ON LINEAR GRAPHS IN 3-SPHERE

Shin'ichi SUZUKI

(Received February 12, 1970)
(Revised March 7, 1970)

0. Introduction

Throughout this paper we work in the piecewise-linear category, consisting of simplicial complexes and piecewise-linear maps. By $(P \subset M)$ we denote a pair of complexes such that M has an arbitrary but fixed orientation if M is orientable and P is embedded as a subcomplex in M. \boldsymbol{K} denotes a set of all connected finite 1-dimensional complexes. Then, for $K \in \boldsymbol{K}$ we will call $\left(K \subset S^{3}\right)$ a linear graph, or simply graph, in a 3-dimensional sphere S^{3}.

The purpose of the paper is to classify $\left\{\left(K \subset S^{3}\right) \mid K \in \boldsymbol{K}\right\}$ by an equivalence relation, which we will call a neighborhood-congruence. We will introduce a operation \vee of composition in $\left\{\left(K \subset S^{3}\right) \mid K \in \boldsymbol{K}\right\}$ so that neighborhoodcongruence classes of graphs form a commutative semi-group, and give the following as generalization of knots [14] and links [8].

Theorem 3.12. In the semi-group of all neighborhood-congruence classes of linear graphs, factorization is unique.

As an immediate application we can discribe socalled knotted solid tori of genus n in the 3 -sphere S^{3}.

1. Definitions and notations

Throughout the paper, ∂M and ϑM denote the boundary and the interior of a manifold M, respectively. For a pair $(P \subset M)$, by $N(P ; M)$ we denote a regular neighborhood of P in M, that is, we construct its second derived and take the closed star of P, see [9] and [12]. For any non-negative integer $n, \boldsymbol{K}(n)$ denotes a set of all connected finite 1-dim. complexes whose 1-dim. Betti number is n.

First let us explain an usual equivalence of pairs, see [2], [6].
1.1. Definition. Two pairs $(P \subset M)$ and $\left(P^{\prime} \subset M^{\prime}\right)$ are congruent iff there is a homeomorphism $h: M \rightarrow M^{\prime}$ such that $h(P)=P^{\prime}$ and h is orientation preserving if M is oriented.

Then it is trivial that the relation of congruence is an equivalence relation. We denote a congruence class of $(P \subset M)$ by $\langle P \subset M\rangle$, so $(P \subset M)$ is a representative of $\langle P \subset M\rangle$. In particular, congruent graphs are said to be of the same type, and each congruence class of graphs is a graph type. A graph type of ($K \subset S^{3}$) is denoted by $\lambda=\left\langle K \subset S^{3}\right\rangle$.

Note: Two concepts of a graph and a graph type are essentially different. But little distinction will be drawn between them. In the following, sometimes one representative (i.e. graph) is convenient, sometimes another.

Next, we will give another equivalence, which is stated in §0.
1.2. Definition. Two pairs $(P \subset M)$ and $\left(P^{\prime} \subset M^{\prime}\right)$ are neighborhoodcongruent (abbreviated by N-congruent), denoted by $(P \subset M) \xrightarrow{N}\left(P^{\prime} \supset M^{\prime}\right)$, iff $(N(P ; M) \subset M)$ and $\left(N\left(P^{\prime} ; M^{\prime}\right) \subset M^{\prime}\right)$ are congruent.

Note that if $(P \subset M)$ and $\left(P^{\prime} \subset M^{\prime}\right)$ are congruent, then $(P \subset M) \xrightarrow{N}\left(P^{\prime} \subset\right.$ M^{\prime}). So, the N-congruence can be defined for congruence classes of pairs, and sometimes we denote $\langle P \subset M\rangle \stackrel{N}{\sim}\left\langle P^{\prime} \subset M^{\prime}\right\rangle$.

By the uniqueness of regular neighborhoods [9, Th. 2] and [13, Th. 1], the above definition does not depend upon the triangulations of M and M^{\prime}, and the regular neighborhoods $N(P ; M)$ and $N\left(P^{\prime} ; M^{\prime}\right)$. So, the relation of N congruence is an equivalence relation, and we denote a N-congruence class of ($P \subset M$) (or $\langle P \subset M\rangle$) by [$P \subset M]$]. In particular, N-congruence classes of graphs are said to be the same N-graph type, and a N-graph type of ($K \subset S^{3}$) (or $\lambda=\left\langle K \subset S^{3}\right\rangle$) will be denoted by $\Lambda=\left[K \subset S^{3}\right]$.
1.3. Remark. By using an isotopy of pairs $(P \subset M),\left(P^{\prime} \subset M^{\prime}\right)$ and (N $(P ; M) \subset M),\left(N\left(P^{\prime} ; M^{\prime}\right) \subset M^{\prime}\right)$, we can introduce the similar equivalence relations of 1.1 and 1.2, respectively, see [7], [9, p. 727]. But since an orientation preserving homeomorphism of S^{3} onto itself is isotopic to the identity, for pairs $\left(P \subset S^{3}\right)$ the classification problems by the isotopy are the same as that by the orientation preserving homeomorphism.

For future reference we record the followings.
1.4. Let $\left(K \subset S^{3}\right)$ be a graph. Then, $N\left(K ; S^{3}\right)$ is a solid torus ${ }^{1)} T_{n}$ of genus n provided that $K \in K(n)$.
1.5. If $K, K^{\prime} \in K$ and $\left(K \subset S^{3}\right) \stackrel{N}{\sim}\left(K^{\prime} \subset S^{3}\right)$, then $K, K^{\prime} \in K(n)$ for some n.
1.6. Let $\left(T_{n} \subset S^{3}\right)$ be a solid torus of genus n in S^{3}. Suppose that $K\left(\subset S^{3}\right)$ and $K^{\prime}\left(\subset S^{3}\right)$ are spines ${ }^{2)}$ of T_{n}, then $\left(K \subset S^{3}\right) \stackrel{N}{\sim}\left(K^{\prime} \subset S^{3}\right)$.

To characterize the N-graph types, it is convenient to introduce special

[^0]linear graphs.
1.7. n-leafed rose. Let $\boldsymbol{C}(n)$ be a subset of $\boldsymbol{K}(n)$ whose elements are homeomorphic to the union of n topological circles $S_{1}^{1}, \cdots, S_{n}^{1}$ and a n-forest Ω joined as illustrated in Fig. 1. Especially, $\boldsymbol{C}(0)$ is considered to be one point

Ω

Fig. 1
ω. For brebity, we denote the vertices of Ω by $\omega, \omega_{1}, \cdots, \omega_{n}$ as shown in Fig. 1, and especially call the point ω (and its image) the node. Let $\boldsymbol{C}=\bigvee_{n \geq 0}$ $\boldsymbol{C}(n)$. Of course, $\boldsymbol{C}(n) \subset \boldsymbol{K}(n)$ and $\boldsymbol{C} \subset \boldsymbol{K}$, and therefore, $\left\{\left(C \subset S^{3}\right) \mid \boldsymbol{C} \in \boldsymbol{C}\right\} \subset$ $\left\{\left(K \subset S^{3}\right) \mid K \in \boldsymbol{K}\right\}$. For $C \in \boldsymbol{C}(n)$, we will call a graph $\left(C \subset S^{3}\right)$ a n-leafed rose, or simply rose, and a graph type $\theta=\left\langle C \subset S^{3}\right\rangle$ a rose type, and a N-graph type $\Theta=\left[C \subset S^{3}\right]$ a N-rose type.
1.8. Knotted Solid Tori. Let $\boldsymbol{T}(n)$ be a set of solid tori of genus n, and let $\boldsymbol{T}=\bigcup_{n \geq 0} \boldsymbol{T}(n)$. For $T \in \boldsymbol{T}$, a congruence class $\tau=\left\langle T \subset S^{3}\right\rangle$ of $\left(T \subset S^{3}\right)$ will be called a knot type of a solid torus. Note that two solid tori $\left(T \subset S^{3}\right)$ and ($T^{\prime} \subset S^{3}$) are congruent if and only if $\left(T \subset S^{3}\right)$ and $\left(T^{\prime} \subset S^{3}\right)$ are N-congruent.

Since each ($T \subset S^{3}$) of genus n has a n-leafed rose $C\left(\subset S^{3}\right)$ as its spine, we have the followings as consequences of 1.4, 1.5 and 1.6:
1.9. Proposition. For any $\Lambda=\left[K \subset S^{3}\right]$, there is a representative $\theta=$ $\left\langle C \subset S^{3}\right\rangle$.
1.10. Proposition. There are set identifications

$$
\begin{aligned}
\left\{\Lambda=\left[K \subset S^{3}\right] \mid K \in \boldsymbol{K}\right\} & =\left\{\Theta=\left[C \subset S^{3}\right] \mid C \in \boldsymbol{C}\right\} \\
& =\left\{\tau=\left\langle T \subset S^{3}\right\rangle \mid T \in \boldsymbol{T}\right\} .
\end{aligned}
$$

2. Knotting-genus of \mathbf{N}-graph type

In this section we will introduce the knotting-genus of a N-graph type as generalization of genera of knots [15] and links.
2.1. Spanning-surface for a link. Let $L=\left(S_{1}^{1} \cup \cdots \cup S_{n}^{1} \subset S^{3}\right)$ be a (non-
oriented) link with n components, that is, L is an union of mutually disjoint (non-oriented) 1-spheres $S_{1}^{1}, \cdots, S_{n}^{1}$ in S^{3}. Let F_{1}, \cdots, F_{u} be mutually disjoint orientable surfaces in S^{3}. Then, a system of surfaces $F_{L}=F_{1} \cup \cdots \cup F_{u}$ is said to be a spanning-surface for L, or L bounds a system of surfaces $F_{L}=F_{1} \cup \cdots \cup F_{u}$ iff
(i) $\partial F_{L}=\left\{\partial F_{1} \cup \cdots \cup \partial F_{u}\right\}=\left\{S_{1}^{1} \cup \cdots \cup S_{n}^{1}\right\}$,
(ii) every component of F_{L} has non-void boundary, and
(iii) there are mutually disjoint u 3-cells Q_{1}, \cdots, Q_{u} in S^{3} such that ϑQ_{i} $\supset F_{i}, i=1, \cdots, u$.

Since Seifert's construction [15] of a surface spanning a given knot can be readily extended to a link, a spanning-surface for L always exists. Condition (iii) cannot be removed, as can be seen by the boundary links [6].

To a spanning-surface $F_{L}=F_{1} \cup \cdots \cup F_{u}$ for L, we associate a pair $(u, v) \in$ $\boldsymbol{N}^{*} \times \boldsymbol{N}^{*}$ of non-negative integers, where ${ }^{3)} v=\sum_{i=1}^{u} g\left(F_{i}\right) . \quad$ On the other hand, we define a total order $<($ or $>)$ in $\{(u, v)\}\left(\subset \boldsymbol{N}^{*} \times \boldsymbol{N}^{*}\right)$ as follows:
(2.2) $(u, v)<\left(u^{\prime}, v^{\prime}\right)$ if $u>u^{\prime}$ or if $u=u^{\prime}$ and $v<v^{\prime}$.

Then, for a link $L=\left(S_{1}^{1} \cup \cdots \cup S_{n}^{1} \subset S^{3}\right)$ we can define an invariant (u, v) as follows:
2.3. Definition. L is of knotting-genus (u, v) iff there exists a spanningsurface F_{L} for L with (u, v), and for any spanning-surface F_{L}^{\prime} for L with (u^{\prime}, v^{\prime}), $(u, v) \leq\left(u^{\prime}, v^{\prime}\right)$.

Since $1 \leq u \leq n$ and $0 \leq v<\infty$, it is clear that the knotting-genus (u, v) is an invariant of a link type.

Using the spanning-surface and knotting-genus for a link, we will define a spanning-surface and knotting-genus for a rose type as follows:
2.4. Spanning-surface for a rose type. Let $\theta=\left\langle C \subset S^{3}\right\rangle$ be a n-leafed rose type and $\left(C \subset S^{3}\right)$ be a representative of θ. Let $F_{\theta}=F_{1} \cup \cdots \cup F_{u}$ be a system of orientable surfaces in $S^{3} . F_{\theta}$ is said to be a spanning-surface for θ, iff F_{θ} satisfies the conditions (i), (ii) in 2.1 for a non-oriented link $L=\left(C-\Omega \subset S^{3}\right)$ and additional conditions below:
(iii)' there are u 3-cells Q_{1}, \cdots, Q_{u} in S^{3} such that $\vartheta Q_{i} \supset F_{i} \partial Q_{i} \cap C=\partial Q_{i}$ $\cap \Omega=\omega$ and $Q_{i} \cap Q_{j}=\partial Q_{i} \cup \partial Q_{j}=\omega$ for $i \neq j$ and $i, j=1, \cdots, u$.
(iv) $\quad F_{\theta} \cap \Omega=\partial F_{\theta} \cap \Omega=\omega_{1} \cup \cdots \cup \omega_{n}$.

Since the n-forest Ω is contractible in S^{3}, we may assume that there is a regular projection \mathcal{P} of a rose C in a suitably chosen 2 -sphere S_{0}^{2} in S^{3}, in the

[^1]sense of knot theory, such that $\mathcal{P}(\Omega)$ has no crossing. So, the existence of a spanning-surface for θ is easily derived from 2.1.

To a spanning-surface F_{θ} for θ, we associate a pair $(u, v) \in \boldsymbol{N}^{*} \times \boldsymbol{N}^{*}$ of non-negative integers in the same way as a spanning-surface for a link. Moreover we define a total order $<($ or $>)$ in $\{(u, v)\}\left(\subset \boldsymbol{N}^{*} \times \boldsymbol{N}^{*}\right)$ by (2.2) and define the knotting-genus of a n-leafed rose θ as follows:
2.5. Definition. A n-leafed rose type θ is of knotting-genus (u, v), iff there exists a spanning-surface F_{θ} for θ with (u, v), and for any spanningsurface F_{θ}^{\prime} for θ with $\left(u^{\prime}, v^{\prime}\right),(u, v) \leq\left(u^{\prime}, v^{\prime}\right)$. Especially, 0-leafed rose is considered to be of knotting-genus $(0,0)$.

Note that if the knotting-genus of a n-leafed rose type $\theta=\left\langle C \subset S^{3}\right\rangle$ is (u, v), then $u \leq n$ and $v \geq g\left(\overline{C-\Omega} \subset S^{3}\right)$ where $g\left(\overline{C-\Omega} \subset S^{3}\right)$ is a genus of link $\left(\overline{C-\Omega} \subset S^{3}\right)$, see [15].

By virtue of 2.5, we have the followings:
2.6. Definition. A N-rose type Θ of $\theta=\left\langle C \subset S^{3}\right\rangle$ is of knotting-genus (u, v), iff there is a representative Θ of θ of knotting-genus (u, v), and for any representative θ^{\prime} of Θ of knotting-genus $\left(u^{\prime}, v^{\prime}\right),(u, v) \leq\left(u^{\prime}, v^{\prime}\right)$.
2.7. Definition. The knotting-genera of a N-graph type Λ and a knot type of solid torus τ are defined by the set identifications of 1.10. That is, Λ is of knotting-genus (u, v) iff Θ is of knotting-genus (u, v) and $\Lambda=\left[C \subset S^{3}\right]$

Fig. 2
for any representative $\left(C \subset S^{3}\right)$ of Θ, and τ is of knotting-genus (u, v) iff Θ is of knotting-genus (u, v) and $\tau=\left\langle N\left(C ; S^{3}\right) \subset S^{3}\right\rangle$ for any representative $\left(C \subset S^{3}\right)$ of Θ.
2.8. Remark. (1) For a graph $\left(K \subset S^{3}\right)$, we may define a spanningsurface, therefore the knotting-genus, directly by using a system of some kinds of surfaces in the similar way as 2.1 and 2.4. (2) Let F_{θ} be a spanning-surface for $\theta=\left\langle C \subset S^{3}\right\rangle$. Then, $F_{\theta} \cap \partial N\left(C ; S^{3}\right)$ consists of mutually disjoint n simple loops, say b_{1}, \cdots, b_{n}, on $\partial N\left(C ; S^{3}\right)$. In particular, b_{1}, \cdots, b_{n} together generate the first integral homology group $H_{1}\left(N\left(C ; S^{3}\right), Z\right)$.
2.9. Examples. We now list five examples of graphs. In Fig. 2, $\left\langle C_{0}\right.$ $\left.\subset S^{3}\right\rangle$ is of knotting-genus $(2,0),\left\langle C_{1} \subset S^{3}\right\rangle$ of $(1,0)$ and $\left\langle C_{2} \subset S^{3}\right\rangle$ of $(1,1)$. Particularly, any two of them are different graph type, but all of them are same N-graph type. So, $\left[C_{i} \subset S^{3}\right]=\left[K_{j} \subset S^{3}\right]$ is of knotting-genus (2,0), $i=0,1,2$ and $j=1,2$.

3. Unique decomposition theorem of \mathbf{N}-graph type

In view of Definitions 2.5, 2.6 and 2.7 , we have the following:
3.1. Definition. A rose type θ is prime iff θ is of knotting-genus $(1, *)$. And a N-rose type Θ (resp. a N-graph type Λ resp. a knot type of solid torus τ) is prime iff Θ (resp. Λ resp. τ) is of knotting-genus (1,*).

By the above definition, we have immediately the following:
3.2. Proposition. Any $\left\langle C \subset S^{3}\right\rangle,\left[C \subset S^{3}\right],\left[K \subset S^{3}\right]$ and $\left\langle T \subset S^{3}\right\rangle$ are prime provided that $C \in \boldsymbol{C}(1), K \in \boldsymbol{K}(1)$ and $T \in \boldsymbol{T}(1)$.
3.3. Composition. If graph types $\lambda_{1}=\left\langle K_{1} \subset S^{3}\right\rangle$ and $\lambda_{2}=\left\langle K_{2} \subset S^{3}\right\rangle$ are represented in a 3 -sphere S^{3} on opposite sides of a 2 -sphere S_{0}^{2} and have one point $\omega \in S_{0}^{2}$ in common, then we have a new graph type represented by a graph ($K_{1} \cup K_{2} \subset S^{3}$). We will call the new graph type the composition of λ_{1} and λ_{2}, and denote it by $\lambda_{1} \vee \lambda_{2}$, (see for knots [14], [5, §7], for links [8] and generally [7]). The composition of knot type of solid tori $\tau_{1}=\left\langle T_{1} \subset S^{3}\right\rangle$ and $\tau_{2}=\left\langle T_{2} \subset S^{3}\right\rangle$ can be defined in the similar way as graph types, that is, the composition $\tau_{1} \vee \tau_{2}$ of τ_{1} and τ_{2} is the knot type of solid torus ($T_{1} \cup T_{2} \subset S^{3}$), where T_{1} and T_{2} are represented in a S^{3} on opposite side of a 2 -sphere S_{0}^{2} and have a disk $D=\partial T_{1} \cap \partial T_{2} \subset S_{0}^{2}$ in common.

While, it is easily known that in general the composition of λ_{1} and λ_{2} is not uniquely determined. So, for rose types we give the following definition: the composition $\theta_{1} \vee \theta_{2}$ of $\theta_{1}=\left\langle C_{1} \subset S^{3}\right\rangle$ and $\theta_{2}=\left\langle C_{2} \subset S^{3}\right\rangle$ is the rose type of $\left(C_{1} \cup C_{2} \subset S^{3}\right)$, where C_{1} and C_{2} are represented in a S^{3} on opposite side of a

2-sphere S_{0}^{2} and have a common point $\omega=C_{1} \cap C_{2}$ which is the nodes of Ω_{1} $\subset C_{1}$ and $\Omega_{2} \subset C_{2}$. Then, we have:
3.4. Proposition. In the set of all rose types $\left\{\theta=\left\langle C \subset S^{3}\right\rangle \mid C \in C\right\}$, the composition \vee is well-defined, and moreover associative and commutative. Especial$l y, \theta_{0}=\left\langle\omega \subset S^{3}\right\rangle$ is an unit. Thus, $\left\{\theta=\left\langle C \subset S^{3}\right\rangle \mid C \in C\right\}$ forms a commutative semi-group under the operation \vee.
3.5. Corollary. We define the composition $\Theta_{1} \vee \Theta_{2}$ of two N-rose type Θ_{1} and Θ_{2} by the N-rose type of the composition $\theta_{1} \vee \theta_{2}$ of any representatives θ_{1} of Θ_{1} and θ_{2} of Θ_{2}. Then the composition \vee is well-defined in $\left\{\Theta=\left[C \subset S^{3}\right] \mid C \in \boldsymbol{C}\right\}$.

Therefore, from 1.10 (or 1.9) we obtain at once the
3.6. Corollary. (1) The composition V is well-defined in $\left\{\tau=\left\langle T \subset S^{3}\right\rangle\right.$ $\mid T \in T\}$.
(2) We define the composition $\Lambda_{1} \vee \Lambda_{2}$ of two N-graph types Λ_{1} and Λ_{2} by the N-graph type of any composition $\lambda_{1} \vee \lambda_{2}$ of any representatives λ_{1} of Λ_{1} and λ_{2} of Λ_{2}. Then, the composition \vee is well-defined in $\left\{\Lambda=\left[K \subset S^{3}\right] \mid K \in \boldsymbol{K}\right\}$.

We can now formulate our main theorem.
3.7. Theorem. In the semi-group $\left\{\theta=\left\langle C \subset S^{3}\right\rangle \mid C \in C\right\}$, factorization is unique. That is, every $\theta=\left\langle C \subset S^{3}\right\rangle$ is decomposable in an unique way into prime

$$
\theta_{1}=\left\langle C_{1} \subset S^{3}\right\rangle, \cdots, \theta_{u}=\left\langle C_{u} \subset S^{3}\right\rangle
$$

The existence of such a decomposition can be proved easily from 2.5(2.4), 3.1, 3.2 and the following:
3.8. Proposition. Let $(u, v),\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ be the knotting-genera of θ, θ_{1} and θ_{2}, respectively. Suppose that

$$
\theta=\theta_{1} \vee \theta_{2}
$$

Then, $(u, v)=\left(u_{1}+u_{2}, v_{1}+v_{2}\right)$.
Proof. From Definition 2.5, it is obvious that $(u, v) \leq\left(u_{1}+u_{2}, v_{1}+v_{2}\right)$. So we must show that $(u, v) \geq\left(u_{1}+u_{2}, v_{1}+v_{2}\right)$.

Let $\left(C_{1} \subset S^{3}\right)$ and $\left(C_{2} \subset S^{3}\right)$ be representatives of θ_{1} and θ_{2}, respectively, in a 3-sphere S^{3} such that $C_{1} \cap C_{2}=\omega$, the nodes of $\Omega_{1} \subset C_{1}$ and $\Omega_{2} \subset C_{2}$, and ($C_{1} \cup$ $C_{2} \subset S^{3}$) is a representative of θ. And let S_{0}^{2} be a 2-sphere in S^{3} separating C_{1} from C_{2}. If F_{θ} is a spanning-surface for $\theta=\theta_{1} \vee \theta_{2}$, then the intersection of F_{θ} and S_{0}^{2} consists of a finite number of simple loops in ϑF_{θ}. These loops can be capped to produce surfaces $F_{C_{1}}$ and $F_{C_{2}}$ spanning C_{1} and C_{2} respectively. Thus, if $F_{C_{1}}, F_{C_{2}}$ and F_{θ} be with $\left(u_{1}^{\prime}, v_{1}^{\prime}\right),\left(u_{2}^{\prime}, v_{2}^{\prime}\right)$ and (u, v), respectively, clearly $u_{1}^{\prime}+u_{2}^{\prime} \geq u$ and $v_{1}^{\prime}+v_{2}^{\prime} \leq v$, thereby showing that $(u, v) \geq\left(u_{1}+u_{2}, v_{1}+v_{2}\right)$.

The uniqueness of the decomposition will clearly follow from the next lemma:
3.9. Lemma. If $\theta_{1} \vee \theta_{2}$ has θ as a prime component, then either θ_{1} or θ_{2} has θ as a prime component.

Proof. To prove this, we start with a rose ($C_{1} \cup C_{2} \subset S^{3}$) representing θ_{1} $\vee \theta_{2}$ and a 2 -sphere S_{0}^{2} that cut it in one point ω separating θ_{1} from θ_{2}. Since θ is a component of $\theta_{1} \vee \theta_{2}$, there exists a 3-cell Q in S^{3} such that $\partial Q \cap\left(C_{1} \cup C_{2}\right)$ $=\omega$ and $Q \cap\left(C_{1} \cup C_{2}\right)$ is a representative of θ. If $S_{0}^{2} \cap \partial Q=\omega$, we can easily take a 3-cell $Q_{1}\left(\right.$ or $\left.Q_{2}\right)$ in S^{3} so that $Q_{1} \cap Q=\partial Q_{1} \cap \partial Q=\omega$ and $\vartheta Q_{1} \cap C_{1} \neq \emptyset$ (or $Q_{2} \cap Q=\partial Q_{2} \cap \partial Q=\omega$ and $\left.\vartheta Q_{2} \cap C_{2} \neq \emptyset\right)$, and so we are finished. If not, S_{0}^{2} $\cap \partial Q$ consists of a finite number of disjoint simple loops c_{1}, \cdots, c_{ν}, and a finite number of simple loops $d_{1} \cdots, d_{\mu}$ such that $d_{i} \cap d_{j}=\omega$ for $i \neq j$ and $i, j=1, \cdots, \mu$. Let $A\left(c_{1}\right), \cdots, A\left(c_{v}\right)$ be disks on ∂Q bounded by c_{1}, \cdots, c_{v}, respectively, such that $A\left(c_{i}\right) \nexists \omega, i=1 \cdots, \nu$.

Let c_{1} be a minimal, i.e. there is no other c_{i} in $A\left(c_{1}\right)$. Let $B\left(c_{1}\right)$ be a disk on S_{0}^{2} bounded by c_{1} such that $B\left(c_{1}\right) \nexists \omega$. Then, a 2 -sphere $A\left(c_{1}\right) \cup B\left(c_{1}\right)$ bounds a 3-cell Q_{1}^{\prime} in S^{3}. Since $A\left(c_{1}\right) \cap\left(C_{1} \cup C_{2}\right)=\emptyset=B\left(c_{1}\right) \cap\left(C_{1} \cup C_{2}\right), Q_{1}^{\prime} \cap\left(C_{1} \cup C_{2}\right)$ $=\emptyset$. Then we have a new 2 -sphere $S_{0}^{2}-B\left(c_{1}\right) \cup A\left(c_{1}\right)$ that cuts $\left(C_{1} \cup C_{2} \subset S^{3}\right)$ in one point ω separating θ_{1} from θ_{2}, and again denote this 2 -sphere by S_{0}^{2}. We may deform S_{0}^{2} into general position in S^{3} so that

$$
S_{0}^{2} \cap \partial Q \subset c_{2} \cup \cdots \cup c_{\nu} \cup d_{1} \cup \cdots \cup d_{\mu} .
$$

By the repetition of the procedure we can get rid of all intersections c_{1}, $\cdots c_{v}$ of $S_{0}^{2} \cap \partial Q$.

Now, we will consider $d_{1} \cup \cdots \cup d_{\mu} \subset S_{0}^{2} \cap \partial Q$. First, we may assume that at least one of d_{1}, \cdots, d_{μ}, say d_{1}, bounds a disk $B\left(d_{1}\right)$ on S_{0}^{2} such that $B\left(d_{1}\right)$ does not contain any other d_{i}. Let $A\left(d_{1}\right)$ and $A^{\prime}\left(d_{1}\right)$ be disks on S_{0}^{2} bounded by d_{1}. Then we have two 2 -spheres $S_{1}=A\left(d_{1}\right) \cup B\left(d_{1}\right)$ and $S_{1}{ }^{\prime}=A^{\prime}\left(d_{1}\right) \cup B\left(d_{1}\right)$ in S^{3}.
We may deform S_{1} and $S_{1}{ }^{\prime}$ into general position in S^{3} so that $S_{1} \cap S_{1}{ }^{\prime}=\omega$. It will be noticed that S_{1} and $S_{1}{ }^{\prime}$ decompose one of ($C_{1} \subset S^{3}$) and ($C_{2} \subset S^{3}$) into two roses, one of them may be the trivial rose ($\omega \subset S^{3}$), and

$$
\partial Q \cap\left(S_{1} \cup S_{1}{ }^{\prime}\right)=d_{2} \cup \cdots \cup d_{\mu} .
$$

Repeating the procedure, we have 2μ 2-spheres $S_{1}, S_{1}{ }^{\prime}, \cdots, S_{\mu}, S_{\mu}{ }^{\prime}$ in S^{3} having the one point ω in common. It should be noted that these 2 -spheres decompose ($C_{1} \subset S^{3}$) and ($C_{2} \subset S^{3}$) into severvl roses, and

$$
\partial Q \cap\left(S_{1} \cup S_{1}{ }^{\prime} \cup \cdots \cup S_{\mu} \cup S_{\mu}{ }^{\prime}\right)=\omega .
$$

Since θ is prime, we can take a new 3-cell, again denote it by Q, in S^{3} such that

$$
Q \cap\left(S_{1} \cup S_{1}{ }^{\prime} \cup \cdots \cup S_{\mu} \cup S_{\mu}{ }^{\prime}\right)=\omega \in \partial Q
$$

and $Q \cap\left(C_{1} \cup C_{2}\right)$ is a representative of θ. Thus, we can conclude that θ is one of prime components of θ_{1} or θ_{2}.

From Definitions 2.6, 2.7 and 3.1, we have the followings, whose proofs are the same as that of 3.8 and 3.9 except for obvious modifications.
3.10. Proposition 3.8 remains valid if Θ (or Λ or $\tau)$ is substituted for θ.
3.11. Lemma 3.9 remains valid if Θ (or Λ or τ) is substituted for θ.

Thus, as an immediate consequence of $3.5,3.6$ and the above $3.10,3.11$, we have the main theorem in §0.
3.12. Theorem. In the every semigroup $\left\{\Theta=\left[C \subset S^{3}\right] \mid C \in \boldsymbol{C}\right\},\{\Lambda=$ $\left.\left[K \subset S^{3}\right] \mid K \in \boldsymbol{K}\right\}$ and $\left\{\tau=\left\langle T \subset S^{3}\right\rangle \mid T \in \boldsymbol{T}\right\}$, factorization is unique.

4. Elementary ideals of a N-graph type

As generalization of the Alexander polynomial of knot [1], R.H. Fox [4] defined a sequence of elementary ideals, see [2, Chap. VII], and a sequence of polynomials, see [2, Chap. VIII], of a finitely presented group G. And S. Kinoshita [10], [11] discussed the Alexander polynomials of graphs. In this section, we will explain the Alexander matrix and the elementary ideals of linear groups. As in $\S 3$, the notions of roses and rose types are useful.
4.1. Presentation of a group $\pi_{1}\left(S^{3}-C\right)$. Now let \mathscr{P} be a regular projection of a rose $C \subset S^{3}$ in a suitably chosen 2 -sphere S_{0}^{2} in S^{3}, in the sense of knot theory. Especially we may assume that $\mathscr{P}(\Omega)$ has no crossing and $\mathscr{P}(\Omega) \cap \mathscr{P}$ $\left(S_{1}^{1} \cup \cdots \cup S_{n}^{1}\right)=\omega_{1} \cup \cdots \cup \omega_{n}$. We give a suitable orientation for each S_{1}^{1}, \cdots, S_{n}^{1}. Then, by using this projection and the orientation, we can obtain a Wirtinger presentation of the group $\pi_{1}\left(S^{3}-C\right)$. Let r be a number of the crossing points of $\mathscr{P}\left(S_{1}^{1} \cup \cdots \cup S_{n}^{1}\right)$. Then actually the presentation consists of $r+n$ generators \boldsymbol{X} corresponding to the overpasses of $\mathscr{P}\left(S_{1}^{1} \cup \cdots \cup S_{n}^{1}\right)-\left(\omega_{1} \cup \cdots \cup \omega_{n}\right)$ and $r+1$ defining relations \boldsymbol{R} corresponding to the r crossing points and Ω. The relation corresponding to a crossing point is the form

$$
x_{i} x_{j}^{\mathrm{e}} x_{i+1}^{-1} x_{j}^{-8}=1
$$

and the relation corresponding to Ω is the form

$$
x_{1} x_{2}^{-1} x_{3} x_{4}^{-1} \cdots x_{2 n-1} x_{2 n}^{-1}=1,
$$

where x_{i} are the generators corresponding to the overpasses of Fig. 3.
While, it is easily checked that one of the r relations corresponding to the crossing points is a consequence of the other $r-1$ and the relation corresponding to Ω. Since, for every non-split link L with n components, its link group $\pi_{1}\left(S^{3}-L\right)$ has deficiency 1 , we can easily derived that:

Fig. 3
4.2. For a n-leafed rose $\left(C \subset S^{3}\right)$, the fundamental group $\pi_{1}\left(S^{3}-C\right)$ has deficiency n.

Of course, we can have a Wirtinger presentation of a group $\pi_{1}\left(S^{3}-K\right)$ of a graph ($K \subset S^{3}$) as the same way as a rose, see [5, §5], [10].

On the other hand, since $\pi_{1}\left(S^{3}-C\right) \cong \pi_{1}\left(S^{3}-N\left(C ; S^{3}\right)\right.$, for any N congruent roses $\left(C \subset S^{3}\right)$ and $\left(C^{\prime} \subset S^{3}\right), \pi_{1}\left(S^{3}-C\right) \cong \pi_{1}\left(S^{3}-C^{\prime}\right)$. More generally, from 1.9 and 4.2 we have:
4.3. The fundamental group $\pi_{1}\left(S^{3}-K\right)$ is a N-congruent invariant of a graph type $\lambda=\left\langle K \subset S^{3}\right\rangle$, and it has deficiency n if $K \in K(n)$.

In view of 4.3, for a N-graph type $\Lambda=\left[K \subset S^{3}\right]$ (resp. a N-rose type $\Theta=$ $\left[C \subset S^{3}\right]$), we denote $\pi_{1}\left(S^{3}-K\right)\left(\right.$ resp. $\pi_{1}\left(S^{3}-C\right)$) by $G(\Lambda)$ (resp. $G(\Theta)$), and call it a N-graph group (resp. a N-rose group). From the unique decomposition theorem 3.12, we have:
4.4. Proposition. Suppose that Λ is of knotting-genus (u, v). Then $G(\Lambda) \cong G\left(\Lambda_{1}\right) * \cdots * G\left(\Lambda_{u}\right)$, that is $G(\Lambda)$ is a non-trivial free product of not finite groups $G\left(\Lambda_{1}\right), \cdots, G\left(\Lambda_{u}\right)$, where each $G\left(\Lambda_{i}\right)$ is a N-graph group of a prime N graph type, $i=1, \cdots, u$.
4.5. Corollary. Suppose that $K \in K(n)$ and $\Lambda=\left[K \subset S^{3}\right]$ is of knottinggenus (n, v). Then $G(\Lambda)$ is a non-trivial free product of n knot groups G_{1}, \cdots, G_{n}.
4.6. Elementary Ideals of a N-graph Type. Let $Z[t]$ is the infinite cyclic, multiplicative group generated by t, and let $F[\boldsymbol{X}]$ be the free group freely generated by $\boldsymbol{X}=\left\{x_{1}, \cdots, x_{n+r}\right\}$. Then, the homomorphism $\psi\left(x_{i}\right)=t, i=1, \cdots, n+r$, has an unique linear extension to a homomorphism $\psi: J F[X] \rightarrow J Z[t]$ of the
integral group ring [3]. Using a Wirtinger presentation $(\boldsymbol{X} \mid \boldsymbol{R})=\left(x_{1}, \cdots, x_{n+r} \mid \boldsymbol{r}_{1}\right.$, \cdots, r_{r-1}, Ω) of 4.1 , we have a matrix

$$
A=\left\|a_{i j}\right\|=\binom{\frac{\partial r_{i}}{\partial x_{j}}}{\frac{\partial \Omega}{\partial x_{j}}}^{\psi}
$$

over $J Z[t]$, where $\binom{\frac{\partial r_{i}}{\partial x_{j}}}{\frac{\partial \Omega}{\partial x_{j}}}$ is the matrix of free derivatives [3]. We call A an
Alexander matrix of the Wirtinger presentation $(\boldsymbol{X} \mid \boldsymbol{R})$ คf $G(\theta)=\pi_{1}\left(S^{3}-C\right)$ (or $G(\lambda)=\pi_{1}\left(S^{3}-K\right)$). It can be shown that

$$
\sum_{j=1}^{r+n} a_{i j}=0, i=1, \cdots, n+r .
$$

For an arbitary integer d, an ideal E_{d} of $J Z[t]$ generated by the determinants of all $(n+r-d) \times(n+r-d)$ minors of A will be called the $d^{\text {th }}$ elementary ideal of the Wirtinger presentation $(\boldsymbol{X} \mid \boldsymbol{R})$.

The Alexander matrix and the $d^{t h}$ elementary ideal are not invariants of the abstract group $\pi_{1}\left(S^{3}-K\right)$. Nevertheless, from (4.6) of [2, p. 107] and the above 4.3, it can be shown that:
4.7. The Alexander matrix and the sequence of elementary ideals are invariants of a graph type and of a N-graph type.

Moreover, from 4.3 we claim:
4.8. Let $K \in K(n)$ and $\Lambda=\left[K \subset S^{3}\right]$. Then, if $0 \leq d<n$ elementary ideals $E_{d}(\Lambda)$ are all equal to 0 , see $[10, T h .1]$. And, in general, the $n^{\text {th }}$ elementary ideal $E_{n}(\Lambda)$ is not trivial.

But $E_{n}(\Lambda)$ is not principal, in general. According to S. Kinoshita [10] and R.H. Crowell-R.H. Fox [2, Chap. VIII], we note the following:
4.9. The $d^{t h}$ Alexander polynomial $\Delta^{(d)}(t)$ is the generator of the smallest principal ideal containing the $d^{\text {th }}$ elementary ideal E_{d}.

From 4.4, we have:
4.10. The Alexander matrix $A(\Lambda)$ of a Wirtinger presentation of $\pi_{1}\left(S^{3}-K\right)$ is the form

$$
A(\Lambda)=\left\|\begin{array}{cccc}
A\left(\Lambda_{1}\right) & & & \\
& A\left(\Lambda_{2}\right) & & 0 \\
0 & \ddots & \\
& & & A\left(\Lambda_{u}\right)
\end{array}\right\|
$$

where $A\left(\Lambda_{i}\right)$ is the Alexander matrix of a prime N-graph type $\Lambda_{i}, i=1, \cdots, u$.
In particular, as a direct consequence of 4.5, we have:
4.11. Theorem. Suppose that $K \in K(n)$ and $\Lambda=\left[K \subset S^{3}\right]$ is of knottinggenus (n, v). Then, the $n^{\text {th }}$ elementary ideal $E_{n}(\Lambda)$ is principal and its generator must be a product polynomial $\Delta^{(n)}(t)=\Delta_{S_{1}^{1}}(t) \cdots \Delta_{S_{n}^{1}}(t)$ of n knot Alexander polynomials $\Delta_{S_{1}^{1}}(t), \cdots, \Delta_{S_{n}^{1}}(t)$.

5. Existence of non-trivial prime \mathbf{N}-graph types

Since for any n, there is a non-split link L with n components, we have:

5.1. Theorem. For any n, there exists a prime n-leafed rose type.

In this section, we will prove the following:
5.2. Theorem. For $C \in \boldsymbol{C}(2)$, there exists a prime N-rose type $\Theta=\left[C \subset S^{3}\right]$. So, for $K \in \boldsymbol{K}(2)$ and $T \in \boldsymbol{T}(2)$, there exist prime $\Lambda=\left[K \subset S^{3}\right]$ and $\tau=\left\langle T \subset S^{3}\right\rangle$.

Proof. In order to prove, we give the following 2-leafed rose $\left(C \subset S^{3}\right)$ in Fig. 4. A Wirtinger presentation in which x_{i} and y_{j} correspond to the overpasses shown in Fig. 4 is the following:

Fig. 4

$$
\left(\begin{array}{l|lll}
x_{1}, x_{2}, x_{3} & \text { (1) } x_{1} x_{3}=x_{3} x_{5}, & \text { (2) } x_{3} x_{5}=x_{5} x_{2}, \\
x_{4}, x_{5}, & \text { (3) } x_{4} x_{2}=x_{2} x_{3}, & \text { (4) } y_{6} y_{3}=y_{3} y_{1}, \\
y_{1}, y_{2}, y_{3}, & \text { (5) } y_{4} y_{6}=y_{6} y_{5}, & \text { (6) } y_{3} y_{5}=y_{5} y_{2}, \\
y_{4}, y_{5}, y_{6} & \text { (7) } y_{6} y_{2}=y_{2} y_{5}, & \text { (8) } x_{4} y_{4}=y_{4} x_{5}, \\
\text { (9) } y_{3} x_{4}=x_{4} y_{4} & \text { () } x_{1} x_{2}^{-1}=y_{2} y_{1}^{-1}
\end{array}\right)
$$

Any one of the relations (1), (2), \cdots, (9) is a consequence of the other nine, we may drop (5).

Substituting (2) $x_{3}=x_{5} x_{2} x_{5}^{-1}$ in (1) and (3), (4) $y_{6}=y_{3} y_{1} y_{3}^{-1}$ in (7), and (9) $y_{4}=x_{4}^{-1} y_{3} x_{4}$ in (8), we obtain

$$
\left(\begin{array}{l|ll}
x_{1}, x_{2}, & (1)^{\prime} x_{1} x_{5} x_{2}=x_{5} x_{2} x_{5}, & (3) \\
x_{4}, x_{4} x_{2} x_{5}=x_{2} x_{5} x_{2}, \\
x_{5}, & (6) y_{3} y_{5}=y_{5} y_{2}, & (7)^{\prime} y_{3} y_{1} y_{3}^{-1 .}=y_{2} y_{5} y_{2}^{-1}, \\
y_{1}, y_{2}, & (8)^{\prime} x_{4} y_{3} x_{4}=y_{3} x_{4} x_{5}, & (\Omega) \\
y_{3}, y_{5} & x_{1} x_{2}^{-1}=y_{2} y_{1}^{-1}
\end{array}\right) .
$$

Substitutions of (1) $x_{1}=x_{5} x_{2} x_{5} x_{2}^{-1} x_{3}^{-1}$ in (9), (3) $x_{4}=x_{2} x_{5} x_{2} x_{5}^{-1} x_{2}^{-1}$ in ((8), and (7) $y_{5}=y_{2}^{-1} y_{3} y_{1} y_{3}^{-1} y_{2}$ in (6) yield

$$
\left(\begin{array}{l|l}
x_{2}, x_{5}, & (6)^{\prime \prime} y_{2} y_{3} y_{2}^{-1} y_{3} y_{1}=y_{3} y_{1} y_{3}^{-1} y_{2} y_{3} \\
y_{1}, y_{2}, & 8^{\prime \prime} x_{2} x_{5} x_{2} x_{5}^{-1} x_{2}^{-1} y_{3} x_{2} x_{5} x_{2}=y_{3} x_{2} x_{5} x_{2} x_{5}^{-1} x_{2}^{-1} x_{5} x_{2} x_{5}, \\
y_{3} & \text { (1) } x_{5} x_{2} x_{5} x_{2}^{-1} x_{5}^{-1} x_{2}^{-1}=y_{2} y_{1}^{-1}
\end{array}\right)
$$

From this Wirtinger presentation, we obtain the Alexander matrix

$$
A=\left\|\begin{array}{ccccc}
x_{2} & x_{5} & y_{1} & y_{2} & y_{3} \\
0 & 0 & t^{2}-t & 1-2 t & -t^{2}+3 t-1 \\
t^{4}-2 t^{3}+3 t^{2}-2 t+1 & -t^{4}+2 t^{3}-3 t^{2}+t & 0 & 0 & t-1 \\
-t^{2}+t-1 & t^{2}-t+1 & 1 & -1 & 0
\end{array}\right\| .
$$

We can reduce A to an equivalent matrix ${ }^{4)}$ of simpler form

$$
A \sim\left\|\begin{array}{ccccc}
x_{2} & x_{5} & y_{1} & y_{2} & y_{3} \\
0 & 0 & t^{2}-t & t^{2}-3 t+1 & 0 \\
1-t & -t^{4}+2 t^{3}-3 t^{2}+t & 0 & 0 & 0 \\
0 & t^{2}-t+1 & 1 & 0 & 0
\end{array}\right\|
$$

[^2]\[

$$
\begin{aligned}
& \sim\left\|\begin{array}{ccccc}
x_{2} & x_{5} & y_{1} & y_{2} & y_{3} \\
0 & -\left(t^{2}-t+1\right)\left(t^{2}-t\right) & 0 & t^{2}-3 t+1 & 0 \\
1-t & -t^{4}+2 t^{3}-3 t^{2}+t & 0 & 0 & 0 \\
0 & t^{2}-t+1 & 1 & 0 & 0
\end{array}\right\| \\
& \sim\left\|^{x_{2}} \quad \begin{array}{cccc}
x_{5} & y_{2} & y_{3} \\
0 & t(1-t)\left(t^{2}-t+1\right) & t^{2}-3 t+1 & 0 \\
1-t & -1 & 0 & 0
\end{array}\right\| \\
& \sim\left\|t^{2}-3 t+1 \quad(t-1)^{2}\left(t^{2}-t+1\right) \quad 0\right\| .
\end{aligned}
$$
\]

Thus, the $2^{n_{d}}$ elementary ideal E_{2} is generated by two polynomials $\left(t^{2}-3 t+1\right)$ and $(t-1)^{2}\left(t^{2}-t+1\right)$, which are relatively prime in $J Z[t]$, integral group ring. So, E_{2} is not principal, and by Theorem $4.11 \theta=\left\langle C \subset S^{3}\right\rangle$ and $\Theta=\left[C \subset S^{3}\right]$ are prime.
5.3. Remark. I think, for any $C \in \boldsymbol{C}(n)$ a prime N-rose type $\Theta=\left[C \subset S^{3}\right]$ may be constructed as the same way as the case $n=2$.
5.4. Remark. Consider the following 2-leafed rose ($C \subset S^{3}$) in Fig. 5. Then, a Wirtinger presentation of the group $\pi_{1}\left(S^{3}-C\right)$ can be simplified to give

Fig. 5

$$
\left(\begin{array}{l|l}
x_{1}, x_{2} & x_{1} x_{5} x_{2}=x_{5} x_{2} x_{5}, x_{6} x_{4} x_{6}=x_{4} x_{6} x_{3}, \\
k_{3}, x_{2} \\
x_{3}, x_{4} & x_{3} x_{6} x_{3}^{-1} x_{5} x_{2} x_{5}^{-1}=x_{5} x_{2} x_{5}^{-1} x_{6}^{-1} x_{4} x_{6}, \\
x_{5}, x_{6} & x_{1} x_{2}^{-1}=x_{3}^{-1} x_{4}
\end{array}\right)
$$

and its Alexander matrix is follows:

$$
\begin{aligned}
& \left\|\begin{array}{cccccc||}
1 & t^{2}-t & 0 & 0 & -t^{2}+t-1 & 0 \\
0 & 0 & -t^{2} & t-1 & 0 & t^{2}-t+1 \\
0 & t^{2}-t & 1-t & -1 & -t^{2}+2 t-1 & 1 \\
1 & -1 & t & -t & 0 & 0
\end{array}\right\| \\
& \sim \| t t^{2}-t+1
\end{aligned} 0 \quad 0 \| .
$$

Thus, its $2^{n_{d}}$ elementary ideal E_{2} is principal generated by the $2^{n_{d}}$ Alexander polynomial $\Delta^{(2)}=t^{2}-t+1$. But $\theta=\left\langle C \subset S^{3}\right\rangle$ and $\Theta=\left[C \subset S^{2}\right]$ may be prime.

In the remainder of this section, we shall give examples of linear graphs, which will seem to be of interest to some readers.
5.5. Example. The first example is the following Fig. 6.

Corresponding to the overpasses shown in Fig. 6, a presentation of $\pi_{1}\left(S^{3}-C\right)$ can be simplified to give

Fig. 6

$$
\left(\begin{array}{l|l}
x_{1}, x_{2}, & z_{1} y_{5} x_{2}^{-1} x_{1} y_{5}^{-1} y_{1}^{-1}=1, \\
y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, & x_{1} y_{1} x_{1}^{-1} y_{2}^{-1}=1, z_{2} x_{1} z_{1}^{-1} x_{1}^{-1}=1, \\
z_{1}, z_{2}, z_{3}, z_{4} & y_{2} y_{4} y_{3}^{-1} y_{4}^{-1}=1, y_{4} z_{3} y_{4}^{-1} z_{2}^{-1}=1, \\
y_{3} x_{1} y_{4}^{-1} x_{1}^{-1}=1, x_{1} z_{4} x_{1}^{-1} z_{3}^{-1}=1, \\
z_{2} y_{4} z_{2}^{-1} y_{2} y_{5}^{-1} y_{2}^{-1}=1, y_{1} y_{5} y_{1}^{-1} z_{1} z_{4}^{-1} z_{1}^{-1}=1, \\
y_{2} x_{2} y_{2}^{-1} z_{2} z_{3}^{-1} y_{3} x_{1}^{-1} y_{3}^{-1} z_{3} z_{2}^{-1}=1
\end{array}\right)
$$

Since the last relation is a consequence of the others, and may be discarded. As a result we may drop the $10^{t h}$ row of the matrix and obtain

$$
A \sim\left\|\begin{array}{ccccccccccc||}
x_{1} & x_{2} & y_{1} & z_{1} & y_{2} & z_{2} & y_{3} & z_{3} & y_{4} & z_{4} & y_{5} \\
t & -t & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1-t & 0 & t & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
t-1 & 0 & 0 & -t & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -t & 0 & t-1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & t & 1-t & 0 & 0 \\
t-1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -t & 0 & 0 \\
1-t & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & t & 0 \\
0 & 0 & 0 & 0 & t-1 & 1-t & 0 & 0 & t & 0 & -t \\
0 & 0 & 1-t & t-1 & 0 & 0 & 0 & 0 & 0 & -t & t
\end{array}\right\|
$$

It is easily checked that the operations in the following reduction of A to an equivalent matrix of simpler form.

$$
\left.\begin{array}{rl}
A & \sim\left\|\begin{array}{cccrcc}
x_{1} & z_{1} & z_{2} & z_{3} & y_{4} & z_{4} \\
0 & -t & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & t & 0 & 0 \\
0 & 0 & 0 & -1 & -t & 0 \\
0 & t-1 & 1-t & 0 & t & 0
\end{array}\right\| \\
\sim \|-t^{2}+2 t-2 & 0
\end{array}\right) 0 \| .
$$

Hence, the $2^{n_{d}}$ elementary ideal E_{2} is principal; E_{2} generated by the $2^{n_{d}}$ Alexander polynomial $\Delta^{(2)}=-t^{2}+2 t-2$. Since $\Delta^{(2)}$ is not a reciprocal polynomial, by H. Seifert [15], see [2, Chap. IX], $\Delta^{(2)}$ is not a knot Alexander polynomial. So, by Theorem 4.11 the rose type $\theta=\left\langle C \subset S^{3}\right\rangle$ and the N-rose type $\Theta=\left[C \subset S^{3}\right]$ are prime.
5.6. Example. (Figure 7). We obtain for the group $\pi_{1}\left(S^{3}-C\right)$ a presentation

$$
\left(\begin{array}{l|l}
x_{1}, x_{2}, & y_{0} y_{1} x_{1}^{-1} y_{1}^{-1} x_{1} y_{1}^{-1}=1, z_{1} x_{1} y_{1}^{-1} z_{0}^{-1} y_{1} x_{1}^{-1}=1 \\
y_{0}, y_{1}, & z_{0} y_{1} z_{0}^{-1} y_{0} z_{1}^{-1} y_{0}^{-1}=1, x_{2} y_{0}^{-1} z_{0} x_{1}^{-1}=1 \\
z_{0}, z_{1} & x_{1} y_{1}^{-1} z_{1} x_{2}^{-1} z_{1}^{-1} y_{1}=1
\end{array}\right)
$$

Fig. 7

Since the last relation is a consequence of the others, we obtain the Alexander matrix

$$
\begin{aligned}
A & \sim\left\|\begin{array}{cccccc}
x_{1} & x_{2} & y_{0} & z_{0} & y_{1} & z_{1} \\
1-t & 0 & 1 & 0 & t-2 & 0 \\
t-1 & 0 & 0 & -1 & 1-t & 1 \\
0 & 0 & t-1 & 1-t & t & -t \\
-1 & 1 & -1 & 1 & 0 & 0
\end{array}\right\| \\
& \sim\left\|\begin{array}{cccccc}
x_{1} & y_{0} & z_{0} & y_{1} & z_{1} \\
t-t & 1 & 0 & 0 & 0 \\
t-1 & 0 & -1 & 0 & 1 \\
0 & t-1 & 1-t & 0 & -t
\end{array}\right\| \\
& \sim \| 2 t-1 \\
& 0 \\
& 0
\end{aligned} \| .
$$

Hence, the $2^{n_{d}}$ elementary ideal E_{2} is principal, and its generator is the $2^{n_{d}}$ Alexander polynomial $\Delta^{(2)}=2 t-1$. By the same reason, the rose type $\theta=$ $\left\langle C \subset S^{3}\right\rangle$ and the N-rose type $\Theta=\left[C \subset S^{3}\right]$ are prime.
5.7. Example. (Figure 8). This example generalizes Example 5.6. $K \in \boldsymbol{K}$ $(n+1)$ and K has n nodes.

Fig. 8
A presentation in which $x_{i}, y_{i j}$ and $z_{i j}$ correspond to the overpasses shown in Fig. 8 is the following:

$$
\left(\begin{array}{l|l}
x_{i}: 1 \leq i \leq n, & \boldsymbol{R}_{i}, \boldsymbol{Y}_{i}, \boldsymbol{Z}_{i}, \boldsymbol{O}_{i}, \Omega_{i} \\
y_{i j}: 1 \leq i \leq n, 1 \leq j \leq n+1, & \boldsymbol{Y}_{i j}, \boldsymbol{Z}_{i j}: \\
z_{i j}: 1 \leq i \leq n, 1 \leq j \leq n & 1 \leq i \leq n, 1 \leq j \leq n-2
\end{array}\right)
$$

where

$$
\begin{aligned}
\boldsymbol{R}_{i}: & \left(y_{i, n+1} z_{i, 1} y_{i, n+1}\right) z_{i, 1}^{-1} y_{i, 1} y_{i, n+1}^{-1} z_{i, n}^{-1}\left(y_{i, n+1} y_{i, 1}^{-1} y_{i, n+1}^{-1}\right)=1, \\
& i=1, \cdots, n, \\
\boldsymbol{Y}_{i}: & \left(y_{i+n-1, n+1}^{-1} y_{i, n-1} y_{i+n-1, n+1}\right) Y_{i}\left(x_{i+n-1}^{-1} y_{i, n}^{-1} x_{i+n-1}\right) Y_{i}^{-1}=1, \\
& Y_{i}=y_{i+1, n-1}^{-1} z_{i+1, n-1} y_{i+2, n-2}^{-1} z_{i+2, n-2} \cdots y_{i+n-1,1}^{-1} z_{i+n-1,1}, \\
& i=1, \cdots, n ; \text { indices are integers mod } n, \\
Z_{i}: & \left(x_{i+n-1}^{-1} z_{i, n} x_{i+n-1}\right) Z_{i}\left(y_{i+n-1, n+1}^{-1} z_{i, n-1}^{-1} y_{i+n-1, n+1}\right) Z_{i}^{-1}=1, \\
& Z_{i}=z_{i+n-1,1}^{-1} y_{i+n-1} z_{i+n-2,2}^{-1} y_{i+n-2,2} \cdots z_{i+1, n-1}^{-1} y_{i+1, n-1}, \\
& i=1, \cdots, n ; \text { indices are integers mod } n, \\
\boldsymbol{O}_{i}: & O_{i} y_{i, n+1}^{-1} O_{i}^{-1} y_{i, n}=1, \\
& O_{i}=z_{i+n-1,1}^{-1} y_{i+n-1,1} z_{i+n-2,2}^{-1} y_{i+n-2,2} \cdots z_{i+1, n-1}^{-1} y_{i+1, n-1}, \\
& i=1, \cdots, n ; \text { indices are integers mod } n, \\
\Omega_{i}: & y_{i, n} x_{i+n-1} y_{i, n}^{-1} z_{i, n} y_{i, n+1} y_{i, 1}^{-1} z_{i, 1} y_{i, n+1}^{-1} x_{i}^{-1} z_{i, n}^{-1}=1, \\
& i=1, \cdots, n,
\end{aligned}
$$

and

$$
\begin{aligned}
\boldsymbol{Y}_{i j}: & y_{i, j} y_{i+j, n+1} y_{i, j+1}^{-1} y_{i+j, n+1}^{-1}=1, \\
& i=1, \cdots, n \text { and } j=1, \cdots, n-2 ; i+j \text { are integers } \bmod n, \\
Z_{i j}: & y_{i+j, n+1} z_{i, j+1} y_{i+j, n+1}^{-1} z_{i, j}^{-1}=1, \\
& i=1, \cdots, n \text { and } j=1, \cdots, n-2 ; i+j \text { are integers } \bmod n,
\end{aligned}
$$ see Fig. 9.

Fig. 9

The Alexander matrix A of the presentation can be written down. Especially, we have the following equivalent matrix of simpler form

Fig. 10
That the only first $n \times n$ minor determinant is not equal to 0 may be seen by setting $t=1$. We conclude that the $(n+1)^{t h}$ elementary ideal is princiapl and its $(n+1)^{t h}$ Alexander polynomial $\Delta^{(n+1)}$ contains $-t^{n}-t+1$ as a factor. Note

Fig. 11
that for any $n,-t^{n}-t+1$ can not be a knot Alexander polynomial.
Sliding the each node of K in Fig. 8 along the center circle (see Fig. 11 which shows the case $n=4$), we have a $(n+1)$-leafed rose ($C \subset S^{3}$), whose group presentation and the Alexander matrix are the same of $\left(K \subset S^{3}\right)$. But we can not conclude that the rose type $\theta=\left\langle C \subset S^{3}\right\rangle$ and the N-rose type $\Theta=\left[C \subset S^{3}\right]$ are prime by the methods developed in the last two sections. The rose type $\theta=$ $\left\langle C \subset S^{3}\right\rangle$ can, however, be shown to be prime by the following Theorem 5.8 and the Examples 5.6 and 5.7.

Let $C \in \boldsymbol{C}(n)$ and C^{\prime} be a subcomplex of C. Then, $\left(C^{\prime} \subset S^{3}\right)$ is said to be a subrose of a rose $\left(C \subset S^{3}\right)$ iff $C^{\prime} \in C$. Especially, a subrose $\left(C^{\prime} \subset S^{3}\right)$ of $\left(C \subset S^{3}\right)$ is proper iff $C^{\prime} \in \boldsymbol{C}(m), C \in \boldsymbol{C}(n)$ and $m<n$.
5.8. Theorem. Suppose that $C \in \boldsymbol{C}(n)$ and $n \geq 3$. For a rose type $\theta=$ $\left\langle C \subset S^{3}\right\rangle$ to be prime, it is sufficient that $\theta^{\prime}=\left\langle C^{\prime} \subset S^{3}\right\rangle$ is prime for every proper subrose $\left(C^{\prime} \subset S^{3}\right)$ of $\left(C \subset S^{3}\right)$ such that $C^{\prime} \in \boldsymbol{C}(2)$.

Kobe University

References

[1] J.W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306.
[2] R.H. Crowell and R.H. Fox: Introduction to Knot Theory, Ginn and Co. New York, 1963.
[3] R.H. Fox: Free differential calculus, I, Ann. of Math. 57 (1953), 547-560.
[4] R.H. Fox: Free differential calculus, II, Ann. of Math. 59 (1954), 196-210.
[5] R.H. Fox: A quick trip through knot theory, in Topology of 3-Manifolds, M.K. Fort, Ed. Prentice-Hall, Englewood Cliffs, 1962, 120-167.
[6] R.H. Fox: Boundary links, Notice Amer. Math. Soc. 9 (1962), 392.
[7] V.K.A.M. Gugenheim: Piecewise linear isotopy and embedding of elements and spheres, (I) and (II), Proc. London Math. Soc. (3) 3 (1953), 29-53 and 129-152.
[8] Y. Hashizume: On the uniqueness of the decomposition of a link, Osaka Math. J. 10 (1958), 283-300.
[9] J.F.P. Hudson and E.C. Zeeman: On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745.
[10] S. Kinoshita: Alexander polynomials as isotopy invariant I, Osaka Math. J. 10 (1958), 263-271.
[11] S. Kinoshita: Alexander polynomials as isotopy invariant II, Osaka Math. J. 11 (1959), 91-94.
[12] H. Noguchi: On regular neighbourhoods of 2-manifolds in 4-euclidean space I, Osaka Math. J. 8 (1956), 225-242.
[13] H. Noguchi: The thickening of combinatorial n-manifolds in ($n+1$)-space, Osaka Math. J. 12 (1960), 97-112.
[14] H. Schubert: Die eindeutige Zerlegbarkeit eines Knots in Primknoten, S.B.

Heidelberger Akad. Wiss. Math. Natur. Kl. 3 (1949), 57-104.
[15] H. Seifret: Über das Geschlecht von Knoten, Math. Ann. 110 (1934), 571-592.
[16] H. Seifert und W. Threlfall: Lehrbuch der Topologie, Teubner, Leipzig und Berlin, 1934.

[^0]: 1) Henkelkörper vom Geschlechte n, see [16], p. 219.
 2) See [9], pp. 726-7.
[^1]: 3) $g(F)$ denotes the genus of $2-$ manifold F.
[^2]: 4) The equivalence of matrixes is Fox's equivalence [3], [4], see [2, Chap. VII].
