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l Introduction. Let (R, μ) and (S, v) be two measure spaces of totally
σ-finite in the sense of P. Halmos [7]. Let us consider operation T which trans-
forms measurable functions on R to those on S. The operation T is called quasi-
linear if:

(i) T(/;+/2) is uniquely defined whenever Tfx and Tf2 are defined and

where K is a constant independent of fx and /2;

(ii) T{cf) is uniquely defined whenever Tf is defined

and

\T(cf)\ = \c\ \Tf\

for all scalars c.
We say that

is an operation of type (a, b), 1 ^ a ^ b ^ oo, if :

(i) Tyis defined for each f^.L%(R), that is for each / measurable with
respect to μ such that

is finite, the right side being interpreted as the essential upper bound (with res-
pect to μ) of I / I if a = oo

(ii) for every / e LftR), / = Tf is in Z»(S) and

(i.i)

where M is a constant independent of/.

The least admissible value of M in (1.1) is called the (a, δ)-norm of operation T.
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Next let us define the weak type {a, b) of operations.
Suppose first that 1 ̂  b<oo. Given any y>0 denote by Ey = Ey [/] the set of
points of the space S where

\M\>y>
and write v{Ey) for the ^-measure of the set Er An immediate consequence of
(1.1) is that

(1.2) K

An operation T which satisfies (1.2) will be called to be of weak type {a, b). The
least admissible value of M in (1.2) is called the weak type (a, ό)-norm of T.

We define weak type (a,<χ>) as identical with type (a> oo). Hence T is the weak
type (#,oo) if

ess. sup I/I ^

If no confusion arises we omit the symbols μ and v in the notation for norms.
In a number of problems we are led to consider integrals of type

* φ{\f\)dμ\

where φ is not necessarily a power.
The interpolation of operation on the type of space with finite measure has

been considered firstly by J. Marcinkiewicz [12] and A. Zygmund [15]. In the
previous paper [10], the author treated an extension to the space with totally σ-
finite measure. We intend further extension and refinement of those theorems to
the space which is closely related to the intermediate space. The intermediate
between a pair of Banach spaces was firstly introduced by AJ. Luxemburg [11].

Let us consider two continuous increasing functions φx(u) and φ2{u). The

former is defined on the interval 0 ^ u ^ γ and the latter is on — ^ w < °°, and
Ύ

7 is a constant larger than 1. Those satisfy the following properties:

(i) *>i(0) = 0 and φi(2u) = 0(φi(u))

Jo t a + 1 \ U"

for u -* 0, Here and in what follows it is assumed that a<b;

(ii) φ2(2u) = 0(φ2(u))
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for u

(iii) 9>i(l) = φz(X) and so necessarily φλ(u) ~ φ2(u) on an appropriate in-

al containing the unity, say—
7

positive constants Ay B such that

terval containing the unity, say— ^ u ^ 7, 7 > 1 . It means that there exist
7

if —
<p2(a) 7

Let us join 9^ with 992 and introduce a new function φ, that is

), if 0 ^ « ^ 1
<P(U) = , , v . -

(Φ2(w), if

The typical example is

f«ci^i(«)» if 0 ^ w ̂  1
(wc2-ψ 2(w), if 1 < W < oo

where a < c19 c2 < ό and ψlyψ2 are slowly varying function {c.f. A. Zygmund [16]).

Theorem 1. Suppose that a quasi-linear operation T is of weak type {a, a)
and (b, b) with norms Ma and Mb> where 1 ^ a < b < oo. Then Tf is defined for
every f with μ-integrable φ(\f\),φ(\Tf\)is vintegrable and we have

ψ{\f\)dμ

where K = 0(Ma v Mb), Ma v Mb meaning the maximum value ofMa, Mb.

Let us consider another pair of continuous increasing functions Xx(u) and
X2(u) which satisfy the following properties:

(i) %1(0) = 0, %1{2u) = Q{X1[u))

for u -* 0;

(ii) %2(2w) =
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tb+1 \ ub

for U —> oo

(iii) χλ(\)=z X2(\) and so necessarily X^u^Xjψ) on the interval —
Ύ

u ^ γ for some γ > 1.

Write

and let us join X1 with X2 and %2* and introduce new functions X and %*, that is

u), if 0 ^ w ^ 1

*W= — l f lθ<oo

if 0 ^ u ^ 1

f-X2*(w), if 1 < u < oo

The typical example is

X^u) = tfψ^u), if 0 ^ u fg 1

X2\Uj == u y X2 (u) == u log M, it 1 <C u <C °°

where a < c < b, ψ^u) is a slowly varying function.

Theorem 2. Suppose that a quasi-linear operation T is of weak type (a, a)
and (b, b) with norms Ma and Mbί where 1 fj a < ό<oo. 77*e# Tf is defined for
every μ-integrable %*( | /1), X( \ Tf |) is v-integrable and we have

where K=O(MavMb).

We shall prove those theorems in § 2. In § 3, we shall add some remarks
which are useful on a certain case. In § 4, we shall prove the following theorem.

Theorem 3. Suppose that a quasi-linear opeation T is of weak type (1, 1)

and type (ps p) for some p>\. Then we have

\ \Tf\pdv+ j \Tf\dv
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where K is a constant independent off.

In § 5, we shall state some applications to singular integral operators.
Here the present author thanks to the referee for his kind advices.

2. Proofs of Theorems 1 and 2. Firstly we intend to prove Theorem 2.
The Xλ (u) has the following properties

Bub ^ Xλ{u) ^Aua (0 ̂  u ^ 1)

where we shall use letters A, B, etc. as absoute constants.
If we denote by / * equi-measurable, non-increasing rearrangement of \f |,

and by i?j the sub-set of the space R where \f\ ^ 1 , then

( \f\'dμ = Γ (ftγdxKB^Γ XjJ*)dx

where t denotes the ̂ -measure of set {x\ \f(x)\ >1}.
The X2(u) and X2*(u) have the following properties. The %2*(w) is continuous,
non-decreasing function for u > 1 and

X*(2u) =

for u -> oo. Because for uf > u > 1, we have

X*(u')-X*(u) =

J« t

and since %2(2w) = 0(X2(w)) for u -*• °o, we have

J ta+1

^ A X*(u)+A'ua[" ? ^ ώ ^ A"X*(u).
v 1 ϊ

By similar arguments read

and
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X2(u) ^ Bub

respectively. We have

Λ 0 (
tb+1 \ Ub

for u -> oo. Because we have by the definition of %2*,

(b-a)u"-a Ji sβ+1 (b-a) J«

M* M 6 M*

If we denote by R2 the sub-set of R where | / | >1, then

\f\'dμ = \\f*)"dx<A Γ%2*(/*)ώ
?2 Jo J o

= A\ x*(\f\)dμ,

where t denotes the μ-measure of se {x \ \f(x) I >1}. Under those preparations,
let/e LI* (R) and write

/ = /'+/"
where/ =/whenever | / | ^ 1 and/7 = 0 otherwise ;/" = / - / . Since f
and β o / ' e L ^ / ' e L l S and so f g L J . Hence Γ/ and Tf" are defined,
by hypothesis, and so Tf=T(f'-\-f"). Let Wvίj) by the distribution function
\Tf\. We have

X(\Tf\)dv=-\°°X(y)dnv(y)
Jo

Σ

where δ_, = X(\2^)-X(X2') and v}. == i;(£λ2, ) [ | T/1]), λ = 3/e2. The passage
from the second to the third integral is justified as in A. Zygmund [15, Vol. JI,
p. 112 (4.8)].

For each fixed/ ^ 0, we write/ = fx + /2 + /3, where/ equals/or 0 ac-
cording as 1 < |/1 ^2j or elae;/2 does/or 0 according as \f \ > 2y or else; and
so/j does/or 0 according as | / | ^ 1 or else. Since/j e LJL Π ̂ , / 2 G LJ, and
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/3 G Lμ respectively. In view of the inequality

\Tf\ ^

if I Tfi I < y, for all i — 1, 2, 3 and any positive real number y, then | Tf\ <Xy
with λ = 3/e2. Therefore we have

and if we take y = 2y, we get the following formula,

and then

say.

By 6,. ( ι = l , 2, ), we denote the/^-measure of the set where 2 ί " 1 < | / | ^2% then
then if we interchange the order of summation and substitute above estimates
we are led to

= CΣ 2-*% [ \fΛbdμ^cf^ 2-'»δy έ 2%
y-o J Λ y=i ι=i

^ C"g%2(2 )εf ^ c j

/2 = C Σ 2 - J % ( \f»\'dμ£ c f ]
y«=o Ji? y=o

δy ^ cfj2<βεf U

c"g%2*(2 )f, ^

- ' % ( \f3\"dμ = C \ \f\»dμ fj2->»8y
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Therefore we have

Σ \RU\f\)dμ+C"\RU\f\)dμ

Similarly, for each fixed/ < 0, we write/ = /4 + /> + /6, where /4 equals /
or 0 according as 2j < | /1 ^ 1 or else;/5 does/or 0 according as 0 ^ | /1 ^ 2J'
or else; and so/6 does/or 0 according as 1 < | / | or else. Since/4 G L J Π Lb

M

f5 e L\ and /6 e L% respectively, we have

VJ^D\2-^\ \ft\'dμ+2-»\ \f5\"dμ+2-^\ \fβ\'dμ}
I J/?i JRx JR2 )

We can estimate the summation 2 ^/S,. just the same as 2 ^,δ y and we have

and hence we attain the desired inequality

X*{\f\)dμ,
R

The proof of Theorem 1 is a rather easy repetition of that of Theorem 2 and
need not be gone into.

3. Some remarks. (1). If the operation T is linear, then we can present
theorems 1 and 2 as more general forms which are useful on a certain case (c.f.
E.M. Stein - G. Weiss [13]).

We say that the operation T is of restricted weak type (a, b), if for every
simple function / on R, Tf is ^-measurable function on S and satisfies

where M is a constant independent of/. We can state

Corollary 1. In Theorem 1, if the operation T is linear and of restricted

weak type (a, a) and (b3 b) where 1 ^ a <C b < °o respectively. Then we have

for every simple function f on R,

and moreover we can extend the operation T to the whole space L% preserving the
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norm of operation.

Proof. We need only to prove the process of extension. Take any/in L%.
Let us write

ί ( s i g n Λ * = i , i f ^

((sign/);*, if \f\>n

k = 1, 2, , n ; n = 1, 2, . Then/, tends to / monotone increasingly for a.e.
x and so φ{ \ fn \) does to φ{ \ f | ) . By the Lebesgue convergence theorem we
have

limf φ(\fH\)dμ=\ φ(\f\)dμ
n->"*jR JR

and

limf φ(\fm~fn\)dμ = 0.
m,H-+ooJR

If we write fn = Tfm then by hypothesis we have

and since T is of linear

<P( I Λ - Λ I )dv H K \R φ(\fm-fn\ )dμ.

The least formula shows that {/„} is a sequence of fundamental in measure and
so there exist a limit function/uniquely except a set of z>-measure zero and sub-
sequence (nk) of (ή) such that/Λ ; t converges to/for a.e. x. Applying the Fatou
lemma we have the desired result.

The same argument leads to

Corollary 2 In Theorem 2, if the operation T is linear and of restricted weak
type {a, a) and (b, b) where 1 ^ a < b < oô  respectively. Then we have for every
simple function f on R,

and moreover we can extend the operation T to the whole space Lκ£ preserving the
norm of operation.

(2) Next we meet the φ(u) which is continuous and not necessarily in-
creasing on the whole interval. If we suppose that φ is ultimately increasing for

the value of u near zero and infinity; in the middle interval, say ί—,7) with
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γ > l , is of bounded variation, then we can find an increasing function <p* such
that

φ(u) ^ φ*(u) ̂  Ay φ(u), for all u ^ 0.

For example a construction of φ* is as follows:

φ* (u) = 1

φ{u), if 0 :
Ύ

\dφ\, if - 1 ^
7 / J i/γ 7

( i \ f y
— ) + \ I ί/<p I +(<τ?(w) — ̂ (Ύ))^ if 7 ^ w < °°
.7/ Ji/v

The simple calculation shows that the inequality is satisfied

i
i/ y

min

Corollary 3. In Theorem 1, z/ίλe <p(z/) M ultimately increasing for the value
of u near zero and infinity in the middle interval, is of bounded variation. The
same conclusion is also true.

The same argument leads to

Corollary 4. In Theorem 2, if the X(u) is ultimately increasing for the value
of u near zero and infinity in the middle interval, is of bounded variation. The same
conclusion is also true.

4. Proof of Theorem 3. Let us suppose that / e Lp+L log+ L. Write
f = g + h:

a (/, if I/I £ 1 . f p

' - U i f | / ι> i h=f-g

We have g e Lp and h e L log+ L respectively. Since the operation T is of type

(P> P) by hypothesis, we have

\Th\'d= -njl)+p [n,{y)y>-* dy

\h\dμ,yy
p—

and therefore
(1) j \Th\"dv^θ[PMΛ\ \f\dμ
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Next if we follow carefully on the lines of proof of Theorem 2, we have

( Thdv=- [°y dn,(y) = < 1 ) + [°°n,(y)dyj
\TH\>1

Therefore

( 2 )

We have immediately

( 3 ) \ \Tg\pdv ̂ M*\ \g\pdμ = Ml \ \f\pdμ

and also

\T8\>1

and therefore

(4) J I W ^ θ ( ^ ) J \f\pdμ
\T8\>1

We need the following lemma

Lemma. From an inequality

A ^ κ(B+C), A, B, C t: 0, K ^

we have (i) if 0 ίg A ^ 1

y% ίf c > l

(ii) ifA>\

A - \(2,cY{Bp+C\ ι / C > 1.

Proof, (i) Suppose that 0 ^ A ^ 1 . If 0 ^ C ̂  1, it is trivial; if C < 1

A^\< C1/p ^ κ(B+C1/p).

(ii) Suppose that A>1. From an inequality A ^ κ(B-\-C), one of the relation
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B > — and C> — always holds. If B > —,
2« 2« 2«

, if 0 ̂  C ̂

, if C > 1.

A ̂ 2κC

\{2κCγ ^ (2«)^(S*+C*), if 0 ̂  C ̂

uoφ,
ΔK

{{2κ){BP+C\ if C> 1.

Let us estimate 7y on the set 5Ί = {x\ \ Tf \ ̂  1}. Applying Lemma (i)
such as A = \Tf\, B = \Tg\ and C = \Th\ and the Minkowsky inequality, we
have

^ \Tg\fidv)

Substituting (1) (2) and (3),

( 5 )

Let us estimate T/ on the set 52 = {x \ \Tf\ > 1}, we have

^ ( 2 ^ J (|7^|^+|ΓA|)^+(2^ j (\Tg\+>\Th\*)dp
•v2nt:tiir*i>i> s2n{*ιιr*sιi}

^ 2(2«)*'j I 7>IUv + (2K)* \ \Th\dv + (2κ)p \ \Th\"dv
JS2

\Th\>l

Substituting (1) (2) and (3)

( 6 ) J
\T/\>ί
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The formulas (5) and (6) complete the proof of Theorem 3.

5. Applications. Let x=(x19 x2, •••, xH\ y=(yΎ y2, •••, yΛ), by points of
the real w-dimensional space En. A.P. Calderon-A. Zygmund [2] studied the
singular integral operator:

/(*) = (f*K)(x) = P.V. ( f{x-y) K (y) dy

= lim /,(*) = lim ( f{x-y)K{y) dy,

where kernel K (x) has the form

K(x)= |* Λ
\x\

Let us denote by Σ the unit sphere on which the n(^) is denfied. Let us denote
by ω(δ) the modulus of continuity of

Let us suppose that

(a) jθ(Λ')ώ' = 0

(b) Ω ^ J e L ^ Σ ) and its modulus of continuity ω(δ) satisfy the Dini
condition,

d β < .
Jo δ

Then they proved that the operations Tf=f and Tsf=fs are both linear and of
type (pyp) for every p>ί and of weak type (1,1) respectively. Applying our
theorem 3, we have for example

J l/l*<£*+5 \f\dχ

l

where K is a constant depending on p and not on /.
A.P. Calderon-M. Weiss-A. Zygmund [4] proved that the condition (b) of

Ω(x') can be replaced by the (rotational) integrated modulus of continuity ω^δ)
instead of ω(δ). That is, the ω^δ) is defined as follows

ωx(δ) = sup ( I Ω(px') - Ω(ΛO I dxr

where p is any rotation of Σ and \p\ its magnitude.
Furthermore the maximal operation Tf=f
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f/ = /=sup|/f|

satisfy the same assumptions as the operations Tf=f and T2 / = / β and so

necessarily the same conclusions. See, L. Hϋrmander [8], A.P. Calderon-A.

Zygmund [3] and A.P. Calderon-M. Weiss-A. Zygmund [4].

As a special case,the one-dimensional Hubert transform

H/(*) = P.V. — Γ Άdy
π J-~ x—y

and the Riesz transform

*,/(*) = VN.^Jiy)^^ dy (i= 1, 2, - n)

where

V 2 )

and also the unified operator of Hubert transform and ergodic operator belong

to our category. See J. Horvath [9], M. Cotlar [5] and E.M. Stein[14].

On the other hand let us consider

fΛ{x) = P.V. \ \~?}dy9. 0 <a<n\
Jεn \y\n «

then the following is known according to G.H. Hardy- J.E. Littlewood [6] and

A. Zygmund [15] (c.f. also, E.M. Stein [14]):

(i) it is of type (r, s)

where 1 <r<s<oof—— _ = SL ,

(ii) it is of weak type ( 1 , ) .
\ n— a'

Thus the potential operator is beyond the scope of Theorem 3. We shall give a

conjecture.

Let us write a{= — , β{ = — (/=1, 2). Let (aly βj and (α2, β2) be any two

points of the triangle

Δ: O ^ y β ^ α ^ l

such that β1=£β2. If a^ a2, let us suppose that a quasilinear operation /*= Tf

is of weak type (—, — ) and type (— , — ), then we have
v «i βj xa2 βj
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j \Tf\^dv+ J \Tf\hdv
Γ ^ \Tf\>l

<ίκ{\

where kλ = -^ , if is a constant independent of/.

We shall have an analogous result in the case aλ<a2.
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