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Introduction

The central problems of differential topology are the classification of differ-
entiable manifolds and the classification of mappings between differentiable
manifolds. Thorn [6] has introduced the notion of cobordism to classify the
differentiable manifolds. The bordism theory of Atiyah [1] provides a classifi-
cation "up to cobordism" of mappings of differentiable manifolds into a fixed
differentiable manifold. Watabe [7] and Wells [8] have considered the classifi-
cation up to cobordism of immersions of differentiable manifolds into Euclidean
spaces. These have useful applications but these do not allow the image
manifold to vary within cobordism class. On the other hand, Stong [5] in-
troduced a classification of maps which is "compatible" with the classification
of manifolds. The object of this paper is to consider such a compatible classifi-
cation of immersions.

Two immersions /: M-+N and /': M'-WV' will be said cobordant if
there is an immersion F: V-*W such that QV is the disjoint union of M and

ΛΓ, dWis the disjoint union of TV and TV', F \ M=f, F \ M'=f and F is transverse
regular over dW. The relation of cobordism turns out to be an equivalence
relation and the immersions of closed m-manifolds in closed (m+/e)-manifolds
form an abelian group I(m, K) modulo cobordism. In the above definition, if the
term "immersion" is replaced by "embedding" and "generic immersion", one
may define a cobordism group of embeddings E(m, k) and a cobordism group of

generic immersions G(m, k) respectively. The group 7(ra, k) is complicated, so
we will consider the group G(mf k) instead of I(m, k) since G(m, k) is isomorphic

to I(m, K) if 2k>m+l from the theorem of Haefliger [4].
Next, in section 3, we will introduce a cobordism group B(m, k) of /e-plane

bundles over w-manifolds with involution. Then our main result is the ex-
istence of the following two exact sequences

A: ••— E(m, k) ̂  G(m, k) ̂  B(m-k, k) ̂  E(m-l, k) -^-.,

B: •••-* B(n, k) ̂  WΛ(BO(k)xBO(k)) ?$ B(n, k) ̂ $ B(n-l, k) -^-..
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As a corollary of these two exact sequences, one may show that G(m, k)
and B(m, K) are finitely generated.

By making use of the projective bundles, we will prove the existence of a
homomorphism P*: B(m—k, k)-*G(m, k) such that β*P*=identity. Therefore
G(m, K) is isomorphic to the direct sum E(m, k)ξ&B(m—k, k).

In the last section we will consider the oriented cobordism groups of im-
mersions and one may have exact sequences analogous to A and B. But in the
oriented case we could not find such a homomorphism as P*.

1. Cobordism of immersions

An immersion of dimension (m, K) is a triple (/, M, N) consisting of two
closed differentiable manifolds M and TV of dimensions m and m-\-k respectively
and an immersion/: M-+N. We identify (/, M, N) with (/', M', ΛΓ) if and
only if there are diffeomorphisms φ: M-+M' and i/r: TV—>7V' for which tyf=

f'φ.
Two immersions (/, M, N) and (/', M', N') of dimension (m, k) will be said

to be cobordant if there exists a triple (F, V, W) where:
(1) V and Ware compact differentiable manifolds of dimensions m-\-l and

m+k+l respectively, with QV=M\J M', dW=N U N' where the symbol (J
denotes disjoint union, and

(2) F: V-+ W is an immersion transverse regular over 3J/F, whose
restriction to M. is / and whose restriction to M' is /'.

If (F, V, W) defines a cobordism of (/, M, N) and (/', M', N'), write
Q(F, V, W)=(fy M, N)+(f', AT, N'). The symbol+denotes disjoint union.
It is immediate that this relation is reflexive and symmetric. It is also transitive,
since F is transverse regular over 3 W.

The set of equivalence classes under this relation of immersions of dimension
(m, K) will be denoted I(m, k). As usual, an abelian group structure is imposed on
I(m, k) by disjoint union, which may be considered as the cobordism group
of immersions of dimension (m, k). Given (/, M, N), one has

9(/χί, MX/, NX I) = (/, M, N)+(f, M, N)

where / is the identity map on 7=[0, 1], showing that every element of I(m, k)
is its own inverse.

One may define a product I(m, k) X %ln -+I(m+n, k) by sending ([/, M, N],
[L]) into the class [fxid, MxL, NxL]. This makes the direct sum 2 /(*w, k)

m

into a graded right Sΐ^-module for any /e^>0 where ί̂̂ ^S ̂ * ^s the unoriented
n

cobordism ring.
In the above definition, if the term "immersion" is replaced by "embedding"

and "generic immersion", one may define the cobordism group of embeddings
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E(m, K) and the cobordism group of generic immersions G(m, k), of dimension
(m, K) respectively.

REMARK 1.1. Let V and W be compact diίferentiable manifolds and
/: V-*Wbe an immersion for which f(dV)c:dW and / is transverse regular
over dW. Then /will be said to be generic, if

(a) y=f(x)=f(x') and x^=x', then the images of tangent spaces of V at x
and x' by df generate the tangent space of W at y, and

(b) / has no triple point (cf. [4], §2.5).

REMARK 1.2. From the theorem of Haefliger [4, Th. 2.5], if 2k>m+ 1, then
G(m, k) is isomorphic to I(m,.k).

REMARK 1.3. E(m, k) is isomorphic to %lm+k (MO(k)} (cf . [5], p. 249, Remark

2. Bundles associated with generic immersion

Let/: V-+W be a generic immersion, where V and Ware compact differ-
entiable manifolds of dimensions m and m-\-k respectively. Then the set

Df={x^V\*x'ςΞV, x*x',f(x)=f(x')}

is a compact submanifold of V of dimension m — k for which d(Df)ddV and
the inclusion D^V is transversal over 9F, and the set Δ/=/(£)/) is a sub-
manifold of W for which d(Δf)ddW and the inclusion ΔfdW is transversal
over8H^(cf. [4], §2.5).

Moreover Df has a canonical fixed point free differentiable involution
T= Tf defined by T(x)±x, f(T(x))=f(x), and the orbit manifold Όf\T is
diίfeomorphic to Δ/.

Let v=vf and ί/=vf be the normal bundles of the embeddings Df<^V
and ΔfdW respectively, and let T*v be the induced bundle of v by the
involution T. Since (T*v}x=vT(X^ one may have a bundle map:

I r I
where T(uy v)=(v, 11) and ΎJX is the fiber over x of bundle η. On the other
hand by the condition (a) of Remark 1.1, one may have a bundle map:

Df -
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such that /T=/. Therefore the bundle v over Δ7 may be identified with the
bundle T*v=(v®T*v}jf over Df/T. In the next section, we will consider
the triple (Df, Tf, vf).

3. Cobordism of bundles over manifolds with involution

The basic object in this section is a triple (W, 71, ξ) where T is a fixed
point free differentiable involution on a compact diίferentiable m-manifold
W and ξ is a diίferentiable Λ-plane bundle over W.

We identify (W, T, ξ) with (W , T1, ξ ' ) if and only if there exists a bundle
equivalence :

for which φ is an equivariant diίfeomorphism (i.e. φT=T'φ).
A boundary operator may be defined as

Q(W, T,ξ) = (dW, T\dW,ξ\dW).

The cobordism group B(m, k) of Λ-plane bundles over w-manifolds with in-
volution may be now defined. If Ml and M2 are closed m-manifolds then
(M19 7\, £) is cobordant to (Λf2, Γ2, £2) if and only if there is a triple (W, T, ξ)
for which 9(PF, Γ, ξ)=(M19 T19 ξ^+^M^ Γ2, £2). The symbol + denotes dis-
joint union. It is immediate that this relation is reflexive and symmetric. It
is also transitive by the existence of the equivariant collared neighborhood (cf.
[3], Th. 21.2). Denote a cobordism class by [M, T, ξ] and the set of all such
cobordism classes by B(m, k). As usual an abelian group structure is imposed
on B(m, k) by disjoint union. And every element is its own inverse.

One may define a product B(m, k) X yin^B(m+n, k) by sending ([M, Γ, ξ],
[TV]) into the class [MxN, Txίd, ξxΰ] where 0 is the 0-plane bundle over
N. This makes the direct sum ̂  B(my k) into a graded right ϊί^-module for

m

any k^>0.

REMARK 3.1. B(m, 0) is isomorphic to 9ΐm(Z2) which is the bordism group
of fixed point free involutions (cf. [3]). For any &^0, B(Q, k) is isomorphic to

Let c<^B(m, k) be represented by a triple (M, T, ξ). One may have a
bundle T*ξ over Λf/Γ and a projection π: ξ®T*ξ-^T*ξ, similarly defined
as in section 2. And there is a bundle monomorphism h: ξ-*ξ(&T*ξ defined

by A(M)=(M> 0).
If a Riemannian metric is given on ξy then one may have a generic im-

mersion
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where D(η) is the total space of the disk bundle associated with η and h% is the
restirction of πh. Moreover the restriction of h% on dD(ξ ) is an embedding,
and the class of Q(h^ D(ξ), D(T*ξ)) in E(m+k—l, k) is independent of the
choice of a representation (M, Γ, ξ ) and the choice of a Riemannian metric on ξ.

4. Exact sequence A

In the above sections the cobordism groups E(m, k), G(my k) and B(my k)

are defined. Now we define homomorphisms :

a* : E(my K) -> G(my K)

/?*: G(m, k)-*B(m—k, k)

9* : B(m, k) -> E(m+k—l, k) .

The main result of this paper will be the existence of exact sequence involving
these homomorphisms.

(4.1) Let a^E(m, k) be represented by an embedding /: M-*N, then /
is also a generic immersion and a*(ά) is represented by/.

(4.2) Let b^G(my k) be represented by a generic immersion g: M-+N,
then β*(b) is represented by the triple (Dg, Tgy vg) defined in section 2.

(4.3) Let c<=B(my K) be represented by a triple (My T, ξ), then 9#(c) is
represented by the embedding d(hξ, D(ξ), D(T*ξ}) defined in section 3.

Then these are the well-defined homomorphisms compatible with Jί*-
module structures and we can state the main result.

Theorem A. For any k^>0 the following sequence is exact:

^* Πi L\ α* ^Y/ L\ ^* TW I. L\ ^* ^»/ 1 L\----- > E(m, k) — >G(m, K) — > B(m— k, k) — »• E(m—\y k)

Theorem A'. For any k^>0 there exists an yt^-module homomorphism

B(m, k)->^G(m> k) sucn tnat β*P*=ίdentίty.

Proof of Theorem A'. Let [M, Γ, ξ] be an element of B(m, K). Let
•P(f 001) be the associated projective bundle where 51 is the trivial line bundle,
then the total space E(ξ) of the bundle ξ is canonically embedded in P(ξ®θL) as
an open set and its complement is P(ξ). Therefore one may have the follow-
ing commutative diagram:

M - » E(ξ)

|« \πh

Λf/Γ — ̂  ̂ (Γ^ ) —
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where T*ξ, π and h are defined in section 3, ?? is the orbit map, and the
horizontal lines are embeddings. Moreover P(τr/z01) is a generic immersion
such that DP^h^i)=M and ξ is the normal bundle of the embedding Me

P(ξ®θl). Thus the assignment of [M, T, ξ] to [P(πh@\\ P(ξ®θ1), P(T*ξ®θ1)}
is a desired homomorphism. q.e.d.

Corollary 4.4. For any m, k G(m, k) is isomorphic to the direct sum E(m, k)
—k, K). If m<k, then G(m, k) is isomorphic to E(m, k).

Corollary 4.5. For any m^>0 G(m, 0) is isomorphic to the direct sum

Proof. E(m, 0)^9ΐm(5f0)^^m09ίm (Remark 1.3) and B(m, 0)^3
(Remark 3.1). q.e.d.

5. Proof of Theorem A

It clearly suffices to prove the following statements :

(a) /3*α* = 0 (b) α*9* = 0 (c) 9*/3* =0

(d) ker 9* c image β* (e) ker α* c image 9* (f) ker /3* c image a* .

Since the set Df is empty for any embedding /, (a) is trivial. And (b) is
trivial by the definition (4.3) of 9*.

We prove (c). Let /: M-*N be a generic immersion. Given suitable
Riemannian metrics on M and JV, there are embeddings

φ: />(*)-» M, ψ : D(ί>)-+N

such that φ\Dj. is the embedding D^cM, ψ\Δf is the embedding Δ/cN and
dfdφ=dtydhv on Z)̂ , where v and z) are the normal bundles of the embeddings

Dfc:M, Δy dΛf respectively, v is identified with T*v where T is the canonical
involution on DfJ and A v: D(v)^D(T*v) is defined in section 3. There exists
a regular homotopy /, such that /„=/, /ί|Z)/=/|ί)/, D/t=Dfy and f^=^hv

on Z)ε for sufficiently small £>0 where Dζ—Dζ(v) is the set of all vectors of z;
whose length is smaller than or equal to £. Now let V=M— Int φ(Dζ),

W=N—lnt ψ (ZV) and ^: ^-^W7 be the restriction of /x, where Dβ'=D8(ί>).
Then ^ is an embedding and 9(#, Γ, W)=9(h,\ D,9 Df, D, /)=9(AV, fl(ι ), Z>(7»).

Thus 9^/3* =0.
Next we prove (d). Let 9*([M, T, ?])=0. Then there exists an embedd-

ing £: V— >W7such that

Let Jί be a closed manifold obtained from the disjoint union V U D(ξ) by the
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identification 3F— dD(ξ) and let Y be a closed manifold obtained from the
disjoint union W\jD(T*ξ) by the identification dW=dD(T*ξ). Define
/: X->Y by f=g on V andf=hξ on D(f), then / is a generic immersion and
Df=M, Tf=T and the normal bundle vf of the embedding DfdX is £.
Therefore /3*([/, *, Y])=[M, Γ, £].

One may prove (e) by similar argument to (c), so we omit the proof.
Finally we prove (f). Let /£*([/, M, N])=Q. Then there exists a triple

(K, Γ, f) such that 8(F, T, £)=(£>,, Γy, ιy). As the proof of (c), there exists
a regular homotopy ft such that /0=/, ft\Df=ft\Dfy Df=Df and f^φ^^rh^
on Dζ(vf) for some £>0. One may assume £=1. Let .X be a manifold
obtained from the disjoint union of MX [0, 1] and D(ξ) by identifying D(vf)
d.D(ξ) with ^)(Z)(z;/))χ{l} by φ and straightening the angle at dD(vf), and

let Y be a manifold obtained from the disjoint union of NX [0, 1] and D(T^ξ)
by identifying D(T*(ξ\QV)) with ψ(D(ί>f))x{ϊ} by ψ . Define F: ^f^Y by
jF(#, t)=ft(x) on MX [0, 1] and F=Aέ on D(ξ), then .F is a generic immersion
and 8(jF, J5Γ, Y) = (/, M, N) + ( f , M', N') where f':M'-+N' is an embedding.
Therefore [/, M, ΛΓ| is in the image of α*.

These complete the proof of Theorem A.

6. The Smith homomorphism

Let (M, 71, I) be a triple where T is a fixed point free difϊerentiable in-
volution on a closed differ entiable /z-manifold M and f is a differentiable &-
plane bundle over M. For N^>n there exists a difierentiable equivariant map
g: (M, T)-*(SN

y A) which is transverse regular over SN~ldSN where ^4 is the
antipodal map on SN. Let F=^"1(SΛΓ"1). The function

ψ#: B(n,k)-*B(n-\,k)

defined by ψ *([M, Γ, f])=[K, T|F, f |F | is a well-defined homomorphism
for N>n independent of N which we call the Smith homomorphism (cf. [3],

§26).
Next we consider the bordism group *3ln(BO(k)xBO(k)) whose element

is represented by a triple (M, ξ, η) where ξ and η are differentiable Λ-plane
bundles over a closed differentiable /z-manifold M. Let (M, 71, ζ) be defined by
ΆΪ=Mx{Q}\jMx{l}, T(myi)=(m, 1-i), f |Mx{0}-|x {0} and^|Mx{l}-:
?7X{1}. The function

^^ : Vln(BO(k)xBO(k)) -> Λ(w, Λ)

defined by φ#([M, ξ, η])=[ΆΪ9 Γ, ζ] is a well-defined homomorphism. The
function

p* : B(n, k) -» Wn(BO(k) x BO(k))
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defined by p*([M, Γ, ξ]) = [M, ξ, T*ξ] is also a well-defined homomorphism.

Theorem B. For any k^O the following sequence is exact :

----- - B(n, k) Kn(BO(k) X B0(k)) B(n, k) - B(n-l, ft) - - .

Corollary 6.1. For any n, k the cobordism group B(n, k) is finitely generated.

Proof. #(0, ft)=Z2 and $ln(BO(k)xBO(k)) is finitely generated. There-
fore B(n, k) is finitely generated by induction on n. q.e.d.

Corollary 6.2. For any n, k the cobordism group of generic immersions

G(n> k) is finitely generated.

Proof. Since E(ny k) and B(n, k) are finitely generated, G(n, k) is also
finitely generated from the exact sequence A. q.e.d.

REMARK. Let r: BO(k)xBO(k)^BO(k)χBO(k) be the map defined by
τ(α, δ)=(ft, a). Then p*φ*(x)=x+τ*(x) for any xf=3l*(BO(k)xBO(k)).

7. Proof of Theorem B

It clearly suffices to prove the following statements :

(a) *^*φ* = 0 (b) p*ψ* = 0 (c) φ*p* = 0

(d) ker φ* c image p* (e) kerp^c image i/r* (f) ker i/r^ c image φ* .

(a) is trivial by the definitions of φ* and ψ*.
We prove (b). Let (Af, Γ, ξ ) be a triple and \&.(V,T\V,ξ\ V) be a triple

defined by making use of an equivariant map g: (M, T)-^>(SN, A) in section 6.
Let E+ and £"_ be the upper and the lower hemispheres in SN respectively such
that S"-l=E+ Π E_ and let W±=g~1(E±). Then

d(W+9 ξ\W+, T*ξ I W^+) = (V, ξ\ V, (T\ V)*(ξ\ V))

and this shows /c^ ψ^— 0.
We prove (c). φ*p*([M, Γ, ξ]) is represented by a triple (ΛΓ, Γ', f)

where M'=Mx {0} UMx {!}, r(m, i) = (my 1-i), f ' |Mx {0} - £x {0} and
g'|Mx{l}=:Γ*gχ{l}. Let H^be a manifold with the boundary M' obtained
from the disjoint union of MX [0, 1/2] and MX [1/2, 1] by identifying a point
(m, 1/2) in MX [0, 1/2] with (T(m), 1/2) in MX [1/2, 1]. Then W has a canonical
fixed point free involution T defined by T(m, t)=(m, ί — t) whose restriction
on Mr is T". Let ζ be a bundle over W defined by the clutching construction
from ξ x[0, 1/2] and Γ*f χ[l/2, 1] (cf. [2]). Then d(W, T,ζ)=(M', T',ξ')
and this shows φ*ρ*= 0.

Next we prove (d). Let φ*([M, ξ, η])=Q. Then there exists a triple



COBORDISM OF IMMERSIONS 405

(W, T, ξ) such that dW=Mx{Q}(jMx{l}f (T\dW] (m, i)=(w, 1-i),
?|Mx{0} = £x{0} and f | Λ f x {1} = τ?X {!}. For sufficiently large N there
exists a differentiable equivariant map g: (W, T)-+(SN, A) which is transverse

regular over SN~l and g(dW) does not meet with SN~\ Let V=g'1(SN'l)9 then

p*([F, Γ| F, f | F|)=[M, f, 17]. This is similarly proved as (b), so we omit
the proof.

We prove (e). Let p*([Λf, T, f])=0. Then there exists a triple (W, 17, η')

such that d(W, η, y')=(M9 ξ, T*ξ). Let X be a twisted double of W obtained
from the disjoint union of Wx {0} and Wx {1} by identifying a point (m, 0) in

Mx{Q}=dWx{0} with (Γ(m), 1) in MX {\}=QWx {!}. Then JT is a closed
manifold and X has a canonical fixed point free involution T whose restriction

on M=Mx{0} is the involution T. Let ξ be a bundle over X defined by

the clutching construction from ηx{0} and η'x{l}. Then ψ%([X, T, ζ])

= [M, T, |] by the definition of ψ*.

Finally we prove (f). Let ψ #([M, Γ, f ])=0. Since the class >/r#([Λf, Γ, f ])
is represented by a triple (F, T|F, f | F ) by making use of a differentiable

equivariant map g:(M, T)-*(SN, A) such that g is transverse regular over S^"1

and F-^-1(S'̂ -1), there exists a triple (ίF, 5, 97) such that 3(W, 5, 97) =

(V, T\V,ξ\V). On the other hand there exists an equivariant embedding h of

(Fx [-1, 1], (T\V)x(-id)) into (M, T) such that A(ϋ, 0)=v and h*ξez(ξ\ V)
X [—1, 1]. Let X be a manifold obtained from the disjoint union of MX [0, 1]

and Wx[—l, 1] by identifying a point (v, t) in Vx[— 1, l] = 9Wχ[— 1, 1]
with a point (/*(?;, ί), 1) in MX [0, 1] and straightening the angle at Vx {—1, 1}.

Then X has a fixed point free involution T such that T(m, t)—(T(m)y t) on

Mχ[0, 1] and T(w, t)=(S(w)9 —t) on Wx[— 1, 1]. Moreover one may have
a bundle f over X by the clutching construction from £x [0, 1] and ηχ[—l, 1]
by the isomorphism h*ξs*(ξ\V)χ[—l, l] = (η\V)χ[-ly 1].

Then

d(X, T , f ) - (M, Γ,

and [M, Γ, f] = [M', T", ξ'] is clearly in the image of φ* from the above
construction.

These complete the proof of Theorem B.

8. Stability of B(n, k)

Let θl be a trivial line bundle. Then the function

0*: B(n, k)->B(n, k+\)

defined by 0*([M, Γ, ?])=[M, Γ, ^ee1] is a well-defined homomorphism.

Theorem C. Ifn^k, then the homomorphism
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0*: B(n, k)-+B(n, k+1)

is an isomorphism.

Proof. Let i: BO(k)^BO(k-\-\) be a canonical inclusion map. Then the
following diagram is commutative:

B(n,k) -̂ U Vln(BO(k)χBO(k)) _?!ίU B(n, ft) -̂ ί> JJ(n-l, ft) -̂ >

(ixi)*
V I V

Since (ixί)*: ^(fiO^xBO^-^^fiO^+lJxfiOift+l)) is an isomor-
phism for n^k and θ*: B(Q, k)-^>B(0, k-\-\) is an isomorphism for any Λ^O,
0#: B(ny k)->B(n, k-\-l) is also an isomorphism for n^k by induction on TZ.
q.e.d.

Theorem D. B(ny k) contains a direct summand isomorphic to 3ln(Z2).

Proof. Let π\ B(n, k)-^3ln(Z2) be a homomorphism defined by

τr([M, Γ, ?])=[M, Γ], and let ι\ Wn(Z2)->B(n, k) be a homomorphism defined
by *([Λf, Γ]) = [M, Γ, (9fe] where 5* is a trivial β-plane bundle. Then m=
identity. Therefore B(n, k) contains a direct summand isomorphic to 3ln(Z2).
q.e.d.

9. A direct summand of /(/n, A;)

Let s be a point of ^-sphere Sk. Let M, Λ^ be closed diίferentiable manifolds
of dimensions m, m-{-k respectively, and N' be the disjoint union MxSk\jN.
Define a function

/: M->Nf

by f(m)= (m, s), then /is an embedding. The function

defined by ι([M], [N])=[f, M, N'] is a well-defined homomorphism and

E(m, K) may be replaced by G(m, k) and I(m, k).

Theorem E. E(my k), G(m, k) and I(m, k) contain a direct summand isomor-

phic to the direct sum 5ftmθ$ftw+£ respectively for any k^>0.

Proof. Let π: E(m, k}—>yim®yim+k be a homomorphism defined by
τr([/, M, N])=([M], [N]), then πι = identity. Therefore E(m, k) contains a
direct summand isomorphic to 9Rm ©5Jlm+jfe. Similarly G(my k) and I(m, K) contain

a direct summand isomorphic to 5HmφSϊim+*. q.e.d.
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10. Oriented cobordism groups of immersions

Let /: Mn-+Nn+k be a generic immersion where M and N are oriented
closed manifolds. We will use the notations D=Df, Δ=Δf, v=vf, i>=vf and
T: D-+D defined in section 2. Let τ(M) be the tangent bundle of M, then

r(D)®v = τ(M) I D , τ(Δ)0 £= τ(N) I Δ

and there exists a bundle map

τ(D)®v@T*v -+

f\D -* Δ

Since τ(Z))0z> and τ(Δ)®£ are oriented, one may define an orientation
of T*v so that the above bundle map may be orientation preserving. Then
v= T*(T*v) is naturally oriented and therefore τ(D) may be oriented in
order that the bundle isomorphism r(D}ζ$v = τ(M) | D becomes orientation
preserving. Then the bundle map

D - -> D

becomes orientation preserving, since v~T*v=(v®T*v)IT where the bundle
map T: v®T*v-+v®T*v is defined by T(u, v)=(v, u). On the other hand
T is orientation preserving if k is even and orientation reversing if k is odd.

Consequently the involution T: D-+D is orientation preserving if k is even
and orientation reversing if k is odd.

By similar argument to the unoriented case one may have the following exact
sequences for any k^O

B+(n-2k+l, 2k)~^E\n, 2k) ̂  G\n, 2k)^ί B+(n-2k,

B-(n-2k-l,2k+l)

B+(n, K)^B~(n-\, K)

B : ~-*B+(n, k)^ίlΛ(BSO(k)xBSO(k))^B~(n9 k)^B+(n-l, k)

where EQ(n, k) and G°(n, k) are the oriented cobordism groups of embeddings
and of generic immersions respectively, B+(n, k) and B~(n, k) are the cobordism
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groups of oriented Λ-plane bundles over oriented w-manifolds with orientation
preserving involution and with orientation reversing involution respectively,
and the homomorphisms φ%: Ωn(BSO(k) X BSO(k))->B±(ny K) are defined by

sending [M, ξ, η] into the class [Mx 0 U (±M) X 1, T, ξ X 0 U ^7 X 1] as in section
6.

OSAKA UNIVERSITY

References

[1] M.F. Atiyah: Bordism and cobordism, Proc. Cambridge Phil. Soc. 57 (1961), 200-

208.

[2] M.F. Atiyah: Lectures on K-theory, Harvard, 1964.

[3] .P.E. Conner and E.E. Floyd: Differentiable Periodic Maps, Springer-Verlag,

1964.

[4] A. Haefliger: Plongements differentiables de variέtes dans varietes, Comment. Math.
Helv. 36 (1961), 47-82.

[5] R.E. Stong: Cobordism of maps, Topology 5 (1966), 245-258.

[6] R. Thorn: Quelques proprietέs globales des variέtes differentiables, Comment. Math.

Helv. 28 (1954), 17-86.

[7] T. Watabe: SO(r)-cobordism and embedding of 4-manifolds, Osaka J. Math. 4

(1967), 133-140.

[8] R. Wells: Cobordism groups of immersions, Topology 5 (1966), 281-294.

[9] H. Whitney: The self-intersections of a smooth n-manifold in 2n-space, Ann. of

Math. 45 (1944), 220-246.




