ON A CHARACTERIZATION OF KNOT GROUPS OF SOME SPHERES IN R ${ }^{4}$

Dedicated to Professor A. Komatu for his 60th birthday

Takeshi YAJIMA

(Received February 18, 1969)

1. Introduction

A characterization of knot groups of S^{n} in S^{n+2} was given by M. A. Kervaire [6] in the case of $n \geqq 3$, and several approaches ${ }^{1)}$ were established in that of $n=1$. In the case of $n=2, \mathrm{~S}$. Kinoshita [7] gave a sufficient condition for the existence of a 2 -sphere in S^{4} whose knot group has a given Alexander polynomial, and Kervaire also gave a sufficient condition for existence of a 2 -sphere in a homotopy 4 -sphere (Theorem 2, [6]).

Though some necessary conditions were given by Kervaire, it still seems to be difficult to characterize the knot group of S^{2} in S^{4}. In this note we shall concern a special type of knotted 2 -spheres in R^{4}, and prove the following theorem:

Theorem. In order that a given group G is isomorphic to the knot group of some ribbon 2-knot in R^{4}, it is necessary and sufficient that G has a Wirtinger presentation ${ }^{2)}$ such that
(1) $G /[G, G] \cong Z$,
(2) the deficiency of G equals to 1 .

Ribbon 2-knots are a special kind of locally flat 2-spheres defined in [12] as simply knotted spheres, and Z is the additive group of integers.

Since we restrict presentations of G within Wirtinger presentations, the condition (1) assures that the weight of G is 1 . On the other hand, E.S. Rapaport [9] proved that the condition (2) implies $H_{2}(G)=0$, therefore the necessary conditions of Kervaire follow from our conditions. Moreover, in the Theorem 2 of Kervaire, if we restrict presentations of G within the Wirtinger fashion, then homotopy 4 -sphere can be substituted by 4 -sphere.

[^0]In the last section we shall discuss, as an appendix, some property of knot groups of spheres in general.

2. Ribbon knots

A ribbon D is a singular 2-disk immersed in R^{3}, whose singularities $\sigma_{1}, \cdots, \sigma_{n}$ are all of ribbon type ${ }^{3}$. To define more precisely, let Δ be a 2 -disk and f be a immersion of Δ into R^{3}. If f satisfies the conditions:
(i) $f \mid \partial \Delta$ is a homeomorphism,
(ii) each component of singularities of $D=f(\Delta)$ is a simple arc $\sigma_{i}(i=1, \cdots, n)$,
(iii) $f^{-1}\left(\sigma_{i}\right)$ consists of two simple arcs $s_{i, 1}$ and $s_{i, 2}$ such that $\partial s_{i, 1} \subset \partial \Delta$ and $s_{i, 2} \subset$ Int Δ, then D is a ribbon and $k=\partial D$ is called a ribbon knot.

Let $\sum=\sigma_{1} \cup \cdots \cup \sigma_{n}$. Then $D-(k \cup \Sigma)$ consists of $n+1$ domains D_{0}, D_{1}, \cdots, D_{n}. Let $\nu\left(D_{i}\right)$ be the number of components of $\partial \bar{D}_{i} \cap \sum$. We call \bar{D} a terminal band if $\nu\left(\bar{D}_{i}\right)=1$, an ordinary band if $\nu\left(D_{i}\right)=2$, and a branched band if $\nu\left(D_{i}\right) \geqq 3$.
(2.1) A ribbon knot k can be deformed into the following situation:
(1) D has only one branched band,
(2) $\sigma_{i}(i=1, \cdots, n)$ is contained in the interior of some terminal band,
(3) every band does not twist in the projection of k.

Proof. By sliding bands along k, we can easily prove (1). If there exist a singularity σ_{i} such that it is contained in the interior of an ordinary band or that of a branched band as shown in Fig. 1, (a), then deform k into (b). By repeating such a deformation of k we can prove (2).

Fig. 1
If a band has twists, even number of them can be cancelled by the operation in Fig. 2, and the last one, if exists, can be cancelled by a rotation of its terminal band. Thus we have completed the proof.

Now we shall explain another construction of ribbon knots for a convenience in the next section. Let $A, C_{1}, \cdots, C_{\lambda}$ be unlinking trivial circles in R^{3}.
3) $[5] \mathrm{p} .172$.

Fig. 2
Take disjoint small arcs $\alpha_{1}, \cdots, \alpha_{\lambda}$ on A, and a small arc γ_{i} on $C_{i}(i=1, \cdots, \lambda)$. For every i, connect α_{i} with γ_{i} by a non-twisting narrow band B_{i} which may run through $C_{j}(j=1, \cdots, \lambda)$, or may get tangled with itself or with other bands. Then we have a ribbon knot

$$
k=\left(A \cup C_{1} \cup \cdots \cup C_{\lambda}\right) \cup\left(\partial B_{1} \cup \cdots \cup \partial B_{\lambda}\right)-\left(\alpha_{1} \cup \cdots \cup \alpha_{\lambda} \cup \gamma_{1} \cup \cdots \cup \gamma_{\lambda}\right) .
$$

Conversely, in virtue of (2.1), we have the following proposition:
(2.2) Every ribbon knot can be constructed as the above fashion.

Let R_{t}^{3} be the hyperplane parpendicular to the x_{4}-axis of R^{4} at $x_{4}=t$, and let k be a ribbon knot in R_{0}^{3}. We can attach $^{4)}$ a 2 -disk D_{+}in the halfspace $H_{+}^{4}=\left\{R_{t}^{3} \mid 0 \leqq t\right\}$ to the knot k such that $\partial D_{+}=k$ and it does not contain any minimal point. The attaching of the disk D_{+}to the knot k is completed by the saddle point transformations ${ }^{5}$) on the band $B_{i}(i=1, \cdots, \lambda)$. Let D_{-}be the disk in $H_{-}^{4}=\left\{R_{t}^{3} \mid t \leqq 0\right\}$ which is the mirror image of D_{+}with respect to R_{0}^{3}. The sphere $S=D_{+} \cup D_{-}$was called in [12] a simply knotted sphere.

The definition of ribbons is extended to n-ribbons as follows: Let Δ^{n} be a n-dimensional ball and f be a immersion of Δ^{n} into R^{n+1}. We call $D^{n}=f\left(\Delta^{n}\right)$ a n-ribbon, if f satisfies the following conditions:
(i) $f \mid \partial \Delta^{n}$ is a homeomorphism,
(ii) each component of singularities of D^{n} is a ($n-1$)-ball σ_{i},
(iii) $f^{-1}\left(\sigma_{i}\right)$ consists of two ($n-1$)-balls $s_{i, 1}^{n-1}$ and $s_{i, 2}^{n-1}$ such that $\partial s_{i, 1}^{n-1} \subset \partial \Delta^{n}$ and $s_{i, 2}^{n-1} \subset$ Int Δ^{n}.

It is easily seen, for instance by the projection method in [11], that for every simply knotted sphere S^{2} there exists a 3 -ribbon D^{3} such that $\partial D^{3}=S^{2}$. Therefore we may use the name ribbon $2-$ knots $^{6}{ }^{6}$ proposed by F. Hosokawa instead of simply knotted spheres.

3. Proof of the theorem

We shall begin with the proof of that the conditions (1), (2) are necessary. Suppose that there are n overpasses on a band B. Let c_{1}, \cdots, c_{n} be generators of the knot group each of which corresponds to one of the overpasses and let

[^1]a_{0}, \cdots, a_{n} and b_{0}, \cdots, b_{n} be generators corresponding to the successive positive and the negative sides of the band B respectively (Fig. 3, $\varepsilon_{i}= \pm 1$).

Fig. 3
Then we have for these crossings $2 n$ relations

As a whole these relations are equivalent to

$$
r_{i}=1, \quad s_{i}^{\prime}=b_{i-1} a_{i-1}^{-1} c_{i}^{\mathrm{\varepsilon}} a_{i} b_{i}^{-1} c_{i}^{-\varepsilon}{ }_{i}=1, \quad(i=1, \cdots, n) .
$$

Therefore if we adjoin a new relation $a_{0}=b_{0}$ to them, then we have $a_{i}=b_{i}$ $(i=1, \cdots, n)$.
(3.1) In the situation of Fig. 3, $2 n+1$ relations

$$
a_{0}=b_{0}, \quad r_{i}=1, \quad s_{i}=1, \quad(i=1, \cdots, n)
$$

are equivalent to

$$
a_{0}=b_{0}, \quad r_{i}=1, \quad a_{i}=b_{i}, \quad(i=1, \cdots, n)
$$

Now let k be an oriented ribbon knot in a situation of (2.2), and let G_{k} be the knot group of k. Suppose that a band B_{i} runs under trivial circles $C_{1}^{(t)}, \ldots C_{\mu_{i}}^{(t)}$ in this order. Then the band B_{i} is divided into $\mu_{i}+1$ parts. We shall call each part of B_{i} a section of B_{i}. Suppose that the j-th section, namely the part between $C_{j}^{(i)}$ and $C_{j+1}^{(i)}$, runs under bands $B_{j, 1}^{(i)}, \cdots, B_{j, v(i, j)}^{(i)}$. Let $x_{i, j, k}$ and $y_{i, j, k}\left(j=0, \cdots, \mu_{i} ; k=0, \cdots, 2 \nu(i, j)\right)$ be generators of G_{k} which correspond to the positive sides and the negative sides of the band B_{i} respectively, and let $z_{i, 0}, z_{i, 1}, \cdots, z_{i, 2 \tau_{i}}$. be generators corresponding to the successive

Fig. 4
arcs of C_{i} as illustrated in Fig. 4, where $\xi_{i, j, 2 r-1}$ and $\xi_{i, j, 2 r}$ are generators of the boundaries of $B_{j, r}^{(i)}(r=1, \cdots, \nu(i, j))$, and where $\zeta_{i, j}$ corresponds to the arc of $C_{j}^{(i)}\left(j=1, \cdots, \mu_{i}\right)$.

On the above situation we have $\sum_{i=1}^{\lambda} \sum_{j=0}^{\mu_{i}} 2(2 \nu(i, j)+1)$ generators concerning to the bands and $\sum_{i=1}^{\lambda}\left(2 \tau_{i}+1\right)$ generators concerning to the trivial circles. On the other hand the defining relations are classified as follows:
$R_{1}: \sum_{i=1}^{\lambda} \sum_{j=0}^{\mu_{i}} 4 \nu(i, j)$ relations each of which corresponds to a crossing point of a band B_{i} and some band B_{j},
$R_{2}: \sum_{i=1}^{\lambda} 2 \tau_{i}$ relations each of which corresponds to a crossing point of a circle C_{i} and a band $B_{j}(j=1, \cdots, \lambda)$, where C_{i} is the underpass.
$R_{3}: \sum_{i=1}^{\lambda} 2 \mu_{i}$ relations each of which corresponds to a crossing point of a band B_{i} and a circle C_{j}, where B_{i} is the under crossing band,
$R_{4}: \lambda$ relations each of which corresponds to the identification of a boundary of a band B_{i} and that of the neighbouring band.
R_{5} : 2λ relations each of which corresponds to the identification of a band B_{i} and C_{i}.
As a whole, the number of defining relations equals the number of generators.
To get a presentation of the knot group G_{S} of the ribbon 2-knot from G_{k}, it is sufficient to adjoin the new relations

$$
\begin{equation*}
x_{i, 0,0}=y_{i, 0,0} \quad(i=1, \cdots, \lambda-1) \tag{3.2}
\end{equation*}
$$

to the defining relations of G_{k}. Since every band B_{i} does not run through the circle A, (3.2) and R_{4} induce the relation $x_{\lambda, 0,0}=y_{\lambda, 0,0}$.

In virtue of (3.1) we have:
(3.3) The Wirtinger presentation of G_{k} and (3.2) implies $x_{i, j, k}=y_{i, j, k}$ for every i, j, k.

If we apply (3.3) to the presentation of G_{S}, it can be reduced more simply as follows: Suppose that the generators concerning a crossing of a band B_{i} and a band B_{j} are illustrated as in Fig. 5.

Fig. 5
Then the relations of G_{S} concerning this crossing are

$$
\begin{aligned}
& a_{1}^{-1} c a_{2} c^{-1}=1, \quad a_{2}^{-1} d^{-1} a_{3} d=1 \\
& a_{1}=b_{1}, \quad a_{2}=b_{2}, \quad a_{3}=b_{3}, \quad c=d
\end{aligned}
$$

If we eliminate a_{2} and b_{2} from these relations by Tietze transformation, then we get relations

$$
a_{1}=b_{1}=a_{3}=b_{3}, \quad c=d
$$

As a consequence of the above fact, if we use a new generator $x_{i, j}\left(=x_{i, j, 0}\right.$ $=x_{i, j, 2}=\cdots=y_{i, j, 0}=y_{i, j, 2}=\cdots$) corresponding to each j-section of the band B_{i}, then all relations of R_{1} are cancelled and the number of relations in R_{3} becomes $\sum_{i=1}^{\lambda} \mu_{i}$.

A similar consideration as the above enables us to eliminate all relations of R_{2}, and generators $z_{i, 0}, z_{i, 2}, \cdots$ become a single generator z_{i}. Moreover, in virtue of R_{5}, one of generators z_{i} and $x_{i, \mu_{i}}$ is cancelled for each i. Similarly we can put $x_{1,0}=x_{2,0}=\cdots=x_{\lambda, 0}$ by R_{4}.

Consequently, the number of generators is $\sum_{i=1}^{\lambda}\left(\mu_{i}+1\right)-(\lambda-1)=\sum_{i=1}^{\lambda} \mu_{i}+1$ and the number of defining relations is $\sum_{i=1}^{\lambda} \mu_{i}$.
(3.4) G_{s} has a presentation such that each generator corresponds to some section of a band, where 0 -sections belong together a single section, and each relation is the same one as G_{k} which corresponds to the crossing point of the positive side of some band B_{i} and a overpass C_{j}. Therefore the number of generators exceeds the number of defining relations by one.

Since we restrict the presentation of G_{S} within wirtinger presentations, the condition (1) assures that the deficiency of G_{S} is not greater than 1.
(3.5) If a group G is isomorphic to the knot group of some ribbon 2-knot, then G has a Wirtinger presentation of deficiency 1.
(3.6) The first elementary ideal ${ }^{7}$) of the knot group of a ribbon 2-knot is principal.
This follows immediately from (3.5) by [9].
Remark. R.H. Fox and J.W. Milnor [3] proved that the Alexander polynomial of any slice knot, and of corse any ribbon knot, has a form $\Delta(t)=$ $f(t) f\left(t^{-1}\right)$. H. Terasaka also proved the same for ribbon knots in a part of [10]. I have proved previously in [12] that the Alexander polynomial $\Delta_{S}(t)$ of the ribbon $2-\mathrm{knot} S$ constructed from a ribbon knot k equals $f(t)$, where $\Delta_{k}(t)=f(t) f\left(t^{-1}\right)$. But my proof does not hold true for all ribbon 2-knots, because Terasaka's proof was for a special type of ribbon knots. Recently K. Yonebayashi [14] gave a perfect proof of Fox-Milnor's theorem and also my theorem according
7) [4], p. 127.
to Terasaka's idea. However the existence of a sphere which differs from ribbon 2 -knots (Theorem 3, [12]) is a immediate consequence of (3.6).

Now we shall prove that the condition of the theorem is sufficient. Let G be an arbitrary group which has a Wirtinger presentation

$$
\begin{aligned}
& G=\left(x_{1}, \cdots, x_{n}: r_{1}, \cdots, r_{m}\right), \\
& r_{1}: x_{i_{1}}=x_{1_{1}}^{\varepsilon_{1}} x_{k_{1}} x_{j_{1}}^{-\varepsilon_{1}}, \\
& r_{2}: x_{i_{2}}=x_{j_{2}}^{g_{2}} x_{k_{2}} x_{j_{2}}^{-\varepsilon_{2}}, \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots, \\
& r_{m}: x_{i_{m}}=x_{j_{m}}^{\varepsilon_{m}^{m}} x_{k_{m}} x_{j_{m}}^{-\varepsilon_{m}},
\end{aligned} \quad\left(\varepsilon_{i}= \pm 1, i=1, \cdots, m\right)
$$

and satisfies the condition (1) of the theorem.
To show the system of defining relations schematically, it is convenient to use a diagram constructed as follows: Take n vertices X_{1}, \cdots, X_{n} corresponding to generators x_{1}, \cdots, x_{n} in this order. For each relation $r_{l}, l=1, \cdots, m$, connect $X_{k_{l}}$ and $X_{i_{l}}$ by an arrow labelled such that

$$
X_{k_{l}} \xrightarrow{x_{j_{l}}^{\varepsilon_{l}}} X_{i_{l}} \quad \text { or } \quad X_{k_{l}} \stackrel{x_{j l}^{-\varepsilon_{l}}}{\longleftrightarrow} X_{i_{l}} .
$$

Then we have the diagram of presentation of (3.7).
Since G satisfies the condition (1), the diagram of the presentation of (3.7) is connected. If G satisfies the condition (2), then the diagram does not contain any closed circuit. Therefore the diagram forms a tree. Then it is easy to construct a ribbon $2-\mathrm{knot}$, whose knot group has the presentation (3.7), by the projection method mentioned in [12] (Fig. 6). But we shall explain how to construct a ribbon knot in the situation of (2.2) from the presentation (3.7).

Suppose that $\left(x_{1}, \cdots, x_{\lambda}\right)$ be the aggregate of distinct generators each of which is contained in $\left(x_{j_{1}}, \cdots, x_{j_{m}}\right)$, and that x_{n} is not contained in $\left(x_{j_{1}}, \cdots, x_{j_{m}}\right)$. Since for each element $X_{i}(i=1, \cdots, n-1)$, there exists uniquely determined path

$$
X_{n} \xrightarrow{x_{i, 1}^{\varepsilon_{i, 1}}} X_{i} \xrightarrow{x_{i, 2}^{\varepsilon_{i, 2}}} \cdots \xrightarrow{x_{i, l_{i}^{\varepsilon_{i}, l_{i}}}} X_{i}
$$

of the diagram, we have induced relations of (3.7)

$$
\begin{array}{r}
s_{i}: x_{i}=w_{i} x_{n} w_{i}^{-1}, \quad w_{i}=x_{i, l_{i}}^{\varepsilon_{i, l_{i}}} \cdots x_{i, 2}^{\varepsilon_{i, 2}} x_{i, 1}^{\varepsilon_{i, 1}}, \tag{3.8}\\
(i=1, \cdots, m, m=n-1)
\end{array}
$$

where w_{i} is a word on $\left(x_{1}, \cdots, x_{\lambda}\right)$. It is easy to see that (3.8) is equivalent to (3.7), and that $s_{\lambda+1}, \cdots, s_{m}$ can be eliminated. Therefore we have a equivalent presentation

$$
\begin{equation*}
G=\left(x_{1}, \cdots, x_{\lambda}, x_{n}: s_{1}, \cdots, s_{\lambda}\right) \tag{3.9}
\end{equation*}
$$

Now we shall define a ribbon knot k such that the knot group G_{S} is isomorphic
to G, where the sphere S is constructed from k. Suppose that $A, C_{1}, \cdots, C_{\lambda}$; $\alpha_{1}, \cdots, \alpha_{\lambda} ; \gamma_{1}, \cdots, \gamma_{\lambda}$ be the same as mentioned in the section 2 , and that they are all oriented anti-clockwise. After having A correspond to x_{n} and C_{i} to $x_{i}(i=1, \cdots, \lambda)$, let $C_{i, 1} \cdots, C_{i, \mu_{i}}$ be the sequence of $C_{j}(j=1, \cdots, \lambda)$, where $C_{i, k}\left(k=1, \cdots, \mu_{i}\right)$ corresponds to $x_{i, k}$ in (3.8). Connect α_{i} with γ_{i} by a nontwisting band B_{i} such that B_{i} runs successively under $C_{i, 1}, \cdots, C_{i, \mu_{i}}$ as shown

Fig. 6
in Fig. 6. From the ribbon, thus constructed, we have a ribbon knot k in the situation of (2.2). However k is not uniquely determined from (3.9).

It can be easily seen from (3.4), that the ribbon $2-\mathrm{knot}$ constructed from k has the knot group isomorphic to G.
(3.10) If a group G satisfies the condition (1), (2) of the theorem, then there exists a ribbon 2-knot S such that the knot group G_{S} is isomorphic to G.

As an application of the theorem, we shall give an alternating proof of Kinoshita's theorem [7]. The idea of the proof is due to Terasaka [10].
(3.11) For each polynomial $f(t)$ with $f(1)= \pm 1$, there exists a ribbon 2-knot S whose Alexander polynomial $\Delta_{S}(t)$ is equal to $f(t)$.

Proof. If a group presentation $G=\left(x_{1}, x_{2}: x_{2}=w x_{1} w^{-1}\right), w$ is a word on $\left(x_{1}, x_{2}\right)$, can be constructed such that the Alexander polynomial of G equals $f(t)$, then (3.11) follows from the theorem.

Suppose that $f(1)=1$, and split $f(t)$ into the form

$$
f(t)=(1-t) g(t)+1, \quad g(t)=a_{0}+a_{1} t+\cdots+a_{m} t^{m}
$$

For every integer n, define a word u_{n} such that

$$
u_{n}= \begin{cases}(x_{1} \underbrace{-1}_{n}) \cdots\left(x_{1} x_{2}^{-1}\right) & \text { if } n>0 \\ 1 & \text { if } n=0 \\ \underbrace{\left(x_{2} x_{1}^{-1}\right) \cdots\left(x_{2} x_{1}^{-1}\right)}_{-n} & \text { if } n<0,\end{cases}
$$

and put

$$
w=\prod_{k=0}^{m} x_{2}^{k} u_{a_{k}} x_{2}^{-k}
$$

Then we have, by the free differential calculus ${ }^{8},\left(\frac{\partial w}{\partial x_{1}}\right)^{\psi \varphi}=g(t)$ and $w^{\psi \varphi}=1$. If we put $r=w x_{1} w^{-1} x_{2}^{-1}$, then it follows that

$$
\begin{aligned}
\left(\frac{\partial r}{\partial x_{1}}\right)^{\psi \varphi} & =\left(\frac{\partial w}{\partial x_{1}}\right)^{\psi \varphi}+w^{\psi \varphi}+\left(w x_{1} \frac{\partial w^{-1}}{\partial x_{1}}\right)^{\psi \varphi} \\
& =\left(\frac{\partial w}{\partial x_{1}}\right)^{\psi \varphi}+w^{\psi \varphi}-\left(w x_{1} w^{-1}\right)^{\psi \varphi}\left(\frac{\partial w}{\partial x_{1}}\right)^{\psi \varphi} \\
& =(1-t)\left(\frac{\partial w}{\partial x_{1}}\right)^{\psi \varphi}+1=f(t) .
\end{aligned}
$$

Thus (3.11) is proved.

4. Peripheral subgroups

Let k be a knot in R^{3}, and U_{k} be a regular neighbourhood of k. Let G_{k} be a knot group of k, where the base point is chosen on the torus $T_{k}=\partial \bar{U}_{k}$. Then the inclusion mapping

$$
f:\left(\bar{U}_{k}-k\right) \rightarrow\left(R^{3}-k\right)
$$

induces a homomorphism

$$
f^{*}: \pi_{1}\left(\bar{U}_{k}-k\right) \rightarrow G_{k} .
$$

The subgroup $H_{k}^{*}=f^{*}\left(\pi_{1}\left(\bar{U}_{k}-k\right)\right)$ of G_{k} is $\left.\mathrm{known}^{9}\right)$ as the peripheral subgroup of G_{k}.

If k is not a trivial knot then f^{*} is a monomorphism ${ }^{10}$. Since T_{k} is a deformation retract of $\bar{U}_{k}-k, H_{k}{ }^{*} \cong \pi_{1}\left(T_{k}\right)$ and it is a free abelian group of rank 2. We can choose a meridian m and a longitude l as generators of $H_{k} *$ such that m is null-homotopic in \bar{U} and l is null-homologous in $R^{3}-U_{k}$.

Suppose that a regular projection of a knot k is given. Then we have a Wirtinger presentation

$$
\begin{aligned}
& G_{k}=\left(x_{1}, \cdots, x_{n}: r_{1}, \cdots, r_{n}\right), \\
& r_{1}: x_{1}=x_{i_{1}}^{\varepsilon_{1}} x_{2} x_{i_{1}}^{-\varepsilon_{1}}, \\
& r_{2}: x_{2}=x_{i_{2}}^{i_{2}} x_{3} x_{i_{2}}^{-\varepsilon_{2}}, \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& r_{n}: x_{n}=x_{i_{n}}^{\mathrm{q}_{1}} x_{1} x_{i_{n}}^{-\varepsilon_{n}},
\end{aligned}
$$

where each one of relations is an induced relation of the others. Concerning this presentation, there exist one-to-one correspondences between the generators
8) [4], p. 124 .
9) [2].
10) [8], p. 67 .
and the overpasses of k, and also between the relations and the crossing points of k. We may call such a presentation of G a faithful presentation with respect to the knot projection.

Suppose that (4.1) is a faithful presentation of a projection of k, and that x_{1} is chosen as the representative of m. Then we have that

$$
l=x_{i_{1}}^{\varepsilon_{1}} \cdots x_{i_{n}}^{\varepsilon_{n}} \cdot x_{1}^{-\left(\varepsilon_{1}+\cdots+\varepsilon_{n}\right)}
$$

is the above mentioned longitude. It is known that l is contained in $G_{k}^{(2)}$ and $l \neq 1$ if k is not trivial.

Similarly, we can define the peripheral subgroup of a knot group $G_{S}=\pi_{1}\left(R^{4}-S\right)$, where S is a locally flat 2 -sphere in R^{4}. In this case, since $\bar{U}_{S}=D^{2} \times S^{2}$, we have $\pi_{1}\left(\bar{U}_{S}-S\right)=Z$. Therefore any null-homologous loop in $\bar{U}_{S}-S$ must shrink to a point.

Let G be a group such that $G /[G, G] \cong Z$ and that it has a Wirtinger presentation (3.7) with $m>n-1$. Then the diagram of the presentation must contain several closed circuits. Let

$$
\begin{equation*}
L: X_{i_{0}} \xrightarrow{x_{j, 1}^{\mathrm{\varepsilon}_{1}}} X_{i_{1}} \xrightarrow{x_{j, 2}^{\mathrm{e}_{2}}} \cdots \xrightarrow{x_{j, k}^{\mathrm{q}_{k}}} X_{i_{0}}, \quad \varepsilon_{h}= \pm 1, h=1, \cdots, k \tag{4.2}
\end{equation*}
$$

be one of these circuits. We call the element

$$
l=x_{j, 1}^{\mathrm{\varepsilon}_{1}} x_{j, 2}^{\mathrm{g}_{2}} \cdots x_{j, k}^{\mathrm{g}} x_{i_{0}}^{-\left(\mathrm{e}_{1}+\cdots+\mathrm{e}_{k}\right)}
$$

of G the l-element corresponding to L.
If (3.7) is a faithful presentation of G_{s}, then a small letter $x_{j, k}(h=1, \cdots, k)$ in (4.2) corresponds to the oversurface ${ }^{11)}$ of the surface $X_{i, h-1} \cup X_{i, h}$. Therefore every l-element is equivalent to a null-homologous loop in $\bar{U}_{s}-S$.
(4.3) If (3.7) is a faithful presentation of G_{S}, then every l-element derived from the diagram must be equal to 1 .

In virtue of [11], Theorem (4.4), we have a faithful presentation of G_{S} for every projection of S. On the other hand, in order that a group G is isomorphic to the knot group of some sphere in R^{4}, it seems necessary that every l-element derived from the diagram is equal to 1 . But it is still an open question. For example, if $G=\left(x, y, u, v: x=y v y^{-1}, v=x^{-1} y x, y=x^{-1} u x, u=y x y^{-1}\right)$, which is a presentation of the knot group of the Fox's sphere ${ }^{12}$, then we can easily verify that $l=y^{2} x^{-2}=1$. Notice that if the Wirtinger presentation contains some induced relations then the above conjecture does not hold.

Between the Kervaire's condition and l-elements of G_{S} we have the following connection:
(4.4) Let G be a group such that $G /[G, G] \cong Z$ and that it has a Wirtinger presentation. If all l-elements of the diagram are equal to 1 , then $H_{2}(G)=0$.
11) c.f. [11], §4.
12) [4], p. 136, Example 12.

Proof. Suppose that (3.7) is the Wirtinger presentation of G. By the condition of G we have that $m \geqq n-1$. If $m=n-1$, then the proposition is obvious by [9]. Suppose that $m>n-1$, and take a maximal tree \mathscr{I} in the diagram. Assume that $\boldsymbol{r}_{1}=\left(r_{1}, \cdots, r_{n-1}\right)$ is the aggrgate of relations each of which corresponds to a oriented segment of \mathscr{I} and that $\boldsymbol{r}_{2}=\left(r_{n}, \cdots, r_{m}\right)$ is that of remaining relations.

Fix a vertex of \mathscr{I}, say X_{n}, as a base. Then for every vertex $X_{i}(i=1, \cdots$, $n-1$) there exists a uniquely determined path

$$
P_{i}: X_{n} \xrightarrow{x_{i, 1}^{\varepsilon_{i, 1}}} \cdots \xrightarrow{x_{i, k_{i}}^{\varepsilon_{i, k}}} X_{i}, \quad \varepsilon_{i, h}= \pm 1\left(h=1, \cdots, k_{i}\right),
$$

in \mathcal{I}. Corresponding to these pathes, we get induced relations of \boldsymbol{r}_{1}

$$
s_{i}: x_{i}=v_{i} x_{n} v_{i}^{-1}, \quad v_{i}=x_{i, k_{i}}^{\varepsilon_{i, k_{i}}} \cdots x_{i, 1}^{\varepsilon_{i, 1}} \quad(i=1, \cdots, n-1) .
$$

It is easy to check that \boldsymbol{r}_{1} is equivalent to $s_{1}=\left(s_{1}, \cdots, s_{n-1}\right)$.
Since \mathscr{I} is maximal, we can choose closed circuits L_{n}, \cdots, L_{m} in the diagram such that $L_{j}(j=n, \cdots, m)$ consists of the segment corresponding to r_{j} and a path in \mathscr{F}. Let l_{j} be one of l-element for L_{j}. Then $\left(\boldsymbol{r}_{1}, r_{j}\right)$ induces a relation

$$
s_{j}: x_{i_{j}}=l_{j} x_{i_{j}} l_{j}^{-1}, \quad(j=n, \cdots, m)
$$

for some $x_{i_{j}}$. It is also easily checked that $\left(\boldsymbol{r}_{1}, r_{j}\right)$ is equivalent to $\left(\boldsymbol{r}_{1}, s_{j}\right)$ for every $j=n, \cdots, m$.

Consequently we have a Wirtinger presentation

$$
\begin{align*}
& G=\left(x_{1}, \cdots, x_{n}: s_{1}, \cdots, s_{m}\right), \\
& s_{1}=v_{1} x_{n} v_{1}^{-1} x_{1}^{-1} \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \tag{4.5}\\
& s_{n-1}=v_{n-1} x_{n} v_{n-1}^{-1} x_{n-1}^{-1} \\
& s_{n}=l_{n} x_{i_{n}} l_{n}^{-1} x_{i_{n}}, \\
& \cdots \cdots \cdots \cdots \cdots \\
& s_{m}=l_{m} x_{i_{m}} l_{m}^{-1} x_{i_{m}}^{-1},
\end{align*}
$$

where $v_{i}(i=1, \cdots, n-1)$ is some word of the free group $F=F[\boldsymbol{x}], \boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$ and $l_{j}(j=n, \cdots, m)$ is a l-element of (3.7).

Let R be the kernel of the mapping $\varphi: F \rightarrow G$. It is sufficient to prove $[F, F] \cap R \subset[F, R]$ for that $H_{2}(G)=0$. Suppose that a word c is contained in $[F, F] \cap R$. Then we have

$$
c=\prod_{j} w_{j} s_{i j}^{\mathbf{e}_{j}^{j}} w_{j}^{-1}, \quad w_{j} \in F, \varepsilon_{j}= \pm 1
$$

Since $l_{j} \in R, s_{j}$ is contained in $[F, R]$ for $j=n, \cdots, m$. Therefore there exist integers p_{1}, \cdots, p_{n-1} such that

$$
\begin{aligned}
c & \equiv \prod_{j} s_{i_{j}}^{\varepsilon_{j}} & & \bmod [F, R] \\
& \equiv s_{1}^{p_{1} \cdots s_{n-1}^{p_{n-1}}} & & \bmod [F, R]
\end{aligned}
$$

The assumption $c \in[F, F]$ implies that $s_{1} p_{1} \cdots s_{n-1} p_{n-1} \in[F, F]$. Therefore the exponent sum of each generator must equal 0 , that is $p_{1}=\cdots=p_{n-1}=0$. Hence $c \equiv 1 \bmod [F, R]$. Thus we have completed the proof.

Osaka City University

References

[1] R.H. Crowell and R.H. Fox: Introduction to Knot Theory, Ginn and Co. 1963.
[2] R.H. Fox: On the complementary domains of a certain pair of inequivalent knots, Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings, series A, 55 (1952).
[3] R.H. Fox and J.W. Milnor: Singularities of 2-spheres in 4-space and equivalence of knots, Bull. Amr. Math. Soc. 63 (1957), 406.
[4] R.H. Fox: A quick trip through knot theory. Topology of 3-manifolds and Related Topics, Prentice-Hall, 1961.
[5] R.H. Fox: Some problems in knot theory, Topology of 3-manifolds and Related Topics, Prentice-Hall, 1961.
[6] M.A. Kervaire: On heigher dimensional knots, Differential and Combinatorial Topology, Princeton Math. Ser. 27.
[7] S. Kinoshita: On the Alexander polynomials of 2-spheres in a 4-sphere, Ann. of Math. 74 (1961), 518-531.
[8] L.P. Neuwirth: Knot Groups, Ann. of Math. Studies, 56.
[9] E.S. Rapaport: On the commutator subgroup of a knot group, Ann. of Math. 71 (1960), 157-162.
[10] H. Terasaka: On null-equivalent knots, Osaka Math. J. 11 (1959), 95-113.
[11] T. Yajima: On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ. 13 (1962), 63-71.
[12] T. Yajima: On simply knotted spheres in R^{4}. Osaka J. Math. 1 (1964), 133-152.
[13] T. Yanagawa: On ribbon 2-knots; the 3-manifolds bounded by the 2-knots, Osaka J. Math. 6 (1969), 447-464.
[14] K. Yonebayashi: On the Alexander polynomial of ribbon knots, Master thesis, Kobe Univ. 1969.

[^0]: 1) [8], Chapter 9.
 2) A group presentation $G=\left(x_{1}, \cdots, x_{n}: r_{1}, \cdots, r_{m}\right)$ is called in this note a Wirtinger presentation, if each relator is described in a form $x_{i}=w_{i, j} x_{j} w_{i, j}{ }^{-1}$, where $w_{i, j}$ is a word of the free group $F[x], \boldsymbol{x}=\left(x_{1}, \cdots, x_{n}\right)$. c.f. [1], p. 86.
[^1]: 4) [4], p. 133 or [12], (3.1).
 5) [4], p. 133.
 6) c.f. [13].
