A REMARK ON THE LAPLACE-BELTRAMI OPERATORS ATTACHED TO HERMITIAN SYMMETRIC PAIRS

Ryoshi HOTTA*)

(Received September 7, 1970)

In this note, we shall give an alternative proof of the theorem due to Okamoto and Ozeki, which says that the Laplace-Beltrami operator attached to a hermitian homogeneous vector bundle over a hermitian symmetric space is a multiple of the Casimir operator plus a constant (Theorem 4.1 [2]). It plays an important role in the works [1], [2].

1. Let (G, K) be a hermitian symmetric pair of non-compact type, i.e., G is a connected non-compact semi-simple Lie group with a finite center and K its maximal compact subgroup. Denoting by \mathfrak{g} , \mathfrak{k} the Lie algebras of G, K, we have a Cartan decomposition

$$\mathfrak{q} = \mathfrak{k} \oplus \mathfrak{p}$$
.

Its complexification will be denoted by $g^C = \mathfrak{k}^C \oplus \mathfrak{p}^C$, and we have a hermitian inner product $(x,y) = -B(x,\tau y)$ for x,y in g^C , where B is the Killing form of g^C , τ the conjugation with respect to the compact real form dual to g. We may take a Cartan subalgebra \mathfrak{h} of g in \mathfrak{k} , and have the root space decomposition $g^C = \mathfrak{h}^C \oplus \sum_{\alpha \in \Delta} g^{\alpha}$ where Δ denotes the root system for the pair (g^C, \mathfrak{h}^C) . Let $\Delta_{\mathfrak{k}}$ (resp. $\Delta_{\mathfrak{p}}$) be the set of the compact (resp. non-compact) roots. Then there exists a positive root system Δ^+ such that the subspace

$$\mathfrak{p}_{\pm} = \sum_{oldsymbol{eta} \in \Delta_{oldsymbol{n}}^{+}} \mathfrak{g}^{\pmoldsymbol{eta}}$$

is, respectively, a K-submodule of \mathfrak{p}^c , where $\Delta_{\mathfrak{p}}^+ = \Delta^+ \cap \Delta_{\mathfrak{p}}$. Hereafter, we shall fix the above linear order on Δ .

This linear order determines an invariant complex structure on X = G/K such as \mathfrak{p}_- can be identified with the anti-holomorphic tangent space at the origin o = eK in X. Identifying the dual of \mathfrak{p}_- with \mathfrak{p}_+ via the Killing form B, we may

^{*)} Research supported in part by Yukawa Foundation during the stay at Osaka University.

16 R. HOTTA

consider $G \times_K \mathfrak{p}_+$ as the anti-holomorphic cotangent bundle, where $G \times_K \mathfrak{p}_+$ denotes the homogeneous vector bundle over X associated to the K-module \mathfrak{p}_+ . To an irreducible unitary K-module V_Λ with highest weight Λ with respect to the above linear order, the holomorphic vecter bundle $E_\Lambda = G \times_K V_\Lambda$ is associated, which has a hermitian metric on each fibre. The space of the differential forms of type (0, q) with coefficients in E_Λ may then be considered as the space of all C^∞ -sections of the homogeneous vector bundle over X associated to the K-module $V_\Lambda \otimes \Lambda^q \mathfrak{p}_+$, which will be denoted by $C^{\circ,q}(E_\Lambda)$. We shall aslo identify $C^{\circ,q}(E_\Lambda)$ with the space of $V_\Lambda \otimes \Lambda^q \mathfrak{p}_+$ -valued C^∞ -functions s on G such that $s(gk) = k^{-1}s(g)$ for $g \in G$, $k \in K$. The Cauchy-Riemann operator

$$\overline{\partial}: C^{0,q}(E_{\Lambda}) \to C^{0,q+1}(E_{\Lambda})$$

is then expressed as follows. When we choose a basis of \mathfrak{p}^{C} such that

$$B(e_{\beta}, e_{-\beta}) = 1, e_{\beta} \in \mathfrak{g}^{\beta} \tag{1}$$

for each non-compact root $\beta \in \Delta_p$, we then have

$$\overline{\partial} = \sum_{\beta \in \Delta_{\mathfrak{p}}^{+}} \nu(e_{-\beta}) \otimes \varepsilon(e_{\beta}) \tag{2},$$

where $\nu(e_{-\beta})$ denotes the action of $e_{-\beta}$ as a left invariant vector field and $\mathcal{E}(e_{\beta})$ the exterior multiplication of e_{β} on $\Lambda \mathfrak{p}_{+}$. In the choice above, we shall note that the Casimir operator has a form of

$$\Omega = \Omega_{k} + \sum_{\beta \in \Delta_{\mathfrak{p}}} e_{-\beta} e_{\beta} \tag{3},$$

where Ω_k denotes the part consisting of the basis of \mathfrak{k}^C . Introducing, as usual, an invariant kählerian metric on X via the hermitian metric (,) on \mathfrak{g}^C , we have the formal adjoint ϑ of $\overline{\vartheta}$ and the Laplace-Beltrami operator

$$\Box = \overline{\partial} \vartheta + \vartheta \overline{\partial}.$$

Theorem (Okamoto-Ozeki [2]). Under the above situation, \square acts on each $C^{0,q}(E_{\Lambda})$ as

$$\square = \frac{1}{2} \{ (\Lambda + 2\rho, \Lambda) \mathbf{1} - \nu(\Omega) \},$$

where $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$, **1** denotes the identity operator, and $(\Lambda + 2\rho, \Lambda)$ the inner product on the weights induced from the Killing form.

2. A proof of the above Theorem is as follows. We shall first see that $\Box + \frac{1}{2} \nu(\Omega)$ is at most a first order operator on $C^{0,q}(E_{\Lambda})$. Because of the invariance

of the differential operators, it suffices to see that it holds for any real cotangent vector ξ at the origin $o \in X$

$$\sigma_{\mathbf{\xi}}^{\mathbf{2}}\left(\square\right) = -\frac{1}{2}\sigma_{\mathbf{\xi}}^{\mathbf{2}}\left(\nu\left(\Omega\right)\right),$$

where σ_{ξ}^2 (.) denotes the symbol map at the origin with respect to ξ . When we consider \mathfrak{p} as the real cotangent space at $o \in X$, ξ as the element of $\mathfrak{p} \subset \mathfrak{p}^c$, we then have

$$\sigma_{\mathcal{E}}^{1}(\overline{\partial})v = \mathcal{E}(\xi_{+})v \quad \text{for } v \in V_{\Lambda} \otimes \Lambda^{q}\mathfrak{p}_{+},$$

where $\sigma(\cdot, \cdot)$ denotes the symbol map at the origin and ξ_+ is the image of ξ by the orthogonal projection $\mathfrak{p}^C \to \mathfrak{p}_+$. In fact, take a real valued function f on X and a section $s \in C^{0,q}(E_\Lambda)$ such that f(o) = 0, $(df)(o) = \xi$, s(e) = v, where e is the unit of G. Then we have $\sigma_{\xi}^1(\overline{\partial})v = (\overline{\partial}(fs))(e) = \xi(\overline{\partial}f(o))v$, and through the above identification, $\overline{\partial}f(o) = \xi_+$. Since the symbol of the formal adjoint ϑ is

$$\sigma_{\mathcal{E}}^{1}(\vartheta) = -\mathcal{E}(\xi_{+})^{*}$$

where $\mathcal{E}(\xi_+)^*$ denotes the adjoint of $\mathcal{E}(\xi_+)$ with respect to the hermitian inner product on $V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+$, we have

$$\sigma_{\boldsymbol{\xi}}^{2}(\square) = \sigma_{\boldsymbol{\xi}}^{1}(\overline{\partial}) \, \sigma_{\boldsymbol{\xi}}^{1}(\vartheta) + \sigma_{\boldsymbol{\xi}}^{1}(\vartheta) \, \sigma_{\boldsymbol{\xi}}^{1}(\overline{\partial})
= - (\varepsilon(\xi_{+}) \, \varepsilon(\xi_{+})^{*} + \varepsilon(\xi_{+})^{*} \varepsilon(\xi_{+}))
= - (\xi_{+}, \xi_{+}) \, \mathbf{1}
= -\frac{1}{2}(\xi, \xi) \, \mathbf{1}.$$

On the other hand, we see easily that $\sigma_{\xi}^{2}(\nu(\Omega)) = (\xi, \xi)\mathbf{1}$, which implies the assertion.

3. We shall next see that every invariant first order operators on $C^{0,q}(E_{\Lambda})$ is, in effect, of order zero, i.e., a vector bundle map induced from some K-module endomorphism on $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$. Consider the symbol map $\sigma_{\ell}^{1}(D)$ of an invariant first order operator D as a bilinear map

$$\sigma^1(D): (V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+) \times \mathfrak{p} \rightarrow V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+,$$

and extend it to \mathfrak{p}^c on the part \mathfrak{p} complex-linearly. We then have a K-module homomorphism

$$\sigma^{\scriptscriptstyle 1}_{\cdot}(D): (V_{\Lambda} \otimes \Lambda^{\scriptscriptstyle q} \mathfrak{p}_{\scriptscriptstyle +}) \otimes \mathfrak{p}^{\scriptscriptstyle C} \to V_{\Lambda} \otimes \Lambda^{\scriptscriptstyle q} \mathfrak{p}_{\scriptscriptstyle +}.$$

It suffices to see $\sigma_{\cdot}^{1}(D) = 0$. In fact, the highest weight of an irreducible component in $(V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}) \otimes \mathfrak{p}^{c}$ is of a form

18 R. HOTTA

$$\Lambda + \beta_1 + \cdots + \beta_a \pm \beta_1$$

while that of one in $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$ is

$$\Lambda + \beta_1' + \cdots + \beta_q'$$

for some β_i , β_i' , β in Δ_p^+ . Therefore, if $\sigma_i^1(D) \neq 0$, then there must exist positive non-compact roots $\beta_1, \dots, \beta_q, \beta_1', \dots, \beta_{q'}, \beta$ such that

$$\beta_1 + \cdots + \beta_q \pm \beta = \beta_1' + \cdots + \beta_q'.$$

On the other hand, it is known that, when g is simple, there exists a simple root $\alpha_0 \in \Delta_p^+$ such as the following holds; expressing a positive non-compact root as a linear combination of the simple roots in Δ^+ , the coefficient of α_0 has to be 1. Hence, under our assumptions, the above equality is impossible, which implies the assertion.

4. Put $A_{\Lambda}^q = \Box + \frac{1}{2} \nu(\Omega)$ on $C^{0,q}(E_{\Lambda})$. Then we know through **2**, **3** that A_{Λ}^q is induced from a K-module endomorphism of $V_{\Lambda} \otimes \Lambda^q \mathfrak{p}_+$, and it is easy to see

$$\bar{\partial} A^q_{\Lambda} = A^{q+1}_{\Lambda} \bar{\partial}$$

from the property of the Casimir operator. If we assume that A_{Λ}^{q} is a scaler operator c_{Λ}^{q} 1, then A_{Λ}^{q+1} is also c_{Λ}^{q} 1. In fact, for any $v \in V_{\Lambda} \otimes \Lambda^{q+1} \mathfrak{p}_{+}$ one can choose a section s in $C^{0,q}(E_{\Lambda})$ such that $(\overline{\partial}s)$ (e) = v. Since A_{Λ}^{q+1} is of order zero, $\underline{A}_{\Lambda}^{q+1}(\overline{\partial}s)(e) = (A_{\Lambda}^{q+1}\overline{\partial}s)(e)$, where $\underline{A}_{\Lambda}^{q+1}$ denotes the K-module endomorphism of $V_{\Lambda} \otimes \Lambda^{q+1} \mathfrak{p}_{+}$ inducing A_{Λ}^{q+1} . Hence $\underline{A}_{\Lambda}^{q+1}v = (\overline{\partial} A_{\Lambda}^{q}s)(e) = c_{\Lambda}^{q}(\overline{\partial}s)(e) = c_{\Lambda}^{q}v$, which shows $A_{\Lambda}^{q+1} = c_{\Lambda}^{q}$ 1. On the other hand, $A_{\Lambda}^{0} = c_{\Lambda}$ 1 for some constant c_{Λ} , because V_{Λ} is irreducible. Thus we have

$$A_{\Lambda}^{q} = c_{\Lambda} \mathbf{1}$$
 for every q .

It remains to determine the above constant c_{Λ} . For this purpose, it suffices to see the action of A^0_{Λ} on $C^{0,q}(E_{\Lambda})$. For a highest weight vector $v_{\Lambda} \in V_{\Lambda}$, take a local holomorphic section s near the origin $o \in X$ such that $s(e) = v_{\Lambda}$. We then have

$$A^0_{\Lambda} s = \frac{1}{2} \nu(\Omega) s.$$

By the formula (3), we have

$$\nu(\Omega)s = \nu(\Omega_k)s + \sum_{\beta \in \Delta_{\mathfrak{p}}^+} (2\nu(e_{\beta})\nu(e_{-\beta})s - \nu([e_{\beta}, e_{-\beta}])s).$$

It is well known that $\nu(\Omega_k) s = (\Lambda + 2\rho_k, \Lambda) s$ where ρ_k is a half of the sum of the

positive compact roots. On the other hand, $\nu(e_{-\beta})s=0$ for $\beta \in \Delta_n$ in view of (2), and $(\nu([e_{\beta}, e_{-\beta}]s)(e)=-(\beta, \Lambda)v_{\Lambda}$ because of $[e_{\beta}, e_{-\beta}]\in \mathfrak{h}^{C}$ and the choice (1). Therefore it holds

$$(\nu(\Omega)s)(e) = (\Lambda + 2\rho, \Lambda)s(e).$$

Thus we have $c_{\Lambda} = \frac{1}{2}(\Lambda + 2\rho, \Lambda)$, which completes a proof of the Theorem.

REMARK. This way of determination of the Laplace-Beltrami operator can be also applied for a hermitian symmetric pair of compact type, and we have a quite similar formula except for a switch of sign, which is due to B. Kostant.

HIROSHIMA UNIVERSITY

References

- [1] M.S. Narasimhan and K. Okamoto: An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math. 91 (1970), 486-511.
- [2] K. Okamoto and H. Ozeki: On square-integrable $\bar{\partial}$ -cohomolgy spaces attached to hermitian symmetric spaces, Osaka J. Math 4 (1967), 95-110.