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Introduction

The central problems of differential topology are the classification of differ-
entiable manifolds and the classification of mappings between differentiable
manifolds. Thom [6] has introduced the notion of cobordism to classify the
differentiable manifolds. The bordism theory of Atiyah [1] provides a classifi-
cation ‘“‘up to cobordism’ of mappings of differentiable manifolds into a fixed
differentiable manifold. Watabe [7] and Wells [8] have considered the classifi-
cation up to cobordism of immersions of differentiable manifolds into Euclidean
spaces. These have useful applications but these do not allow the image
manifold to vary within cobordism class. On the other hand, Stong [5] in-
troduced a classification of maps which is “‘compatible” with the classification
of manifolds. The object of this paper is to consider such a compatible classifi-
cation of immersions.

Two immersions f: M—N and f': M'—-N’' will be said cobordant if
there is an immersion F': V'— W such that 8V is the disjoint union of M and
M', 0W is the disjoint union of N and N', F| M=f, F | M'=f" and F is transverse
regular over 0. The relation of cobordism turns out to be an equivalence
relation and the immersions of closed m-manifolds in closed (m-+k)-manifolds
form an abelian group I(m, k) modulo cobordism. In the above definition, if the
term “‘immersion” is replaced by ‘“embedding” and ‘‘generic immersion”, one
may define a cobordism group of embeddings E(m, k) and a cobordism group of
generic immersions G(m, k) respectively. The group I(m, k) is complicated, so
we will consider the group G(m, k) instead of I(m, k) since G(m, k) is isomorphic
to I(m, k) if 2k>m—+1 from the theorem of Haefliger [4].

Next, in section 3, we will introduce a cobordism group B(m, k) of k-plane
bundles over m-manifolds with involution. Then our main result is the ex-
istence of the following two exact sequences

9
Az e B(my ) 22 Gmy 1) 2% Bon—h, k) 25 Bm—1, k) S5

B: oo B(n, k) P50 (BO(R) x BOR) 2% B(n, k) V% B(n—1, #) £5....
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As a corollary of these two exact sequences, one may show that G(m, k)
and B(m, k) are finitely generated.

By making use of the projective bundles, we will prove the existence of a
homomorphism P, : B(m—k, k)—G(m, k) such that B,P,=identity. Therefore
G(m, k) is isomorphic to the direct sum E(m, k)DB(m—k, k).

In the last section we will consider the oriented cobordism groups of im-
mersions and one may have exact sequences analogous to A and B. Butin the
oriented case we could not find such a homomorphism as P.

1. Cobordism of immersions

An immersion of dimension (m, k) is a triple (f, M, N) consisting of two
closed differentiable manifolds M and NN of dimensions m and m+-k respectively
and an immersion f: M—N. We identify (f, M, N) with (f’, M’, N') if and
only if there are diffeomorphisms @: M—M' and yr: N—N’ for which rf=
f'o.

Two immersions (f, M, N) and (f', M’, N') of dimension (m, k) will be said
to be cobordant if there exists a triple (F, V, W) where:

(1) V and W are compact differentiable manifolds of dimensions m-1 and
m-+k+1 respectively, with V=M U M’', 9W=N U N’ where the symbol U
denotes disjoint union, and

(2) F: V—-W is an immersion transverse regular over aW, whose
restriction to M is f and whose restriction to M’ is f'.

If (F, V, W) defines a cobordism of (f, M, N) and (f’, M’, N'), write
o(F, V, W)=(f, M, N)4+(f', M', N'). The symbol-+denotes disjoint union.
It is immediate that this relation is reflexive and symmetric. It is also transitive,
since F is transverse regular over 0.

The set of equivalence classes under this relation of immersions of dimension
(m, k) will be denoted I(m, k). As usual, an abelian group structure is imposed on
I(m, k) by disjoint union, which may be considered as the cobordism group
of immersions of dimension (m, k). Given (f, M, N), one has

a(fxi, Mx I, NxI) = (f, M, N)+(f, M, N)

where 7 is the identity map on /=[0, 1], showing that every element of I(m, k)
is its own inverse.

One may define a product I(m, k) X N, — I(m-+n, k) by sending ([f, M, N],
[L]) into the class [fxid, MX L, Nx L]. This makes the direct sum > I(m, k)

into a graded right N,-module for any £=0 where R, =>1N, is the unoriented

cobordism ring.
In the above definition, if the term “immersion” is replaced by “embedding”
and ‘‘generic immersion’’, one may define the cobordism group of embeddings
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E(m, k) and the cobordism group of generic immersions G(m, k), of dimension
(m, k) respectively.

Remark 1.1. Let V and W be compact differentiable manifolds and
f: V—W be an immersion for which f(8V)CoW and f is transverse regular
over dW. Then f will be said to be generic, if

(a) y=f(x)=f(x")-and x=x’, then the images of tangent spaces of V" at x
and x’ by df generate the tangent space of ¥ at y, and

(b) f has no triple point (cf. [4], §2.5).

ReEMARK 1.2. From the theorem of Haefliger [4, Th. 2.5], if 2k>m--1, then
G(m, k) is isomorphic to I(m, k).

ReMARK 1.3.  E(m, k) is isomorphic to R, , (MO(k)) (cf. [5], p. 249, Remark
(d))-

2. Bundles associated with generic immersion

Let f: V—W be a generic immersion, where IV and W are compact differ-
entiable manifolds of dimensions m and m-+% respectively. Then the set

D, = {xeV|3x'eV, x+x', flx) = f(x")}

is a compact submanifold of V' of dimension m—#k for which 8(D,)cdV and
the inclusion D,CV is transversal over 0V, and the set A,=f(D,) is a sub-
manifold of W for which 8(A;)cdW and the inclusion A,CW is transversal
over oW (cf. [4], §2.5).

Moreover D, has a canonical fixed point free differentiable involution
T=T, defined by T(x)+x, f(T(x))=f(x), and the orbit manifold D./T is
diffeomorphic to A,.

Let y=v», and $=5, be the normal bundles of the embeddings D,cV
and A,C W respectively, and let T*p be the induced bundle of » by the
involution 7. Since (T *v),=v,), one may have a bundle map:

A

T
v T*y — vPT*

.

Df——>Df

where T(u, v)=(v, u) and 7, is the fiber over x of bundle . On the other
hand by the condition (a) of Remark 1.1, one may have a bundle map:

A

J

v T*y — b

Lo,

D, ——— A,
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such that f7'=f. Therefore the bundle 5 over A, may be identified with the
bundle Tyv=(w@T*v)/T over D,/T. In the next section, we will consider
the triple (D, T}, v)).

3. Cobordism of bundles over manifolds with involution

The basic object in this section is a triple (W, T, g) where T is a fixed
point free differentiable involution on a compact differentiable m-manifold
W and ¢ is a differentiable k-plane bundle over W.

We identify (W, T, &) with (W', T', £") if and only if there exists a bundle
equivalence:

E—¢'

L, |

w2 w
for which @ is an equivariant diffeomorphism (i.e. pT=T"¢).
A boundary operator may be defined as

(W, T, &) = (oW, T |oW, g|0W) .

The cobordism group B(m, k) of k-plane bundles over m-manifolds with in-
volution may be now defined. If M, and M, are closed m-manifolds then
(M,, T, E,) is cobordant to (M,, T,, £,) if and only if there is a triple (W, T, £)
for which o(W, T, £)=(M,, T,, £,)+(M,, T,, £,). The symbol+denotes dis-
joint union. It is immediate that this relation is reflexive and symmetric. It
is also transitive by the existence of the equivariant collared neighborhood (cf.
[3], Th. 21.2). Denote a cobordism class by [M, T, £] and the set of all such
cobordism classes by B(m, k). As usual an abelian group structure is imposed
on B(m, k) by disjoint union. And every element is its own inverse.

One may define a product B(m, k) x R,—B(m-n, k) by sending ([M, T, £],
[V]) into the class [M X N, TX1id, £x0] where 0 is the O-plane bundle over
N. This makes the direct sum > B(m, k) into a graded right R,-module for

any k=0.

REmMARK 3.1.  B(m, 0) is isomorphic to R,,(Z,) which is the bordism group
of fixed point free involutions (cf. [3]). For any 2=0, B(0, k) is isomorphic to
N(Z)=2,

Let ce B(m, k) be represented by a triple (M, T, £). One may have a
bundle Ty¢ over M|T and a projection =: ¢PT*E—TE, similarly defined
as in section 2. And there is a bundle monomorphism %: E—g@T*E defined
by A(u)=(u, 0).

If a Riemannian metric is given on £, then one may have a generic im-
mersion
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he: D(E) - D(T5E)

where D(7) is the total space of the disk bundle associated with » and 4 is the
restirction of zh. Moreover the restriction of 4 on 3dD(g) is an embedding,
and the class of d(hs, D(E), D(T4¥)) in E(m+k—1, k) is independent of the
choice of a representation (M, T, £) and the choice of a Riemannian metric on £.

4. Exact sequence A

In the above sections the cobordism groups E(m, k), G(m, k) and B(m, k)
are defined. Now we define homomorphisms:

ay: E(m, k)— G(m, k)
B«: G(m, k) — B(m—k, k)
04 : B(m,k)— E(m+k—1, k).

The main result of this paper will be the existence of exact sequence involving
these homomorphisms.

(4.1) Let ac E(m, k) be represented by an embedding f: M—N, then f
is also a generic immersion and a4(a) is represented by f.

(4.2) Let beG(m, k) be represented by a generic immersion g: M —N,
then By4(b) is represented by the triple (D,, T,, v,) defined in section 2.

(4.3) Let ceB(m, k) be represented by a triple (M, T, £), then 04(c) is
represented by the embedding 8(k;, D(g), D(T4¥)) defined in section 3.

Then these are the well-defined homomorphisms compatible with R,-
module structures and we can state the main result.

Theorem A. For any k=0 the following sequence is exact:

0 0
2 g, 1) 2% Gm, k) L5 Bm—k, B) 25 Bm—1, &) ..
Theorem A’. For any k=0 there exists an N,-module homomorphism P, :

>Y B(m, k)= G(m, k) such that B,P.—identity.

Proof of Theorem A’. Let [M, T, £] be an element of B(m, k). Let
P(¢@6') be the associated projective bundle where §' is the trivial line bundle,
then the total space E(£) of the bundle £ is canonically embedded in P(#PF') as
an open set and its complement is P(£). Therefore one may have the follow-
ing commutative diagram:

M —> E) —> P(EDE)

= | |Paray)
M|T —> E(T4£) — P(T4 @)
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where Tw&, 7 and h are defined in section 3, # is the orbit map, and the
horizontal lines are embeddings. Moreover P(zhP1) is a generic immersion
such that Dpe,,ep,=M and £ is the normal bundle of the embedding M c
PEDEY). Thus the assignment of [M, T, £] to [P(zhD 1), P(EDEG"), P(T+EP)]

is a desired homomorphism. q.e.d.

Corollary 4.4. For any m, k G(m, k) is isomorphic to the direct sum E(m, k)
@®B(m—Fk, k). If m<k, then G(m, k) is isomorphic to E(m, k).

Corollary 4.5. For any m=0 G(m, 0) is isomorphic to the direct sum
R,ON,DN,.(Z,)-

Proof. E(m, 0)=N,(S°)=N,,HN,, (Remark 1.3) and B(m, 0)=N,,(Z,)
(Remark 3.1). q.e.d.

5. Proof of Theorem A

It clearly suffices to prove the following statements:

(a) Bxax =0 (b) axdx =0 (c) 0484 =0
(d) ker 94 image By (e) ker ayCimaged, (f) ker B Cimage oty .

Since the set D, is empty for any embedding f, (a) is trivial. And (b) is
trivial by the definition (4.3) of 9.

We prove (c). Let f: M—N be a generic immersion. Given suitable
Riemannian metrics on M and N, there are embeddings

@: Dw)— M, +: D(3)— N

such that @| D, is the embedding D.c M, | A, is the embedding A,c N and
dfdgp=d-\rdh, on D,, where v and » are the normal bundles of the embeddings
D,c M, A;C N respectively, 5 is identified with Ty» where T is the canonical
involution on D, and A,: D(v)—D(Tyv) is defined in section 3. 'There exists
a regular homotopy f, such that f,=f, f,|D,=f|D,, Ds=D,, and fip=r1h,
on D, for sufficiently small £>0 where D,=D,(v) is the set of all vectors of »
whose length is smaller than or equal to & Now let V=M—Int ¢(D,),
W=N—Int yo(D,’) and g: V—W be the restriction of f,, where D,’=D,(?).
Then g is an embedding and (g, V, W)=4(h,| D,, D,, D,")=0(h,, D(v), D(Tyv)).
Thus 6,84=0.

Next we prove (d). Let 04([M, T, £])=0. Then there exists an embedd-
ing g: V' —W such that

Let X be a closed manifold obtained from the disjoint union ¥V UD(§) by the
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identification 8V=0D(¢) and let Y be a closed manifold obtained from the
disjoint union WU D(T4E) by the identification W =0D(T£). Define
f: X—Y by f=g on V and f=Ah; on D(E), then f is a generic immersion and
D;=M, T,=T and the normal bundle v, of the embedding D,cX is &.
Therefore By ([f, X, Y])=[M, T, &].

One may prove (e) by similar argument to (c), so we omit the proof.

Finally we prove (f). Let B4([f, M, N])=0. Then there exists a triple
(V, T, &) such that 8(V, T, £)=(Dy, Ty, v;). As the proof of (c), there exists
a regular homotopy f, such that f,=f, f,|D,=f,|D;, Ds,=D, and fip=1/h,
on Dy(v,) for some £€>0. One may assume £€=1. Let X be a manifold
obtained from the disjoint union of Mx[0, 1] and D(§) by identifying D(v)
c D(§) with o(D(v,))x {1} by ¢ and straightening the angle at 9D(v,), and
let Y be a manifold obtained from the disjoint union of N[0, 1] and D(T4£)
by identifying D(T(£|9V)) with y(D(#/))x {1} by . Define F: X—Y by
F(x, t)=f,(x) on Mx [0, 1] and F=h; on D(E), then F is a generic immersion
and o(F, X, Y)=(f, M, N)+(f’, M’, N’) where f': M'—>N’ is an embedding.
Therefore [f, M, N] is in the image of a.

These complete the proof of Theorem A.

6. The Smith homomorphism

Let (M, T, &) be a triple where T is a fixed point free differentiable in-
volution on a closed differentiable z-manifold M and £ is a differentiable k-
plane bundle over M. For N =n there exists a difierentiable equivariant map
g: (M, T)—(S¥, A) which is transverse regular over S¥'c SV where 4 is the
antipodal map on S¥. Let V=g (S¥™'). The function

Vr«: B(n, k) > B(n—1, k)

defined by v ([M, T, E))=[V, T|V, €| V] is a well-defined homomorphism
for N>n independent of N which we call the Smith homomorphism (cf. [3],
§26).

Next we consider the bordism group N,(BO(k)x BO(k)) whose element
is represented by a triple (M, &, ») where £ and % are differentiable k-plane
bundles over a closed differentiable #-manifold M. Let (M, T, ¢) be defined by
M=Mx {0} UM x {1}, T(m, i)=(m, 1—i), {|Mx{0}=£x {0} and {| M x {1}=
nx {1}. The function

@s + M, (BO(k)x BO(k)) — B(n, k)

defined by @4 ([M, &, 7])=[M, T, ] is a well-defined homomorphism. The
function

ps: B(n, k) > N, (BO(K)x BO(k))
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defined by pu([M, T, £])=[M, &, T*E] is also a well-defined homomorphism.

Theorem B. For any k=0 the following sequence is exact:

e = B(n, B) P50 (BOR)x BOR) 2% B(n, k) VX Bn—1, B) L5 ...
Corollary 6.1. For any n, k the cobordism group B(n, k) is finitely generated.

Proof. B(0, k)=Z, and N, (BO(k) x BO(k)) is finitely generated. There-
fore B(n, k) is finitely generated by induction on #. q.e.d.

Corollary 6.2. For any n, k the cobordism group of generic immersions
G(n, k) is finitely generated.

Proof. Since E(n, k) and B(n, k) are finitely generated, G(n, k) is also
finitely generated from the exact sequence 4. q.e.d.

RemaArk. Let r: BO(k)x BO(k)—>BO(k)x BO(k) be the map defined by
7(a, b)=(b, a). Then pyp(x)=x+74(x) for any x&N,(BO(k) x BO(k)).

7. Proof of Theorem B

It clearly suffices to prove the following statements:

(@) vapsx =0 (b) pxrsx =0 (©) @xpx =0
(d) ker o Cimage py (e) ker pyCimage Jry (f) ker r Cimage @y .

(a) is trivial by the definitions of @, and 4.

We prove (b). Let (M, T, ) be a triple and let (V, T'|V, £| V) be a triple
defined by making use of an equivariant map g: (M, T)—(S¥, A4) in section 6.
Let E, and E_ be the upper and the lower hemispheres in S¥ respectively such
that SN'==E, NE_ and let W =g *(E.). Then

oW., E\W,, T*E|W,) = (V, E|V, (T|V)*EIV))

and this shows pyre=0.

We prove (c). @xpx([M, T, £]) is represented by a triple (M’, T', £')
where M'=Mx{0}UMx {1}, T'(m, i)y=(m, 1—i), £'|Mx {0} =& x {0} and
E'|Mx{1}=T*tx{1}. Let W be a manifold with the boundary M’ obtained
from the disjoint union of M x [0, 1/2] and M x[1/2, 1] by identifying a point
(m, 1/2) in M x [0, 1/2] with (T'(m), 1/2) in M x [1/2,1]. Then W has a canonical
fixed point free involution T defined by T'(m, t)=(m, 1—¢) whose restriction
on M'is T’. Let¢ be a bundle over W defined by the clutching construction
from £x[0, 1/2] and T*gx[1/2, 1] (cf. [2]). Then (W, T,{)=(M', T', £')
and this shows @,psx=0.

Next we prove (d). Let @4([M, & 7])=0. Then there exists a triple
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(W, T, ) such that dW=Mx{0}UMXx{1}, (T|dW) (m, i)=(m, 1—i),
ElMx {0} =gx{0} and §|Mx {1} =%x{1}. For sufficiently large N there
exists a differentiable equivariant map g: (W, T)—(S¥, 4) which is transverse
regular over S¥ ! and g(0 W) does not meet with S¥~*. Let V=g }(S¥™), then
ex([V, TV, ¢|V])=[M, &, 7]. This is similarly proved as (b), so we omit
the proof.

We prove (e). Let pi([M, T, £])=0. Then there exists a triple (W, 7, 7")
such that (W, », n")=(M, &, T*g). Let X be a twisted double of W obtained
from the disjoint union of Wx {0} and Wx {1} by identifying a point (m, 0) in
Mx{0}=0Wx {0} with (T(m),1) in Mx {1}=0Wx{1}. Then X isa closed
manifold and X has a canonical fixed point free involution 7° whose restriction
on M=Mx {0} is the involution 7. Let { be a bundle over X defined by
the clutching construction from 7x{0} and »'x{1}. Then (X, T, ¢])
=[M, T, £] by the definition of .

Finally we prove (f). Let yr4([M, T, £])=0. Since the class yr([M, T, £])
is represented by a triple (V, T'|V, £| V) by making use of a differentiable
equivariant map g:(M, T)—(S¥, A) such that g is transverse regular over S¥™*
and V=g7(S¥7"), there exists a triple (W, S, ) such that 3(W, S, 7)=
(V,T|V,E|V). On the other hand there exists an equivariant embedding ~ of
(Vx[—1, 1], (T'|V)x(—id)) into (M, T) such that h(v, 0)=v and h*g=(£| V)
X [—1, 1]. Let X be a manifold obtained from the disjoint union of M X [0, 1]
and Wx[—1, 1] by identifying a point (v, #) in Vx[—1, 1]=0Wx[—1, 1]
with a point (k(v, ), 1) in M X [0, 1] and straightening the angle at V"' x {—1, 1}.
Then X has a fixed point free involution 7° such that T(m, t)=(T(m), t) on
Mx[0, 1] and T(w, {)=(S(w), —¢) on Wx[—1, 1]. Moreover one may have
a bundle ¢ over X by the clutching construction from £x [0, 1] and »Xx[—1, 1]
by the isomorphism A*(=(E|V)x[—1, 1]=(n|V)x[—1, 1].

Then

a(X’ T’ ?) = (M, T, E)+(MI’ Tla El)

and [M, T, g]l=[M’, T', £'] is clearly in the image of @, from the above
construction.
These complete the proof of Theorem B.

8. Stability of B(n, k)
Let 6 be a trivial line bundle. Then the function
0x: B(n, k) - B(n, k+1)
defined by 0,([M, T, g])=[M, T, £P0'] is a well-defined homomorphism.

Theorem C. If n<k, then the homomorphism
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Ox: B(n, k) — B(n, k+1)
is an isomorphism.

Proof. Let i: BO(k)—BO(k-+1) be a canonical inclusion map. Then the
following diagram is commutative:

B, k) 5 R,(BOR)XBOR) 2% B k) % Bu—1, k) %

o e e

P Px Yy v P
B(n, k+1) — N ,(BO(k+1) x BO(k+1)) — B(n, k+1) — B(n—1, k+1) — .
Since (iXi)y: N, (BO(k)x BO(k))— N, (BO(k+1)x BO(k+1)) is an isomor-
phism for <k and 0,: B(0, k)—B(0, k+1) is an isomorphism for any k>0,
0x: B(n, k)—B(n, k+1) is also an isomorphism for n#<k by induction on .
q.e.d.

Theorem D. B(n, k) contains a direct summand isomorphic to WN,(Z,).

Proof. Let =: B(n, k)—>N,(Z,) be a homomorphism defined by
z([M, T, £])=[M, T], and let .: RN (Z,)—>B(n, k) be a homomorphism defined
by «([M, T))=[M, T, 0¥] where 0F is a trivial k-plane bundle. Then m/=
identity. Therefore B(n, k) contains a direct summand isomorphic to RN,(Z,).
q.e.d.

9. A direct summand of I(m, k)

Let s be a point of k-sphere S%  Let M, N be closed differentiable manifolds
of dimensions m, m+k respectively, and N’ be the disjoint union M x S*¥UN.
Define a function

fi M- N’
by f(m)=(m, s), then f is an embedding. The function
¢ N, PR, r— E(m, k)
defined by ([M], [N])=[f, M, N’'] is a well-defined homomorphism and
E(m, k) may be replaced by G(m, k) and I(m, k).

Theorem E. E(m, k), G(m, k) and I(m, k) contain a direct summand isomor-
phic to the direct sum N, PN, respectively for any k=0.

Proof. Let z: E(m, k)—>RN,PN,,., be a homomorphism defined by
z([f, M, N]))=([M], [N]), then ==identity. Therefore E(m, k) contains a
direct summand isomorphictoR,,PN,,, . Similarly G(m, k) and I(m, k) contain
a direct summand isomorphic to N,,PN,,. .. q.e.d.
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10. Oriented cobordism groups of immersions

Let f: M"—>N™*"* be a generic immersion where M and N are oriented
closed manifolds. We will use the notations D=D,, A=A, v=v, =5, and
T: D—D defined in section 2. Let (M) be the tangent bundle of M, then

(D)Bv = «(M)|D, (AP p=+(N)|A

and there exists a bundle map

T(D)YPvD T*v — r(A)PD
WIS

Since 7(D)®v and 7(A)P are oriented, one may define an orientation
of T*p so that the above bundle map may be orientation preserving. Then
v=T*(T*y) is naturally oriented and therefore (D) may be oriented in
order that the bundle isomorphism +(D)@v=17(M)|D becomes orientation
preserving. Then the bundle map

AT T
(D)DrvDT*y —— 7(D)PrvPHT*v

L,

D D

becomes orientation preserving, since p=<Tyv=(v@ T*)/T where the bundle
map T: v®T*v—>v@ T*v is defined by T'(x, v)=(v, u). On the other hand
7 is orientation preserving if & is even and orientation reversing if k is odd.
Consequently the involution T': D— D is orientation preserving if & is even
and orientation reversing if & is odd.
By similar argument to the unoriented case one may have the following exact
sequences for any k=0

9
AT s B (n— 2kt 1, 20) 05 Eo(n, 26) 5 Go(n, 20) 2% B (n— 2k, 20) >,

)
A: o B (1— 2k, k1) 25 B0, 28+-1) 25 @, 2k41) 25
B (n—2k—1, 2k+1) —>-or

+
Bt: oo B-(n, B)P5 0 (BSO(R) x BSO() 25 B+ (n, k) Y5 B-(n—1, k) —>--e ,
B: s B (n, BP0 (BSO(R) < BSOR) 25 B-(n, k) L B (n—1, ) -

where E°(n, k) and G°(n, k) are the oriented cobordism groups of embeddings
and of generic immersions respectively, B*(n, k) and B~ (n, k) are the cobordism
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groups of oriented k-plane bundles over oriented z#-manifolds with orientation
preserving involution and with orientation reversing involution respectively,

and the homomorphisms @3: Q,(BSO(k) X BSO(k))—B*(n, k) are defined by

sending [M, &, 7] into the class [M xX0U (+M)x 1, T, §X0Un X 1] as in section

6.
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