CONTRIBUTIONS TO THE THEORY OF INTERPOLATION OF OPERATIONS

Sumiyuki KOIZUMI

(Received August 31, 1970)

1. Introduction. Let (R, μ) and (S, ν) be two measure spaces of totally σ-finite in the sense of P. Halmos [7]. Let us consider operation T which transforms measurable functions on R to those on S. The operation T is called quasilinear if:
(i) $\mathrm{T}\left(f_{1}+f_{2}\right)$ is uniquely defined whenever $T f_{1}$ and $T f_{2}$ are defined and

$$
\left|T\left(f_{1}+f_{2}\right)\right| \leqq \kappa\left(\left|T f_{1}\right|+\left|T f_{2}\right|\right)
$$

where κ is a constant independent of f_{1} and f_{2};
(ii) $T(c f)$ is uniquely defined whenever $T f$ is defined and

$$
|T(c f)|=|c||T f|
$$

for all scalars c.
We say that

$$
\tilde{f}=T f
$$

is an operation of type $(a, b), 1 \leqq \mathrm{a} \leqq b \leqq \infty$, if :
(i) Tf is defined for each $f \in L_{\mu}^{a}(R)$, that is for each f measurable with respect to μ such that

$$
\|f\|_{a, \mu}=\left(\int_{R}|f|^{a} d \mu\right)^{1 / a}
$$

is finite, the right side being interpreted as the essential upper bound (with respect to μ) of $|f|$ if $a=\infty$;
(ii) for every $f \in L_{\mu}^{a}(R), \tilde{f}=T f$ is in $L_{\nu}^{b}(S)$ and

$$
\begin{equation*}
\|\tilde{f}\|_{b, \nu} \leqq M\|f\|_{a, \mu} \tag{1.1}
\end{equation*}
$$

where M is a constant independent of f.
The least admissible value of M in (1.1) is called the (a, b)-norm of operation T.

Next let us define the weak type (a, b) of operations.
Suppose first that $1 \leqq b<\infty$. Given any $y>0$ denote by $E_{y}=E_{y}[\tilde{f}]$ the set of points of the space S where

$$
|\tilde{f}(x)|>y
$$

and write $\nu\left(E_{y}\right)$ for the ν-measure of the set E_{y}. An immediate consequence of (1.1) is that

$$
\begin{equation*}
\nu\left(E_{y}[\tilde{f}]\right) \leqq\left(\frac{M}{y}\|f\|_{a, \mu}\right)^{b} . \tag{1.2}
\end{equation*}
$$

An operation T which satisfies (1.2) will be called to be of weak type (a, b). The least admissible value of M in (1.2) is called the weak type (a, b)-norm of T.

We define weak type (a, ∞) as identical with type (a, ∞). Hence T is the weak type (a, ∞) if

$$
\text { ess. sup }|\tilde{f}| \leqq M\|f\|_{a, \mu}
$$

If no confusion arises we omit the symbols μ and ν in the notation for norms.
In a number of problems we are led to consider integrals of type

$$
\int_{R} \varphi(|f|) d \mu
$$

where φ is not necessarily a power.
The interpolation of operation on the type of space with finite measure has been considered firstly by J. Marcinkiewicz [12] and A. Zygmund [15]. In the previous paper [10], the author treated an extension to the space with totally σ finite measure. We intend further extension and refinement of those theorems to the space which is closely related to the intermediate space. The intermediate between a pair of Banach spaces was firstly introduced by A.J. Luxemburg [11].

Let us consider two continuous increasing functions $\varphi_{1}(u)$ and $\varphi_{2}(u)$. The former is defined on the interval $0 \leqq u \leqq \gamma$ and the latter is on $\frac{1}{\gamma} \leqq u<\infty$, and γ is a constant larger than 1. Those satisfy the following properties:

$$
\begin{align*}
& \varphi_{1}(0)=0 \quad \text { and } \quad \varphi_{1}(2 u)=0\left(\varphi_{1}(u)\right) \tag{i}\\
& \int_{u}^{1} \frac{\varphi_{1}(\mathrm{t})}{\mathfrak{t}^{b+1}} d t=0\left(\frac{\varphi_{1}(u)}{u^{b}}\right) \\
& \int_{0}^{u} \frac{\varphi_{1}(t)}{\mathfrak{t}^{a+1}} d t=0\left(\frac{\varphi_{1}(u)}{u^{a}}\right)
\end{align*}
$$

for $u \rightarrow 0$, Here and in what follows it is assumed that $a<b$;

$$
\begin{equation*}
\varphi_{2}(2 u)=0\left(\varphi_{2}(u)\right) \tag{ii}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{u}^{\infty} \frac{\varphi_{2}(t)}{t^{b+1}} d t=0\left(\frac{\varphi_{2}(u)}{u^{b}}\right) \\
& \int_{1}^{u} \frac{\varphi_{2}(t)}{t^{a+1}} d t=0\left(\frac{\varphi_{2}(u)}{u^{a}}\right)
\end{aligned}
$$

for $u \rightarrow \infty$;
(iii) $\varphi_{1}(1)=\varphi_{2}(1)$ and so necessarily $\varphi_{1}(u) \sim \varphi_{2}(u)$ on an appropriate interval containing the unity, say $\frac{1}{\gamma} \leqq u \leqq \gamma, \gamma>1$. It means that there exist positive constants A, B such that

$$
A \leqq \frac{\varphi_{1}(u)}{\varphi_{2}(u)} \leqq B \quad \text { if } \frac{1}{\gamma} \leqq u \leqq \gamma, \gamma>1
$$

Let us join φ_{1} with φ_{2} and introduce a new function φ, that is

$$
\varphi(u)= \begin{cases}\varphi_{1}(u), & \text { if } 0 \leqq u \leqq 1 \\ \varphi_{2}(u), & \text { if } 1<u<\infty\end{cases}
$$

The typical example is

$$
\varphi(u)= \begin{cases}u^{c}{ }_{1} \psi_{1}(u), & \text { if } 0 \leqq u \leqq 1 \\ u^{c_{2}} \psi_{2}(u), & \text { if } 1<u<\infty\end{cases}
$$

where $\mathrm{a}<c_{1}, c_{2}<b$ and ψ_{1}, ψ_{2} are slowly varying function (c.f.A. Zygmund [16]).
Theorem 1. Suppose that a quasi-linear operation T is of weak type (a, a) and (b, b) with norms M_{a} and M_{b}, where $1 \leqq a<b<\infty$. Then Tf is defined for every f with μ-integrable $\varphi(|f|), \varphi(|T f|)$ is ν-integrable and we have

$$
\int_{S} \varphi(|T f|) d \nu \leqq K \int_{R} \varphi(|f|) d \mu
$$

where $K=0\left(M_{a} \vee M_{b}\right), M_{a} \vee M_{b}$ meaning the maximum value of M_{a}, M_{b}.
Let us consider another pair of continuous increasing functions $\chi_{1}(u)$ and $\chi_{2}(u)$ which satisfy the following properties:

$$
\begin{align*}
& \chi_{1}(0)=0, \quad \chi_{1}(2 u)=0\left(\chi_{1}(u)\right) \tag{i}\\
& \int_{u}^{1} \frac{\chi_{1}(t)}{t^{b+1}} d t=0\left(\frac{\chi_{1}(u)}{u^{b}}\right) \\
& \int_{0}^{u} \frac{\chi_{1}(t)}{t^{a+1}} d t=0\left(\frac{\chi_{1}(u)}{u^{a}}\right)
\end{align*}
$$

for $u \rightarrow 0$;
(ii)

$$
\chi_{2}(2 u)=0\left(\chi_{2}(u)\right)
$$

$$
\int_{u}^{\infty} \frac{\chi_{2}(t)}{t^{b+1}} d t=0\left(\frac{\chi_{2}(u)}{u^{b}}\right)
$$

for $u \rightarrow \infty$;
(iii) $\quad \chi_{1}(1)=\chi_{2}(1)$ and so necessarily $\chi_{1}(u) \sim \chi_{2}(u)$ on the interval $\frac{1}{\gamma} \leqq$ $u \leqq \gamma$ for some $\gamma>1$.

Write

$$
\chi_{2}^{*}(u)=u^{a} \int_{1}^{u} \frac{\chi_{2}(t)}{t^{a+1}} d t \quad \text { if } u>1
$$

and let us join χ_{1} with χ_{2} and $\chi_{2}{ }^{*}$ and introduce new functions χ and χ^{*}, that is

$$
\begin{aligned}
& \chi(u)= \begin{cases}\chi_{1}(u), & \text { if } 0 \leqq u \leqq 1 \\
\chi_{2}(u), & \text { if } 1<u<\infty\end{cases} \\
& \chi *(u)= \begin{cases}\chi_{1}(u), & \text { if } 0 \leqq u \leqq 1 \\
\chi_{2}(u)+\chi_{2}^{*}(u), & \text { if } 1<u<\infty\end{cases}
\end{aligned}
$$

The typical example is

$$
\begin{aligned}
& \chi_{1}(u)=u^{c} \psi_{1}(u), \quad \text { if } 0 \leqq u \leqq 1 \\
& \chi_{2}(u)=u^{a}, \chi_{2}^{*}(u)=u^{a} \log ^{+} u, \quad \text { if } 1<u<\infty
\end{aligned}
$$

where $a<c<b, \psi_{1}(u)$ is a slowly varying function.
Theorem 2. Suppose that a quasi-linear operation T is of weak type (a, a) and (b, b) with norms M_{a} and M_{b}, where $1 \leqq a<b<\infty$. Then Tf is defined for every μ-integrable $\chi *(|f|), \chi(|T f|)$ is ν-integrable and we have

$$
\int_{S}(|T f|) d \nu \leqq K \int_{R} \chi^{*}(|f|) d \mu
$$

where $K=O\left(M_{a} \vee M_{b}\right)$.
We shall prove those theorems in $\S 2$. In $\S 3$, we shall add some remarks which are useful on a certain case. In $\S 4$, we shall prove the following theorem.

Theorem 3. Suppose that a quasi-linear opeation T is of weak type $(1,1)$ and type (p, p) for some $p>1$. Then we have

$$
\begin{aligned}
& \int_{|T f| \leq 1}|T f|^{p} d \nu+\int_{|T f|>1}|T f| d \nu \\
& \leqq K\left\{\int_{|f| \leq 1}|f|^{p} d \mu+\int_{|f|>1}|f|\left(1+\log ^{+}|f|\right) d \mu\right\}
\end{aligned}
$$

where K is a constant independent of f.
In § 5, we shall state some applications to singular integral operators. Here the present author thanks to the referee for his kind advices.
2. Proofs of Theorems 1 and 2. Firstly we intend to prove Theorem 2. The $\chi_{1}(u)$ has the following properties

$$
B u^{b} \leqq \chi_{1}(u) \leqq A u^{a} \quad(0 \leqq u \leqq 1)
$$

where we shall use letters A, B, etc. as absoute constants.
If we denote by f^{*} equi-measurable, non-increasing rearrangement of $|f|$, and by R_{1} the sub-set of the space R where $|f| \leqq 1$, then

$$
\begin{aligned}
& \int_{R_{1}}|f|^{b} d \mu=\int_{t}^{\infty}\left(f^{*}\right)^{b} d x<B^{-1} \int_{t}^{\infty} \chi_{1}\left(f^{*}\right) d x \\
&=B^{-1} \int_{R_{1}} \chi_{1}(|f|) d \mu
\end{aligned}
$$

where t denotes the μ-measure of set $\{x||f(x)|>1\}$.
The $\chi_{2}(u)$ and $\chi_{2}{ }^{*}(u)$ have the following properties. The $\chi_{2}{ }^{*}(u)$ is continuous, non-decreasing function for $u>1$ and

$$
\chi_{2} *(2 u)=0\left(\chi_{2}^{*}(u)\right)
$$

for $u \rightarrow \infty$. Because for $u^{\prime}>u>1$, we have

$$
\begin{aligned}
\chi_{2}^{*}\left(u^{\prime}\right)-\chi_{2}^{*}(u) & =\left(u^{\prime}\right)^{a} \int_{1}^{u^{\prime}} \frac{\chi_{2}(t)}{t^{a+1}} d t-u^{a} \int_{1}^{u} \frac{\chi_{2}(t)}{t^{a+1}} d t \\
& >u^{a} \int_{u}^{u^{\prime}} \frac{\chi_{2}(t)}{t^{a+1}} d t>0
\end{aligned}
$$

and since $\chi_{2}(2 u)=0\left(\chi_{2}(u)\right)$ for $u \rightarrow \infty$, we have

$$
\begin{aligned}
\chi_{2}^{*}(2 u) & =(2 u)^{a} \int_{1}^{2 u} \frac{\varphi_{2}(t)}{t^{a+1}} d t=(2 u)^{a}\left\{\int_{1}^{u} \frac{\chi_{2}(t)}{t^{a+1}} d t+\int_{u}^{2 u} \frac{\chi_{2}(t)}{t^{a+1}} d t\right\} \\
& =A \chi_{2}^{*}(u)+A^{\prime}(2 u)^{a} \int_{u / 2}^{u} \frac{\chi_{2}(2 t)}{t^{a+1}} d t \\
& \leqq A \chi_{2}^{*}(u)+A^{\prime} u^{a} \int_{1}^{u} \frac{\chi_{2}(t)}{t^{a+1}} d t \leqq A^{\prime \prime} \chi_{2}^{*}(u) .
\end{aligned}
$$

By similar arguments read

$$
\begin{aligned}
& \chi_{2}(u) \leqq A \chi_{2}^{*}(u) \\
& u^{a} \leqq A \chi_{2}^{*}(u)
\end{aligned}
$$

and

$$
\chi_{2}(u) \leqq B u^{b}
$$

respectively. We have

$$
\int_{u}^{\infty} \frac{\chi_{2}^{*}(t)}{t^{b+1}} d t=0\left(\frac{\chi_{2}^{*}(u)}{u^{b}}\right)
$$

for $u \rightarrow \infty$. Because we have by the definition of $\chi_{2}{ }^{*}$,

$$
\begin{aligned}
\int_{u}^{\infty} \frac{\chi_{2}^{*}(t)}{t^{b+1}} d t & =\int_{u}^{\infty} \frac{d t}{t^{b+1}} t^{a} \int_{1}^{t} \frac{\chi_{2}(s)}{s^{a+1}} d s \\
& =\int_{1}^{u} \frac{\chi_{2}(s)}{s^{a+1}} d s \int_{u}^{\infty} \frac{d t}{t^{b-a+1}}+\int_{u}^{\infty} \frac{\chi_{2}(s)}{s^{a+1}} d s \int_{s}^{\infty} \frac{d t}{t^{b-a+1}} \\
& =\frac{1}{(b-a) u^{b-a}} \int_{1}^{u} \frac{\chi_{2}(s)}{s^{a+1}} d s+\frac{1}{(b-a)} \int_{u}^{\infty} \frac{\chi_{2}(s)}{s^{b+1}} d s \\
& \leqq A \frac{\chi_{2}^{*}(u)}{u^{b}}+A^{\prime} \frac{\chi_{2}(u)}{u^{b}} \leqq A^{\prime \prime} \frac{\chi_{2}^{*}(u)}{u^{b}}
\end{aligned}
$$

If we denote by R_{2} the sub-set of R where $|f|>1$, then

$$
\begin{aligned}
\int_{R_{2}}|f|^{a} d \mu=\int_{0}^{t}\left(f^{*}\right)^{a} d x & <A \int_{0}^{t} \chi_{2}^{*}\left(f^{*}\right) d x \\
& =A \int_{R_{2}} \chi_{2}^{*}(|f|) d \mu
\end{aligned}
$$

where t denotes the μ-measure of se $\{x||f(x)|>1\}$. Under those preparations, let $f \in L_{\mu}^{\kappa *}(R)$ and write

$$
f=f^{\prime}+f^{\prime \prime}
$$

where $f^{\prime}=f$ whenever $|f| \leqq 1$ and $f^{\prime}=0$ otherwise $; f^{\prime \prime}=f-f^{\prime}$. Since $f^{\prime} \in L_{\mu^{1}}^{\kappa}$ and so $f^{\prime} \in L_{\mu}^{b}, f^{\prime \prime} \in L_{\mu^{2}}^{x_{*}}$ and so $f^{\prime \prime} \in L_{\mu}^{a}$. Hence $T f^{\prime}$ and $T f^{\prime \prime}$ are defined, by hypothesis, and so $T f=T\left(f^{\prime}+f^{\prime \prime}\right)$. Let $n_{\nu}(y)$ by the distribution function $|T f|$. We have

$$
\begin{aligned}
\int_{s} \chi(|T f|) d \nu & =-\int_{0}^{\infty} \chi(y) d n_{\nu}(y) \\
& =\int_{0}^{\infty} n_{\nu}(y) d \chi(\mathrm{y}) \leqq \sum_{j=-\infty}^{\infty} \eta_{j} \delta_{j}
\end{aligned}
$$

where $\delta_{j}=\chi\left(\lambda 2^{j+1}\right)-\chi\left(\lambda 2^{j}\right)$ and $\left.\eta_{j}=\nu\left(E_{\lambda_{2} j}\right)[|T f|]\right), \lambda=3 \kappa^{2}$. The passage from the second to the third integral is justified as in A. Zygmund [15, Vol. III, p. 112 (4.8)].

For each fixed $j \geqq 0$, we write $f=f_{1}+f_{2}+f_{3}$, where f_{1} equals f or 0 according as $1<|f| \leqq 2^{j}$ or elae; f_{2} does f or 0 according as $|f|>2^{j}$ or else; and so f_{3} does f or 0 according as $|f| \leqq 1$ or else. Since $f_{1} \in L_{\mu}^{a} \cap L_{\mu}^{b}, f_{2} \in L_{\mu}^{a}$ and
$f_{3} \in L_{\mu}^{b}$ respectively. In view of the inequality

$$
\begin{aligned}
|T f| & \leqq \kappa\left(\left|T\left(f_{1}+f_{2}\right)\right|+\left|T f_{3}\right|\right) \\
& \leqq \kappa^{2}\left(\left|T f_{1}\right|+\left|T f_{2}\right|+\left|T f_{3}\right|\right) \quad(\kappa>1)
\end{aligned}
$$

if $\left|T f_{i}\right|<y$, for all $i=1,2,3$ and any positive real number y, then $|T f|<\lambda y$ with $\lambda=3 \kappa^{2}$. Therefore we have

$$
\left\{x||T f|>\lambda y\} \subset \bigcup_{i=1}^{3}\left\{x| | T f_{i} \mid>y\right\}\right.
$$

and if we take $y=2^{j}$, we get the following formula,

$$
\eta_{j} \leqq C\left\{2^{-j b} \int_{R_{2}}\left|f_{1}\right|^{b} d \mu+2^{-j a} \int_{R_{2}}\left|f_{2}\right|^{a} d \mu+2^{-j b} \int_{R_{1}}\left|f_{3}\right|^{b} d \mu\right\}
$$

and then

$$
\begin{aligned}
\sum_{j=0}^{\infty} \eta_{j} \delta_{j} & \leqq C\left\{\sum_{j=0}^{\infty} 2^{-j b} \delta_{j} \int_{R_{2}}\left|f_{1}\right|^{b} d \mu+\sum_{j=0}^{\infty} 2^{-j a} \delta_{j} \int_{R_{2}}\left|f_{2}\right|^{a} d \mu\right. \\
& \left.+\sum_{j=0}^{\infty} 2^{-j b} \delta_{j} \int_{R_{1}}\left|f_{3}\right|^{b} d \mu\right\} \\
& =I_{1}+I_{2}+I_{3}, \text { say. }
\end{aligned}
$$

By $\varepsilon_{i}(i=1,2, \cdots)$, we denote the μ-measure of the set where $2^{i-1}<|f| \leqq 2^{i}$, then then if we interchange the order of summation and substitute above estimates we are led to

$$
\begin{aligned}
I_{1} & =C \sum_{j=0}^{\infty} 2^{-j b} \delta_{j} \int_{R}\left|f_{1}\right|^{b} d \mu \leqq C \sum_{j=1}^{\infty} 2^{-j b} \delta_{j} \sum_{i=1}^{j} 2^{i b} \varepsilon_{i} \\
& =C \sum_{i=1}^{\infty} 2^{i b} \varepsilon_{i} \sum_{j=i}^{\infty} 2^{-j b} \delta_{j} \leqq C^{\prime} \sum_{j=1}^{\infty} 2^{i b} \varepsilon_{i} \int_{\lambda_{2} i+1}^{\infty} \frac{\chi_{2}(u)}{u^{b+1}} d u \\
& \leqq C^{\prime \prime} \sum_{i=1}^{\infty} \chi_{2}\left(2^{i}\right) \varepsilon_{i} \leqq C^{\prime \prime} \int_{R_{2}} \chi_{2}(|f|) d \mu \\
I_{2} & =C \sum_{j=0}^{\infty} 2^{-j a} \delta_{j} \int_{R}\left|f_{2}\right|^{a} d \mu \leqq C \sum_{j=0}^{\infty} 2^{-j a} \delta_{j} \sum_{i=j+1}^{\infty} 2^{i a} \varepsilon_{i} \\
& =C \sum_{i=1}^{\infty} 2^{i a} \varepsilon_{i} \sum_{j=0}^{i=1} 2^{-j a} \delta_{j} \leqq C^{\prime} \sum_{i=1}^{\infty} 2^{i a} \varepsilon_{i} \int_{1}^{\lambda_{2}^{i}} \frac{\chi_{2}(u)}{u^{a+1}} d u \\
& \leqq C^{\prime \prime} \sum_{i=0}^{\infty} \chi_{2}^{*}\left(2^{i}\right) \varepsilon_{i} \leqq C^{\prime \prime} \int_{R_{2}} \chi_{2}^{*}(|f|) d \mu \\
I_{3} & =C \sum_{j=0}^{\infty} 2^{-j b} \delta_{j} \int_{R}\left|f_{3}\right|^{b} d \mu=C \int_{R_{1}}|f|^{b} d \mu \sum_{j=0}^{\infty} 2^{-j b} \delta_{j} \\
& \leqq C \int_{R_{1}}|f|^{b} d \mu \int_{1}^{\infty} \frac{\chi_{2}(u)}{u^{b+1}} d u \leqq C^{\prime} \int_{R_{1}} \chi_{1}|(f)| d \mu
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\sum_{j=0}^{\infty} \eta_{j} \delta_{j} & \leqq C \int_{R_{2}} \chi_{2}^{*}(|f|) d \mu+C^{\prime} \int_{R_{2}} \chi_{2}(|f|) d \mu+C^{\prime \prime} \int_{R_{1}} \chi_{1}(|f|) d \mu \\
& \leqq C \int_{R} \chi^{*}(|f|) d \mu
\end{aligned}
$$

Similarly, for each fixed $j<0$, we write $f=f_{4}+f_{5}+f_{6}$, where f_{4} equals f or 0 according as $2^{j}<|f| \leqq 1$ or else; f_{5} does f or 0 according as $0 \leqq|f| \leqq 2^{j}$ or else; and so f_{6} does f or 0 according as $1<|f|$ or else. Since $f_{4} \in L_{\mu}^{a} \cap L_{\mu}^{b}$, $f_{5} \in L_{\mu}^{b}$ and $f_{6} \in L_{\mu}^{a}$ respectively, we have

$$
\eta_{j} \leqq D\left\{2^{-j a} \int_{R_{1}}\left|f_{4}\right|^{a} d \mu+2^{-j b} \int_{R_{1}}\left|f_{5}\right|^{b} d \mu+2^{-j a} \int_{R_{2}}\left|f_{6}\right|^{a} d \mu\right\}
$$

We can estimate the summation $\sum_{j=-\infty}^{-1} \eta_{j} \delta_{j}$ just the same as $\sum_{j=0}^{\infty} \eta_{j} \delta_{j}$ and we have

$$
\sum_{j=-\infty}^{-1} \eta_{j} \delta_{j} \leqq D \int_{R_{1}} \chi_{1}(|f|) d \mu+D^{\prime \prime} \int_{R_{2}} \chi_{2}^{*}(|f|) d \mu
$$

and hence we attain the desired inequality

$$
\int_{S} \chi(|T f|) d \nu \leqq K \int_{R} \chi *(|f|) d \mu
$$

The proof of Theorem 1 is a rather easy repetition of that of Theorem 2 and need not be gone into.
3. Some remarks. (1). If the operation T is linear, then we can present theorems 1 and 2 as more general forms which are useful on a certain case (c.f. E.M. Stein - G. Weiss [13]).

We say that the operation T is of restricted weak type (a, b), if for every simple function f on $R, T f$ is ν-measurable function on S and satisfies

$$
\nu\left(E_{y}[|T f|]\right) \leqq\left(\frac{M}{y}\|f\|_{a, \mu}\right)^{b}
$$

where M is a constant independent of f. We can state
Corollary 1. In Theorem 1, if the operation T is linear and of restricted weak type (a, a) and (b, b) where $1 \leqq a<b<\infty$ respectively. Then we have for every simple function f on R,

$$
\int_{S} \varphi(|T f|) d \nu \leqq K \int_{R} \varphi(|f|) d \mu
$$

and moreover we can extend the operation T to the whole space L_{φ}^{μ} preserving the

norm of operation.

Proof. We need only to prove the process of extension. Take any f in L_{μ}^{φ}. Let us write

$$
f_{n}=\left\{\begin{array}{l}
(\operatorname{sign} f) \frac{k-1}{n}, \quad \text { if } \frac{k-1}{n} \leqq|f|<\frac{k}{n} \\
(\operatorname{sign} f) n, \quad \text { if }|f|>n
\end{array}\right.
$$

$k=1,2, \cdots, \mathrm{n} ; \mathrm{n}=1,2, \cdots$. Then f_{n} tends to f monotone increasingly for a.e. x and so $\varphi\left(\left|f_{n}\right|\right)$ does to $\varphi(|f|)$. By the Lebesgue convergence theorem we have

$$
\lim _{n \rightarrow \infty} \int_{R} \varphi\left(\left|f_{n}\right|\right) d \mu=\int_{R} \varphi(|f|) d \mu
$$

and

$$
\lim _{m, n \rightarrow \infty} \int_{R} \varphi\left(\left|f_{m}-f_{n}\right|\right) d \mu=0
$$

If we write $\tilde{f}_{n}=T f_{n}$, then by hypothesis we have

$$
\int_{S} \varphi\left(\left|\tilde{f}_{n}\right|\right) d \nu \leqq K \int_{R} \varphi\left(\left|f_{n}\right|\right) d \mu
$$

and since T is of linear

$$
\int_{S} \varphi\left(\left|\tilde{f}_{m}-\tilde{f}_{n}\right|\right) d \nu \leqq K \int_{R} \varphi\left(\left|f_{m}-f_{n}\right|\right) d \mu
$$

The least formula shows that $\left\{\tilde{f}_{n}\right\}$ is a sequence of fundamental in measure and so there exist a limit function \tilde{f} uniquely except a set of ν-measure zero and subsequence $\left(n_{k}\right)$ of (n) such that $\tilde{f}_{n_{k}}$ converges to \tilde{f} for a.e. x. Applying the Fatou lemma we have the desired result.

The same argument leads to
Corollary 2. In Theorem 2, if the operation T is linear and of restricted weak type (a, a) and (b, b) where $1 \leqq a<b<\infty$, respectively. Then we have for every simple function f on R,

$$
\int_{S} \chi(|T f|) d \nu \leqq K \int_{R} \chi *(|f|) d \mu
$$

and moreover we can extend the operation T to the whole space $L_{\mu}^{\kappa *}$ preserving the norm of operation.
(2) Next we meet the $\varphi(u)$ which is continuous and not necessarily increasing on the whole interval. If we suppose that φ is ultimately increasing for the value of u near zero and infinity; in the middle interval, say $\left(\frac{1}{\gamma}, \gamma\right)$ with
$\gamma>1$, is of bounded variation, then we can find an increasing function φ^{*} such that

$$
\varphi(u) \leqq \varphi^{*}(u) \leqq A_{\gamma} \varphi(u), \quad \text { for all } u \geqq 0
$$

For example a construction of φ^{*} is as follows:

$$
\varphi^{*}(u)=\left\{\begin{array}{l}
\varphi(u), \quad \text { if } 0 \leqq u<\frac{1}{\gamma} \\
\varphi\left(\frac{1}{\gamma}\right)+\int_{1 / \gamma}^{u}|d \varphi|, \quad \text { if } \frac{1}{\gamma} \leqq u<\gamma \\
\varphi\left(\frac{1}{\gamma}\right)+\int_{1 / \gamma}^{\gamma}|d \varphi|+(\varphi(u)-\varphi(\gamma)), \quad \text { if } \gamma \leqq u<\infty
\end{array}\right.
$$

The simple calculation shows that the inequality is satisfied

$$
A_{\gamma}=\frac{\varphi\left(\frac{1}{\gamma}\right)+\int_{1 / \gamma}^{\gamma}|d \varphi|}{\min _{1 / \gamma \leq u \leq \gamma} \varphi(u)}
$$

Corollary 3. In Theorem 1 , if the $\varphi(u)$ is ultimately increasing for the value of u near zero and infinity; in the middle interval, is of bounded variation. The same conclusion is also true.

The same argument leads to
Corollary 4. In Theorem 2, if the $\chi(u)$ is ultimately increasing for the value of u near zero and infinity; in the middle interval, is of bounded variation. The same conclusion is also true.
4. Proof of Theorem 3. Let us suppose that $f \in L^{p}+L \log ^{+} L$. Write $f=g+h$:

$$
g=\left\{\begin{array}{rl}
f, & \text { if }|f| \leqq 1 \\
0, & \text { if }|f|>1
\end{array} \quad h=f-g\right.
$$

We have $g \in L^{p}$ and $h \in L \log ^{+} L$ respectively. Since the operation T is of type (p, p) by hypothesis, we have

$$
\begin{aligned}
& \int_{|T h| \leqq 1}|T h|^{p} d=-n_{\nu}(1)+p \int_{0}^{1} n_{\nu}(y) y^{p-1} d y \\
& \leqq p \int_{0}^{1} \frac{M_{1}}{y}\|h\|_{1, \mu} y^{p-1} d y=\frac{p M_{1}}{p-1} \int_{R}|h| d \mu,
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\int_{|T h| \leqq 1}|T h|^{p} d \nu \leqq 0\left(\frac{p M_{1}}{p-1}\right) \int_{|f|>1}|f| d \mu \tag{1}
\end{equation*}
$$

Next if we follow carefully on the lines of proof of Theorem 2, we have

$$
\begin{aligned}
& \int_{|T h|>1} T h d \nu=-\int_{1}^{\infty} y d n_{\nu}(y)=n_{\nu}(1)+\int_{1}^{\infty} n_{\nu}(y) d y \\
& \leqq n_{\nu}(1)+0(1) \sum_{j=0}^{\infty} \eta_{j} \delta_{j} \\
& \leqq 0\left(M_{1}\right) \int_{|h|>1}|h| d \mu+0\left(\frac{M_{p}^{p}}{p-1}\right) \int_{|h|>1}|h| d \mu+0\left(M_{1}\right) \int_{|h|>1}|h| \log ^{+}|h| d \mu
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\int_{|T h|>1}|T h| d \nu \leqq 0\left(\frac{M_{n}^{p}}{p-1}+M_{1}\right) \int_{|f|>1}|f|\left(1+\log ^{+}|f|\right) d \mu \tag{2}
\end{equation*}
$$

We have immediately

$$
\begin{equation*}
\int_{S}|T g|^{p} d \nu \leqq M_{p}^{p} \int_{R}|g|^{p} d \mu=M_{p}^{p} \int_{|f| \leq 1}|f|^{p} d \mu \tag{3}
\end{equation*}
$$

and also

$$
\begin{aligned}
\int_{|T r|>1}|T g| d \nu & =n_{\nu}(1)+\int_{1}^{\infty} n_{\nu}(y) d y \\
& \leqq M_{p}^{p}\|g\|_{p, \mu}+\int_{1}^{\infty}\left(\frac{M_{p}\|g\|_{p, \mu}}{y}\right)^{p} d y
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\int_{\mid T g_{\mid}>1}|T g| d \nu \leqq 0\left(\frac{M_{p}^{p}}{p-1}\right) \int_{|f| \leqq 1}|f|^{p} d \mu \tag{4}
\end{equation*}
$$

We need the following lemma
Lemma. From an inequality

$$
A \leqq \kappa(B+C), A, B, C \geqq 0, \kappa \geqq 1
$$

we have (i) if $0 \leqq \mathrm{~A} \leqq 1$

$$
A \leqq\left\{\begin{array}{l}
\kappa(B+C), \quad \text { if } 0 \leqq C \leqq 1 \\
\kappa\left(B+C^{1 / p}\right), \quad \text { if } \mathrm{C}>1
\end{array}\right.
$$

(ii) if $A>1$

$$
A \leqq\left\{\begin{array}{l}
(2 \kappa)^{p}\left(B^{p}+C^{p}\right), \quad \text { if } 0 \leqq C \leqq 1 \\
(2 \kappa)^{p}\left(B^{p}+C\right), \quad \text { if } C>1 .
\end{array}\right.
$$

Proof. (i) Suppose that $0 \leqq A \leqq 1$. If $0 \leqq C \leqq 1$, it is trivial; if $\mathrm{C}<1$

$$
A \leqq 1<C^{1 / p} \leqq \kappa\left(B+C^{1 / p}\right) .
$$

(ii) Suppose that $A>1$. From an inequality $A \leqq \kappa(B+C)$, one of the relation
$B>\frac{A}{2 \kappa}$ and $C>\frac{A}{2 \kappa}$ always holds. If $B>\frac{A}{2 \kappa}$,

$$
\begin{aligned}
A & \leqq 2 \kappa B \leqq(2 \kappa B)^{p} \\
& \leqq\left\{\begin{array}{l}
(2 \kappa)^{p}\left(B^{p}+C^{p}\right), \quad \text { if } 0 \leqq C \leqq 1 \\
(2 \kappa)^{p}\left(B^{p}+C\right), \quad \text { if } C>1
\end{array}\right.
\end{aligned}
$$

If $C>\frac{A}{2 \kappa}$,

$$
\begin{aligned}
A & \leqq 2 \kappa C \\
& \leqq\left\{\begin{array}{l}
(2 \kappa C)^{p} \leqq(2 \kappa)^{p}\left(B^{p}+C^{p}\right), \quad \text { if } 0 \leqq C \leqq 1 \\
(2 \kappa)\left(B^{p}+C\right), \quad \text { if } C>1 .
\end{array}\right.
\end{aligned}
$$

Let us estimate $T f$ on the set $S_{1}=\{x| | T f \mid \leqq 1\}$. Applying Lemma (i) such as $A=|T f|, B=|T g|$ and $C=|T h|$ and the Minkowsky inequality, we have

$$
\begin{array}{r}
\left(\int_{S_{1}}|T f|^{p} d \nu\right)^{1 / p} \leqq \kappa\left(\int_{S_{1} \cap\left\{x| | P_{h \mid>1\}}\right.}\left(|T g|+|T h|^{1 / p}\right)^{p} d \nu\right)^{1 / p} \\
+\kappa\left(\int_{S_{1} \cap\left\{x| | T_{h} \mid \leqq 1\right\}}(|T g|+|T h|)^{p} d \nu\right)^{1 / p} \\
\leqq 2 \kappa\left(\int_{S_{1}}|T g|^{p} d \nu\right)^{1 / p}+\kappa\left(\int_{|T h|>1}|T h| d \nu\right)^{1 / p}+\kappa\left(\int_{|T h| \leqq 1}|T h|^{p} d \nu\right)^{1 / p}
\end{array}
$$

Substituting (1) (2) and (3),

$$
\begin{align*}
\int_{|f| \leqq 1}|T f|^{p} d \nu \leqq & 0\left(M_{p}^{p}\right) \int_{|f| \leqq 1}|f|^{p} d \mu \tag{5}\\
& +0\left(\frac{M_{p}^{p}+M_{1}}{p-1}\right) \int_{i f \mid>1}|f|\left(1+\log ^{+}|f|\right) d \mu
\end{align*}
$$

Let us estimate Tf on the set $S_{2}=\{x| | T f \mid>1\}$, we have

$$
\begin{aligned}
\int_{S_{2}}|T f| d \nu & \leqq(2 \kappa)^{p} \int_{s_{2} \cap\{x| | T h \mid>1\}}\left(|T g|^{p}+|T h|\right) d \nu+(2 \kappa)^{p} \int_{S_{2} \cap\{x| | T h \leqq \mid 1\}}\left(|T g|^{p}|T h|^{p}\right) d \nu \\
& \leqq 2(2 \kappa)^{p} \int_{S_{2}}|T g|^{p} d \nu+(2 \kappa)^{p} \int_{|T h|>1}|T h| d \nu+(2 \kappa)^{p} \int_{|T h| \leqq 1}|T h|^{p} d \nu
\end{aligned}
$$

Substituting (1) (2) and (3)
(6) $\int_{|T f|>1}|T f| d \nu \leqq 0\left(M_{p}^{p}\right) \int_{|f| \leqq 1}|f|^{p} d \mu+0\left(\frac{M_{p}^{p}+M_{1}}{p-1}\right) \int_{|f|>1}|f|\left(\log ^{+}|f|\right) d \mu$

The formulas (5) and (6) complete the proof of Theorem 3.
5. Applications. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right), y=\left(y_{1} y_{2}, \cdots, y_{n}\right)$, by points of the real n-dimensional space E_{n}. A.P. Calderon-A. Zygmund [2] studied the singular integral operator:

$$
\begin{aligned}
\tilde{f}(x) & =(f * K)(x)=\text { P.V. } \int_{E_{n}} f(x-y) K(y) d y \\
& =\lim _{\varepsilon \rightarrow 0} \widetilde{f}_{\varepsilon}(x)=\lim _{\varepsilon \rightarrow 0} \int_{|y|>\varepsilon} f(x-y) K(y) d y
\end{aligned}
$$

where kernel $\mathrm{K}(\mathrm{x})$ has the form

$$
K(\mathrm{x})=|x|^{-n} \Omega\left(x^{\prime}\right), x^{\prime}=\frac{x}{|x|} .
$$

Let us denote by Σ the unit sphere on which the $\Omega\left(x^{\prime}\right)$ is denfied. Let us denote by $\omega(\delta)$ the modulus of continuity of $\Omega\left(x^{\prime}\right)$,

$$
\left|\Omega\left(x^{\prime}\right)-\Omega\left(y^{\prime}\right)\right| \leqq \omega\left(x^{\prime}-y^{\prime}\right) .
$$

Let us suppose that
(a) $\int_{\Sigma} \Omega\left(x^{\prime}\right) d x^{\prime}=0$
(b) $\Omega\left(x^{\prime}\right) \in L^{1}(\Sigma)$ and its modulus of continuity $\omega(\delta)$ satisfy the Dini condition,

$$
\int_{0}^{1} \frac{\omega(\delta)}{\delta} \mathrm{d} \delta<\infty .
$$

Then they proved that the operations $T f=\tilde{f}$ and $T_{\varepsilon} f=\tilde{f}_{\varepsilon}$ are both linear and of type (p, p) for every $p>1$ and of weak type $(1,1)$ respectively. Applying our theorem 3, we have for example

$$
\begin{gathered}
\int_{|\tilde{f}| \leqq 1}|\tilde{f}|^{p} d x+\int_{\mid \tilde{|\tilde{\mid}|>1}}|\tilde{f}| d x \\
\leqq K\left\{\int_{|f| \leqq 1}|f|^{p} d x+\int_{\sim_{|f|>1}}|f|\left(1+\log ^{+}|f|\right) d x\right\},
\end{gathered}
$$

where K is a constant depending on p and not on f.
A.P. Calderon-M. Weiss-A. Zygmund [4] proved that the condition (b) of $\Omega\left(x^{\prime}\right)$ can be replaced by the (rotational) integrated modulus of continuity $\omega_{1}(\delta)$ instead of $\omega(\delta)$. That is, the $\omega_{1}(\delta)$ is defined as follows

$$
\omega_{1}(\delta)=\sup _{|\rho| \leq \delta} \int_{\Sigma}\left|\Omega\left(\rho x^{\prime}\right)-\Omega\left(x^{\prime}\right)\right| d x^{\prime}
$$

where ρ is any rotation of Σ and $|\rho|$ its magnitude.
Furthermore the maximal operation $\bar{T} f=\bar{f}$

$$
\bar{T} f=\bar{f}=\sup \left|\tilde{f}_{\mathrm{z}}\right|
$$

satisfy the same assumptions as the operations $T f=\tilde{f}$ and $T_{\varepsilon} f=\tilde{f}_{\varepsilon}$ and so necessarily the same conclusions. See, L. Hörmander [8], A.P. Calderon-A. Zygmund [3] and A.P. Calderon-M. Weiss-A. Zygmund [4].

As a special case,the one-dimensional Hilbert transform

$$
H f(x)=\text { P.V. } \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(y)}{x-y} d y
$$

and the Riesz transform

$$
R_{j} f(x)=\text { P.V. } \frac{1}{C_{n}} \int_{E_{n}} f(y) \frac{x_{j}-y_{j}}{|x-y|^{n+1}} d y \quad(j=1,2, \cdots n)
$$

where

$$
C_{n}=\frac{\pi^{(n+1) / 2}}{\Gamma\left(\frac{n+1}{2}\right)}
$$

and also the unified operator of Hilbert transform and ergodic operator belong to our category. See J. Horváth [9], M. Cotlar [5] and E.M. Stein[14].

On the other hand let us consider

$$
\tilde{f}_{\alpha}(x)=P . V . \int_{E_{n}} \frac{f(x-y)}{|y|^{n-\alpha}} d y, \quad 0<\alpha<n
$$

then the following is known according to G.H. Hardy- J.E. Littlewood [6] and A. Zygmund [15] (c.f. also, E.M. Stein [14]):
(i) it is of type (r, s)

$$
\left\|\tilde{f}_{s}\right\|_{s} \leqq M_{r s}\|f\|_{r}
$$

where $1<r<s<\infty, \frac{1}{r}-\frac{1}{s}=\frac{\alpha}{n}$,
(ii) it is of weak type $\left(1, \frac{1}{n-\alpha}\right)$.

Thus the potential operator is beyond the scope of Theorem 3. We shall give a conjecture.

Let us write $\alpha_{i}=\frac{1}{a_{i}}, \beta_{i}=\frac{1}{b_{i}}(i=1,2)$. Let $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ be any two points of the triangle

$$
\Delta: 0 \leqq \beta \leqq \alpha \leqq 1
$$

such that $\beta_{1} \neq \beta_{2}$. If $\alpha_{1}>\alpha_{2}$, let us suppose that a quasilinear operation $\tilde{f}=T f$ is of weak type $\left(\frac{1}{\alpha_{1}}, \frac{1}{\beta_{1}}\right)$ and type $\left(\frac{1}{\alpha_{2}}, \frac{1}{\beta_{2}}\right)$, then we have

$$
\begin{gathered}
\int_{|T f| \leqq 1}|T f|^{b_{2}} d \nu+\int_{|T f|>1}|T f|^{b_{1}} d \nu \\
\leqq K\left\{\int_{|f| \leqq 1}|f|^{a_{2}} d \mu+\int_{|f|>1}|f|^{\left.a_{1}\left\{1+\left(\log ^{+}|f|\right)^{k_{1}}\right\} d \mu\right\}}\right.
\end{gathered}
$$

where $k_{1}=\frac{b_{1}}{a_{1}}, K$ is a constant independent of f.
We shall have an analogous result in the case $\alpha_{1}<\alpha_{2}$.

Osaka University

References

[1] A.P. Calderon: Spaces between L^{1} and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
[2] A.P. Calderon-A. Zygmund; Pn the extence of certain singular integlals, Acta Math. 88 (1952), 85-139.
[3] A.P. Calderon - A. Zygmund: On singular integrals, Amer. J. Math. 78 (1956), 289-309.
[4] A. P. Calderon - M. Weiss - A. Zygmund; On the existence of singular integrals, Proceedings of Symposia in Pure Niathematics, Amer. Math. Soc. X, 1966, 56-73.
[5] M. Cotlar; Condiciones de Continuidad de Operadores Potentiales y de Hilbert, Cursos y seminarios de mathematica, Fas. 2, Univ. de Buenos Aires, 1959.
[6] G.H. Hardy - J.E. Littlewood; Some properties of fractional integrals I, Math. Z. 27 (1928), 565-606.
[7] P. Halmos: Measure Theory, New York, 1950.
[8] L. Hörmander: Estimates for translation invariant operators in L^{p} spaces, Acta Math. 104 (1960), 93-139.
[9] J. Horváth: Sur les fonctions conjuguées à plusieurs variables, Indag. Math. 15 (1953), 17-29.
[10] S. Koizumi: On singular intergrals I, II, Proc. Japan. Acad 34 (1958), 193-198; 235-240.
[11] W.A.J. Luxemburg: Banach Function Spaces, Assen, 1955.
[12] J. Marcinkiewicz: Sur l'interpolation d'operation, C.R. Acad. Sci. Paris 208 (1939), 1272-1273.
[13] E.M. Stein - G. Weiss: An extension of a theorem of Marcinkiewicz and some of its application, J. Math. Mech. 8 (1959), 263-284.
[14] E.M. Stein: Intégrales Singulières et Fonctions Differentiables de Plusieurs Variables, Lecture notes (Univ. de Paris, Orsay 1966-7).
[15] A. Zygmund: On a theorem of Marcinkiewicz concerning interpolation of operations, J. Math. Pures Appl. 35 (1956), 223-248.
[16] A. Zygmund: Trigonometric Series I, II, Cambridge, 1959.

