ON SOME EXTREMAL QUASICONFORMAL MAPPINGS OF DISC

Takehiko SASAKI

(Received June 9, 1970)

1. Introduction

A quasiconformal mapping $w(z)$ of the unit disc $\Delta=\{z| | z \mid<1\}$ onto itself is known to have continuous boundary values, hence we may consider the class $Q(w ; \Delta, \Delta)$ of all quasiconformal mappings of Δ onto itself that coincide with $w(z)$ on the boundary $\partial \Delta=\{z| | z \mid=1\}$. In $Q(w ; \Delta, \Delta)$ there is at least one quasiconformal mapping whose maximal dilatation is a minimum. Such a quasiconformal mapping is called extremal in the class $Q(w ; \Delta, \Delta)$. If there exists a regular single-valued analytic function φ defined on Δ and if the complex dilatation μ of a quasiconformal mapping is written in the form

$$
\begin{equation*}
\mu=k \frac{\bar{\Phi}}{|\varphi|} \quad(0<k<1) \tag{1}
\end{equation*}
$$

except at zeros of φ, then it is called a Teichmüller mapping corresponding to φ. It was studied by K. Strebel [4] whether a quasiconformal mapping $f(z)$ with the complex dilatation of the form (1) is extremal in the class $Q(f ; \Delta, \Delta)$ or not.

In section 2 and section 3 we prove two distortion theorems which serve to show some extremality. In section 4 some extremal quasiconformal mappings which are not Teichmüller mappings in general are considered.

2. Distortion of argument (1)

Let $w(z)$ be a K-quasiconformal mapping which maps $|z|<1$ onto $|w|<1$ with $w(0)=0$ and $w(1)=1$ and let $\arg w(z)=\arg w\left(r e^{i \theta}\right)$ a continuous branch with $\arg w(1)=0$. Then we have

Theorem 1. For all K-quasiconformal mappings which map $|z|<1$ onto $|w|<1$ with $w(0)=0$ and $w(1)=1$, we have

$$
\begin{equation*}
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w(r)}{\log r}\right| \leqq \frac{1}{2}\left(K-\frac{1}{K}\right) . \tag{2}
\end{equation*}
$$

This bound is best possible.
We begin with some preliminary considerations. For $|w(r)|$ it is well known that $\frac{1}{4^{K}} r^{K}<|w(r)|<4 r^{K^{-1}}$. Therefore for each r we have

$$
\begin{equation*}
|w(r)|=c(r) r^{f(r)} \text { with } \frac{1}{4^{K}}<c(r)<4, \frac{1}{K} \leqq f(r) \leqq K \tag{3}
\end{equation*}
$$

Also the next inequality is known to hold (see for example [1])

$$
\frac{\max _{0 \leq \theta<2 \pi}\left|w\left(r e^{i \theta}\right)\right|}{\min _{0 \leqq \theta<2 \pi}\left|w\left(r e^{i \theta}\right)\right|} \leqq \lambda(K)=\frac{1}{16} e^{\pi K}-\frac{1}{2}+O\left(e^{-\pi K}\right)
$$

so that we see at once

$$
\begin{align*}
& \max _{0 \leqq \theta<2 \pi}\left|w\left(r e^{i \theta}\right)\right| \leqq \lambda(K) c(r) r^{f(r)}, \\
& \min _{0 \leqq \theta<2 \pi}\left|w\left(r e^{i \theta}\right)\right| \geqq \lambda(K)^{-1} c(r) r^{f(r)} \tag{4}
\end{align*}
$$

In order to estimate $\max _{0 \leqq \theta<2 \pi}\left|\arg w\left(r e^{i \theta}\right)-\arg w(r)\right|$, we need
Lemma. For K-quasiconformal mapping $w(z)$ which maps $|z|<1$ onto $|w|<1$ with $w(0)=0$ we have

$$
\begin{equation*}
\max _{0 \leq \theta<2 \pi}\left|\arg w\left(r e^{i \theta}\right)-\arg w(r)\right|<N_{1}<\infty \tag{5}
\end{equation*}
$$

where N_{1} is a constant depending only on K.
Proof. The lemma is a consequence of the following
Theorem ([2], theorem 2). Suppose that w is a K-quasiconformal mapping of the extended plane and that $w(\infty)=\infty$. Then for each triple of distinct finite points z_{1}, z_{0}, z_{2}

$$
\sin \frac{1}{2} \beta \geqq \varphi_{K}\left(\sin \frac{1}{2} \alpha\right)
$$

where $\varphi_{K}(r)=\mu^{-1}(K \mu(r))$ and

$$
\begin{equation*}
\alpha=\arcsin \left(\frac{\left|z_{1}-z_{2}\right|}{\left|z_{1}-z_{0}\right|+\left|z_{2}-z_{0}\right|}\right), \beta=\arcsin \left(\frac{\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right|}{\left|f\left(z_{1}\right)-f\left(z_{0}\right)\right|+\left|f\left(z_{2}\right)-f\left(z_{0}\right)\right|}\right) \tag{*}
\end{equation*}
$$

Here $\mu(r)$ is the modulus of the unit disc slit along the real axis from 0 to r, and μ^{-1} is the inverse of μ.

Proof of lemma. The mapping $w(z)$ in our lemma is extended by reflexion
to a K-quasiconformal mapping of the extended plane with $w(\infty)=\infty$, and we apply the above theorem to the inverse w^{-1}.

Suppose that w satisfies the inequalities;

$$
n \pi \leqq \max _{0 \leqq \theta<2 \pi}\left|\arg w(r e)^{i \theta}-\arg w(r)\right|<(n+1) \pi,
$$

where n is a positive integer. Then there exists at least $2 n-1$ points such that $0=\theta_{1}<\theta_{2}<\cdots<\theta_{2 n-1}=2 \pi$ and that $\left|\arg w\left(r e^{i \theta}\right)-\arg w\left(r e^{i \theta_{2}}\right)\right|=\mid \arg w\left(r e^{i \theta_{2}}\right)$ $-\arg w\left(r e^{i \theta_{3}}\right)\left|=\cdots=\left|\arg w\left(e r^{i \theta_{2 n-2}}\right)-\arg w\left(r e^{i \theta_{2 n-1}}\right)\right|=\pi\right.$. If we put $w\left(r e^{i \theta_{\nu}}\right)$, $w(0), w\left(r e^{i \theta_{v+1}}\right)$ in place of z_{1}, z_{0}, z_{2} in (*) respectively and $z_{v}=r e^{i \theta_{v}}, z_{0}=0, z_{v+1}$ $=r e^{i \theta_{\nu+1}}$ in place of $f\left(z_{1}\right), f\left(z_{0}\right), f\left(z_{2}\right)$ in (*) respectively, $(\nu=1,2, \cdots, 2 n-2)$, then

$$
\begin{aligned}
\alpha & =\arcsin \left(\frac{\left|w\left(r e^{i \theta_{\nu}}\right)-w\left(r e^{i \theta_{\nu+1}}\right)\right|}{\mid w\left(r e^{i \theta_{\nu}}-w(0)\left|+\left|w\left(r e^{i \theta_{\nu+1}}\right)-w(0)\right|\right.\right.}\right)=\arcsin 1=\frac{\pi}{2} \\
\beta & =\arcsin \left(\frac{\mid r e^{i \theta_{\nu}}-r e^{i \theta_{\nu+1} \mid}}{\left|r e^{i \theta_{\nu}}-0\right|+\mid r e^{i \theta_{\nu+1}-0 \mid}}\right)=\arcsin \frac{1}{2}\left|1-e^{\left.i \theta_{\nu+1}-\theta_{\nu}\right)}\right| \\
& =\frac{\theta_{\nu+1}-\theta_{\nu}}{2}
\end{aligned}
$$

and

$$
\sin \frac{\theta_{\nu+1}-\theta_{\nu}}{4} \geqq \varphi_{K}\left(\sin \frac{\pi}{4}\right)=\varphi_{K}\left(\frac{1}{\sqrt{2}}\right),(\nu=1,2, \cdots, 2 n-2) .
$$

Therefore we have

$$
\theta_{\nu+1}-\theta_{\nu} \geqq 4 \arcsin \varphi_{K}\left(\frac{1}{\sqrt{2}}\right), \quad(\nu=1,2, \cdots, 2 n-2) .
$$

On adding these $2 n-2$ inequalities we obtain

$$
2 \pi \geqq 4(2 n-2) \arcsin \varphi_{K}\left(\frac{1}{\sqrt{2}}\right)
$$

or

$$
n+1 \leqq \frac{\pi}{4 \arcsin \varphi_{K}\left(\frac{1}{\sqrt{2}}\right)}+2
$$

Putting $N_{1}=\left(\frac{\pi}{4 \arcsin \varphi_{K}\left(\frac{1}{\sqrt{2}}\right)}+2\right) \pi$ we have

$$
\max _{0 \leq \theta<2 \pi}\left|\arg w\left(r e^{i \theta}\right)-\arg w(r)\right|<N_{1},
$$

thus the lemma is proved.
Proof of theorem 1. By $Z=\log z$ and $W=\log w$ we map $|z|<1$ and $|w|<1$
conformally onto half strips of height 2π such that $Z(1)=\log 1=0$ and $W(1)$ $=\log 1=0$, in the Z and W planes. Then a quadrilateral $q=\{z|r<|z|<1,0$ $<\arg z<2 \pi\}$ in the z plane will be mapped onto a quadrilateral $Q=\{Z \mid \log r$ $<X<0,0<Y<2 \pi\}$ in the $Z=X+i Y$ plane. Let Q^{\prime} be the quadrilateral in the W plane to which Q corresponds, and let $M(Q)$ and $M\left(Q^{\prime}\right)$ denote the moduli of Q and Q^{\prime}. Then

$$
\begin{equation*}
\frac{1}{K} M(Q) \leqq M\left(Q^{\prime}\right) \leqq K M(Q), M(Q)=\frac{1}{2 \pi} \log \frac{1}{r} \tag{6}
\end{equation*}
$$

On the other hand, applying Rengel's inequality ([3], p. 24) to Q^{\prime}, we have

$$
\begin{equation*}
\frac{\left(S_{b}\left(Q^{\prime}\right)\right)^{2}}{m\left(Q^{\prime}\right)} \leqq M\left(Q^{\prime}\right) \leqq \frac{m\left(Q^{\prime}\right)}{\left(S_{a}\left(Q^{\prime}\right)\right)^{2}} \tag{7}
\end{equation*}
$$

where $S_{a}\left(Q^{\prime}\right)$ and $S_{b}\left(Q^{\prime}\right)$ denote the distances between a-sides and b-sides in Q^{\prime} respectively and $m\left(Q^{\prime}\right)$ the area of Q^{\prime}.

The lemma and (4) imply that left one of b-sides in Q^{\prime} must lie in $\{W=U+i V$ $\left|U \leqq \log \lambda(K) c(r) r^{f(r)},|V|>|\arg w(r)|-N_{1}\right\} \quad$ when $\quad|\arg w(r)|>N_{1}$. Put $N_{2}=\left(N_{1}+2 \pi\right) \operatorname{sgn} \arg w(r)$, when $|\arg w(r)|>N_{1}+2 \pi$. Then it follows by use of the Pythagorus equality that

$$
\left(S_{b}\left(Q^{\prime}\right)\right)^{2} \geqq\left|\arg w(r)-N_{2}\right|^{2}+\left|\log \lambda(K) c(r) r^{f(r)}\right|^{2}
$$

For $m\left(Q^{\prime}\right)$ we have by (4)

$$
m\left(Q^{\prime}\right) \leqq 2 \pi\left|\log \lambda(K)^{-1} c(r) r^{f(r)}\right|
$$

On using these inequalities, (7) becomes

$$
\frac{\left|\arg w(r)-N_{2}\right|^{2}+\left.\log \lambda(K) c(r) r^{f(r)}\right|^{2}}{2 \pi\left|\log \lambda(K)^{-1} c(r) r^{f(r)}\right|} \leqq M\left(Q^{\prime}\right)
$$

If we combine above inequality with (6), it holds that

$$
\begin{aligned}
& \left|\arg w(r)-N_{2}\right|^{2} \leqq f(r)(K-f(r))|\log r|^{2}+(2|\log \lambda(K) c(r)| f(r) \\
& \left.\quad+K\left|\log \lambda(K)^{-1} c(r)\right|\right)|\log r|+|\log \lambda(K) c(r)|^{2} .
\end{aligned}
$$

Dividing both sides by $|\log r|^{2}$ and letting r tend to 0 , we have

$$
\begin{equation*}
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w(r)}{\log r}\right| \leqq \varlimsup_{r \rightarrow 0} \sqrt{f(r)(K-f(r))} \leqq \varlimsup_{r \rightarrow 0} \frac{K}{2}=\frac{K}{2} . \tag{8}
\end{equation*}
$$

Next, we suppose that

$$
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w(r)}{\log r}\right|=\frac{1}{2}\left(K-\frac{1}{K}+\delta\right), \quad \delta \geqq 0
$$

We introduce an auxiliary K_{1}-quasiconformal mapping $w_{1}\left(r e^{i \theta}\right)=r^{\alpha} e^{i(\theta-\beta \log r)}$, where $\beta^{2}=-\alpha^{2}+\left(K_{1}+\frac{1}{K_{1}}\right) \alpha-1, \frac{1}{K_{1}} \leqq \alpha \leqq K_{1}$ and $\operatorname{sgn} \beta= \pm 1$ according as

$$
\varlimsup_{r \rightarrow 0} \frac{\arg w(r)}{|\log r|}=\frac{1}{2}\left(K-\frac{1}{K}+\delta\right) \text { or } \lim _{r \rightarrow 0} \frac{\arg w(r)}{|\log r|}=-\frac{1}{2}\left(K-\frac{1}{K}+\delta\right)
$$

The composed $K K_{1}$-quasiconformal mapping $w \circ w_{1}$ maps $|z|<1$ onto $|w|<1$ so that $w \circ w_{1}(0)=0$ and $w \circ w_{1}(1)=1$. On account of (8) it satisfies

$$
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w \circ w_{1}(r)}{\log r}\right| \leqq \frac{K K_{1}}{2} .
$$

By (5) its argument is written in the form $\arg w \circ w_{1}(r)=\arg w\left(r^{\alpha}\right)+\arg w_{1}(r)$ $+A(r)$, where $A(r)$ satisfies $|A(r)|<N_{1}$. There is a sequence $\left\{r_{i}\right\}$ such that

$$
\begin{aligned}
& \frac{K K_{1}}{2} \geqq \lim _{i \rightarrow \infty}\left|\frac{\arg w\left(r_{i}^{\alpha}\right)+\arg w_{1}\left(r_{i}\right)+A\left(r_{i}\right)}{\log r_{i}}\right|=\varlimsup_{r \rightarrow 0}\left|\frac{\arg w\left(r^{\alpha}\right)}{\log r}\right|+|\beta| \\
& \quad=\frac{\alpha}{2}\left(K-\frac{1}{K}+\delta\right)+|\beta|
\end{aligned}
$$

or

$$
\delta \leqq \frac{K K_{1}}{\alpha}-\frac{2|\beta|}{\alpha}-K+\frac{1}{K} .
$$

If we put $\alpha=\frac{K^{2}}{K^{2}+1} K_{1},\left(\alpha \geqq \frac{1}{K_{1}}\right)$ then

$$
\frac{K K_{1}}{\alpha}=K+\frac{1}{K}, \frac{2|\beta|}{\alpha}=\frac{2\left(K^{2}+1\right)}{K^{2}} \sqrt{\left(\frac{K}{K^{2}+1}\right)^{2}+\left(\frac{K^{2}}{K^{2}+1}-1\right) \frac{1}{K_{1}^{2}}} .
$$

Letting $K_{1} \rightarrow \infty$ we have

$$
\delta \leqq K+\frac{1}{K}-\frac{2\left(K^{2}+1\right)}{K^{2}} \frac{K}{K^{2}+1}-K+\frac{1}{K}=0
$$

Hence

$$
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w(r)}{\log r}\right| \leqq \frac{1}{2}\left(K-\frac{1}{K}\right) .
$$

The bound $\frac{1}{2}\left(K-\frac{1}{K}\right)$ is attained by $w\left(r e^{i \theta}\right)=r^{\alpha} e^{i(\theta-\beta \log r)}$, where $\alpha=\frac{1}{2}$ $\left(K+\frac{1}{K}\right)$ and $\beta=\frac{1}{2}\left(K-\frac{1}{K}\right)$.

3. Distortion of argument (2)

Theorem 2. Suppose that $w(z)$ is a K-quasiconformal mapping of $|z|<1$ onto $|w|<1$ with $w(0)=0$ and $w(1)=1$ and that

$$
\begin{equation*}
|w(r)|=c(r) r^{a}, \log c(r)=o(\log r) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w(r)}{\log r}\right| \leqq \sqrt{a\left(K+\frac{1}{K}\right)-\left(a^{2}+1\right)} . \tag{10}
\end{equation*}
$$

For each a this bound is best possible.
Proof. We remark first that a lies between $\frac{1}{K}$ and K. We use the same reasoning as in section 2 to obtain

$$
\begin{align*}
& |w(r)|=c(r) r^{a}, \log c(r)=o(\log r) \\
& \max _{0 \leqq \theta<2 \pi}\left|w\left(r e^{i \theta}\right)\right| \leqq \lambda(K) c(r) r^{a}, \log c(r)=o(\log r) \\
& \min _{0 \leqq \theta<2 \pi}\left|w\left(r e^{i \theta}\right)\right| \geqq \lambda(K)^{-1} c(r) r^{a}, \log c(r)=o(\log r) .
\end{align*}
$$

Putting $f(r)=a$ in (8) we have

$$
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w(r)}{\log r}\right| \leqq \sqrt{a(K-a)} .
$$

We suppose that

$$
\varlimsup_{r \rightarrow 0}\left|\frac{\arg w(r)}{\log r}\right|=\sqrt{a\left(K+\frac{1}{K}\right)-\left(a^{2}+1\right)}+\delta, \delta \geqq 0 .
$$

Using an auxiliary K_{1}-quasiconformal mapping $w\left(r e^{i \theta}\right)=r^{a} e^{i(\theta-\beta \log r)}$, we have in the same manner as in section 2

$$
\alpha\left(\sqrt{a\left(K+\frac{1}{K}\right)-\left(a^{2}+1\right)}+\delta\right)+\sqrt{\alpha\left(K_{1}+\frac{1}{K_{1}}\right)-\left(\alpha^{2}+1\right)} \leqq \sqrt{a \alpha\left(K K_{1}-a \alpha\right)},
$$

because the composed $K K_{1}$-quasiconformal mapping satisfies (9) with $a \alpha$ in place of a. Therefore we have

$$
\begin{equation*}
\delta \leqq \sqrt{a\left(K \frac{K_{1}}{\alpha}-a\right)}-\sqrt{\frac{K_{1}}{\alpha}+\frac{1}{\alpha K_{1}}-\left(1+\frac{1}{\alpha^{2}}\right)}-\sqrt{a\left(K+\frac{1}{K}\right)-\left(a^{2}+1\right)} . \tag{11}
\end{equation*}
$$

For $a \neq \frac{1}{K}$ we put $\alpha=\frac{a K-1}{a\left(K-K^{-1}\right)} K_{1}$ and let $K_{1} \rightarrow \infty$, so that we have

$$
\delta \leqq \sqrt{\frac{a^{2} K(K-a)}{a K-1}}-\sqrt{\frac{1-a K^{-1}}{a K-1}}-\sqrt{a\left(K+\frac{1}{K}\right)-\left(a^{2}+1\right)}=0
$$

Hence we have the desired inequality (10). For $a=\frac{1}{K}$ (11) becomes

$$
\delta \leqq \sqrt{\frac{K_{1}}{\alpha}-\frac{1}{K^{2}}}-\sqrt{\frac{K_{1}}{\alpha}+\frac{1}{\alpha K_{1}}-\left(1+\frac{1}{\alpha^{2}}\right)} .
$$

On putting $\alpha=\sqrt{K_{1}}$ and letting $K_{1} \rightarrow \infty$, we have also $\delta=0$. For each a the bound is attained by $w\left(r e^{i \theta}\right)=r^{a} e^{i(\theta-b \log r)}, b^{2}=a\left(K+\begin{array}{c}1 \\ K\end{array}\right)-\left(a^{2}+1\right) . \quad$ q. e. d.

4. Some extremal mappings

Let $w(z)$ be an extremal quasiconformal mapping in $Q(w ; \Delta, \Delta)$. If we map Δ conformally onto a Jordan region D by φ and map Δ onto an another Jordan region D^{\prime} by ψ, then we obtain a boundary correspondence given by $\psi \circ w \circ \varphi^{-1}$ between D and D^{\prime}. In $Q\left(\psi \circ w \circ \varphi^{-1} ; D, D^{\prime}\right), \psi \circ w \circ \varphi^{-1}$ is again extremal and if W is extremal in $Q\left(\psi \circ w \circ \varphi^{-1} ; D, D^{\prime}\right)$ then $\varphi^{-1} \circ W \circ \psi$ is extremal in $Q(w ; \Delta, \Delta)$. By this reason extremal quasiconformal mappings which we are going to deal with are those which have the boundary correspondence between D and D^{\prime}.

Theorem 3. Let $W_{0}(Z)=f(X)+i(Y+g(X))$ be a K-quasiconformal mapping of $D=\{Z=X+i Y \mid X<0,0<Y<2 \pi\}$ such that $f(0)=g(0)=0$ and that $f(X)$ $\rightarrow-\infty$ as $X \rightarrow-\infty$. If

$$
\varlimsup_{x \rightarrow-\infty}\left|\frac{g(X)}{X}\right|=\frac{1}{2}\left(K-\frac{1}{K}\right)
$$

then $W_{0}(Z)$ is extremal in $Q\left(W_{0} ; D, D^{\prime}\right)$, where $D^{\prime}=W_{0}(D)$.
Proof. Let $W(Z)$ be a K^{\prime}-quasiconformal mapping in $Q\left(W_{0} ; D, D^{\prime}\right)$. We map D into Δ by $z=e^{Z}$ and D^{\prime} into another Δ. Then $e^{W(\log z)}$ with $\log 1=0$ is a K^{\prime}-quasiconformal mapping of Δ onto Δ with $e^{W(\log 0)}=0$ and $e^{W(\log 1)}=1$, because it is topological on Δ and K^{\prime}-quasiconformal in $\Delta-\{z=x+i y \mid 0 \leqq x$ $<1, y=0\}$, ([3], I. Satz 8, 3). Theorem 1 asserts that

$$
\begin{gathered}
\frac{1}{2}\left(K^{\prime}-\frac{1}{K^{\prime}}\right) \geqq \varlimsup_{r \rightarrow 0}\left|\frac{\arg e^{W(\log r)}}{\log r}\right|=\varlimsup_{r \rightarrow 0}\left|\frac{\arg e^{W_{0}(\log r)}}{\log r}\right|=\varlimsup_{x \rightarrow-\infty}\left|\frac{g(X)}{X}\right| \\
=\frac{1}{2}\left(K-\frac{1}{K}\right)
\end{gathered}
$$

Therefore we have $K^{\prime} \geqq K$ and it is shown that $W_{0}(Z)$ is extremal in $Q\left(W_{0} ; D, D^{\prime}\right)$.
q. e.d.

The complex dilatation of $W_{0}(Z)$ is of the form as follows;

$$
\mu_{W_{0}}(Z)=\frac{f^{\prime}(X)+i g^{\prime}(X)-1}{f^{\prime}(X)+i g^{\prime}(X)+1} .
$$

If $\mu_{W_{0}}(Z)=k \frac{\overline{\varphi(Z)}}{|\varphi(Z)|}, k=\frac{K-1}{K+1}$, with analytic φ in D, then $\arg \varphi=$ constant on each $X=c,-\infty<c<0$, and $\varphi=e^{a Z+b}$. But it is not difficult to see that $a=0$. We conclude that $W_{0}(Z)$ is not Teichmuller mapping except the case when $W_{0}(Z)$ is an affine mapping.

By the same resoning as before and by theorem 2 we obtain the following
Theorem 4. Let $W_{a}(Z)=f(X)+i(Y+g(X))$ be K-quasiconformal mapping of $D=\{Z=X+i Y \mid X<0,0<Y<2 \pi\}$ such that $f(0)=g(0)=0, f(X) \rightarrow \infty$ as $X \rightarrow-\infty$ and that $\lim _{X \rightarrow-\infty}\left|\frac{f(X)}{X}\right|=a, \frac{1}{K} \leqq a \leqq K$. If

$$
\varlimsup_{X \rightarrow-\infty}\left|\frac{g(X)}{\bar{X}}\right|=\sqrt{a\left(K+\frac{1}{K}\right)-\left(a^{2}+1\right)},
$$

then $W_{a}(Z)$ is extremal in $Q\left(W_{a} ; D, D^{\prime}\right)$, where $D^{\prime}=W_{a}(D)$.
Osaka City University

References

[1] S.B. Agard: Distortion theorems for quasiconformal mappings, Ann. Acad. Sci. Fenn. 413 (1968).
[2] S.B. Agard and F.W. Gehring: Angles and quasiconformal mappings, Proc. London Math. Soc. (3) 14A (1965), 1-12.
[3] O. Lehto und K.I. Virtarnen: Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
[4] K. Strebel: Zur Frage der Eindeutigkeit extremal quasikonformer Abbildungen des Einheitskreises, Comment. Math. Helv. 36 (1962). 306-323.

