A REMARK ON THE LAPLACE-BELTRAMI OPERATORS ATTACHED TO HERMITIAN SYMMETRIC PAIRS

Ryoshi HOTTA*)

(Received September 7, 1970)

In this note, we shall give an alternative proof of the theorem due to Okamoto and Ozeki, which says that the Laplace-Beltrami operator attached to a hermitian homogeneous vector bundle over a hermitian symmetric space is a multiple of the Casimir operator plus a constant (Theorem 4.1 [2]). It plays an important role in the works [1], [2].

1. Let (G, K) be a hermitian symmetric pair of non-compact type, i.e., G is a connected non-compact semi-simple Lie group with a finite center and K its maximal compact subgroup. Denoting by $\mathfrak{g}, \mathfrak{f}$ the Lie algebras of G, K, we have a Cartan decomposition

$$
\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}
$$

Its complexification will be denoted by $\mathfrak{g}^{c}=\mathfrak{f}^{c} \oplus \mathfrak{p}^{c}$, and we have a hermitian inner product $(x, y)=-B(x, \tau y)$ for x, y in \mathfrak{g}^{c}, where B is the Killing form of \mathfrak{g}^{C}, τ the conjugation with respect to the compact real form dual to \mathfrak{g}. We may take a Cartan subalgebra \mathfrak{h} of \mathfrak{g} in \mathfrak{f}, and have the root space decomposition $\mathfrak{g}^{C}=$ $\mathfrak{h}^{c} \oplus \sum_{\alpha \in \Delta} \mathfrak{g}^{\alpha}$ where Δ denotes the root system for the pair $\left(\mathfrak{g}^{C}, \mathfrak{G}^{C}\right)$. Let $\Delta_{\mathfrak{t}}$ (resp. $\Delta_{\mathfrak{p}}$) be the set of the compact (resp. non-compact) roots. Then there exists a positive root system Δ^{+}such that the subspace

$$
\mathfrak{p}_{ \pm}=\sum_{\beta \in \Delta}^{\mathfrak{p}} \mathfrak{g}^{ \pm \beta}
$$

is, respectively, a K-submodule of \mathfrak{p}^{c}, where $\Delta_{\mathfrak{p}}^{+}=\Delta^{+} \cap \Delta_{\mathfrak{p}}$. Hereafter, we shall fix the above linear order on Δ.

This linear order determines an invariant complex structure on $X=G / K$ such as $\mathfrak{p}_{\text {- }}$ can be identified with the anti-holomorphic tangent space at the origin $o=e K$ in X. Identifying the dual of \mathfrak{p}_{-}with \mathfrak{p}_{+}via the Killing form B, we may

[^0]consider $G \times{ }_{K} \mathfrak{p}_{+}$as the anti-holomorphic cotangent bundle, where $G \times{ }_{K} \mathfrak{p}_{+}$ denotes the homogeneous vector bundle over X associated to the K-module \mathfrak{p}_{+}. To an irreducible unitary K-module V_{Λ} with highest weight Λ with respect to the above linear order, the holomorphic vecter bundle $E_{\Lambda}=G \times{ }_{K} V_{\Lambda}$ is associated, which has a hermitian metric on each fibre. The space of the differential forms of type $(0, q)$ with coefficients in E_{Λ} may then be considered as the space of all C^{∞}-sections of the homogeneous vector bundle over X associated to the K-module $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$, which will be denoted by $C^{0, q}\left(E_{\Lambda}\right)$. We shall aslo identify $C^{0, q}\left(E_{\Lambda}\right)$ with the space of $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$-valued C^{∞}-functions s on G such that $s(g k)=k^{-1} s(g)$ for $g \in G, k \in K$. The Cauchy-Riemann operator
$$
\bar{\partial}: C^{0, q}\left(E_{\Lambda}\right) \rightarrow C^{0, q+1}\left(E_{\Lambda}\right)
$$
is then expressed as follows. When we choose a basis of \mathfrak{p}^{c} such that
\[

$$
\begin{equation*}
B\left(e_{\beta}, e_{-\beta}\right)=1, e_{\beta} \in \mathfrak{g}^{\beta} \tag{1}
\end{equation*}
$$

\]

for each non-compact root $\beta \in \Delta_{\mathfrak{p}}$, we then have

$$
\begin{equation*}
\bar{\partial}=\sum_{\beta \in \Delta_{\mathcal{P}}^{+}} \nu\left(e_{-\beta}\right) \otimes \varepsilon\left(e_{\beta}\right) \tag{2}
\end{equation*}
$$

where $\nu\left(e_{-\beta}\right)$ denotes the action of $e_{-\beta}$ as a left invariant vector field and $\varepsilon\left(e_{\beta}\right)$ the exterior multiplication of e_{β} on $\Lambda \mathfrak{p}_{+}$. In the choice above, we shall note that the Casimir operator has a form of

$$
\begin{equation*}
\Omega=\Omega_{k}+\sum_{\beta \in \Delta_{\mathfrak{p}}} e_{-\beta} e_{\beta} \tag{3}
\end{equation*}
$$

where Ω_{k} denotes the part consisting of the basis of \mathfrak{l}^{c}. Introducing, as usual, an invariant kählerian metric on X via the hermitian metric (,) on g^{c}, we have the formal adjoint ϑ of $\bar{\partial}$ and the Laplace-Beltrami operator

$$
\square=\bar{\partial} \vartheta+\vartheta \bar{\partial} .
$$

Theorem (Okamoto-Ozeki [2]). Under the above situation, \square acts on each $C^{0, q}\left(E_{\Lambda}\right) a s$

$$
\square=\frac{1}{2}-\{(\Lambda+2 \rho, \Lambda) \mathbf{1}-\nu(\Omega)\}
$$

where $\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha, 1$ denotes the identity operator, and $(\Lambda+2 \rho, \Lambda)$ the inner product on the weights induced from the Killing form.
2. A proof of the above Theorem is as follows. We shall first see that $\square+$ $\frac{1}{2} \nu(\Omega)$ is at most a first order operator on $C^{0, q}\left(E_{\Lambda}\right)$. Because of the invariance
of the differential operators, it suffices to see that it holds for any real cotangent vector ξ at the origin $o \in X$

$$
\sigma_{\xi}^{2}(\square)=-\frac{1}{2} \sigma_{\xi}^{2}(\nu(\Omega))
$$

where $\sigma_{\xi}^{2}($.$) denotes the symbol map at the origin with respect to \xi$. When we consider \mathfrak{p} as the real cotangent space at $o \in X, \xi$ as the element of $\mathfrak{p} \subset \mathfrak{p}^{c}$, we then have

$$
\sigma_{\xi}^{1}(\bar{\partial}) v=\varepsilon\left(\xi_{+}\right) v \quad \text { for } v \in V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}
$$

where $\sigma($.$) denotes the symbol map at the origin and \xi_{+}$is the image of ξ by the orthogonal projection $\mathfrak{p}^{c} \rightarrow \mathfrak{p}_{+}$. In fact, take a real valued function f on X and a section $s \in C^{0, q}\left(E_{\Lambda}\right)$ such that $f(o)=0,(d f)(o)=\xi, s(e)=v$, where e is the unit of G. Then we have $\sigma_{\xi}^{1}(\bar{\partial}) v=(\bar{\partial}(f s))(e)=\varepsilon(\bar{\partial} f(o)) v$, and through the above identification, $\bar{\partial} f(o)=\xi_{+}$. Since the symbol of the formal adjoint ϑ is

$$
\sigma_{\xi}^{1}(\vartheta)=-\varepsilon\left(\xi_{+}\right)^{*}
$$

where $\varepsilon\left(\xi_{+}\right)^{*}$ denotes the adjoint of $\varepsilon\left(\xi_{+}\right)$with respect to the hermitian inner product on $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$, we have

$$
\begin{aligned}
\sigma_{\xi}^{2}(\square) & =\sigma_{\xi}^{1}(\bar{\partial}) \sigma_{\xi}^{1}(\vartheta)+\sigma_{\xi}^{1}(\vartheta) \sigma_{\xi}^{1}(\bar{\partial}) \\
& =-\left(\varepsilon\left(\xi_{+}\right) \varepsilon\left(\xi_{+}\right)^{*}+\varepsilon\left(\xi_{+}\right) * \varepsilon\left(\xi_{+}\right)\right) \\
& =-\left(\xi_{+}, \xi_{+}\right) \mathbf{1} \\
& =-\frac{1}{2}(\xi, \xi) \mathbf{1}
\end{aligned}
$$

On the other hand, we see easily that $\sigma_{\xi}^{2}(\nu(\Omega))=(\xi, \xi) \mathbf{1}$, which implies the assertion.
3. We shall next see that every invariant first order operators on $C^{0, q}\left(E_{\Lambda}\right)$ is, in effect, of order zero, i.e., a vector bundle map induced from some K-module endomorphism on $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$. Consider the symbol map $\sigma_{\xi}^{1}(D)$ of an invariant first order operator D as a bilinear map

$$
\sigma_{.}^{1}(D):\left(V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}\right) \times \mathfrak{p} \rightarrow V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}
$$

and extend it to \mathfrak{p}^{c} on the part \mathfrak{p} complex-linearly. We then have a K-module homomorphism

$$
\sigma_{(}^{1}(D):\left(V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}\right) \otimes \mathfrak{p}^{c} \rightarrow V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}
$$

It suffices to see $\sigma_{.}^{1}(D)=0$. In fact, the highest weight of an irreducible component in $\left(V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}\right) \otimes \mathfrak{p}^{c}$ is of a form

$$
\Lambda+\beta_{1}+\cdots+\beta_{q} \pm \beta
$$

while that of one in $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$is

$$
\Lambda+\beta_{1}{ }^{\prime}+\cdots+\beta_{q}{ }^{\prime},
$$

for some $\beta_{i}, \beta_{i}{ }^{\prime}, \beta$ in Δ_{p}^{+}. Therefore, if $\sigma_{.}^{1}(D) \neq 0$, then there must exist positive non-compact roots $\beta_{1}, \cdots, \beta_{q}, \beta_{1}{ }^{\prime}, \cdots, \beta_{q}{ }^{\prime}, \beta$ such that

$$
\beta_{1}+\cdots+\beta_{q} \pm \beta=\beta_{1}^{\prime}+\cdots+\beta_{q}{ }^{\prime}
$$

On the other hand, it is known that, when \mathfrak{g} is simple, there exists a simple root $\alpha_{0} \in \Delta_{p}^{+}$such as the following holds; expressing a positive non-compact root as a linear combination of the simple roots in Δ^{+}, the coefficient of α_{0} has to be 1. Hence, under our assumptions, the above equality is impossible, which implies the assertion.
4. Put $A_{\Lambda}^{q}=\square+\frac{1}{2} \nu(\Omega)$ on $C^{0, q}\left(E_{\Lambda}\right)$. Then we know through 2,3 that A_{Λ}^{q} is induced from a K-module endomorphism of $V_{\Lambda} \otimes \Lambda^{q} \mathfrak{p}_{+}$, and it is easy to see

$$
\bar{\partial} A_{\Lambda}^{q}=A_{\Lambda}^{q+1} \bar{\partial}
$$

from the property of the Casimir operator. If we assume that A_{Λ}^{q} is a scaler operator $c_{\Lambda}^{q} 1$, then A_{Λ}^{q+1} is also $c_{\Lambda}^{q} 1$. In fact, for any $v \in V_{\Lambda} \otimes \Lambda^{q+1} \mathfrak{p}_{+}$one can choose a section s in $C^{0, q}\left(E_{\Lambda}\right)$ such that $(\bar{\partial} s)(e)=v$. Since A_{Λ}^{q+1} is of order zero, $\underline{A}_{\Lambda}^{q+1}(\bar{\partial} s)(e)=\left(A_{\Lambda}^{q+1} \bar{\partial} s\right)(e)$, where $\underline{A}_{\Lambda}^{q+1}$ denotes the K-module endomorphism of $V_{\Lambda} \otimes \Lambda^{q+1} \mathfrak{p}_{+}$inducing A_{Λ}^{q+1}. Hence $\underline{A}_{\Lambda}^{q+1} v=\left(\bar{\partial} A_{\Lambda}^{q} s\right)(e)=c_{\Lambda}^{q}(\bar{\partial} s)(e)=c_{\Lambda}^{q} v$, which shows $A_{\Lambda}^{q+1}=c_{\Lambda}^{q} 1$. On the other hand, $A_{\Lambda}^{0}=c_{\Lambda} 1$ for some constant c_{Λ}, because V_{Λ} is irreducible. Thus we have

$$
A_{\Lambda}^{q}=c_{\Lambda} \mathbf{1} \quad \text { for every } q .
$$

It remains to determine the above constant c_{Λ}. For this purpose, it suffices to see the action of A_{Λ}^{0} on $C^{0, q}\left(E_{\Lambda}\right)$. For a highest weight vector $v_{\Lambda} \in V_{\Lambda}$, take a local holomorphic section s near the origin $o \in X$ such that $s(e)=v_{\Lambda}$. We then have

$$
A_{\Lambda}^{0} s=\frac{1}{2} \nu(\Omega) s
$$

By the formula (3), we have

$$
\nu(\Omega) s=\nu\left(\Omega_{k}\right) s+\sum_{\beta \in \Delta_{\mathfrak{p}}^{+}}\left(2 \nu\left(e_{\beta}\right) \nu\left(e_{-\beta}\right) s-\nu\left(\left[e_{\beta}, e_{-\beta}\right]\right) s\right) .
$$

It is well known that $\nu\left(\Omega_{k}\right) s=\left(\Lambda+2 \rho_{k}, \Lambda\right) s$ where ρ_{k} is a half of the sum of the
positive compact roots. On the other hand, $\nu\left(e_{-\beta}\right) s=0$ for $\beta \in \Delta_{n}$ in view of (2), and $\left(\nu\left(\left[e_{\beta}, e_{-\beta}\right] s\right)(e)=-(\beta, \Lambda) v_{\Lambda}\right.$ because of $\left[e_{\beta}, e_{-\beta}\right] \in \mathfrak{h}^{c}$ and the choice (1). Therefore it holds

$$
(\nu(\Omega) s)(e)=(\Lambda+2 \rho, \Lambda) s(e)
$$

Thus we have $c_{\Lambda}=\frac{1}{2}(\Lambda+2 \rho, \Lambda)$, which completes a proof of the Theorem.
Remark. This way of determination of the Laplace-Beltrami operator can be also applied for a hermitian symmetric pair of compact type, and we have a quite similar formula except for a switch of sign, which is due to B. Kostant.

Hiroshima University

References

[1] M.S. Narasimhan and K. Okamoto: An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact type, Ann. of Math. 91 (1970), 486-511.
[2] K. Okamoto and H. Ozeki: On square-integrable $\bar{\partial}$-cohomolgy spaces attached to hermitian symmetric spaces, Osaka J. Math 4 (1967), 95-110.

[^0]: *) Research supported in part by Yukawa Foundation during the stay at Osaka University.

