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1. Introduction

Let G be a finite group, and k a field of characteristic p. Let π denote the
Jacobson radical of the group algebra kG, and r(n) the right annihilator ideal of
π. In this paper we shall show some connections between r(n) and ^-elements
of G. One of them will state that r(τt) contains the sum of all ^-elements of G
(including the identity). This may be regarded in a sense as a refinement of Mas-
chke's theorem. In fact, if p does not divide the order of G then the identity is the
only ^-element, which implies r (n)3l and hence n = 0 . On the other hand, as
is easily seen from a theorem of T. Nakayama on Frobenius algebras (see §2),
r(π) is a principal ideal. We shall show that it is generated by an element which
is left invariant by every automorphism of kG induced by that of G. As an appli-
cation of this fact, we shall give a lower bound for the first Cartan invariant in
terms of the chief composition factors of G. The present study owes heavily to
some general results on Frobenius algebras and symmetric algebras, which will
be summarized in the next section.

NOTATION. If A is a ring, rad(^4) will denote the Jacobson radical of A. For
a subset T of A, r(T) and 1{T) will denote respectively the set of right annihilators
and the set of left annihilators of T in A. If M is a subset of a finite group G, then

2. Preliminary results

Let A{^\) be a finite dimensional algebra over a field k.

DEFINITION. A linear function λ {<=A*=U.omk{Ay k)) is called non-singular
if its kernel contains no left or right ideals other than zero. While, λ is called
symmetric if \{ab)=X{bά) for all a, b^A.

If λ is a linear function and a^A,we denote by Xa the linear function defined
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by Xa(x)=X(xa)y x^A. One may remark here that/: a->Xa is a left ^4-homo-
morphism from A into A*. It is an (onto) isomorphism if and only if is non-
singular. A is a Frobenius [symmetric] algebra if and only if it has (at least) one
non-singular [symmetric, non-singular] linear function.

Theorem A (T. Nakayama [6], [8], see also [2]). Let A be a Frobenius [sym-
metric] algebra, X a non-singular [symmetric, non-singular] linear function on Ay and

5 a two-sided ideal of A. If A\% is Frobenius [symmetric], and μ a non-singular

[symmetric, non-singular] linear function on A\% then there exists an element [central

element] c^A such that μ^r—Xc and r{%)=cA, where ψ is the natural map A->A\%.

Conversely, if there exists an element [central element] c^A such that r(%)=cA then

A\% is Frobenius [symmetric].

Proof. As was noted above, there exists an element c^A such that
μΛJr=Xc. We shall show r(%)=cA. Since X(%c)=Xc(%)=0 and λis non-singular,
it follows at once cAar(%). On the other hand, if xc—0 then Xc(Ax)=X(Axc)=0.
Since Xc is non-singular as a linear function on A\%, it follows Λ G J and hence
l(cΔ)<z.%. Recalling here that A is Frobenius, we have then cA—r(l(cA))Z3r($).
Now, suppose further both X and μ are symmetric. Then X(xyc)=Xc(xy)=
Xc(yx)=X(yxc) = X(xcy) for all xyy^A. Therefore, yc=cy and c is central.
Next, we shall prove the converse. Suppose r($)=cA. Then λc gives rise to a
non-singular linear function on A\%, If c is central, the linear function is evidently
symmetric.

Theorem B (T. Nakayama [6]). If g is a two-sided ideal of a symmetric
algebra A then r(g)=/(j).

Proof. Let λ be a symmetric, non-singular linear function on A, Then

3. The generator of r(n)

From now on, k will denote a field of characteristic p, and G a finite group of
order \G\=png0, where (p, go)=l. Let vp{ϊ) denote the exponent of p in the
primary decomposition of an integer /. Let n be the radical of the group algebra
kG as before. To be easily seen, kG is a symmetric algebra through the follow-
ing linear function λ which will be fixed throughout the subsequent study:
λ(Σσ€=G aσσ)=au where aσ^k and 1 denotes the identity of G.

REMARK 1. Since there exists a splitting field for G which is finite separable
over ky kG/n is a separable algebra over k. In particular, if K is an arbitrary
extension field of k and π ^ denotes the radical of KG, then nκ=Kn and
n ^ n & G ^ π . Similar relations hold for r(xx) and the right annihilator ideal of
nκ in KG.
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Let φ19 φ2, •••, φr be the distinct irreducible characters over a suitable split-

ting field for G containing k, and let φ = Σ ί = 1 φ, . Then, it is clear that φ(σ) is

contained in the prime field for every σ e G .

Proposition 1. If v=Ί,σς=G Φ{o-~λ)σ then r(n)=(kG)v.

Proof. By the above remark, we may assume that k is a splitting field for

G. Then, kG/n is a direct sum of total matrix algebras over k: kGjn^=^r

i=1{k)ni.

Let \]r andp£ denote respectively the natural map kG-^kGjn and the projection

kGln-^(k)ni. Since the trace map tr^. (k)n.-+k is a symmetric, non-singular

linear function, so is μ=Σr

i=1 trrfi on kG/n. Therefore, by Theorem A> there

exists a central element v = Σ(Γa<τσ-^kG such that μψ=\Ό and r(n)=v(kG).

Noting here that μψ==φ on G, we obtain a(Γ=X(σ~1v) = Xv(<r~1)=φ(σ~'1). This

completes the proof.

REMARK 2. Let/be an arbitrary automorphism of G. Then, it permutes

the irreducible characters by φi-^φ^ where φr

i(<τ) = φi(o f), CΓGG. In parti-

cular, it follows φ(σf)=φf(σ)=φ(σ) for all σ E & Hence, regarding/ naturally

as an automorphism of kG> we obtain vf= 2 σ φ(σ~1)σf= Σ σ φ((σ" /)~ 1) σ / =

Xτφ(τ-i)τ=v.

Now, let H be a normal subgroup of G, and m=rad kH. Then I=(&G)m
=χn(kG) is a nilpotent two-sided ideal of kG.

Corollary 1. Under the above notation, there holds the following :
(1) kGjl is a symmetric algebra over k.
(2) Let (I: π)={x e kG \ nx c 1}. Then, for an arbitrary primitive idempotent

e ofkG there holds (kG)e/ne^(ί: n)eβe.

Proof. (1) Let rH(m) be the right annihilator ideal of m in kH. Let v be as
in Proposition 1 applied to kH. Since G induces an automorphism group on H,
Remark 2 proves that v lies in the center of kG. Hence, r(ΐ)=kG rH(ΐ)=(kG)v
is a principal ideal generated by a central element. Theorem A proves therefore
kG/l is a symmetric algebra.

(2) Evidently, the residue class e of e modulo I is a primitive idempotent
of the symmetric algebra kGj\. Since (I: π)/I is the right annihilator ideal of
n/I = rad(ΛG/I), there holds then (kGlΐ)el(n/ϊ)e^((l: n)/I)s, which proves

Under the above notation, if H is a non-trivial />-grouρ, then it is well-known
that m coincides with the augmentation ideal I(H)= {Έ,(T<=Haσ.σ\yΣ(Γa(r = 0}, so
that rH(m)=kH-AH=kAH. We obtain therefore r(π)cr(I)=AG Δ H CΪ.

Lemma 1. Let P^HX be normal subgroups of G such that Pλ\Hx is a
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p-group. Letl1=kG'ΐ2idkP1,and^1=-kQγ(kG-^k(GIH1)). Then, there holds the
following:

(1) If e is a primitive idempotent of kG not contained in ^ then
(lι+^1:n)el(l1+^1)e^(kG)elne and (Ii+^i)β contains a submodule isomorphic to
(kG)ejne.

(2) If P2^H2 are normal subgroups of G containing Px such that P2IH2 is a
p-group then l a + ^ ^ ί l i + ^ i n), where ϊ 2 =£G rad kP2 and ί)2=ker {kG^k(G\H2).

Proof. (1) Since I1+ΐ)1 = β(G/i/1)
 r a d kiPJH,) and PJH, is a non-trivial

/>-grouρ, the above remark proves r(radΛ(G/Jfi
r

1))cI1+^1/^1. Let e be the residue
class of e modulo ϊji Then, it is still primitive by assumption, and the former is
evident by Corollary 1. Further, noting that (ϊi+ί)i/ϊji)£φθ, it follows at once
Oφ(ί1+ί)1)eZ)r(n)e^(kG)elxxey proving the latter.

(2) As in (1), we obtain r(radk{GjH2))CL\2+\ft2. If fc=ker {kG-^k(GjPλ))
then (l1+ί)1:n)+pJp1c:(l1+pJp1:n+p1lp,)=r(radk(GIP1)). Since the natural
map k(G/P1)-^k(G/H2) is an epimorphism, it sends r(rad k{G/Pj)) into
r(rad £(G/ίf2)). Therefore, & + & : π)+yί) 2Cr(rad £(G/# 2))cI 2

Theorem 1. Let m be the number of the chief composition factors of G which
are (non-trivial) p-groups. Then the first Cartan invariant cn is at least m+1.

Proof. We take a primitive idempotent e of kG such that (kG)elne is iso-

morphic to the trivial ΛG-module k^kΔG. Then, eAG being non-zero, e is not

contained in ker (kG^k(GIN)) (= the ideal generated by {1 — v\v<=N}) for any

normal subgroup N of G. Hence, by Lemma 1, we can easily see that (kG)e pos-

sesses at least w + 1 composition factors isomorphic to ky namely,

4. The sum of all p-elements

First, we shall introduce some notations. Let β be a primitive go-th root

of unity over the prime field of characteristic p. In what follows, whenever we

consider Brauer characters, it is assumed that there is defined (and fixed)a homo-

morphism Z[S]-^k[6] such that 5 is the image of a primitive £0-th root of unity

8 in the complex number field. As is well-known, there exists a unique (up to

isomorphisms) indecomposable projective module P, such that Pί/nP,- affords

the irreducible character φ, . Let η{ be the character of the representation

afforded by P f and u{ the dimension of P, . As is well-known, u£ is divisible by

pn. Let Ui—pnhi. We may assume, after a suitable change of index if necessary,

the first uu u2, •••, ut are all such that vp(Uj) = n. Let φ{ and τ?, be the Brauer

characters of φ, and ηiy respectively.

Noting that hj=0 in k for t<j <r and φi(σ)=φi(σf) for the ̂ -regular part

σ' or σ, the orthogonality relation ([3] p. 561)
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I CG(σ) I if σ is conjugate to T,

0 otherwise

implies

£0 if T is a ^-element,

0 otherwise.

Lemiha 2. Assume that k is a splitting field for G. Let $—Σe(kG)e-\-n,
where e runs over the primitive ίdempotents such that vp (dimk (kG)e)> n. Let
c be the sum of all p-elements of G. Then there holds r($)—(kG)c.

Proof. We use the same notation as in the proof of Proposition 1. Then,
&G/τt=Σi=i (k)n -\-Σrj=t+1 {k)n. (direct sum), where ni=dimkPi/nPi. It is clear
that 3 is the inverse image of Έ,r

j=t+1(k)nj by the natural map ψ. Hence, it is
a two-sided ideal and there holds £G/g^Σ£=1(&)Λf.. We set here μ=Έί

c

i=1 fytripi.
Since A, Φθ in k, μ is a symmetric, non-singular linear function on kG\%. Then,
by Theorem Ay there exists a central element (/^kG such that μψf=Xc' and
r(g)=(kG)c'y where Λ// is the natural map kG-*kG/z. Now, by making use of
(*), we can prove c'=goc in the same way as in the last part of the proof of
Proposition 1. This completes the proof.

Since jzm, we obtain in particular r(tΐ)3£. However, in virtue of Remark 1,
this holds without assuming that k is a splitting field. Thus, we have shown

Theorem 2. r(π) contains the sum of all p-elements of G.

Corollary 2. Let x=Σ<τ aσσ be an element of kG, and x(p) the sum of the
coefficient aσ of p-elements σ. Ifx is in n then x(ρ)=0.

Proof. Note that x(p) is equal to the coefficient of 1 in xc. If x is in rt then
xc=0, and hence χ(ρ)=0.

If e is a primitive idempotent of kGy then r{v)e is a minimal left ideal of kG
and contains (kG)ce.

Corollary 3. Let e be a primitive idempotent of kG. If vp (dimk(kG)e)=n
then r(n)e=(kG)ce. The converse holds, provided k is a splitting field for G.

Proof. First, we assume that k is a splitting field. By Lemma 2, if ce=0>
or what is the same, if eE/(c)=j, then vp(dimk(kG)e)>ny and coversely. We
have seen therefore that ceφO and vp (dimk (kG)e)=n are equivalent.

Secondly, we assume that ^(dimj. (kG)e)—n. Let K be a splitting filed for
G containing ky and e = Σy ey a decomposition of e into orthogonal primitive
idempotents of KG. Then, by assumption there exists at least one e£ such that
vp(dimfc(KGei)=n. Since ce^O by the first step, we have ceφO, completing
the proof.
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Now, if G is ^-solvable then ^(dim^ (kG)e)=n for every primitive idem-
potent e (P. Fong [5]), whence it follows j = n and therefore r(n)—r(%)=(kG)c.

Corollary 4. // G is p-solυable then r(n)=(kG)c.

5. Some nilpotent ideal of kG

The present section is independent of the preceding ones. Let T be a sub-
group of G, and m a left nilpotnet ideal of kT. Let mσ={σ~1xσ\x^m} for

, and rτ(m) the right annihilator ideal of m in kT.

Proposition 2. Let xh= f) σ e G kG- mσ. ΓÂ w fAere Ao/rf the following :
(1) m ά # nilpotent two-sided ideal of kG.
(2) r(m)=Σσ e G/γ(m)σ&G.
(3) // m ώ a two-sided ideal of KT, then m = f) ^ G tnσ AG.

Proof. (1) For every T G G , there holds mrcz f] σ AG m σ τ = m , and hence
in is a two-sided ideal. Accordingly, m 2 cm(K? m) = m m c £ G m2, so that
ίn^cAG m' for every positive integer t. We see therefore in is nilpotent.

(2) Since kT is Frobenius, there holds m=/ τ (r τ (m)). Then, one will
easily see that AG.tn=Z(rτ(m).JfeG) and kG'Xn(T=l(rT(r(m<T)'kG)=l(rT(m)(T'kG).
Hence, m = [)σ l(rτ(xn)σ-kG)=l(Σ(T rτ(xn)σ kG). Since kG is Frobenius, our
assertion is clear by the last.

(3) Using freely the fact that the left annihilator ideal of a two-sided ideal
in a symmetric algebra coincides with the right one (Theorem B), we obtain
m=Z(Σ< Γrτ{mγ.kG)=r(τσ /τ(m)σ.kG)=r(Σσ kGΊτ(mγ)= ft σ mσ-kG.

Theorem 3. Let Ω be the set of all Sylow p-subgroups of G. Then,

Proof. In proposition 2, we set T=S^Ω and xn=rad (kS)=I(S). Since
every Sylow />-subgrouρ is conjugate to each other, Proposition 2 proves
that ί n = 0Sζ=ΩkG-I(S) is contained in n. We obtain therefore r(n)cr(ίn)
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