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Introduction

The present paper is concerned with the following question raised on the

classical Borsuk-Ulam theorem : Let G denote a cyclic group of odd order q,

and let Σ be a homotopy (2w + l)-sphere on which a free differentiable G-action

is given. For any differentiable m-manifold M and any continuous map / : Σ->

M, put A(f)={x<=Σ\f(x) = f(xg) for all g^G}. What can be deduced about

the covering dimension of Λ(f) ?

In response to this question, the authors showed previously that if q is a

prime^> then dim A(f)^2n-{-\ — (p— \)m ([4], [6]). Furthermore, one of the

authors showed in [5] that if q is a prime power pa and M is the Euclidean space

Rm then

(0.1) dim A(f)^{2n+\)-{pa-\)m

It will be shown in this paper that (0.1) still holds for any differentiable ra-

manifold M.

The procedure taken in this paper is different from the previous ones, and

we shall derive the above result from a general theorem stated in connection with

the formal group law for some general cohomology theory.

Assume that there is given a multiplicative cohomology theory h defined

on the category of finite CW pairs and satisfying the conditions: i) each complex

vector bundle is A-orientable, ii) h^pή^O for each odd i. Let F(x,y)^h(pt)

[[x>y]] denote the formal group law associated to h, and [i](*O^A(/>0[M] denote

the operation of "multiplication by /" for a positive integer i. We shall show that

(0.2)

xd(9π\ί](x)r<Ξ(xn+\ [?](*)) mh(pt)[[x]l

where (a,b) denotes the ideal generated by a and b.
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Take as h the general cohomology theory defined from jK-theory. Then
it is seen by using elementary algebraic number theory that (0.2) is equivalent
to (0.1).

We can also take as h the complex cobordism theory U*. Since U* is
stronger than K-theory in general, it is expected that sharper result than (0.1)
will be obtained from (0.2) applied to h= Ϊ7*. However we have no method
to derive numerical conditions equivalent to (0.2) for h= 17*.

In an appendix, we shall prove in the same procedure as above a non-
existence theorem for equivariant maps which generalizes the result of Vick [10].

1. The formal group law for a multiplicative cohomology

We recall first some facts on multiplicative cohomology theory (see Dold

[3])
We fix once and for all a multiplicative reduced cohomology theory h defined

on the category of finite CW complexes with base point. There is the cor-
responding multiplicative cohomology theory h defined on the category of finite
CW pairs.

Let ξ be a real w-dimensional vector bundle over a finite CW complex B,
and denote by M(ξ) the Thorn space for ξ. For each J G B let ξb denote the
restriction of ξ over b. Then h(M(ξb)) is a free λ(/>ί)-module on one generator.
ξ is said to be h-orientable if there exists t(ξ)<=hn{M(ξ)) such that t(ξ)\M(ξb) is
a generator of h (M(ξb)) for each b^B. Such t(ξ) is called an h-orientation or a
Thorn class of ξ By an h-orίented vector bundle we mean a vector bundle in
which an A-orientation is given.

Let D(ξ) (or S(ξ)) denote the total space of the disc bundle (or the sphere
bundle) associated to ξ, and consider the homomorphism

hn(M{ξ)) = hn{D{ξ\ S(ξ))-^>h»(D(ξ)) 1—> hu(B),

where j is the inclusion and p is the projection. The image of t(ξ) under this
homomorphism is called the Euler class of the A-oriented bundle ξ, and is
denoted by e(ξ).

The following facts are easily proved:
(1.1) If there is a bundle map f:ξ->ξ' and ξ' is /t-oriented, then ξ is h-

oriented so that/*: h{B') -^ h(B) preserves the Euler classes.
(1.2) If ξ1 and ξ2 are A-oriented, then the Whitney sum ξx®ξ2 is /z-oriented

(1.3) If ξ has a non-zero cross section, then e(ξ) = 0.
The classical Leray-Hirsch theorem on fiberings can be generalized to the

multiplicative theory k, and so we have the Thorn isomorphism
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Φ : h{B)

given by Φ(a) = a t(ξ). As a consequence, the Gysin exact sequence

••— h'-\S(ξ)) -> h*-\B) - ^ S h\B)

holds.
A complex vector bundle ξ is called A-orientable if the real form ξR is A-

orientable. Let ηn denote the canonical complex line bundle over the complex
w-dimensional projective space CPn. Throughout this section the following
will be assumed:

(1.4) For each n, ηn is A-oriented so that the homomorphism h(CPn+1)->
h(CPn) preserves the Euler classes.

It follows from this assumption that any complex line bundle ξ over a
finite CW complex is A-oriented so that the homomorpbism/* : h(B')->h(B)
induced by every bundle map / : ξ->ξ' preserves the Euler classes.

We can prove
(1.5) The algebra h(CPn) is a truncated polynomial algebra over h(pt) :

h(CP») = h(pt)[e(vn)]l(<VHy+1).

(1.6) Put e(vm)ι=pf e(vm) and e(ηn)2=p% e(ηκ) for the projections/), : CPm

X CPn->CPm and p2 : CPmxCP"^CPH. Then the isomorphism

h(CPmxCP») = A(pOWO» «fa.)J/(«fa«)?+1. «ft«)S+1)
holds.

For a CW complex X with finite skelta, we define h(X) as the inverse limit
with respect to skelta :

h(X) = lim h(Xn).

Then, for the infinite dimensional projective space CP°°, the following result is
obtained from (1.5) and (1.6).

(1.7) h{CP°°) and h(CP°° X CP°°) are rings of formal power series :

h(CPη = h(pt)[[x]l h(CP~ X CP~) = h(pt)[[xlf x2]]y

where x, x1 x2 are the elements defined by e(ηn)y e(ηn)ly e(ηn)2 respectively.

Let η denote the canonical line bundle over CP°°, and consider the external

tensor product v®v which is a complex line bundle over CP°°X CP°°. Let μ :

CP°°X CP^-^-CP00 be a classifying map for η®η which is cellular, and put

μ*(x) = Σ o ^ y xi *i (β

for μ* : hiCP^^hiCP00 X CP°°). Then we obtain easily
(1.8) For the tensor product ζx®ζ2 °f a n y complex line bundles ζλ and ξ2
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over a finite CW complex,

holds.
Consider now a power series F(x,y) with coefficients in h(pt), which is

defined by

with dij above. Then it follows that F(xfy) is a formal group law over h(pt), i.e.
the identities

F(x,F(y,z)) = F(F(x9y),z)

hold. For each integer i ^ l , let [*](#) ̂ /*[M] denote the operation of
"multiplication by ί" for the formal group, i.e.

Since the formula in (1.8) is rewritten as

for the ί-fold tensor product ξi = ξ® ®ξ we have

= [i](e(ξ)).

Given a positive integer qy let G denote a cyclic group of order q. Define
a G-action on the standard (2τz + l)-sphere S2n+1={(zoy ^ , , ^ )

= l}by

(̂ o> —> ̂ n)^o = (#o e x P 2πy/ — lIq, •••, #„ exp

where ^0 is the generator of G. This yields a principal G-bundle ρ'n : S2n+1->Ln

(q) over the lens space Ln(q). Let L denote a 1-dimensional complex G-module

given by c go = c exp 2πχ/ — l/q, and consider the associated complex line bundle

pn=zp{hχ L. For the canonical projection π : Ln(q)->CPn we have pM = τr*(??„),

and hence e(ρn)
n+1 = 0 holds.

Proposition 1. Let P(x)εΞh(pt)[[x]]. Then the element P(e(pn)) of h(Ln(q))
is zero if and only if P(x) is in the ideal generated by xn+1 and [q](x)

Proof. Consider the ̂ -fold tensor product ηl of yn. As is observed in [9],
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the total space S(η%) of the sphere bundle associated to ηl is homeomorphic
with Ln(q). Therefore we have the Gysin sequence

^% h\CPn)

Since e(v%) = [q](e(ηrt)), the desired result follows from the above sequence
and (1.5).

2. The element s*(θ)

As in § 1, let G denote a cyclic group of order q. We shall assume in the
following that q is odd.

For any space X, let XG denote the product of q copies of X. Writing its
elements as ]>] xgg, a G-action on XG is given by

We denote by AX the diagonal in XG.
Let Σ be a homotopy (2/z + l)-sphere (which is a differentiable manifold),

and assume that there is given a free differentiable G-action on Σ. We denote
by ΣG the orbit space.

Let M be a differentiable manifold, and consider the diagonal action on Σ
xMG whose orbit space is denoted by ΣxMG. ΣxAM is an invariant

G

submanifold of the G-manifold Σ x MG, and its orbit space is regarded as ΣG

X AM. We denote by v the normal bundle of ΣG x ΔM in Σ x MG. This
G

is a real m(q— l)-dimensional vector bundle.

Choose a p o i n t % G M , and identify ΣG with a subspace ΣGXy0G (y0G =

ΣbV?) of ΣGx AM.

Let λ7 : Σ-^ΣG denote the principal G-bundle defined by the G-action
on Σ, and consider the associated complex line bundle λ = λ ; x i .

G

Proposition 2. The normal bundle v has a complex structure for which

i*(v) = m(λθλ 2 θ

y where i : ΣG-^ΣG x AM is the inclusion.

Proof. If v1 : N1-^AM denote the normal G-vector bundle of AM in MG,
then we have v = id X v1 : Σ x N1->ΣG x AM. Therefore it suffices to prove that

G G

there exists a G-equivariant complex structure on vx with the fiber over
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y0G being w(Z,θ θ£ c*~1 ) / 2).

To prove this, let IG be defined by the exact sequence of real G-modules

0 -> ΔR -> RG -> IG -+ 0.

View this as a sequence of real G-vector bundles over a point, and identify AM

with Mxpt = M in the obvious way. Then we have the exact sequence

0 -> τM®ΔR -> τM®RG -> τM®IG -+ 0

of real G-vector bundles over My where TM denotes the tangent bundle over M.

Since τ{MG) = (rM)G, an equivariant isomorphism

β : r(MG) I AM -+ τM®RG

can be given by

= Σ

Since X] Ϊ ; ^ is in τ(AM) if and only if all vg are equal, β maps τ(JM) onto

T M ® JΛ. Thus it holds that v^rM ® IG as real G-vector bundles. From

elementary representation theory of groups, it follows that IG is the real form

of L 0 0Lc*~1)/2. This gives v1 its complex structure, and we get

as desired. This completes the proof.

As in § 1, let A be a given multiplicative cohomology theory. In the

following we shall assume the following conditions :

(2.1) every complex vector bundle of any dimension is A-orientable.

(2.2)hodd(pt) = 0.

Assuming that M is closed, consider the normal bundle v. Then, by

Proposition 2 and (2.1), we have a Thorn class t(v)^}Γ^~x\M(v)) and the

corresponding Euler class e(v)^hmcq~1:>(ΣGx AM) such that

(2.3) i*e{v) =

As usual we shall regard the total space N of v as a tubular neighborhood

of ΣGxAM in ΣxMG. Then we can identify h{M{v)) with h(ΣxMG,
G G
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Σ x MG — N) canonically. Let
β

be the image of the Thorn class t(y) under the homomorphism /* : h(Σ X MG,
a

Σ x MG— N)->h(Σ x MG) induced by the inclusion. We have immediately
G G

(2.4) For the homomorphism * : h(Σ x MG)->h(ΣG x AM) induced by the
G

inclusion, j'*(#) = e(v) holds.
Given a continuous map / : Σ->M, define a continuous map s : ΣG—>Σ x

MGby

s(xG) = (*,

For the projection p : ΣxMG->ΣG, pos is the identity.
G

Proposition 3. For the homomorphism s* : h(Σ x MG)->h(ΣG) and the
G

homomorphism /* : h(ΣG x JM)->h(ΣG), we have

s*{β) = i*(e(v)).

Proof. It is easily seen that there exist a continuous map fx : Σ-+M and
an open set V of Σ satisfying the following conditions: i) / is homotopic to
fχy ii) V is homeomorphic to RZn+1, m)fx(Σ—V)=y0, iv) xg^V for any # Φ l
and any ^ G F , where V denotes the closure of V Define sx : ΣG->ΣxMG

G

from fx as s was defined from /, then s and sx are homotopic. Let (MG)1

denote the subspace of MG consisting of points with at most one coordinate
Φjy0 Then (MG)1 is an invariant subspace of the G-space MG> and the orbit
space Σx(MG)1 contains sx(ΣG). Since Σ— V is contractible, there exists

G

a homotopy ψt : (V, dV)-*(Σ, Σ—V) such that ^ 0 is the inclusion and
) = #0.e8F, where 8V=V-V. Put VG = π(V) for the projection π :Σ

j . Consider now the following commutative diagram:

ΣG > Σx(MG\

1A ,
(ΣG,ΣG-VG) —!-> (Σx(MG)iyΣGxy0G)

a

where jx,j2, are the inclusions.



344 H.J. MUNKHOLM AND M. NAKAOKA

We have

h«κ«-»(ΣG, ΣG-VG) = JJΓ'^XS-*1) = hm«-

by (2.2). Therefore

= o

is trivial.
Next consider the commutative diagram

h(ΣxMG)
G

h(ΣGxJM)

i*

sty

= h(ΣG) = h(ΣGxy0G)

where iιt i2 are the inclusions. Putting θ'=p*ifif{θ) — it{θ), we have

st(ff) = «*»*(0)-**(*) = i*ieiv))-s*iθ)

by (2.4), and ififf)=0. Therefore θ' is in the image of if : r < ί - I ) ( ί x ( M G ) 1 >
G

ΣGXyQG)-^hmiq~ι\Σx{MG)^ and hence s*(<9') = 0 by the fact proved above.

Thus we have i*(e(v)) = s*(θ).

3. Generalization of Borsuk-Ulam theorem

Let Σ be as in §2, and let / : Σ^M be a continuous map to a differentiate
m-manifold. Put

A(f) = {χ(=Σ\f(x) =f(xg) for any^eG}.

In this section we shall consider the covering dimension of A(f).
For the image A(f)G = π(A(f)), we have dim A(f) = dim A(f)G.

Proposition 4. Assume that M is closed. Then dim A(f)<2d implies

e(d\)s*(θ) = 0.

Proof. Since dim A(f)G<?2d—l, it follows that d\ has a non-zero cross
section over A(f)G (see [5], Lemma 2). By standard facts on extension of cross
section, this cross section extends to a non-zero cross section over the closure
W of some neighborhood W of A(f)G in ΣG. Here we may assume that W is
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a finite CW complex, and that s(ΣG—W)dΣxMG—N by taking N small.

We have then e(d\\ W) = Q, and so e(d\) is in the image of If : h(ΣGy W)->
h{ΣG) induced by the inclusion.

On the other hand, it follows from the commutative diagram

h(ΣxMG,

J
h(ΣG,

ΣxMG-N)

fΣo-W) it

>h(ΣxMG)
ίσ

- > KΣG)

(/, l2 : inclusions) that s*(θ) is in the image of If.
Therefore e(d\) s*(θ) is in the image of the homomorphism h(ΣG, W U

(ΣG— W)) = h(ΣG, ΣG)->h(ΣG), and hence we have the desired result.
We shall now prove the main theorem.

Theorem 1. Let G be a cyclic group of odd order q, and Σ be a homotopy

{inΛ-iysphere on which a free differentiable G-action is given. Let M be a

differentiable m-manifold. Assume that there exists a continuous map f : Σ-^M

with dim A(f) <2d. Then, for any multiplicative cohomology theory h defined on

the category of finite CW pairs and satisfying the conditions (2.1), (2.2), it holds

that

is contained in the ideal generated by xn+1 and [q](x).

Proof. Recall that any differentiate m-manifold is regarded as an in-
creasing union of compact difϊerentiable m-manifold, and that any difϊerentiable
m-manifold with boundary is contained in a differentiable m-manifold without
boundary. Since Σ is connected and compact, it follows from these facts that
we may assume M to be closed without loss of generality.

Then, in virtue of (2.3), Propositions 3 ane 4, we have

= e{d\).i*e{v) = e(dX) s*(θ) = 0.

Since pή is a principal G-bundle whose base space is (2n+l)-dimensional CW
complex, and since X7 is a (2n+l)-universal principal G-bundle, there is a
bundle map of pn to λ. Hence the last equation implies
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From this and Proposition 1 we have the desired result.

As typical examples of the multiplicative cohomology theory satisfying the

conditions in Theorem 1, we have the classical integral cohomology theory i/*

( Z)> the Grothendieck-Atiyah-Hirzebruch periodic cohomology theory

K*( ) of i£-theory, and the complex cobordism theory [/*( ) obtained from

the Milnor spectrum MU (see [2]).

As is well known, H*(pt; Z) = Z (z = 0), = 0 (z'ΦO) and the formal group

law for i/*( Z) is given by F(x, y) = x+y. Hence the conclusion in

Theorem 1 for h = H*( \Z) is stated that

is contained in the ideal generated by xn+1 and qx. From this we obtain the

following result.

(3.1) If q is an odd prime, for any continuous map / : Σ-^M we have dim

REMARK. The conclusion in (3.1) is strengthened to dim A(f)}>2n+l —

m(q-ί) (see [41 [6]).

For K*( ) it is known that Keven(pt) = Z, Kodd(pt) = 0 and the formal

group law is given by F(x, y) = x+y + xy (see[l]). Therefore the conclusion

in Theorem 1 for h=K*( ) is stated that

C?-l)/2

*"( Π ((*+l)'-l)Γe=Z[*]

is contained in the ideal generated by xn+1 and (#+1)*—1. Putting y = x+l

this is restated that

is contained in the ideal generated by (y— 1)M+1 and yq— 1. If q is an odd prime

power pa, it can be proved by making use of elementary algebraic number

theory that the above statement is equivalent to

(see [5], p. 453). Thus theorem 1 implies the following theorem containing

(3.1) and being a generalization of the main result in [5],

Theorem 2. If q is an odd prime power pa, for any continuous map f : Σ-*

M we have

dim A(f)^2n+\-{pa-\)m
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For [/*( ), it is known that U*(pf) is a polynomial ring over Z with one
generator of degree — 2i for each positive integer i> and that the formal group
law for [/*( ) is given by

F(χ,y)=g-1(g(*)+g(y))

with g(χ) = ̂ \£*-J χi+1eU*(pt)[[x]] ® Q> where Q is the ring of rational

numbers (see [1], [7]). However we can not deduce numerical conditions
equivalent to the conclusion in Theorem 1 for h = [/*( ).

Appendix

In this appendix we shall show a generalization of a result due to Vick [10].
For any positive integer r, let Tr : S2n+1 -> S2n+1 denote the fixed point

free transformation of period r given by

7V(#i, , zn+1) = (z1 exp 2π>S=ϊlry — yzH exp

Then a fixed point free transformation 7^ : Ln(q)^Ln(q) of period /> on the
lens space LM(?) is induced by TPq : S2"+1-*S2«+1.

Theorem 3. Suppose that there exists an equivariant map f of (L"(q), Tp)
to (S2tn+1, Tp). Then, for any multiplicative cohomology theory h defined on the
category of finite CW pairs and satisfying (1.4), it holds that ([q](x))m+1^h(pt)[[x]]
is contained in the ideal generated by xn+1 and [pq](x).

Proof. For a multiple pq of q, let p'(q> pq) denote the principal
^>n(Q)~^^'n(PQ) defined the canonical projection. Corresponding to the standard
1-dimensional complex representation of Zpy we have the associated complex
line bundle ρn(q> pq) on Ln(pq). As is observed in [8], it holds that

pn(q, pq)~pn(i, pq)®—®p*(i, pq) (j-times).

Therefore, if there exists an equivariant map / : (Ln(q), Tp)-^(S2m+\ Tp\
then it holds that

1» P) = P«{ 1»£?) ® ® Pn( 1, Pq) (ϊ-times)

for the map/ : L"(pq)^Lm(p) induced by /.

p»(i. pq)

L"(pq)
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Therefore we have

in h(L"(pq)). Since e(pm( 1, p))m+1 = 0 it holds that

in h(Ln(pq)). This and Proposition 1 prove the desired result.

The conclusion of Theorem 3 applied to h = K*{ ) is stated that ((x+ l)q

— l)m+1<=Z[x] is contained in the ideal generated by xn+1 and ( * + 1 ) ^ — 1 .
Therefore, the argument similar to the proof of Lemma 1 in [5] proves the
following

Theorem 4. Let p be a prime, and suppose that there exists an equivariant
map of (Ln(q)y Tp) to (S2fn+\ Tp). Then we have

where q=par, (p, r) = l.

REMARK 1. This generalizes the result due to Vick [10].
REMARK 2. Shibata [8] proves this result by applying Theorem 3 to

h=U*( ).
(added in proof) Since the formal group law for the complex cobordism

theory is universal (see [1], [7]), we have the following corollary of Theorem 1 :
For any formal group law over a commutative ring R with unit, it holds that

dimA(f)<2d=Φ

**( Π [*](*)Γc(*"+\ [?](*)) in R[[x]] .
» P = 3 1

Similar for Theorem 3. This fact was pointed out by J. Morava.
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