ON SOME EXTREMAL QUASICONFORMAL MAPPINGS OF DISC

Takehiko SASAKI

(Received June 9, 1970)

1. Introduction

A quasiconformal mapping w(z) of the unit disc $\Delta = \{z \mid |z| < 1\}$ onto itself is known to have continuous boundary values, hence we may consider the class $Q(w; \Delta, \Delta)$ of all quasiconformal mappings of Δ onto itself that coincide with w(z) on the boundary $\partial \Delta = \{z \mid |z| = 1\}$. In $Q(w; \Delta, \Delta)$ there is at least one quasiconformal mapping whose maximal dilatation is a minimum. Such a quasiconformal mapping is called extremal in the class $Q(w; \Delta, \Delta)$. If there exists a regular single-valued analytic function φ defined on Δ and if the complex dilatation μ of a quasiconformal mapping is written in the form

$$\mu = k \frac{\overline{\varphi}}{|\varphi|} \quad (0 < k < 1), \tag{1}$$

except at zeros of φ , then it is called a Teichmüller mapping corresponding to φ . It was studied by K. Strebel [4] whether a quasiconformal mapping f(z) with the complex dilatation of the form (1) is extremal in the class $Q(f; \Delta, \Delta)$ or not.

In section 2 and section 3 we prove two distortion theorems which serve to show some extremality. In section 4 some extremal quasiconformal mappings which are not Teichmüller mappings in general are considered.

2. Distortion of argument (1)

Let w(z) be a K-quasiconformal mapping which maps |z| < 1 onto |w| < 1 with w(0) = 0 and w(1) = 1 and let $\arg w(z) = \arg w(re^{i\theta})$ a continuous branch with $\arg w(1) = 0$. Then we have

Theorem 1. For all K-quasiconformal mappings which map |z| < 1 onto |w| < 1 with w(0) = 0 and w(1) = 1, we have

$$\overline{\lim_{r\to 0}} \left| \frac{\arg w(r)}{\log r} \right| \le \frac{1}{2} \left(K - \frac{1}{K} \right). \tag{2}$$

528 T. Sasaki

This bound is best possible.

We begin with some preliminary considerations. For |w(r)| it is well known that $\frac{1}{4^K}r^K < |w(r)| < 4r^{K^{-1}}$. Therefore for each r we have

$$|w(r)| = c(r)r^{f(r)} \text{ with } \frac{1}{4^K} < c(r) < 4, \frac{1}{K} \le f(r) \le K.$$
 (3)

Also the next inequality is known to hold (see for example [1])

$$\frac{\max\limits_{0 \leq \theta < 2\pi} |w(re^{i\theta})|}{\min\limits_{0 \leq \theta < 2\pi} |w(re^{i\theta})|} \leq \lambda(K) = \frac{1}{16} e^{\pi K} - \frac{1}{2} + O(e^{-\pi K}),$$

so that we see at once

$$\max_{\substack{0 \le \theta < 2\pi \\ 0 \le \theta < 2\pi}} |w(re^{i\theta})| \le \lambda(K)c(r)r^{f(r)},$$

$$\min_{\substack{0 \le \theta < 2\pi \\ 0 \le \theta < 2\pi}} |w(re^{i\theta})| \ge \lambda(K)^{-1}c(r)r^{f(r)}.$$
(4)

In order to estimate $\max_{0 \le \theta < 2\pi} |\arg w(re^{i\theta}) - \arg w(r)|$, we need

Lemma. For K-quasiconformal mapping w(z) which maps |z| < 1 onto |w| < 1 with w(0) = 0 we have

$$\max_{0 \le \theta < 2\pi} |\arg w(re^{i\theta}) - \arg w(r)| < N_1 < \infty , \qquad (5)$$

where N_1 is a constant depending only on K.

Proof. The lemma is a consequence of the following

Theorem ([2], theorem 2). Suppose that w is a K-quasiconformal mapping of the extended plane and that $w(\infty) = \infty$. Then for each triple of distinct finite points z_1, z_0, z_2

$$\sin\frac{1}{2}\beta \geq \varphi_K \left(\sin\frac{1}{2}\alpha\right)$$
,

where $\varphi_K(r) = \mu^{-1}(K\mu(r))$ and

$$\alpha = \arcsin\left(\frac{|z_1 - z_2|}{|z_1 - z_0| + |z_2 - z_0|}\right), \ \beta = \arcsin\left(\frac{|f(z_1) - f(z_2)|}{|f(z_1) - f(z_0)| + |f(z_2) - f(z_0)|}\right). \ (*)$$

Here $\mu(r)$ is the modulus of the unit disc slit along the real axis from 0 to r, and μ^{-1} is the inverse of μ .

Proof of lemma. The mapping w(z) in our lemma is extended by reflexion

to a K-quasiconformal mapping of the extended plane with $w(\infty) = \infty$, and we apply the above theorem to the inverse w^{-1} .

Suppose that w satisfies the inequalities;

$$n\pi \leq \max_{0 \leq \theta < 2\pi} |\arg w(re)^{i\theta} - \arg w(r)| < (n+1)\pi$$
,

where n is a positive integer. Then there exists at least 2n-1 points such that $0=\theta_1<\theta_2<\dots<\theta_{2n-1}=2\pi$ and that $|\arg w(re^{i\theta})-\arg w(re^{i\theta_2})|=|\arg w(re^{i\theta_2})|$ and $|\arg w(re^{i\theta_2})-\arg w(re^{i\theta_2})|=|\arg w(re^{i\theta_2})|$ and $|\arg w(re^{i\theta_2})-\arg w(re^{i\theta_2})|=\pi$. If we put $|\sec w(re^{i\theta_2})-\arg w(re^{i\theta_2})|=\pi$. If $|\sec w(re^{i\theta_2})-\arg w(re^{i\theta_2$

$$\begin{split} \alpha &= \arcsin\left(\frac{|w(re^{i\theta_{\nu}}) - w(re^{i\theta_{\nu+1}})|}{|w(re^{i\theta_{\nu}}) - w(0)| + |w(re^{i\theta_{\nu+1}}) - w(0)|}\right) = \arcsin 1 = \frac{\pi}{2},\\ \beta &= \arcsin\left(\frac{|re^{i\theta_{\nu}} - re^{i\theta_{\nu+1}}|}{|re^{i\theta_{\nu}} - 0| + |re^{i\theta_{\nu+1}} - 0|}\right) = \arcsin \frac{1}{2} |1 - e^{i(\theta_{\nu+1} - \theta_{\nu})}|\\ &= \frac{\theta_{\nu+1} - \theta_{\nu}}{2}, \end{split}$$

and

$$\sin \frac{\theta_{\nu+1}-\theta_{\nu}}{4} \geq \varphi_{K}\left(\sin \frac{\pi}{4}\right) = \varphi_{K}\left(\frac{1}{\sqrt{2}}\right), \ (\nu=1,2,\cdots,2n-2).$$

Therefore we have

$$\theta_{\nu+1}-\theta_{\nu} \ge 4 \arcsin \varphi_{K}\left(\frac{1}{\sqrt{2}}\right), \quad (\nu=1,2,\cdots,2n-2).$$

On adding these 2n-2 inequalities we obtain

$$2\pi \ge 4(2n-2) \arcsin \varphi_K \left(\frac{1}{\sqrt{2}}\right)$$

or

$$n+1 \le \frac{\pi}{4 \arcsin \varphi_K \left(\frac{1}{\sqrt{2}}\right)} + 2$$
.

Putting
$$N_1 = \left(\frac{\pi}{4 \arcsin \varphi_K \left(\frac{1}{\sqrt{2}}\right)} + 2\right) \pi$$
 we have

$$\max_{0 \leq heta < 2\pi} |\arg w(re^{i heta}) - \arg w(r)| < N_1$$
,

thus the lemma is proved.

Proof of theorem 1. By $Z=\log z$ and $W=\log w$ we map |z|<1 and |w|<1

530 T. Sasaki

conformally onto half strips of height 2π such that $Z(1) = \log 1 = 0$ and $W(1) = \log 1 = 0$, in the Z and W planes. Then a quadrilateral $q = \{z \mid r < |z| < 1, 0 < \arg z < 2\pi\}$ in the z plane will be mapped onto a quadrilateral $Q = \{Z \mid \log r < X < 0, 0 < Y < 2\pi\}$ in the Z = X + iY plane. Let Q' be the quadrilateral in the W plane to which Q corresponds, and let M(Q) and M(Q') denote the moduli of Q and Q'. Then

$$\frac{1}{K}M(Q) \le M(Q') \le KM(Q), M(Q) = \frac{1}{2\pi} \log \frac{1}{r}.$$
 (6)

On the other hand, applying Rengel's inequality ([3], p. 24) to Q', we have

$$\frac{(S_b(Q'))^2}{m(Q')} \leq M(Q') \leq \frac{m(Q')}{(S_a(Q'))^2},\tag{7}$$

where $S_a(Q')$ and $S_b(Q')$ denote the distances between a-sides and b-sides in Q' respectively and m(Q') the area of Q'.

The lemma and (4) imply that left one of b-sides in Q' must lie in $\{W=U+iV \mid U \leq \log \lambda(K)c(r)r^{f(r)}, \mid V \mid > |\arg w(r)| - N_1\}$ when $|\arg w(r)| > N_1$. Put $N_2 = (N_1 + 2\pi)$ sgn arg w(r), when $|\arg w(r)| > N_1 + 2\pi$. Then it follows by use of the Pythagorus equality that

$$(S_b(Q'))^2 \ge |\arg w(r) - N_2|^2 + |\log \lambda(K)c(r)r^{f(r)}|^2$$
.

For m(O') we have by (4)

$$m(Q') \leq 2\pi |\log \lambda(K)^{-1}c(r)r^{f(r)}|.$$

On using these inequalities, (7) becomes

$$\frac{|\arg w(r) - N_2|^2 + \log \lambda(K) c(r) r^{f(r)}|^2}{2\pi |\log \lambda(K)^{-1} c(r) r^{f(r)}|} \leq M(Q').$$

If we combine above inequality with (6), it holds that

$$|\arg w(r) - N_2|^2 \le f(r)(K - f(r)) |\log r|^2 + (2|\log \lambda(K)c(r)|f(r) + K|\log \lambda(K)^{-1}c(r)|) |\log r| + |\log \lambda(K)c(r)|^2.$$

Dividing both sides by $|\log r|^2$ and letting r tend to 0, we have

$$\overline{\lim_{r\to 0}} \left| \frac{\arg w(r)}{\log r} \right| \leq \overline{\lim_{r\to 0}} \sqrt{f(r)(K-f(r))} \leq \overline{\lim_{r\to 0}} \frac{K}{2} = \frac{K}{2}.$$
 (8)

Next, we suppose that

$$\overline{\lim_{r\to 0}} \left| \frac{\arg w(r)}{\log r} \right| = \frac{1}{2} \left(K - \frac{1}{K} + \delta \right), \quad \delta \ge 0.$$

We introduce an auxiliary K_1 -quasiconformal mapping $w_1(re^{i\theta}) = r^{\alpha}e^{i(\theta-\beta\log r)}$, where $\beta^2 = -\alpha^2 + \left(K_1 + \frac{1}{K_1}\right)\alpha - 1$, $\frac{1}{K_1} \le \alpha \le K_1$ and $\operatorname{sgn} \beta = \pm 1$ according as

$$\overline{\lim_{r\to 0}} \frac{\arg w(r)}{|\log r|} = \frac{1}{2} \left(K - \frac{1}{K} + \delta \right) \text{ or } \underline{\lim_{r\to 0}} \frac{\arg w(r)}{|\log r|} = -\frac{1}{2} \left(K - \frac{1}{K} + \delta \right).$$

The composed KK_1 -quasiconformal mapping $w \circ w_1$ maps |z| < 1 onto |w| < 1 so that $w \circ w_1(0) = 0$ and $w \circ w_1(1) = 1$. On account of (8) it satisfies

$$\overline{\lim}_{r\to 0}\left|\frac{\arg w\circ w_1(r)}{\log r}\right|\leq \frac{KK_1}{2}.$$

By (5) its argument is written in the form $\arg w \circ w_1(r) = \arg w(r^{\omega}) + \arg w_1(r) + A(r)$, where A(r) satisfies $|A(r)| < N_1$. There is a sequence $\{r_i\}$ such that

$$\begin{split} \frac{KK_{1}}{2} & \geq \lim_{i \to \infty} \left| \frac{\arg w(r_{i}^{\alpha}) + \arg w_{1}(r_{i}) + A(r_{i})}{\log r_{i}} \right| = \overline{\lim_{r \to 0}} \left| \frac{\arg w(r^{\alpha})}{\log r} \right| + |\beta| \\ & = \frac{\alpha}{2} \left(K - \frac{1}{K} + \delta \right) + |\beta| \end{split}$$

or

$$\delta \leq \frac{KK_1}{\alpha} - \frac{2|\beta|}{\alpha} - K + \frac{1}{K}$$
.

If we put $\alpha = \frac{K^2}{K^2 + 1} K_1$, $\left(\alpha \ge \frac{1}{K_1}\right)$ then

$$\frac{KK_1}{\alpha} = K + \frac{1}{K}, \frac{2|\beta|}{\alpha} = \frac{2(K^2 + 1)}{K^2} \sqrt{\left(\frac{K}{K^2 + 1}\right)^2 + \left(\frac{K^2}{K^2 + 1} - 1\right)\frac{1}{K_1^2}}.$$

Letting $K_1 \rightarrow \infty$ we have

$$\delta \leq K + \frac{1}{K} - \frac{2(K^2 + 1)}{K^2} \frac{K}{K^2 + 1} - K + \frac{1}{K} = 0$$

Hence

$$\overline{\lim_{r\to 0}}\left|\frac{\arg w(r)}{\log r}\right| \leq \frac{1}{2}\left(K - \frac{1}{K}\right).$$

The bound $\frac{1}{2}\left(K-\frac{1}{K}\right)$ is attained by $w(re^{i\theta})=r^{\alpha}e^{i(\theta^{-\beta}\log r)}$, where $\alpha=\frac{1}{2}\left(K+\frac{1}{K}\right)$ and $\beta=\frac{1}{2}\left(K-\frac{1}{K}\right)$.

532 T. Sasaki

3. Distortion of argument (2)

Theorem 2. Suppose that w(z) is a K-quasiconformal mapping of |z| < 1 onto |w| < 1 with w(0) = 0 and w(1) = 1 and that

$$|w(r)| = c(r)r^a$$
, $\log c(r) = o(\log r)$. (9)

Then

$$\overline{\lim_{r\to 0}} \left| \frac{\arg w(r)}{\log r} \right| \leq \sqrt{a(K + \frac{1}{K}) - (a^2 + 1)}. \tag{10}$$

For each a this bound is best possible.

Proof. We remark first that a lies between $\frac{1}{K}$ and K. We use the same reasoning as in section 2 to obtain

$$|w(r)| = c(r)r^a, \log c(r) = o(\log r)$$
(3')

$$\max_{0 \le \theta < 2\pi} |w(re^{i\theta})| \le \lambda(K)c(r)r^a, \log c(r) = o(\log r)$$

$$\min_{0 \le \theta < 2\pi} |w(re^{i\theta})| \ge \lambda(K)^{-1}c(r)r^a, \log c(r) = o(\log r).$$
(4')

Putting f(r) = a in (8) we have

$$\overline{\lim_{r \to 0}} \left| \frac{\arg w(r)}{\log r} \right| \le \sqrt{a(K-a)} . \tag{8'}$$

We suppose that

$$\overline{\lim_{r\to 0}} \left| \frac{\arg w(r)}{\log r} \right| = \sqrt{a(K+\frac{1}{K}) - (a^2+1)} + \delta, \ \delta \ge 0.$$

Using an auxiliary K_1 -quasiconformal mapping $w(re^{i\theta}) = r^{\alpha}e^{i(\theta^{-\beta}\log r)}$, we have in the same manner as in section 2

$$\alpha\left(\sqrt{a\left(K+\frac{1}{K}\right)-(a^2+1)}+\delta\right)+\sqrt{\alpha\left(K_1+\frac{1}{K_1}\right)-(\alpha^2+1)}\leq\sqrt{a\alpha(KK_1-a\alpha)},$$

because the composed KK_1 -quasiconformal mapping satisfies (9) with $a\alpha$ in place of a. Therefore we have

$$\delta \leq \sqrt{a\left(K\frac{K_1}{\alpha} - a\right)} - \sqrt{\frac{K_1}{\alpha} + \frac{1}{\alpha K_1} - \left(1 + \frac{1}{\alpha^2}\right)} - \sqrt{a\left(K + \frac{1}{K}\right) - \left(a^2 + 1\right)}. \tag{11}$$

For $a \neq \frac{1}{K}$ we put $\alpha = \frac{aK-1}{a(K-K^{-1})}K_1$ and let $K_1 \to \infty$, so that we have

$$\delta \leq \sqrt{\frac{a^2 K (K-a)}{aK-1}} - \sqrt{\frac{1-aK^{-1}}{aK-1}} - \sqrt{a(K+\frac{1}{K}) - (a^2+1)} = 0.$$

Hence we have the desired inequality (10). For $a=\frac{1}{K}$ (11) becomes

$$\delta \leq \sqrt{\frac{K_1}{\alpha} - \frac{1}{K^2}} - \sqrt{\frac{K_1}{\alpha} + \frac{1}{\alpha K_1} - \left(1 + \frac{1}{\alpha^2}\right)}. \tag{11'}$$

On putting $\alpha = \sqrt{K_1}$ and letting $K_1 \to \infty$, we have also $\delta = 0$. For each a the bound is attained by $w(re^{i\theta}) = r^a e^{i(\theta^{-b} \log r)}$, $b^2 = a(K + \frac{1}{K}) - (a^2 + 1)$. q. e. d.

4. Some extremal mappings

Let w(z) be an extremal quasiconformal mapping in $Q(w; \Delta, \Delta)$. If we map Δ conformally onto a Jordan region D by φ and map Δ onto an another Jordan region D' by ψ , then we obtain a boundary correspondence given by $\psi \circ w \circ \varphi^{-1}$ between D and D'. In $Q(\psi \circ w \circ \varphi^{-1}; D, D')$, $\psi \circ w \circ \varphi^{-1}$ is again extremal and if W is extremal in $Q(\psi \circ w \circ \varphi^{-1}; D, D')$ then $\varphi^{-1} \circ W \circ \psi$ is extremal in $Q(w; \Delta, \Delta)$. By this reason extremal quasiconformal mappings which we are going to deal with are those which have the boundary correspondence between D and D'.

Theorem 3. Let $W_0(Z)=f(X)+i(Y+g(X))$ be a K-quasiconformal mapping of $D=\{Z=X+iY\mid X<0,\ 0<Y<2\pi\}$ such that f(0)=g(0)=0 and that $f(X)\to -\infty$ as $X\to -\infty$. If

$$\overline{\lim}_{X \to -\infty} \left| \frac{g(X)}{X} \right| = \frac{1}{2} \left(K - \frac{1}{K} \right).$$

then $W_0(Z)$ is extremal in $Q(W_0; D, D')$, where $D' = W_0(D)$.

Proof. Let W(Z) be a K'-quasiconformal mapping in $Q(W_0; D, D')$. We map D into Δ by $z=e^Z$ and D' into another Δ . Then $e^{W(\log z)}$ with $\log 1=0$ is a K'-quasiconformal mapping of Δ onto Δ with $e^{W(\log 0)}=0$ and $e^{W(\log 1)}=1$, because it is topological on Δ and K'-quasiconformal in $\Delta-\{z=x+iy\mid 0\leq x<1, y=0\}$, ([3], I. Satz 8, 3). Theorem 1 asserts that

$$\frac{1}{2} \left(K' - \frac{1}{K'} \right) \ge \overline{\lim_{r \to 0}} \left| \frac{\arg e^{W(\log r)}}{\log r} \right| = \overline{\lim_{r \to 0}} \left| \frac{\arg e^{W_0(\log r)}}{\log r} \right| = \overline{\lim_{x \to -\infty}} \left| \frac{g(X)}{X} \right|$$

$$= \frac{1}{2} \left(K - \frac{1}{K} \right).$$

Therefore we have $K' \ge K$ and it is shown that $W_0(Z)$ is extremal in $Q(W_0; D, D')$.

The complex dilatation of $W_0(Z)$ is of the form as follows;

$$\mu_{W_0}(Z) = \frac{f'(X) + ig'(X) - 1}{f'(X) + ig'(X) + 1}.$$

If $\mu_{W_0}(Z)=k\frac{\overline{\varphi(Z)}}{|\varphi(Z)|}$, $k=\frac{K-1}{K+1}$, with analytic φ in D, then arg φ =constant on each X=c, $-\infty < c < 0$, and $\varphi=e^{aZ+b}$. But it is not difficult to see that a=0. We conclude that $W_0(Z)$ is not Teichmuller mapping except the case when $W_0(Z)$ is an affine mapping.

By the same resoning as before and by theorem 2 we obtain the following

Theorem 4. Let $W_a(Z)=f(X)+i(Y+g(X))$ be K-quasiconformal mapping of $D=\{Z=X+iY\mid X<0,\ 0< Y<2\pi\}$ such that $f(0)=g(0)=0,\ f(X)\to\infty$ as $X\to -\infty$ and that $\lim_{X\to -\infty}\left|\frac{f(X)}{X}\right|=a,\ \frac{1}{K}\le a\le K$. If

$$\overline{\lim}_{X \to -\infty} \left| \frac{g(X)}{X} \right| = \sqrt{a(K + \frac{1}{K}) - (a^2 + 1)}$$
,

then $W_a(Z)$ is extremal in $Q(W_a; D, D')$, where $D' = W_a(D)$.

OSAKA CITY UNIVERSITY

References

- [1] S.B. Agard: Distortion theorems for quasiconformal mappings, Ann. Acad. Sci. Fenn. 413 (1968).
- [2] S.B. Agard and F.W. Gehring: Angles and quasiconformal mappings, Proc. London Math. Soc. (3) 14A (1965), 1-12.
- [3] O. Lehto und K.I. Virtarnen: Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- [4] K. Strebel: Zur Frage der Eindeutigkeit extremal quasikonformer Abbildungen des Einheitskreises, Comment. Math. Helv. 36 (1962). 306-323.