numbers, in Lemma 1 of Dwork [2]. Of
course the general theory of commutative formal groups is indispensable (cf.
Honda [5]). A brief survey of our results in this paper appeared in [6].

1. Congruences on binomial type numbers

First we prove a number of congruences on binomial type numbers. Let p
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be a fixed prime number. We shall use "mod pv" (resp. " m o d y " ) to denote
an additive (resp. a multiplicative) congruence modulo p". Let 0 be a positive
rational number integral at p. Put for each non-negative integer n

(1 for n = 0
CΘ(n) = n_τ

Π(θ ) forn>0.

We define ff to be that unique rational number, integral at/), such that pθ'—θ
is an ordinary integer in [0,/>—1], and 0Cλ) by induction: (9cλ+υ = ((9cλ)y. For
each real x put

0 i f * < 0

1 if,

Our basic lemma in this section is the following one due to Dwork [2].

Lemma 1. If a, μ, s are non-negative ordinary integers, 0^a<p, then

Cβ(a + μp + mfi'") = CJjmf+v)CJja + μp)( mf yc( y
Cβ'(mps)Cβiμ) V + θ' + μJ modxps+\

Furthermore

where us= +1 unless both p = 2, s= 1, in which case us= — I. Finally

(1.3) o r d p

C ^ ^ =

Proof. See [2, p. 31].

Let N^2 be a natural number and *S a non-empty subset of {//iV| 1 ^ / ^
N— 1}. From now on we assume that the fixed prime number p is (strictly)
larger than N. We define S' = {θ' \ θ e S} and S c λ ) by induction: S c λ + υ = (S c λ γ.
Put

A(n) = π(Cθ(n)ln\) = U {Ce{n)lCλ{n)) for

and for n^>l

(A((n-1)IN) if(n-
lθ otherwise
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By replacing S by S ( λ ) we define Aa\ή), <fκ\n) similarly.
Applying Lemma 1 to A(n)> we get

Lemma 2. Let a, μ> s be as in Lemma 1. Then

p^) _ A(a+μp) I mf

ΠV1 += A'(μ)

Moreover

(1,5)

modp

Proof. If (9=1, then 0 '=1 and p(a + θ-pθ') = 0. Furthermore the right
side of (1.2) is independent of θ. Hence our lemma follows from Lemma 1 and
the definition of A(ή).

For a rational number r whose denominator is prime to N we denote by (r)N

the least non-negative integer congruent to r mod N. Let d be the smallest
positive integer such that (pd)N=l and put q=pd.

Lemma 3. Let m, I be positive ordinary integers such that m = l (mod N)
and (m, N)=ί. Let a be an ordinary integer in [0, d— 1] and put k = (mpa)N and
h = (mp*-1)N. Then we have for vd + a^\Ό

where C is a rational number integral at p. We may take C = 0 if h=l.

Proof. It suffices to consider the case S consists of a single number θ =
ijN. Furthermore we may assume l=(m)N. Put Θ'=j/N and m = nN' + /
^N-1). Since

(mpVd+a-k)IN=i

and

P((hp - k)jN+i/N- ipIN) = p(h -j),

we get by Lemma 2

, 1 7 , A{(mp™ -k)lN)

1) This lemma does not hold for vd^oc — X since we may not assume l = (m)jsr in this case.
(The author thanks to the referee for pointing out this fact.) But it always holds if
l=(m)jfΓy and this is sufficient to obtain the subsequent lemmas. For example Lemma 4 is
true since it is proved for /—(w)^ .
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Suppose first that vd+a=\. Because a=\ or d=l in this case, m=h (mod
N) and hence l=h. Therefore ψd+Λ~1-h+j=i is a p-umt. If vd+a^l,
then

lpw-i_h + j=j_h mod p.

Since 0 ^ \j—h\ <N<p, ordp(j—h)>0 if and only if ; = Λ, in which case ρ(h—
j) = 0. Summing up, lpvd+cό~1—h+j is a ^>-unit unless p(h—j) = O. Finally
p(h—j) = O if h=l. Now our lemma is proved by rewriting (1.7) into a
congruence on the a{s) and α'(ί).

Lemma 4. Lei O^αrgrf— 1 «wrf I/2>1: to m, / ie positive ordinary
integers such that

mp* = lp« = l (modiV).

a(mpvd+«) a(

Proof. Put kβ = (mpa~β)N. It follows from Lemma 3

(1-9) ^

X (1 + Cβp^*'^1) m o d y + * " β

for Ot^βt^d— 1, where the Cβ are ^-integral. Since kd = (mpa~d)N = 1, we may
assume Cd_1 = 0. Then our lemma immediately follows from d congruences
(1.9) noting acd\ή) = a(ή).

Put a = 09 m = q and /= 1 in (1.8). Then we get

(i i°) ίfcr = ̂ k
Therefore a(qu)/a(qv~1) has a limit in Z^ as v—>oo. We denote it by f̂ .

From now on we shall write ord n instead of ord^w for the sake of
simplicity.

Lemma 5. Let tny a and v be as in Lemma 4. Then

(1.11) ord a{mfd+«) = v ord % ) + ord a(mp*).

In particular
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(1.12) ord a(q") = v ord a(q).

Proof. From Lemma 4 follows

a(mpvd+«) a(q*+1)

and

atf) _ a(q)
mod*/)

atf-i)- ~a{\)

= «(?)•

Our lemma is an immediate consequence of these congruences.

Lemma 6. Let tny a be as in Lemma 4. Put ma=(p~Λ)N. Then

(1.13) ord a(mp*d+*) ^ ord a(map*d+«) for v ^ 0.

Proof. In view of Lemma 5 we may assume v = 0. By Lemma 3 we get
by working mod*/)

a(mpa) _
a{map«) =

which proves our lemma.

Lemma 7. Assume d^2. Then

for \-^a-g,d-\ andθ^\^a-l.

Proof. Since

(map«-λ-mλ)IN = {mΛp"-χ-i-mλ+1)plN+(mκ+1p-mλ)IN,

Lemma 2 shows

Ord ,, Aβ-A-1 ~ l~f\ = O Γ d /I///™ .̂Λ-A-l

Σ { ord({mαp°^-ί-mλ+1)IN+θ'}p((mλ+1p-mλ)IN+θ-pθ').
ΘES

Because
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(mλ+1p-mk)IN+θ-pθ'>0

is equivalent to

ι n λ + 1 - i W > 0 ,

it suffices to prove that mλ+1>NΘ/ implies ord (μJrθ/) = 0 where μ = {mΛp
Λ~x~1

- fnλ+1)/N. Let θ = i/N and θ' = j/N. For λ = a - 1 we have

ord (μ + ff) = ord {mΛ—mΛ + j) = ordj = 0.

But for \>a— 1 we have

ord {μΛ-ff) = ord ( — mλ+1 + *") = 0,

as 0 <mλ+1 — j <N<p. This completes our proof.

2. Construction of formal groups from generalized hypergeometric

functions

We use the same notations as in 1. Define

(2.1) g{x) 1t

This is a generalized hypergeometric function satisfying the linear algebraic

differential equation

(2.2) (xN Π (δ + NΘ)-Vsι)y = 0,
ΘESΘES

and is the unique solution up to constant, holomorphic at the origin, where δ =

x(d/dx) and | S | means the cardinal of the set S. It is well known that the

equation (2.2) is of Fuchsian type, namely all its singular points are regular.

Now define

(2.3) Λ*)

Then F(x> y) is considered a formal group over Q with the canonical invariant

differential g(x)dx (cf. [4]). It is well known that the coefficients of g(x) are

integral at each prime not dividing N. But, at what prime is F integral ?

Theorem 1. All coefficients of F are p-integral for p>N, if and only if

(2.4) orda(tnΛρ")^a forO^a^d-l.

Assume (2.4) holds. Then ord a(q)^>d— 1. / / ord a(q)^>d, F is isomorphic to the
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additive group over *Lp. If ord a(q) = d— 1, F is of Lubin-Tate type as formal
group over Zp (cf. [8]). F is of height d and attached to the prime element q/ξp of

Proof. We use the terminology and results of our previous paper [5].
First assume F is ^-integral. Then, regarded as power series in Q^[[Λ]], f(x) is

killed by some special element u=p+ Σ c^T" of ^ [ [

(2.5) pf(x) + Σ cv/(^v) =0 mod p.
V»l

We will show that we may assume c1="- = cd_1 = 0 (iί d^2) by replacing u by
another special element, (left) associate to it if necessary. Suppose c1=' -=ci_ί

= 0 and £, Φθ for some itίd—1. Comparing the coefficients of xp% on the both
sides of (2.5), we see ord £, >0. Therefore the z-th degree coefficient of u is
killed by multiplying u by (1 —£,-//>) 7\ This proves our claim by induction.
Putting c1= -=cd_1 = 0 in (2.5), we see for O^a^d— 1

pa(map*)l(map«) = 0 mod p,

namely

ord a(map*) ^ a.

Conversely, assume that (2.4) is satisfied. It follows from Lemma 6

ord a(q)^ord a(md_1p
d~1)^d— 1.

First we consider the case ord a(q)}>d. Then, by Lemma 5 and Lemma 6,

ord a(mp*d+«) ^ ord a(mΛ$*d+*)

= v ord a(q) + ord a(map*)

forpXm, 0^a^d—l and v^O. Therefore all coefficients of f(x) are already
^-integral and F is isomorphic to the additive group xΛ-y in this case.

Now, suppose ord a(q) = d— 1. Then ord ξp=d—l by (1.10) and 7Cp=qjξp

is a prime element of Zp. We will prove

(2.6) πpf(x)==f(xη mod/),

namely that / is killed by the special element πp—Td. Write an arbitrary
positive integer, congruent to 1 mod N9 in the form mpvd+ci wherep^m, mpΛ = \
(mod Λ/), z/Ξ>0 and O^a^d— 1. The coefficients of xmpΛ on the both sides of
(2.6) are certainly congruent mod p, because
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πP a(mΛp*)l(map*) = 0 mod p

by (2.4) and a fortiori

πp a(mpa)l(mp") = 0 mod p

by Lemma 6. We must still prove

m o d

which is equivalent to

(2.7) a(mp«qv+1) = ξp a{mp«q<) mod p Λ

Now we get by Lemma 4

namely

(2.8) a{mp«q"+λ) = ^

Since ord β(mpV+ 1)^(z;+l) ord % ) + ord a(mΛp
a)

by Lemma 5 and Lemma 6, (2.8) implies

(2.9) a(mpγ+1) = ξp a(mp«q*) modp*

where μ = vd + a + l + (v + l)(d— l) + α. But

Therefore the desired congruence (2.7) follows from (2.9). This completes
the proof of (2.6), from which follow the other assertions of our theorem
(cf. [5, § 5.3]).

We now study conditions for ^-integrality of F more in detail.

Theorem 2. If d^2 and O^a^d-1, then

(2.10) ord a(nιap») = Σ ± p(rnλ-NΘ^).
ΘES λ=*i

Proof. It follows from Lemma 7
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for 0<^X<z(X— 1. Our theorem is an easy consequence of (2.11).

Consequently, given the set S and the residue class of p mod N, we can
easily determine whether F is ^-integral or not. It is clear that, if F is ^-integral
and 5c5χC{ljN> •••, (iV—l)/iV}, the group F1 obtained from S1 is also p-
integral.

As an application of Theorem 2 we have:

Theorem 3. If the set {Nθ \Θ^S} contains all reduced residues mod N, F
is p-integral for every p>N.

Proof. By Theorem 1 F is ^-integral if d= 1, i.e., p = 1 (mod N). Assume
d^2. Then, for each λ, l ^ λ ^ r f - 1 , at least one of <9(λ) is equal to 1/JV if the
assumption of our theorem is satisfied. Moreover mκ>\ for l<.X^d—l.
Consequently

Σ p ( % - M c λ ) ) ^ l for l ^ λ ^ r f - 1 .
ΘES

Our theorem follows from this, Theorem 1 and Theorem 2.

3. Examples and remarks

In this section we first study ξp for S={l/N}. To do that we consider
any prime number p with pXN. Fix such a prime p and let q, d be as before.

Given a map s\-^b(s) of Z into Zp— {0}, we denote by Π ' b(s) the product of all

the b(s) such that m^s^n and ^/^(s). Furthermore, denote by n? the product
n

Π's. We see easily

(3.1) «! = ϊ M m! n?

where m= [n/q]. Put n^=(q"- 1)/N for ^ 0 .

Lemma 8. P«ί Θ = i/Nfor ί£i^N. Then

Proof. We defined

=ΐί(θ +
s0

If q\θ + s, (i+Ns)jq is an integer congruent to i mod N. Therefore
q(i/N +1) with ί G Z . As 0 ^ ί ^ « v - 1, we have



FORMAL CROUPS OBTAINED FROM HYPERGEOMETRIC FUNCTIONS 457

(3.2) -i(q

Now since

= 1h_ι-((i- 1X?- l) + N)l(Nq)

and

the range of t is [0, nv_1 — 1]. This completes our proof.

Theorem 4. For S= {l/N} andpXN we have

(_l)C<7-iW ifp -_

' / ::~~s "^ /ι-'\* y ' i if ϋ = 2

Proof. If p is odd, then for v^i 1

ifv-iiv^Ξίί-lJ/iV mod 2.

But if p = 2, n^—nv_1 is even for z>2̂ 2. Hence it suffices to prove for v^\

with θ=\jN. By Lemma 8, (3.4) is equivalent to

(3.5) rcv? = (-1VV"V-I Π'fίH-ί) m o d ^ " 1 .
s = 0

Now

and for gr

/}
/wv—.y we get

This proves (3.5) and completes our proof.

Returning to cases of general S, we will look into formal groups F for

smaller values of N.

N=2. Only S= {1/2} is possible. We see
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The group F is nothing other than the expansion of the addition formula of sin
x into power series. Since ξp=( — 1/p) for p^2y F is isomorphic, over Z[l/2],

to the formal group obtained from the Dirichlet L-function ^H( — 4/n)n"g(Honda

[4]). Hence F is isomorphic to a group of multiplicative type over Z[l/2].
(This fact is also verified by a simple transformation of the differential g{x)dx.)

N=3. By Theorem 3 and Theorem 4 the group F is integral at each/>>3
if and only if S= {2/3} or *S={l/3, 2/3}. Moreover formal groups obtained
from these two sets are isomorphic over Z[l/6] by our theorems and the general
theory [5], because ( - i y « - w = 1 for p>3. Take S= {2/3}. Then g(x)dx=
(1 — x3)~2/3dx is a differential of the first kind on the elliptic curve x3+y3= 1 and
x is a local papameter at each zero of x. Hence F is an algebraic formal group.
As πp is an eigenvalue of the ^-th power endomorphism of the reduction mod p
of this curve, so is ξp=q/πp. The explicit value of ξp is well known (Davenport-
Hasse [1]). The reduction of F modp is of height 1 (resp. 2) if p=\ (resp.
— 1) mod 3.

JV=4. The group F is integral at each p>A if and only if S contains 2/4
or 3/4, as is seen from Theorem 1 and Theorem 2. For *S={2/4}, g(x)dx=
(l — xA)~1/2dx is a differential of the first kind on the elliptic curve Cλ : xL+y2= 1
and x is a local parameter at each zero of x. Hence F is an algebraic group and
the explicit value of ξp is well known ([1]). Next, take S= {3/4}. The differ-
ential g(x)dx = (1 — x4) ~ zμdx is of the first kind on the curve x*+y* = 1. Put X=
y\x and Y=x~2. Then (X, Y) defines the curve C2 : Y2 = X4+l. Since

-2x~3dx = dY, xzdx = -y3dy>

YdY = 2X3dX,

one has

g(x)dx = y~3dx = -(l/2)(xlyYdY = -dY/(2X3)

Working on the curve C2, we can take x as a local parameter at the pole of Y.
(Although x is not in the function field of C2, it can be used to get a formal
model of C2 over Z[l/2].) Thus F is a formal model of an algebraic group
(over a ring of finite type over Z) in this case, too. The values of ξp differ by
a class character from those obtained from 5 = {2/4}. In either case the
reduction of F mod p is of height 1 (resp. 2) if̂ > = l (resp. —1) mod 4. The
structure of F for other S can easily be determined from what we have said.

N=6. By Theorem 1 and Theorem 2 it is easily verified that Fis integral
at each/>>6 if and only if S contains at least one of {//6|2^z^5}. We will
show that for each S= {i/N} (2^i^5) F is a formal model, over Z[l/6], of an
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elliptic curve with invariant 0 and defined over Q. This fact might be proved
by suitable transformations of the differentials g{x)dx, but we will do it mainly
by proving a number of congruences.

For S={ίjβ) we write α, (n) for a(n) and ξip for ξp. From Lemma 8 it
follows for p>6, v^ 1

Here, iftf/Π/

Consequently

(3.6) al

2 + «v—s—

l / 2 + « v -

we get

q')lalq'-1)

1, then

s-l =

III

= (-l]

= («v?) ' Π ' C

1/2-1/6-s-l

-(,+2/3).

l-Vv-i «4(?V)K(

where wv—wv_! may be replaced by(^—1)/6 or (y—1)/2. By the same argument
we obtain

(3.7) ajtf)lajtf-*) = (-1)"" 1* as(q^a5(q^) mod^" 1 ,

noting

2/6-1/6-1 = -5/6.

Since (3.6) and (3.7) implies

(3.8) f,,# = ( - 1 ) " - 1 ^ . , , ? 2 i ί = ( - IY«-1V%,P,

we have only to study ξzp and £ 5 p.
On f3>/>. Let C3 be the elliptic curve defined by Y2 = X3— 1. We can take

# with X = Λ ; " 2 as a local parameter at infinity to get a formal model of C3 over
Z[l/6]. Then£(#)rf.x: = (l — x6)~1/2dx is the ΛJ-expansion of a differential of the
first kind on C3 and F is a formal model of C3 over Z[l/6].

On ξ5fP. By Theorem 4 it suffices to consider ξp for S= {1/6, 5/6}. For
this S an easy computation shows

Consider the elliptic curve C4 defined by Y2 = X3 + 4. Taking a local parameter
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t with X=t~2 at the infinity of C4, a formal model G of C4 over Z[l/6] is
obtained from the differential (1 + 4t6)~1/2dt. Write

(1 + 4?)~1/2dt = f ] b(n)tn-λdt.

We will show that F is isomorphic to G over Z[l/6]. (Our results in 1 and 2
can be applied also to p = 5. More generally they are applicable to p = N— 1 if
it is a prime. In fact, if p = N— 1, 0 ^ [/— A| ^N—2<p in the proof of Lemma
3 and 0<mλ+1 — j^N—2<p in that of Lemma 7.) Since both F and G are of
Lubin-Tate type at/>φ2,3, we have only to prove that the reductions of both
formal groups mod p have the same ^-th power endomorphism as p-adic integer
(cf. [5]). By Theorem 1 this will follow from the congiuence

(3.10)

Since

as is easily verified, (3.10) is reduced to

(3.11) (-2«.3»)-'-"»-'

by Lemma 8. Furthermore, because

(6nv)? = (3nv)? Π ' (6» v-ί)

the congruence (3.11) is equivalent to

(3.12) (24.33)"»~'Vi{(2»v)?}2 = Wv?(3wv)? mod

Here we will show

(3.13) 33C"v-1W = (-l)"v- s.-i

For d= 1, i.e. $=^> this follows from

( ^ ) mod <7V

_ _ 1

But for d=2, i,e. q=p2 we have
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= 0 mod f~*{ρ-1).

Therefore for any a with pXa it holds

^c»v-»v_l5 _ i m o d p»-^ = w »- i ) .

This proves (3.13), by which (3.12) is reduced to

(3.14) 2 2 C "V-"V-IX?(3M V )?

= (-1)"V-"V-I{(2MV) 2}?

Now we have

(3.15) (-2)".^

Ξ ( 2 » V ) ? II ' (q"-2s) mod*pq-1.

As s runs through [2/zv + l, 3wv], qv — 2s runs through all odd integers in [1, (qv

— 4)/3]. Consequently

(3.16) II / (q*-2s) = 2^*v-v-i5(2nλ)?/nλ?.

Now (3.14) is an immediate consequence of (3.15) and (3.16). Thus (3.10) is

proved and the structure of F is determined.

The structure of F for other S can be determined from the above results

by Theorem 1 and Theorem 2.

In all the above cases N= 2,3,4,6 we can verify that F is simultaneously

integral and of finite height at almost all primes, only if F is a formal model of

an algebraic group over a ring of finite type over Z.

What happens for N=5 or JV^7? We have φ(N)^4 for these N. I have

verified for N= 5 and 7^N^ί2 that F is not integral at infinitely many p, if S

consists of a single element. The same fact would probably hold for JV^13.

If so, S should have at least two elements other than 1/iV for φ(iV)^4, in order

that F is integral at almost all p. But in that case F is of infinite height at p

with p= — 1 (mod iV), because

ord a(m,p) = ord a((N— \)p)

= Σ!ιp(N-l-NΘ/)^2 = d
ΘES

by Theorem 2. Thus we have arrived at the following conjecture:

(C) Let F be a formal group constructed in 2. If F is integral and of finite

height at almost all p, F is a formal model of some algebraic group over a ring of
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finite type over Z.
More generally let K be a finite algebraic number field and h'(x)= 1 -\— e

K[[x]] a solution of an algebraic differential equation with coefficients in K[x].
Let H(x, y) be the formal group over K, with the canonical invariant differential
h\x) dx. Is H a formal model, over a ring of finite type over Z, of an algebraic
group over K, if H is integral and of finite height at almost all primes of K ?
This question extends to higher dimensional cases in an appropriate way by
replacing the notion of "a group of finite height" by "a ̂ -divisible group" (cf.
Tate [9]). If our question has an affirmative answer, it will yield an interesting
characterization of algebraic functions. But if there were counter-examples, they
would certainly be of great interest. We could define their zeta functions with
Euler products and these zeta functions would be quite new beings (cf. [5, p.
245]).
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