ON THE BORSUK-ULAM THEOREM FOR Z_{p^a} ACTIONS ON S^{2n-1} AND MAPS $S^{2n-1} \rightarrow R^m$

HANS J. MUNKHOLM

(Received April 13, 1970)

1. Introduction

In [3] we raised the following question:

Let G be a finite group acting properly (as a group of homeomorphisms) on the *n*-sphere. For any (topological) *m*-manifold M and any map $f: S^n \to M$ let $A(f) = \{x \in S^n | f(x) = f(xg), \text{ all } g \in G\}$. What can be deduced about dim A(f)? In case $M = R^m$, euclidean *m*-space, A(f) is the set of solutions of

(|G|-1)m+1 equations in n+1 unknowns so one might hope to get

(1.1)
$$\dim A(f) \ge n - (|G| - 1)m.$$

If G is cyclic of prime order then (1.1) actually holds even for maps $f: S^n \to M^m$ provided M^m is compact (for $G=Z_2$ and m=n assume also that $f_*=0: H_n(S^n; Z_2) \to H_n(M^n; Z_2)$), see [3]. In this note we consider $G=Z_{p^a}$, cyclic of *odd* prime power order, and we restrict attention to maps into R^m . Our results are expressed in two theorems:

Mod p^a Borsuk-Ulam theorem: For any proper action of Z_{p^a} on $S^{2^{n-1}}$, p an odd prime, and any map $f: S^{2^{n-1}} \rightarrow R^m$ one has

$$\dim A(f) \ge (2n-1) - (p^a-1)m - [m(a-1)p^a - (ma+2)p^{a-1} + m+3]$$

Mod p^a Borsuk-Ulam anti-theorem: Consider the standard linear action of Z_{p^a} on $S^{2^{n-1}}$. Assume a > 1 and $p^a \neq 9$. If $2n-1 \leq (p^a-1)m+(2p-3)m-1$ then there exists a map $f: S^{2^{n-1}} \rightarrow R^m$ with $A(f) = \phi$.

Notice that the anti-theorem says that (1.1) fails whenever a>1 and $p^a \pm 9$; the theorem gives $m(a-1)p^a - (ma+2)p^{a-1} + m+3$ as an upper bound for this failure. For a=1 this upper bound is 1, so for $G=Z_p$ we are 1 off our previous results [3].

REMARKS. 1. dim means covering dimension.

2. For $p^a=9$ and m>1 there is a result similar to the anti-theorem. We leave that to the interested reader.

H.J. MUNKHOLM

3. In private correspondence with M. Nakaoka I have recently learned that (1.1) holds for Z_p -actions on mod p homology spheres S^n and maps $f: S^n \to M^m$ without the restriction of niceness of f imposed by me in [3].

2. Proof of theorem

Let $\mu: S \times G \to S$ be a proper action of the cyclic group G of odd prime power order $p^a = q = 2k+1$ on the (2n-1) sphere S. Denote by η the corresponding principal G-bundle $S \to S/\mu$ over the orbit space S/μ . For a complex G-module M let $\eta[M]$ be the complex vector bundle $S \times_G M \to S/\mu$. The correspondence $M \mapsto \eta[M]$ gives rise to a ring homomorphism $\alpha: \mathcal{R}G \to$ $K^{\circ}(S/\mu)$ where $\mathcal{R}G$ is the complex representation ring for G while K° denotes complex K-theory. Denote by L the standard 1-dimensional complex Gmodule, i.e. L=C, the field of complex numbers, and, fixing a generator g_0 for $G, g_0c = \exp(2\pi q^{-1}\sqrt{-1})c$. Then $\mathcal{R}G = Z[\rho]/(\rho^q - 1)$ where ρ is the class of L. Finally, put $\lambda = \eta[L]$ and for any map $f: S \to R^m$ let λ_f be the restriction of λ to $A(f)/\mu \subseteq S/\mu$.

Now the mod p^a Borsuk-Ulam theorem is essentially contained in

Lemma 1. If $d\lambda_f$ has a never vanishing section then $d \ge n-1+p^{a-1}$ $-\frac{1}{2}am(p^a-p^{a-1}).$

Proof. Assume that $d\lambda_f$ has a never vanishing section. We first show

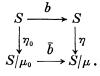
(2.1)
$$P(\rho):=(\rho-1)^d [(\rho-1)(\rho^2-1)\cdots(\rho^k-1)]^m \in (\rho-1)^n \cdot Z[\rho]/(\rho^q-1).$$

Recall that the *i*th Atiyah class $a_i(\xi)$ of an *n*-dimensional complex vector bundle ξ is given by $a_i(\xi) = \gamma^i(\xi - n)$ with γ^i as in [1]. Then we have the usual Whitney duality, namely $a_i(\xi_1 \oplus \xi_2) = \sum_{j+k=i} a_j(\xi_1)a_k(\xi_2)$, also for any line bundle ξ , $a_1(\xi) = \xi - 1$. Therefore it is immediate that $\alpha P(\rho) = a_{d+mk}(\Lambda)$ where Λ is the vector bundle $d\lambda \oplus m[\lambda \oplus \lambda^2 \oplus \cdots \oplus \lambda^k]$, and so (2.1) follows from

(2.2) Ker $(\alpha: \mathscr{R}G \to K^{\circ}(S/\mu)) \subseteq (\rho-1)^n \cdot \mathscr{R}G$,

(2.3) Λ admits a never vanishing section.

To get (2.2) we compare μ with the standard linear action $\mu_0: S \times G \to S$ obtained by viewing S as the unit sphere in $nL = L \oplus \cdots \oplus L$. S^{2n-1}/μ_0 is a (2n-1)-dimensional cell complex and $\eta: S \to S/\mu$ is (2n-1)-universal in the sense of [5]. Hence there is a bundle map



452

Furthermore, it is obvious that

$$\begin{array}{c} \mathscr{R}G \xrightarrow{\alpha} K^{\circ}(S/\mu) \\ \bigvee \alpha_{\circ} & \swarrow \bar{b}^{*} \\ K^{\circ}(S/\mu_{\circ}) \end{array}$$

commutes, so Ker $\alpha \subseteq$ Ker α_0 . But α_0 fits into an exact sequence (see [1])

$$\mathcal{R}G \xrightarrow{\varphi} \mathcal{R}G \xrightarrow{\alpha_0} K^0(S/\mu_0)$$

where φ is multiplication by $\lambda_{-1}(n\rho) = (1-\rho)^n$, so Ker $\alpha_0 \subseteq (\rho-1)^n \cdot \Re G$.

In [3] it is shown that f gives rise to a section S of $m(\lambda \oplus \lambda^2 \dots \oplus \lambda^k)$ which vanishes precisely on $A(f)/\mu$ (see especially Digression 1, p. 171-2 and Step 3, p. 180-1 of [3]). s and the given section s_0 of $d\lambda_f$ go together to prove (2.3). This completes the proof of (2.1).

Our next step is to show that (2.1) is actually equivalent to the inequality $d \ge n-1+p^{a-1}-\frac{1}{2}am(p^a-p^{a-1})$. The equivalence is obvious if n < d+mk, so assume $n \ge d+mk$. Lift (2.1) to the polynomial ring Z[x] to get the equivalent

(2.1.1)
$$\exists g, h \in Z[x]: P(x) = g(x)(x-1)^n + h(x)(x^q-1).$$

Now $P(x) = (x-1)^{d+mk} \cdot \prod_{j=2}^{k} f_j(x)^{m\lfloor k/j \rfloor}$; $(x^q-1) = (x-1) \cdot \prod_{i=1}^{a} f_p^i(x)$ where f_j is the *j*th cyclotomic polynomial and $\lfloor k/j \rfloor$ is the integral part of k/j. Hence, if (2.1.1) holds then g is divisible by $\prod_{i=1}^{a-1} f_p^i(x)$ and h is divisible by $(x-1)^{d+km-1}$. So, putting $\varepsilon_j = 0$ if $j \not> p^a$, $\varepsilon_j = 1$ if $j \mid p^a$, (2.1.1) implies (and is clearly implied by)

$$(2.1.2) \quad \exists \overline{g}, \overline{h} \in \mathbb{Z}[x] \colon \prod_{j=2}^{k} f_j(x)^{m[k/j]-\varepsilon_j} = \overline{g}(x) \cdot (x-1)^{n-d-km} + \overline{h}(x) \cdot f_q(x) \, .$$

Let γ be a primitive q^{th} root of unity and consider the projection $Z[x] \rightarrow Z[\gamma] \subseteq C$. Its kernel is the ideal generated by $f_q(x)$ so (2.1.2) is equivalent to

(2.1.3)
$$(\gamma-1)^{n-d-km} | \prod_{j=2}^k f(\gamma)^{m[k/j]-\varepsilon_j} \quad \text{in } Z[\gamma] .$$

Now $Z[\gamma]$ is precisely the algebraic integers of the field $Q(\gamma)$ and $(\gamma-1)Z[\gamma]$ is the *unique* prime ideal in $Z[\gamma]$ lying above pZ, see e.q. [6]. Let $\mathcal{N}: Q(\gamma) \rightarrow Q$ be the norm map for the extension $Q(\gamma)/Q$. It is then an immediate consequence of classical ideal theory for Dedekind extensions that (2.1.3) is equivalent to

(2.1.4)
$$\mathcal{N}(\gamma-1)^{n-d-km} | \prod_{j=1}^{k} \mathcal{N}(f_j(\gamma))^{m[k/j]-\varepsilon_j} \quad \text{in } Z.$$

The norms involved here are not hard to compute, so rearranging (2.1.4) slightly it takes the desired form $d \ge n-1+p^{a-1}-\frac{1}{2}am(p^a-p^{a-1})$.

453

H.J. MUNKHOLM

If $A(f)/\mu$ happens to be a *CW* complex then of course we have $(\dim A(f)/\mu < 2d) \Rightarrow (d\lambda_f)$ has a never vanishing section), and the above lemma can then be translated into a condition on $\dim A(f)/\mu$. Since also $\dim A(f) = \dim A(f)/\mu$ (because $A(f) \rightarrow A(f)/\mu$ is a finite covering and dim has the monotonicity and sum-properties, see [4]) this completes the proof of the mod p^a Borsuk-Ulam theorem. $A(f)/\mu$, however, need not be a *CW* complex so we need to know the following

Lemma 2. If λ is a complex line bundle over a compact metric space X of covering dimension <2d then $d\lambda$ admits a never vanishing section.

I certainly do not believe that this lemma is unknown. However, nor do I know of any reference for it, so a proof of it is given as an appendix.

3. Proof of the anti-theorem

Consider the standard linear action μ_0 of $G=Z_{p^a}$ on $S^{2N^{-1}}$, N big, i.e. view $S^{2N^{-1}}$ as the unit sphere in $NL=L\oplus\cdots\oplus L$. $S^{2N^{-1}}/\mu_0$ is a CW-complex with $S^{2N^{-1}}/\mu_0$ as (2n-1)-skeleton. Let ξ be the vector bundle $S^{2N^{-1}}\times_G IG \rightarrow S^{2N^{-1}}/\mu_0$ where IG is the augmentation ideal of the real group algebra RG. We notice that the anti-theorem is a consequence of

(3.1)
$$m\xi$$
 admits a never vanishing section over the $[(p^a-1)m+(2p-3)m-1]$ -skeleton.

Indeed, it is well known how a section s of $m\xi$ over the (2n-1)-skeleton corresponds to an equivariant map $F: S^{2n-1} \to m(IG) = IG \oplus IG \oplus \cdots \oplus IG$. If $i: IG \to RG$ is the inclusion then equivariance of F means that $(i \oplus \cdots \oplus i)F$ has the form $(i \oplus \cdots \oplus i)F(x) = (\sum_g f_1(xg^{-1})g, \cdots, \sum_g f_m(xg^{-1})g)$ for well defined continuous maps $f_i: S^{2n-1} \to R$. Put $f = (f_1, \cdots, f_m)$ and notice that $A(f) = \phi$ is equivalent to s having no zeros.

If we have shown (3.1) for m=1 then it follows for general m by noticing that $m\xi \simeq \Delta^*(\xi \times \cdots \times \xi)$ for any skeletal approximation $\Delta: S^{2N^{-1}}/\mu_0 \rightarrow S^{2N^{-1}}/\mu_0 \times \cdots \times S^{2N^{-1}}/\mu_0$ to the m-fold diagonal. Hence, assume m=1. In [3] we showed that the mod p Euler class of ξ vanishes whenever a>1. If we further exclude the case $p^a=9$ then the same proof shows that the integral Euler class vanishes. Hence ξ does have a never vanishing section over the 2kskeleton. The obstructions to extending this section over the succesive skeleta lie in $H^{2k+i}(S^{2N-1}/G; \pi_{2k-1+i}(S^{2k-1})) \cong H^{2k+i}(G; \pi_{2k-1+i}(S^{2k-1}))$. For 0 < i < 2p-3 the homotopy group in question has vanishing p-primary component so the obstructions vanish and we do have our desired section over the (2k+2p-4)-skeleton.

REMARK. In the above we have made strong use of the fact that ξ admits

454

a complex structure so that ξ is orientable and hence no twisting of coefficients occur.

4. Remarks on the case $G=Z_{25}$, m=1, linear action

For $G=Z_{25}$ and m=1 our results show that there exists a map $f: S^{29} \rightarrow R$ with $A(f)=\phi$ whereas every map $f: S^{33} \rightarrow R$ has $A(f)=\phi$. In fact every map $f: S^{31} \rightarrow R$ has $A(f)=\phi$ for some $f_0: S^{31} \rightarrow R$. Then

$$s_0(xG) = (x, \pi(\Sigma_g f_0(xg^{-1})g))G$$

defines a cross-section s_0 of ξ over the 31-skeleton. $(\pi: RG \to IG$ is given by $\pi(\Sigma r_g/g) = \Sigma r_g(g-1))$. The obstruction to extending s_0 further lie in $H^{32+i}(S^{2N-1}/Z_{25}; \pi_{31+i}(S^{23}))$. Since the 5-primary component of $\pi_{31+i}(S^{23})$ is zero for $0 \le i < 6$ we get a never vanishing section over the 37-skeleton. As in §3 this gives an $f: S^{37} \to R$ with $A(f) = \phi$. But that contradicts the above result for maps $S^{33} \to R$.

Unfortunately for $p^a > 25$ our positive and negative results are too far apart to close the gap between them by means as trivial as the above.

Appendix. Proof of lemma 2

Let Δ be the abstract 4d-1 simplex and $|\Delta|$ its standard realization in R^{4d} . By the general embedding theorem for compacta (see e.g. p. 139 of [2]) X can be taken as a closed subspace of $|\Delta|$. Let K_n be the subcomplex of $\Delta^{(n)}$ $(=n^{th}$ barycentric subdivision of Δ) spanned by all 4d-1 simplices τ for which $|\tau| \cap X \neq \phi$. Then K_n is a subcomplex of the barycentric subdivision of K_{n-1} so the inclusion $i_n: |K_n| \to |K_{n-1}|$ admits a simplicial approximation $\varphi_n: K_n \rightarrow K_{n-1}$. Also $\{|K_n|\}$ is cofinal in the (downward) directed set of all neighborhoods of X in $|\Delta|$, so for any abelian group A we have $\dot{H}^*(X; A)$ $\simeq \lim H^*(|K_n|; A)$, where as usual H^* is Cech cohomology, while H^* can be taken as any ordinary cohomology theory. Since line bundles are characterized by the first Chern class $c_1 \in \check{H}^2(-; Z)$ it follows that λ admits an extension λ_N over $|K_N|$ for N sufficiently large. Fix such an N and define (inductively, for n > N) $\lambda_n = |\varphi_n| * \lambda_{n-1}$. Let σ_n be the sphere bundle associated with $d\lambda_n$. Since $\lambda \simeq \lambda_n | X, n \ge N$, it is clearly sufficient to show that σ_n admits a crosssection when n is sufficiently large, in other words, if we let k be the maximal number such that for some $n \ge N \sigma_n$ admits a cross-section over the k-skeleton $|K_n^k|$ of K_n , then we must show $k \ge 4d-1$. Suppose k < 4d-1. Choose $n \ge N$ such that $\sigma_n ||K_n^k|$ has a cross-section, s, say. Consider the restriction s' of s to the (k-1)-skeleton and the obstruction c to extending s' over the (k+1)-skeleton (obstruction in the sense of [5]). $c \in H^{k+1}(|K_n|; \pi)$ where $\pi = \pi_k(S^{2d-1})$, and -

H.J. MUNKHOLM

by maximality of $k - c \neq 0$. Since k is clearly $\geq 2d - 1$ our assumption on dim X assures that $H^{k+1}(X; \pi) = \lim_{\substack{\to j \\ \neq j}} H^{k+1}(|K_j|; \pi)$ vanishes so there is an m > n such that $c ||K_m| = |\varphi| * c = 0$; here φ is an abbreviation for $\varphi_{n+1}\varphi_{n+2} \cdots \varphi_m$: $K_m \to K_n$. Now $\sigma_m = |\varphi| * \sigma_n$ and $|\varphi|$ is skeleton preserving so s gives rise to a cross-section s_1 of $\sigma_m ||K_m^k|$. Moreover, if s_1' is the restriction of s_1 to $|K_m^{k-1}|$ then the obstruction to extending s_1' over $|K_m^{k+1}|$ is precisely $|\varphi| * c$. But $|\varphi| * c = 0$ so s_1' does extend over $|K_m^{k+1}|$, thus contradicting the maximality of k.

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE AND AARHUS UNIVERSITY

References

- [1] M.F. Atiyah: K-theory, Notes by D.W. Anderson, Harvard University, 1964.
- [2] W. Franz: Topologie I, Allgemeine Topologie, Walter de Gruyter and Co., Berlin, 1960.
- [3] H.J. Munkholm: Borsuk-Ulam type theorems for proper Z_p-actions on (mod p homology) n-spheres, Math. Scand. 24 (1969), 167-185.
- [4] J. Nagata: Modern Dimension Theory, North Holland Publ. Co., Amsterdam, 1965.
- [5] N.E. Steenrod: The Topology of Fibre Bundles, Princeton University Press, 1951.
- [6] H. Weyl: Algebraic Theory of Numbers, Princeton University Press, 1940.