THE BORSUK-ULAM THEOREM AND FORMAL GROUP LAWS

Hans J. MUNKHOLM and Minoru NAKAOKA

(Received October 20, 1971)

Introduction

The present paper is concerned with the following question raised on the classical Borsuk-Ulam theorem : Let G denote a cyclic group of odd order q, and let Σ be a homotopy $(2 n+1)$-sphere on which a free differentiable G-action is given. For any differentiable m-manifold M and any continuous map $f: \Sigma \rightarrow$ M, put $A(f)=\{x \in \Sigma \mid f(x)=f(x g)$ for all $g \in G\}$. What can be deduced about the covering dimension of $A(f)$?

In response to this question, the authors showed previously that if q is a prime p then $\operatorname{dim} A(f) \geqq 2 n+1-(p-1) m$ ([4], [6]). Furthermore, one of the authors showed in [5] that if q is a prime power p^{a} and M is the Euclidean space $\boldsymbol{R}^{\boldsymbol{m}}$ then

$$
\begin{align*}
\operatorname{dim} A(f) & \geqq(2 n+1)-\left(p^{a}-1\right) m \tag{0.1}\\
& -\left[m(a-1) p^{a}-(m a+2) p^{a-1}+m+3\right] .
\end{align*}
$$

It will be shown in this paper that (0.1) still holds for any differentiable m manifold M.

The procedure taken in this paper is different from the previous ones, and we shall derive the above result from a general theorem stated in connection with the formal group law for some general cohomology theory.

Assume that there is given a multiplicative cohomology theory h defined on the category of finite $C W$ pairs and satisfying the conditions: i) each complex vector bundle is h-orientable, ii) $h^{i}(p t)=0$ for each odd i. Let $F(x, y) \in h(p t)$ $[[x, y]]$ denote the formal group law associated to h, and $[i](x) \in h(p t)[[x]]$ denote the operation of "multiplication by i " for a positive integer i. We shall show that

$$
\begin{align*}
& \operatorname{dim} A(f)<2 d \Rightarrow \tag{0.2}\\
& \quad x^{d}\left(\prod_{i=1}^{(q-1) / 2}[i](x)\right)^{m} \in\left(x^{n+1},[q](x)\right) \quad \text { in } h(p t)[[x]],
\end{align*}
$$

where (a, b) denotes the ideal generated by a and b.

Take as h the general cohomology theory defined from K-theory. Then it is seen by using elementary algebraic number theory that (0.2) is equivalent to (0.1).

We can also take as h the complex cobordism theory U^{*}. Since U^{*} is stronger than K-theory in general, it is expected that sharper result than (0.1) will be obtained from (0.2) applied to $h=U^{*}$. However we have no method to derive numerical conditions equivalent to (0.2) for $h=U^{*}$.

In an appendix, we shall prove in the same procedure as above a nonexistence theorem for equivariant maps which generalizes the result of Vick [10].

1. The formal group law for a multiplicative cohomology

We recall first some facts on multiplicative cohomology theory (see Dold [3]).

We fix once and for all a multiplicative reduced cohomology theory \tilde{h} defined on the category of finite CW complexes with base point. There is the corresponding multiplicative cohomology theory h defined on the category of finite CW pairs.

Let ξ be a real n-dimensional vector bundle over a finite CW complex B, and denote by $M(\xi)$ the Thom space for ξ. For each $b \in B$ let ξ_{b} denote the restriction of ξ over b. Then $\widetilde{h}\left(M\left(\xi_{b}\right)\right)$ is a free $h(p t)$-module on one generator. ξ is said to be h-orientable if there exists $t(\xi) \in \hat{h}^{n}(M(\xi))$ such that $t(\xi) \mid M\left(\xi_{b}\right)$ is a generator of $\widehat{h}\left(M\left(\xi_{b}\right)\right)$ for each $b \in B$. Such $t(\xi)$ is called an h-orientation or a Thom class of $\xi \quad$ By an h-oriented vector bundle we mean a vector bundle in which an h-orientation is given.

Let $D(\xi)$ (or $S(\xi)$) denote the total space of the disc bundle (or the sphere bundle) associated to ξ, and consider the homomorphism

$$
\tilde{h}^{n}(M(\xi))=h^{n}(D(\xi), S(\xi)) \xrightarrow{j^{*}} h^{n}(D(\xi)) \xrightarrow{p^{*-1}} h^{n}(B),
$$

where j is the inclusion and p is the projection. The image of $t(\xi)$ under this homomorphism is called the Euler class of the h-oriented bundle ξ, and is denoted by $e(\xi)$.

The following facts are easily proved:
(1.1) If there is a bundle map $f: \xi \rightarrow \xi^{\prime}$ and ξ^{\prime} is h-oriented, then ξ is h oriented so that $f^{*}: h\left(B^{\prime}\right) \rightarrow h(B)$ preserves the Euler classes.
(1.2) If ξ_{1} and ξ_{2} are h-oriented, then the Whitney sum $\xi_{1} \oplus \xi_{2}$ is h-oriented so that $e\left(\xi_{1} \oplus \xi_{2}\right)=e\left(\xi_{1}\right) e\left(\xi_{2}\right)$.
(1.3) If ξ has a non-zero cross section, then $e(\xi)=0$.

The classical Leray-Hirsch theorem on fiberings can be generalized to the multiplicative theory h, and so we have the Thom isomorphism

$$
\Phi: h(B) \cong \hat{h}(M(\xi))
$$

given by $\Phi(\alpha)=\alpha \cdot t(\xi)$. As a consequence, the Gysin exact sequence

$$
\cdots \rightarrow h^{i-1}(S(\xi)) \rightarrow h^{i-n}(B) \xrightarrow{\cdot e(\xi)} h^{i}(B) \xrightarrow{p^{*}} h^{i}(S(\xi)) \rightarrow \cdots
$$

holds.
A complex vector bundle ξ is called h-orientable if the real form $\xi_{\boldsymbol{R}}$ is h orientable. Let η_{n} denote the canonical complex line bundle over the complex n-dimensional projective space $C P^{n}$. Throughout this section the following will be assumed:
(1.4) For each n, η_{n} is h-oriented so that the homomorphism $h\left(C P^{n+1}\right) \rightarrow$ $h\left(C P^{n}\right)$ preserves the Euler classes.

It follows from this assumption that any complex line bundle ξ over a finite $C W$ complex is h-oriented so that the homomorphism $f^{*}: h\left(B^{\prime}\right) \rightarrow h(B)$ induced by every bundle map $f: \xi \rightarrow \xi^{\prime}$ preserves the Euler classes.

We can prove

(1.5) The algebra $h\left(C P^{n}\right)$ is a truncated polynomial algebra over $h(p t)$:

$$
h\left(C P^{n}\right)=h(p t)\left[e\left(\eta_{n}\right)\right] /\left(e\left(\eta_{n}\right)^{n+1}\right)
$$

(1.6) Put $e\left(\eta_{m}\right)_{1}=p_{1}^{*} e\left(\eta_{m}\right)$ and $e\left(\eta_{n}\right)_{2}=p_{2}^{*} e\left(\eta_{n}\right)$ for the projections $p_{1}: C P^{m}$ $\times C P^{n} \rightarrow C P^{m}$ and $p_{2}: C P^{m} \times C P^{n} \rightarrow C P^{n}$. Then the isomorphism

$$
h\left(C P^{m} \times C P^{n}\right)=h(p t)\left[e\left(\eta_{m}\right)_{1}, e\left(\eta_{n}\right)_{2}\right] /\left(e\left(\eta_{m}\right)_{1}^{m+1}, e\left(\eta_{n}\right)_{2}^{n+1}\right)
$$

holds.
For a $C W$ complex X with finite skelta, we define $h(X)$ as the inverse limit with respect to skelta :

$$
h(X)=\lim _{\rightleftarrows} h\left(X^{n}\right) .
$$

Then, for the infinite dimensional projective space $C P^{\infty}$, the following result is obtained from (1.5) and (1.6).
(1.7) $h\left(C P^{\infty}\right)$ and $h\left(C P^{\infty} \times C P^{\infty}\right)$ are rings of formal power series :

$$
h\left(C P^{\infty}\right)=h(p t)[[x]], \quad h\left(C P^{\infty} \times C P^{\infty}\right)=h(p t)\left[\left[x_{1}, x_{2}\right]\right],
$$

where $x, x_{1} x_{2}$ are the elements defined by $e\left(\eta_{n}\right), e\left(\eta_{n}\right)_{1}, e\left(\eta_{n}\right)_{2}$ respectively.
Let η denote the canonical line bundle over $C P^{\infty}$, and consider the external tensor product $\eta \dot{\otimes} \eta$ which is a complex line bundle over $C P^{\infty} \times C P^{\infty}$. Let μ : $C P^{\infty} \times C P^{\infty} \rightarrow C P^{\infty}$ be a classifying map for $\eta \hat{\otimes} \eta$ which is cellular, and put

$$
\mu^{*}(x)=\sum_{i, j \geq 0} a_{i j} x_{1}^{i} x_{2}^{j} \quad\left(a_{i j} \in h^{2(1-i-j)}(p t)\right)
$$

for $\mu^{*}: h\left(C P^{\infty}\right) \rightarrow h\left(C P^{\infty} \times C P^{\infty}\right)$. Then we obtain easily
(1.8) For the tensor product $\xi_{1} \otimes \xi_{2}$ of any complex line bundles ξ_{1} and ξ_{2}
over a finite $C W$ complex,

$$
e\left(\xi_{1} \otimes \xi_{2}\right)=\sum_{i, j \geq 0} a_{i j} e\left(\xi_{1}\right)^{i} e\left(\xi_{2}\right)^{j}
$$

holds.
Consider now a power series $F(x, y)$ with coefficients in $h(p t)$, which is defined by

$$
F(x, y)=\sum_{i, j \geq 0} a_{i j} x^{i} y^{j}
$$

with $a_{i j}$ above. Then it follows that $F(x, y)$ is a formal group law over $h(p t)$, i.e. the identities

$$
\begin{aligned}
& F(x, 0)=x, F(x, y)=F(y, x), \\
& F(x, F(y, z))=F(F(x, y), z)
\end{aligned}
$$

hold. For each integer $i \geqq 1$, let $[i](x) \in h[[x]]$ denote the operation of "multiplication by i " for the formal group, i.e.

$$
[1](x)=x, \quad[i](x)=F([i-1](x), x)
$$

Since the formula in (1.8) is rewritten as

$$
e\left(\xi_{1} \otimes \xi_{2}\right)=F\left(e\left(\xi_{1}\right), e\left(\xi_{2}\right)\right),
$$

for the i-fold tensor product $\xi^{i}=\xi \otimes \cdots \otimes \xi$ we have

$$
e\left(\xi^{i}\right)=[i](e(\xi)) .
$$

Given a positive integer q, let G denote a cyclic group of order q. Define a G-action on the standard $(2 n+1)$-sphere $S^{2 n+1}=\left\{\left.\left(z_{0}, z_{1}, \cdots, z_{n}\right) \in C^{n+1}\left|\sum_{i}\right| z_{i}\right|^{2}\right.$ $=1\}$ by

$$
\left(z_{0}, \cdots, z_{n}\right) g_{0}=\left(z_{0} \exp 2 \pi \sqrt{-1} / q, \cdots, z_{n} \exp 2 \pi \sqrt{-1} / q\right)
$$

where g_{0} is the generator of G. This yields a principal G-bundle $\rho_{n}^{\prime}: S^{2 n+1} \rightarrow L^{n}$ (q) over the lens space $L^{n}(q)$. Let L denote a 1-dimensional complex G-module given by $c \cdot g_{0}=c \exp 2 \pi \sqrt{-1} / q$, and consider the associated complex line bundle $\rho_{n}=\rho_{n}^{\prime} \times L$. For the canonical projection $\pi: L^{n}(q) \rightarrow C P^{n}$ we have $\rho_{n}=\pi^{*}\left(\eta_{n}\right)$, and hence $e\left(\rho_{n}\right)^{n+1}=0$ holds.

Proposition 1. Let $P(x) \in h(p t)[[x]]$. Then the element $P\left(e\left(\rho_{n}\right)\right)$ of $h\left(L^{n}(q)\right)$ is zero if and only if $P(x)$ is in the ideal generated by x^{n+1} and $[q](x)$.

Proof. Consider the q-fold tensor product η_{n}^{q} of η_{n}. As is observed in [9],
the total space $S\left(\eta_{n}^{q}\right)$ of the sphere bundle associated to η_{n}^{q} is homeomorphic with $L^{n}(q)$. Therefore we have the Gysin sequence

$$
\cdots \rightarrow h^{i-2}\left(C P^{n}\right) \xrightarrow{\cdot e\left(\eta_{n}^{q}\right)} h^{i}\left(C P^{n}\right) \xrightarrow{\pi^{*}} h^{i}\left(L^{n}(q)\right) \rightarrow \cdots .
$$

Since $e\left(\eta_{n}^{q}\right)=[q]\left(e\left(\eta_{n}\right)\right)$, the desired result follows from the above sequence and (1.5).

2. The element $s^{*}(\theta)$

As in $\S 1$, let G denote a cyclic group of order q. We shall assume in the following that q is odd.

For any space X, let $X G$ denote the product of q copies of X. Writing its elements as $\sum_{g \in G} x_{g} g$, a G-action on $X G$ is given by

$$
\left(\sum_{g \in G} x_{g} g\right) \cdot h=\sum_{g \in G} x_{g h^{-1}} g \quad(h \in G)
$$

We denote by ΔX the diagonal in $X G$.
Let Σ be a homotopy $(2 n+1)$-sphere (which is a differentiable manifold), and assume that there is given a free differentiable G-action on Σ. We denote by Σ_{G} the orbit space.

Let M be a differentiable manifold, and consider the diagonal action on Σ $\times M G$ whose orbit space is denoted by $\underset{\sigma}{\Sigma} M G . \quad \Sigma \times \Delta M$ is an invariant submanifold of the G-manifold $\Sigma \times M G$, and its orbit space is regarded as Σ_{G} $\times \Delta M$. We denote by ν the normal bundle of $\Sigma_{G} \times \Delta M$ in $\underset{G}{\times} M G$. This is a real $m(q-1)$-dimensional vector bundle.

Choose a point $y_{0} \in M$, and identify Σ_{G} with a subspace $\Sigma_{G} \times y_{0} G\left(y_{0} G=\right.$ $\left.\sum_{g} y_{0} g\right)$ of $\Sigma_{G} \times \Delta M$.

Let $\lambda^{\prime}: \Sigma \rightarrow \Sigma_{G}$ denote the principal G-bundle defined by the G-action on Σ, and consider the associated complex line bundle $\lambda=\lambda^{\prime} \times L$.

Proposition 2. The normal bundle ν has a complex structure for which

$$
i^{*}(\nu)=m\left(\lambda \oplus \lambda^{2} \oplus \cdots \oplus \lambda^{(q-1) / 2}\right)
$$

holds, where $i: \Sigma_{G} \rightarrow \Sigma_{G} \times \Delta M$ is the inclusion.
Proof. If $\nu_{1}: N_{1} \rightarrow \Delta M$ denote the normal G-vector bundle of ΔM in $M G$, then we have $\nu=i d \underset{G}{\times \nu_{1}}: \underset{G}{\Sigma} N_{1} \rightarrow \Sigma_{G} \times \Delta M$. Therefore it suffices to prove that there exists a G-equivariant complex structure on ν_{1} with the fiber over
$y_{0} G$ being $m\left(L \oplus \cdots \oplus L^{(q-1) / 2}\right)$.
To prove this, let $I G$ be defined by the exact sequence of real G-modules

$$
0 \rightarrow \Delta R \rightarrow R G \rightarrow I G \rightarrow 0 .
$$

View this as a sequence of real G-vector bundles over a point, and identify ΔM with $M \times p t=M$ in the obvious way. Then we have the exact sequence

$$
0 \rightarrow \tau M \hat{\otimes} \Delta \boldsymbol{R} \rightarrow \tau M \hat{\otimes} \boldsymbol{R} G \rightarrow \tau M \hat{\otimes} I G \rightarrow 0
$$

of real G-vector bundles over M, where τM denotes the tangent bundle over M. Since $\tau(M G)=(\tau M) G$, an equivariant isomorphism

$$
\beta: \tau(M G) \mid \Delta M \rightarrow \tau M \hat{\otimes} \boldsymbol{R} G
$$

can be given by

$$
\beta\left(\sum_{g} v_{g} g\right)=\sum_{g} v_{g} \otimes g \quad\left(v_{g} \in \tau_{y}(M), y \in M\right) .
$$

Since $\sum v_{g} g$ is in $\tau(\Delta M)$ if and only if all v_{g} are equal, β maps $\tau(\Delta M)$ onto $\tau M \hat{\otimes} \Delta \boldsymbol{R}$. Thus it holds that $\nu_{1} \cong \tau M \hat{\otimes} I G$ as real G-vector bundles. From elementary representation theory of groups, it follows that $I G$ is the real form of $L \oplus \cdots \oplus L^{(q-1) / 2}$. This gives ν_{1} its complex structure, and we get

$$
\begin{aligned}
\left(\nu_{1}\right)_{y_{0}} & =\tau_{y_{0}} M \otimes\left(L \oplus \cdots \oplus L^{(q-1) / 2}\right) \\
& =\boldsymbol{R}^{m} \otimes\left(L \oplus \cdots \oplus L^{(q-1) / /^{2}}\right)=m\left(L \oplus \cdots \oplus L^{(q-1) / /^{2}}\right)
\end{aligned}
$$

as desired. This completes the proof.
As in §1, let h be a given multiplicative cohomology theory. In the following we shall assume the following conditions:
(2.1) every complex vector bundle of any dimension is h-orientable.
(2.2) $h^{o d d}(p t)=0$.

Assuming that M is closed, consider the normal bundle ν. Then, by Proposition 2 and (2.1), we have a Thom class $t(\nu) \in \widehat{h}^{m(q-1)}(M(\nu))$ and the corresponding Euler class $e(\nu) \in h^{m(q-1)}\left(\Sigma_{G} \times \Delta M\right)$ such that

$$
\begin{align*}
i^{*} e(\nu) & =e\left(m\left(\lambda \oplus \lambda^{2} \oplus \cdots \oplus \lambda^{(q-1) / 2}\right)\right) \tag{2.3}\\
& =\left(\prod_{i=1}^{(q-1) / 2}[i](e(\lambda))\right)^{m} .
\end{align*}
$$

As usual we shall regard the total space N of ν as a tubular neighborhood of $\Sigma_{G} \times \Delta M$ in $\underset{G}{\Sigma} \times M G$. Then we can identify $\widehat{h}(M(\nu))$ with $h(\underset{G}{\Sigma} M G$,
$\underset{\theta}{\Sigma} \times M G-N)$ canonically. Let

$$
\theta \in h^{m(q-1)}(\underset{\theta}{\times} M G)
$$

be the image of the Thom class $t(\nu)$ under the homomorphism $l^{*}: h(\underset{G}{\Sigma} M G$, $\underset{G}{\Sigma} M G-N) \rightarrow h(\underset{G}{\times} M G)$ induced by the inclusion. We have immediately
(2.4) For the homomorphism $j^{*}: h(\underset{G}{\Sigma} \times G G) \rightarrow h\left(\Sigma_{G} \times \Delta M\right)$ induced by the inclusion, $j^{*}(\theta)=e(\nu)$ holds.

Given a continuous map $f: \Sigma \rightarrow M$, define a continuous map $s: \Sigma_{G} \rightarrow \Sigma \times$ $M G$ by

$$
s(x G)=\left(x, \sum_{g} f\left(x g^{-1}\right) g\right) G
$$

For the projection $p: \underset{G}{\Sigma \times} M G \rightarrow \Sigma_{G}, p \circ s$ is the identity.
Proposition 3. For the homomorphism $s^{*}: h(\underset{G}{\Sigma} M G) \rightarrow h\left(\Sigma_{G}\right)$ and the homomorphism $i^{*}: h\left(\Sigma_{G} \times \Delta M\right) \rightarrow h\left(\Sigma_{G}\right)$, we have

$$
s^{*}(\theta)=i^{*}(e(\nu))
$$

Proof. It is easily seen that there exist a continuous map $f_{1}: \Sigma \rightarrow M$ and an open set V of Σ satisfying the following conditions: i) f is homotopic to f_{1}, ii) V is homeomorphic to $R^{2 n+1}$, iii) $f_{1}(\Sigma-V)=y_{0}$, iv) $x g \notin \bar{V}$ for any $g \neq 1$ and any $x \in \bar{V}$, where \bar{V} denotes the closure of V Define $s_{1}: \Sigma_{G} \rightarrow \Sigma \times M G$ from f_{1} as s was defined from f, then s and s_{1} are homotopic. Let $(M G)_{1}$ denote the subspace of $M G$ consisting of points with at most one coordinate $\neq y_{0} \quad$ Then $(M G)_{1}$ is an invariant subspace of the G-space $M G$, and the orbit space $\underset{\theta}{\Sigma} \underset{\theta}{(M G)_{1}}$ contains $s_{1}\left(\Sigma_{G}\right)$. Since $\Sigma-V$ is contractible, there exists a homotopy $\psi_{t}:(\bar{V}, \partial V) \rightarrow(\Sigma, \Sigma-V)$ such that ψ_{0} is the inclusion and $\psi_{1}(\partial V)=x_{0} \in \partial V$, where $\partial V=\bar{V}-V$. Put $V_{G}=\pi(V)$ for the projection $\pi: \Sigma$ $\rightarrow \Sigma_{G}$. Consider now the following commutative diagram:

where j_{1}, j_{2}, are the inclusions.

We have

$$
h^{m(q-1)}\left(\Sigma_{G}, \Sigma_{G}-V_{G}\right)=\hat{h}^{m(q-1)}\left(S^{2 n+1}\right)=h^{m(q-1)-(2 n+1)}(p t)=0
$$

by (2.2). Therefore

$$
s_{1}^{*} \circ i_{1}^{*}: h^{m(q-1)}\left(\Sigma \underset{G}{\times}(M G)_{1}, \Sigma_{G} \times y_{0} G\right) \rightarrow h^{m(q-1)}\left(\Sigma_{G}\right)
$$

is trivial.
Next consider the commutative diagram

where i_{1}, i_{2} are the inclusions. Putting $\theta^{\prime}=p^{*} i_{1}^{*} i_{2}^{*}(\theta)-i_{2}^{*}(\theta)$, we have

$$
s_{1}^{*}\left(\theta^{\prime}\right)=i^{*} i^{*}(\theta)-s^{*}(\theta)=i^{*}(e(\nu))-s^{*}(\theta)
$$

by (2.4), and $i_{1}^{*}\left(\theta^{\prime}\right)=0$. Therefore θ^{\prime} is in the image of $j_{1}^{*}: h^{m(q-1)}\left(\Sigma \underset{\sigma}{\times}(M G)_{1}\right.$, $\left.\Sigma_{G} \times y_{0} G\right) \rightarrow h^{m(q-1)}\left(\Sigma \underset{G}{\times}(M G)_{1}\right)$, and hence $s_{1}^{*}\left(\theta^{\prime}\right)=0$ by the fact proved above. Thus we have $i^{*}(e(\nu))=s^{*}(\theta)$.

3. Generalization of Borsuk-Ulam theorem

Let Σ be as in $\S 2$, and let $f: \Sigma \rightarrow M$ be a continuous map to a differentiable m-manifold. Put

$$
A(f)=\{x \in \Sigma \mid f(x)=f(x g) \text { for any } g \in G\}
$$

In this section we shall consider the covering dimension of $A(f)$.
For the image $A(f)_{G}=\pi(A(f))$, we have $\operatorname{dim} A(f)=\operatorname{dim} A(f)_{G}$.
Proposition 4. Assume that M is closed. Then $\operatorname{dim} A(f)<2 d$ implies

$$
e(d \lambda) s^{*}(\theta)=0
$$

Proof. Since $\operatorname{dim} A(f)_{G} \leqq 2 d-1$, it follows that $d \lambda$ has a non-zero cross section over $A(f)_{G}$ (see [5], Lemma 2). By standard facts on extension of cross section, this cross section extends to a non-zero cross section over the closure \bar{W} of some neighborhood W of $A(f)_{G}$ in Σ_{G}. Here we may assume that \bar{W} is
a finite $C W$ complex, and that $s\left(\Sigma_{G}-W\right) \subset \underset{G}{\Sigma} M G-N$ by taking N small. We have then $e(d \lambda \mid \bar{W})=0$, and so $e(d \lambda)$ is in the image of $l_{1}^{*}: h\left(\Sigma_{G}, \bar{W}\right) \rightarrow$ $h\left(\Sigma_{G}\right)$ induced by the inclusion.

On the other hand, it follows from the commutative diagram

(l, l_{2} : inclusions) that $s^{*}(\theta)$ is in the image of l_{2}^{*}.
Therefore $e(d \lambda) s^{*}(\theta)$ is in the image of the homomorphism $h\left(\Sigma_{G}, \bar{W} \cup\right.$ $\left.\left(\Sigma_{G}-W\right)\right)=h\left(\Sigma_{G}, \Sigma_{G}\right) \rightarrow h\left(\Sigma_{G}\right)$, and hence we have the desired result.

We shall now prove the main theorem.
Theorem 1. Let G be a cyclic group of odd order q, and Σ be a homotopy $(2 n+1)$-sphere on which a free differentiable G-action is given. Let M be a differentiable m-manifold. Assume that there exists a continuous map $f: \Sigma \rightarrow M$ with $\operatorname{dim} A(f)<2 d$. Then, for any multiplicative cohomology theory h defined on the category of finite CW pairs and satisfying the conditions (2.1), (2.2), it holds that

$$
x^{d}\left(\prod_{i=1}^{(q-1) / 2}[i](x)\right)^{m} \in h(p t)[[x]]
$$

is contained in the ideal generated by x^{n+1} and $[q](x)$.
Proof. Recall that any differentiable m-manifold is regarded as an increasing union of compact differentiable m-manifold, and that any differentiable m-manifold with boundary is contained in a differentiable m-manifold without boundary. Since Σ is connected and compact, it follows from these facts that we may assume M to be closed without loss of generality.

Then, in virtue of (2.3), Propositions 3 ane 4, we have

$$
\begin{aligned}
& e(\lambda)^{d}\left(\prod_{i=1}^{(q-1) / 2}[i](e(\lambda))\right)^{m} \\
= & e(d \lambda) \cdot i^{*} e(\nu)=e(d \lambda) \cdot s^{*}(\theta)=0 .
\end{aligned}
$$

Since ρ_{n}^{\prime} is a principal G-bundle whose base space is ($2 \mathrm{n}+1$)-dimensional $C W$ complex, and since λ^{\prime} is a $(2 n+1)$-universal principal G-bundle, there is a bundle map of ρ_{n} to λ. Hence the last equation implies

$$
e\left(\rho_{n}\right)^{d}\left(\prod_{i=1}^{(q-1) / 2}[i]\left(e\left(\rho_{n}\right)\right)\right)^{m}=0 .
$$

From this and Proposition 1 we have the desired result.
As typical examples of the multiplicative cohomology theory satisfying the conditions in Theorem 1, we have the classical integral cohomology theory H^{*} ($; \boldsymbol{Z}$), the Grothendieck-Atiyah-Hirzebruch periodic cohomology theory $K^{*}(\quad)$ of K-theory, and the complex cobordism theory $U^{*}(\quad)$ obtained from the Milnor spectrum $M U$ (see [2]).

As is well known, $H^{i}\left(p t ; \boldsymbol{Z}_{)}=\boldsymbol{Z}(i=0),=0(i \neq 0)\right.$ and the formal group law for $H^{*}(; \boldsymbol{Z})$ is given by $F(x, y)=x+y$. Hence the conclusion in Theorem 1 for $h=H^{*}(; Z)$ is stated that

$$
\left(\frac{q-1}{2}!\right)^{m} x^{d+m(q-1) / 2} \in Z[x]
$$

is contained in the ideal generated by x^{n+1} and $q x$. From this we obtain the following result.
(3.1) If q is an odd prime, for any continuous map $f: \Sigma \rightarrow M$ we have dim $A(f) \geqq 2 n-m(q-1)$.

Remark. The conclusion in (3.1) is strengthened to $\operatorname{dim} A(f) \geqq 2 n+1-$ $m(q-1)$ (see [4], [6]).

For $K^{*}()$ it is known that $K^{e v e n}(p t)=\boldsymbol{Z}, K^{o d d}(p t)=0$ and the formal group law is given by $F(x, y)=x+y+x y$ (see[1]). Therefore the conclusion in Theorem 1 for $h=K^{*}()$ is stated that

$$
x^{d}\left(\prod_{i=1}^{(q-1) / 2}\left((x+1)^{i}-1\right)\right)^{m} \in Z[x]
$$

is contained in the ideal generated by x^{n+1} and $(x+1)^{q}-1$. Putting $y=x+1$ this is restated that

$$
(y-1)^{d}\left(\prod_{i=1}^{(y-1) / 2}\left(y^{i}-1\right)\right)^{m} \in Z[y]
$$

is contained in the ideal generated by $(y-1)^{n+1}$ and $y^{q}-1$. If q is an odd prime power p^{a}, it can be proved by making use of elementary algebraic number theory that the above statement is equivalent to

$$
d \geqq n+p^{a-1}-a m\left(p^{a}-p^{a-1}\right) / 2
$$

(see [5], p. 453). Thus theorem 1 implies the following theorem containing (3.1) and being a generalization of the main result in [5].

Theorem 2. If q is an odd prime power p^{a}, for any continuous map $f: \Sigma \rightarrow$ M we have

$$
\begin{aligned}
\operatorname{dim} A(f) & \geqq 2 n+1-\left(p^{a}-1\right) m \\
& \quad-\left[m(a-1) p^{a}-(m a+2) p^{a-1}+m+3\right] .
\end{aligned}
$$

For $U^{*}()$, it is known that $U^{*}(p t)$ is a polynomial ring over \boldsymbol{Z} with one generator of degree $-2 i$ for each positive integer i, and that the formal group law for $U^{*}()$ is given by

$$
F(x, y)=g^{-1}(g(x)+g(y))
$$

with $g(x)=\sum_{i \geq 0} \frac{\left[C P^{i}\right]}{i+1} x^{i+1} \in U^{*}(p t)[[x]] \otimes \boldsymbol{Q}, \quad$ where \boldsymbol{Q} is the ring of rational numbers (see [1], [7]). However we can not deduce numerical conditions equivalent to the conclusion in Theorem 1 for $h=U^{*}(\quad)$.

Appendix

In this appendix we shall show a generalization of a result due to Vick [10].
For any positive integer r, let $T_{r}: S^{2 n+1} \rightarrow S^{2 n+1}$ denote the fixed point free transformation of period r given by

$$
T_{r}\left(z_{1}, \cdots, z_{n+1}\right)=\left(z_{1} \exp 2 \pi \sqrt{-1} / r, \cdots, z_{n} \exp 2 \pi \sqrt{-1} / r\right) .
$$

Then a fixed point free transformation $\bar{T}_{p}: L^{n}(q) \rightarrow L^{n}(q)$ of period p on the lens space $L^{n}(q)$ is induced by $T_{p q}: S^{2 n+1} \rightarrow S^{2 n+1}$.

Theorem 3. Suppose that there exists an equivariant map f of $\left(L^{n}(q), \bar{T}_{p}\right)$ to ($S^{2 m+1}, T_{p}$). Then, for any multiplicative cohomology theory h defined on the category of finite $C W$ pairs and satisfying (1.4), it holds that $([q](x))^{m+1} \in h(p t)[[x]]$ is contained in the ideal generated by x^{n+1} and $[p q](x)$.

Proof. For a multiple $p q$ of q, let $\rho^{\prime}(q, p q)$ denote the principal \boldsymbol{Z}_{p}-bundle $L^{n}(q) \rightarrow L^{n}(p q)$ defined the canonical projection. Corresponding to the standard 1-dimensional complex representation of \boldsymbol{Z}_{p}, we have the associated complex line bundle $\rho_{n}(q, p q)$ on $L^{n}(p q)$. As is observed in [8], it holds that

$$
\rho_{n}(q, p q) \cong \rho_{n}(1, p q) \otimes \cdots \otimes \rho_{n}(1, p q) \quad(q \text {-times })
$$

Therefore, if there exists an equivariant map $f:\left(L^{n}(q), \bar{T}_{p}\right) \rightarrow\left(S^{2 m+1}, T_{p}\right)$, then it holds that

$$
f^{*} \rho_{m}(1, p) \cong \rho_{n}(1, p q) \otimes \cdots \otimes \rho_{n}(1, p q) \quad(q \text {-times })
$$

for the map $\bar{f}: L^{n}(p q) \rightarrow L^{m}(p)$ induced by f.

Therefore we have

$$
f^{*} e\left(\rho_{m}(1, p)\right)=[q]\left(e\left(\rho_{n}(1, p q)\right)\right)
$$

in $h\left(L^{n}(p q)\right)$. Since $e\left(\rho_{m}(1, p)\right)^{m+1}=0$ it holds that

$$
\left([q]\left(e\left(\rho_{n}(1, p q)\right)\right)\right)^{m+1}=0
$$

in $h\left(L^{n}(p q)\right)$. This and Proposition 1 prove the desired result.
The conclusion of Theorem 3 applied to $h=K^{*}(\quad)$ is stated that $\left((x+1)^{q}\right.$ $-1)^{m+1} \in Z[x]$ is contained in the ideal generated by x^{n+1} and $(x+1)^{p q}-1$. Therefore, the argument similar to the proof of Lemma 1 in [5] proves the following

Theorem 4. Let p be a prime, and suppose that there exists an equivariant map of $\left(L^{n}(q), \bar{T}_{p}\right)$ to $\left(S^{2 m+1}, T_{p}\right)$. Then we have

$$
p^{a} m \geqq n,
$$

where $q=p^{a} r,(p, r)=1$.
Remark 1. This generalizes the result due to Vick [10].
Remark 2. Shibata [8] proves this result by applying Theorem 3 to $h=U^{*}(\quad)$.
(added in proof) Since the formal group law for the complex cobordism theory is universal (see [1], [7]), we have the following corollary of Theorem 1 : For any formal group law over a commutative ring R with unit, it holds that

$$
\begin{aligned}
& \operatorname{dim} A(f)<2 d \Rightarrow \\
& \quad x^{d}\left(\prod_{i=1}^{(q-1) / 2}[i](x)\right)^{m} \subset\left(x^{n+1},[q](x)\right) \text { in } R[[x]] .
\end{aligned}
$$

Similar for Theorem 3. This fact was pointed out by J. Morava.
Odense University, Denmark
Osaka University

References

[1] J.F. Adams: Quillen's Work on Formal Groups and Complex Cobordism, Lecture notes, Univ. of Chicago, 1970.
[2] P.E. Conner - E.E. Floyd: The Relation of Cobordism to K-theories, Lecture notes in Math., Springer-Verlag, 1966.
[3] A. Dold: On General Cohomology, Lecture notes, Aarhus Univ., 1968.
[4] H.J. Munkholm: Borsuk-Ulam type theorems for proper \boldsymbol{Z}_{p}-actions on (mod p homology) n-spheres, Math. Scand. 24 (1969), 167-185.
[5] H.J. Munkholm: On the Borsuk-Ulam theorem for $\boldsymbol{Z}_{p^{a}}$ actions on $S^{2 n-1}$ and maps $S^{2 n-1} \rightarrow \boldsymbol{R}^{m}$, Osaka J. Math. 7 (1970), 451-456.
[6] M. Nakaoka: Generalizations of Borsuk-Ulam theorem, Osaka J. Math. 7 (1970), 423-441.
[7] D. Quillen: On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
[8] K. Shibata: Oriented and weakly complex bordism algebra of free periodic maps (to appear).
[9] R.E. Stong: Complex and oriented equivariant bordism, Proc. Georgia Conference (1969), 291-316.
[10] J.W. Vick: An application of K-theory to equivariant maps, Bull. Amer. Math. Soc. 75 (1969), 1017-1019.

