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1. Introduction

In this paper we again consider a mixed problem for hyperbolic equations
of second order. The domain Q and the equations are same ones in the pre-
vious paper [3]. Let S be a sufficiently smooth compact hypersurface in R"
and let Q be the interior or exterior domain of S.

Consider the hyperbolic equation of second order

(L1) Liu] = ;’t utay(x, t:D)%u—i—az(x, t:D)u = f
a(x, £:D) = 3 2hy(x, 1) 86 Fh(x, 1)
=1 x;
Dy= >0 (4 9
afs t: D) = = 310 (0w, 1) 57)

7
3, 1) +o(x, 2)
i= axj

where the coefficients belong to B*Qx [0, «))”. We assume that a,(x, ¢: D)
is an elliptic operator satisfying

(1.2) Slax ) EESARE (@>0)
a; (%, t) = a;(x, t)

for all (x, £)eQ x[0,00) and £=(&, &,, *, £,)ER”, and that k(x, ) (i=1, 2,
..., n) are real-valued.

Let o,(s, t) be a sufficiently smooth real-valued function defined on
S %[0, o) such that for some constant £>0

1) B*(w), o being an open set, is the set of all functions defined in @ such that their
partial derivatives of order <k all exist and are continuous and bounded,
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(1.3) a.(s, ) <<h(s, t), vO—E,
holds where

<hls, 1), vy = 2 s, )

v=(v,, v,,"**, v,) is the unit outer normal of S at s€.S. Then we consider the
following boundary operator

(1.4) B(t) = 6_1_—01(.:, )-2tols, 1)
where
a 2 0
A (8 )vi—,
on, -',j2=1a”(s ) ox;
a,(s, t) is a sufficiently smooth function defined on SX [0, <°).
Our problem is to obtain u(x, t)EENH(Q))NEHHN(Q))NEHLLQ))?, for
given initial data {u,(x), u,(x)}, the second member f(x, ) and the boundary data
2(s, t), satisfying

@) Li=fxt) in Qx(0,T)
(1.5) i) aw, 0) = w(x), 2L (x, 0) = u,(x)
(i) B(t)u(x, t) =g(s, ) on Sx[0,T).

In the previous paper [3] the boundary condition was taken as o,(s, £)
=<M(s, t), v> and g(s, £)=0. But in our treatment it seems to be difficult to
show the existence of solution without the assumption that the coefficients of the
principal part of L are independent of ¢ on .S or that {A(s, ), v»)=0 on S.

By exchanging the boundary condition as (1.3) (1.4), the existence of solution
can be proved without any additional assumption about L.

Now we state Theorems:

Theorem 1. Given {u,(x), u,(x)} € H(Q)x H'(Q), flx, )eENLXQ)) and
&(s, )eEHYA(S))N EXHLA(S)), if the compatibility condition at t=0, namely

(1.6) ai (%) — (5, 0)uy(2)F-ools, O)uo(%) = g(s, 0) om S

0

is satisfied then there exists one and only one solution u(x, t) of (1.5) such that

u(x, t)e E(H*(Q)) N E(H(Q) N EXLHQ)) -

2) u(x, t)eEF(E) means that u(x, t) is k times continuously differentiable in ¢ as E-valued
function.
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When the coefficients of L are sufficiently smooth the solution %(x, ) becomes
regular according to the regularity of given functions:

Theorem 2. Suppose that the coefficients of L belong to B™*Qx [0, T1)
and
{o(%), w(x); € H™ Q)X H™*(Q)

(1.7) flx, Y E(H™Q)NE(H™ Q)N -
= NEPTHHY(Q)N EFHLAQ))
(1.8) g(s, HECAH™(S)) N EXH™ (S))N -+

N EPHM(S)) N EP(LHS))

then if the compatibility condition of order m® is satisfied the solution u(x, t) of
(1.5) satisfies

(1.9) u(x, )€ E(H™ Q)N EH™ Q)N -
e N EMIHNQ)) N EPHIAQ)) -

We treat this problem as the following equivalent system

(1.10) 7“% U(t) = AU+ F()
(1.11) BEUE) = g(s, 1)
o) =U,,
where
[ u(x, 2) B 0

00 =y ] FO= )

and
0 1
A0 = [—az(x, t:D) —ay(x, t:D)J

the operator from H*(Q)x H'(Q) into H'(Q)X L Q) and
N
B(t) = [6_m+az(s, N e ]

the operator from H?*(Q)x H'(Q) into H'*(SS).

In our treatment, the energy inequality for the solution with non zero
boundary data plays an essential role. The L’-estimate of the solution by the
boundary data has not been derived excepting the case of two independent
variables [12].

3) This condition is stated in Section 5.
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In Appendix it is seen that the condition (1.3) is necessary to hold Theorem
1 and the energy inequality (3.2) simultaneously.

Our method to prove Theorem 1 is as follows: at first we show Theorem
1 when the coefficients of L are independent of ¢, then in general case we make
use of the method of Cauchy’s polygonal line. The proof of Theorem 2 is
essentially same as the proof of the regularity of the solution in the previous
paper.

The author wishes to express his sincere gratitude to Professor S. Mizohata
for his many invaluable suggestions. He also wishes to thank Professor M.
Yamaguti and Professor H. Tanabe for their kind advices and continuous
encouragement.

2. Notations and lemmas

In this section we introduce some norms in the spaces H'(Q)x L*Q) and
H*Q)x H'(Q), and show some basic properties of _A(t) and (), because
for our treatment it is convenient to make use some of suitable norms attached to
the operators (A(¢) and B(¢).

We denote by E; (i=1, 2, 3,--+) the space H(Q)x H*7(Q2) whose norm
is denoted by [{]-|[];, i. €.

(2-1) U} = ”ullf,chm‘FH‘?JH?—LL%Q)
for U={u, v}€H(Q)x H'"'(Q).

Let us remark that

<,-:Z-':,(“i,-(x, t)g—;’ E?—oz.>+(u, u)>1/2

gives an equivalent norm in H'(Q) from the condition (1.2).
Denote by 4(¢) the space H'(Q)x L*Q) equipped with the following
norm, which is equivalent to |||- |||,

sty = e ou ou
2.2) 1010 = (U, D)o =2 (a5 )
+(u, u)+(v, v)
for U={u, v} H'(Q)X L¥(Q).

Lemma 2.1. There exists a constant M>0 such that for all UEE,
(2.3) ]‘i/llllUl||§<IIJ(t)UIIZJt(t)+I|Ullz‘ﬂto)+<~@(1)U>21/2<MH|UIII%

where -, denotes the norm of the space H'*(S).
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Proof. It is easily seen that || A(t)U||s) and {B(t)U,, are bounded
by const. |||U]||,, then it is enough to show only the left-hand side inequality
of (2.3).

In order to drive this enequality we make use of the well known apriori
estimate concerning the elliptic operator a,(x, ¢t : D)

2.4) 0 <Kl 2= DY+ Py ).
Let us put A(t)U=F={f, g}, this means

(o

—au—av=4g,
from which it follows immediately that

au= —g—a,f
U (s, O)f—as, Hut+BE)U .
on,

The application of the estimate (2.4) to the above relation gives

2.5)  ull3 sz <K(lgt+afIP+ullP+<{o f—outBE)U )
<K const. (|| gllP+1If113, 2o+ ullP4+<f v
HCBR)U i +<ud’sse)
<K const. (||F|Pa) | U|Pauty +{ B()U Y, ).

Of course

oll1, 220> = [ flls, o> < const. || F|[gct) .

By combining these estimates the desired inequality follows. Q.E.D.
As the immediate consequence of the above lemma if we define |||U|||.%)
by the relation

(2.5) WUIIFace) = IARUIF sy +1U Py +<BERU Yy

IU|ll.%t) gives an equivalent norm in E,.
9)(t) denotes the subset of E, of all the elements such that B(¢)U=0 on S.

Lemma 2.2. There exists a constant =0 such that for any U € E, the follow-
ing estimate holos
(2.6) (AU, U)oy +(U, ABU )y
<c{(U, U)auy+<Bt)U >,
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Proof. (AU, U)aw+(U, A)U)ae)
= ._ﬁ (at‘j(x) t)‘ai)" 6_”)_{_(‘0, u)—l—(—azu—alv, ‘Z))

i,j=1 6.70; ij

r ou 0v o
+;,,-2=1(aij(x’ t)EJZ’ 5x—j>+(u, v)+(v, —a,u—a,)

by integration by parts

=S v_a._ﬁderS g_uﬂdS—ZSst, »>00dS

s on, s on,

+2Re [(u, (2 bi%+cz,, v>+<< %
— I+1I

Oh; —h)?), 7})]
0x;

I= Ssv- <a—u—o’lv—l—azu)dS—l—Ss<g—u—o—1‘v+azu>'DdS

on, n,

+2{ @—h v)o?as—| (ruotoras
—2 Ressv@—UdSJrst(al—@, »>)|v|?dS—2 Re Ssa'zui)dS
since a,(s, £)—<h, VO —E,
<2 ReSSvEUdS—zeogswvds—z Resso-zu-vdS

< eogslvlzdSJrEIZSSL@UlzdS—ZEOSS]ledS
+eogslv|2ds+glgs|azu|2ds

. 1 g 2 2
_ .g_o[gslgam as+{ |oul*as|

<const. [KBUY+||U|Ps)] -
Evidently

| 1| <2|{ul| ||v}[-+const. |{ull, ||v]|+const. ||2]|*
< const. (||u||3-+]||9][*)<const. [|U|[>.9¢t) .

From these estimates for I and II, we obtain the inequality (2.6). Q.E.D.
Corollary. For all U< 9)(t) we have

2.7) M= AUty >~ Ul ey

if A>c.
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Proof. |[|{(AM—A@)U s
= ((AM—A@))U, W—A@)U).a)
>NNUIP gty =AU, U)aery+(U, A@)U).aun}
from (2.6) and B(2)U=0
>N U|Pacey —en| U )
= W—c)|UIPaey +cn—e)|U P gue) .
Thus (2.7) is obtained. Q.E.D.

Lemma 2.3. There exists a constant N,>0 such that for any A>\,
M—A(t) is a bijective mapping from D(t) onto H(t). And if we denote by
(WI—A(2))™" the inverse of the above mapping the following estimate holds:

(2.8) O = ) oy < 17\ .

AL
Proof. Consider an equation in U
(2.9) M- A)YU=F, Ucs9t), FeI().
Namely
Au—o =f
aut+N+a)v=g,

where fe H'(Q), g=L*Q). The substitution of the first relation into the
second gives

(2.10) au=(a,+ra,+2\)u = Z+a)f+geL*(Q),
and since BU=0, u satisfies the boundary condition
2.11) U outou— —af.

on,

Conversely, if ue H?*(Q) satisfies (2.10) and (2.11), by defining v=Au—f,
we see that U={u, v} is the solution of (2.9).

Hence the solvability of (2.9) means the existence of the solution u= H*(Q)
of the boundary value problem of the elliptic equation containing the parameter

(2.12) au=_f in Q
2.13) <aln,_)“"+”2)” — —oh on S

for any fe L*(Q) and he H'(Q). To prove this, consider the quadratic form for
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P, yEH(Q)

R o0p Oy
2.14) ax(@, V) _Mgl(a.- (%, 1) ox,’ %)

(0w 0224, )9, v)

0x;
(2 gj )+ — 2 ai i )+ (hp, )}

+X (o, ‘l’)+7\‘Ss(<h) vy—a,)pPrdS+ Ssaz¢‘pd‘s .
By taking account of (1.2) and (1.3), it follows for x>0

215)  Realp, 9)>d3) ”%x’i\l — il

26 p17as—| alplras-nialr,
then for some constant A,>0 if A>2, we have

Re ax(?’; ¢)>d”¢ll¥,L2(Q) ’

which assures the existence of the solution u= H*(Q) of the variational equation

(2.16) a(u, 9) = (f, <p)—gsa,h¢-a dS Ve HY(Q)

for any feL*Q), he H'(Q). This shows that u satisfies (2.12) in the sense
of 9'(Q). Moreover with the aid of the theory of the regularity we see
ue H*(Q), which implies u is the solution of (2.12) and (2.13), therefore the sol-
vability (2.9) is shown.

The last part of Lemma is led immediately by combining the solvability of
(2.9) and the corollary of the previous lemma. Q.E.D.

Lemma 2.4. Let t, be any fixed point in [0, T]. Suppose that F(t)e
D(t,) for all t=([0, T] and F(t), A(t,)F(t) are continuous in 9i(t,), then for any
U,= D(t,) there exists one and only one solution of the equation

4 Uty = ) U@+ F(2)
(2.17) dt
U©) = U,

such that U(t)eD(t,) for all t<[0, T] and U(t)= Ei(I((1,)).

Proof. This is an immediate consequence of the application of Hille-
Yosida’s theorem to the operator _A(%,) in (). In virture of Lemma 2.3 it
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suffices to show only that 9)(z,) is dense in %(z,). And this follows from (AJ
—A(t,)) " J(t,)=D(t,) and (2.6)". Q.E.D.

3. Energy inequality

We derive the energy inequality for the solution with non-homogeneous
boundary condition. This inequality plays an essential role in the proof of
the existence of the solution since even for the zero boundary data if the coeffici-
ents of the principal part of L depend on ¢ on the boundary S, our proof needs
the existence of the solution for non-zero boundary data related to the equation
with coeflicients independent of .

At first we show the following inequality

Lemma 3.1. Let u(x, t)eEYH(Q))NEHH Q)N EXLHQ))
and Llu(x, t)] = f(x, t)
B(tyu(x, t) = (s, 2) ,

then the inequality
(3.1) IUIFs2ct <1 UO)Psecor+ N1 few, Tl de
e <ats, m)>ar)

holds where U(t)={u(x, t), u'(x, t)}.

Proof. j—tHU(t)HZﬂ(t):(U'(t), U(t)) ey +(UQ@), U'(8)aco
+(U(#), U(®))sict)
= (AU, U#) s +UE), ABU@)a
F(E(H), U@)).sect+(UQ), F(t)) sy +(U(R), U@))sice

where

(U, U)sicry =3 (aé;(x, t)g—‘i, ﬂ)

i,j=1 x; 0x;
for U={u, v} = 9(t). Evidently

[(U(2), U(t))sict) | <const. ||U(2)| ) -
And
[(U®), F#) ey | <IF@I ey U@t -

Then by using the inequality (2.6) for U(t) and the above two estimates, we get

4) See T. Kato, Perturbation theory of linear operator, Springer (1966), page 277.
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U@ <TI0+ BOUEIHIFDIF 3t
from which it follows
U)o <e [N VO) s+ < BV dt
+{ PP dr]

Since || F(T)|I>.9c¢cy=I1f(, 7)I|* and B()U(t) = g(s,t) (3.1) is shown. Q.E.D.

Now we prove the desired energy inequality

Proposition 3.1. Let u(x, t)eEAH(Q)) N EXH Q)N ELXQ)) for te
[0, T+8,] (8>0). If

Llu(x, 8)] = f(x, )€ E(LH(Q))
B(t)u(x, t) = g(s, )€ ELH™(S)) N EWLX(S)),

then the energy inequality

(3.2) (e, D13, 2200+ 110" (x, DIIT L2cor+-110"(x, )l E2c0
< o(T)[lu(x, 013, L2+ 12" (x, O)IE, L2co>

1, Ot 117 mPdr{ <g'(s, 7ypar
+ sup <g(s, Tl
holds for t<[0, T], where c(T) does not depend on u(x, t).
Proof. Assume that
W/, HEENH Q)N EXHY Q)N EHLHQ)
Then U(t) satisfies
2 U@ = AU O+ A OUO+F )
BOU'W) = B OUR+¢6. 1)
Now by applying (3.1) for U'(t) we have

1@ty <e [T O) sty -+ [ 1A U + /(o) acerd

—l—cS:(—_@'(T) U(T)+g'(s, 7))*dT] .

Remark that
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AUty = llay'(x, 2: D), )+a(, £: D), Dl
< const. ([lu(, )If,z2o+ 1/ (%, DI, c2e)
= const. |||U()|||3

(B U@ — <(5’f’n_>’u(x, D=0,/ (s, u'(s, )+, (s, D, )

< const. (||u(x, £)/13 2o+ 11u'(x, B3, 220)
= COI]Stl“U(t)”lg )

and
U (0)P4c0) = [|A0)U(0)+F(0)]*910)
L2(|[AO)UO0)I1P 0y +I1F(0) | *.9¢(0))
<const. ([||UO)I[Z-+I1f(x, 0)|*) -

Thus we get for some constant ¢,>0, which is independent of u,
(3.3) 1T @)1ty < e [ITUO)E+11 /(x, O)lI72c
t
+ [, T+ i dr

+ [ UTEIE+<g s, 7 ar]
From inequality (2.3)

U@+ U @I 9ty <M NA@ U@ gty + N U@ 9t
HBOUE 1T (@) Py
= M{||U' (&)= F@)IF )+ 11 U@ 90ty +<BE)U(E))1,7}
HIU'@IF sy
SEMAD{IU' @)IPgecery +ITU@I P gty + 1 @)1+ glsy )1

by inserting the estimates (3.1) and (3.3)
<@M+1)ce IO+ I/O)F
+{ @@ art | NUEiE+<e s 7>} dr
HITOIFswor+{ 1176 medr+{ <gts, 7>
HIADI+< 05 s
And by using the obvious estimates
1, D <2T(UA O+ I1F @, 7))
Cals, 9 <2TCgls, 07+ <g'(s, m*a).
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the following inequality holds for some constant c,’
NTIBHIT Ol ace
< IIUOE+IAOIF+ 1 @ MiFdr+ <g'ts,
+ sup g(s, us+ | IIUE)IIEar]

for all t<[0, T7.
At this point we make use of the following Lemma:

Lemma. Let v(t) and p(t) be defined on [0, a] (a>0) and non-negative.

v(t) is summable on [0, a] and p(t) is non-decreasing, and
t
7(t) <c| v(s) ds+pt)
holds for all t< [0, a], then we get
v(t)<e“p(t) .
Then (3.2) is led by applying Lemma by taking as
v(&) = IIU@NE+HNU @I 2w
t
p(t) = Cl'[HIU(O)Illi-l—Ilf(0)||2+gollf'(x, ) dr
t
+ <6, sup Cats, T,

here we take ¢(7') as ¢’

If

To remove the additional assumption that »’(x, t) is again in EY(H*(Q))N
EXH(Q))N EXL(Q)), we use the mollifier with respect to #, which is the
following one: Let ¢(#) be C*-function with a support contained in [—2, —1]

such that @(2)>0 and sm @(t)dt=1. Then we define @43, by

s, 1) = (pactu)(, 1) = S%(t_r) w(x, T)dr

for u(x, t)e L*(Q2x (0, T4-3,)), where

Pu(t) = %?’(é) :

Remark that uy(x, 1) E7(LY(Q)) and @g, commutes with —:T if :<J0, T

and 0<8<%.
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Applying @y, to (1.1) and (1.4), we get

(3.4) Llu;] = f;—Csu
(3.5) B(t)us = gs—T'su
where

(Csu)(x, t) = [Pschr, ar(x, tiD)]z—;l—%—[cps(:), a,(x, t:D)]u

(Tsu)(x, 1) = [@ach, 0 Ju—[psts, a(s, t)]%

on,
+[@scky, ou(S, t)]u

for all 2 [0, T7 if 0<a<%.

Since uy(x, 1)eE7(H*(Q)), we can apply the just obtained result for
us(x, t) then
(3.6) Ilaes(e, I3+ 1ots (o, E)] 12+ 5" (%, 2)II?
<o(T)[llus(x, O)I3+Ius'(x, O)IF+I1fs(x, O)II*

+ 1w, i, O

—}—g:”—a—a_r—(csu)(x, 7) ‘ZdT—I—S:(gS’(s, 7)Y dT

.. (t/ 8 .
- sup gl D+ | (o (Ta)(s, )t
+ sup (Ta)(s, i |
<7<t
Evidently we have for all t=[0, T

[lus(x, O, — [lu(x, D),
[as" (2, )1, = " (x, 2l
[lees" (%, DI — |[u"(x, D)
1 fs' (e, DIl — 11f"(x, DI
1fs(x, DIl — [1f(x, D)l
gs'(s, 1> —{g'(s, t)>
<gs(8, e = <g(8, e

when § tends to zero. Moreover we have
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[1(Csu)(x, 0)I] — O
[/l -canm )

oll 0T s l
029£T<(P8u)(5’ T)>1/22 -0

S:(% (Tu)(s, 7)> d7 — 0

2
dr— 0

3.7)

when § tends to zero. To show the second, in the view of the explicit form
of Ciu, it is enough to show the following fact: Let a(x, t)e F*(Q X [0, T+435,])
and o(x, t)e L*(QX[0, T+3,)).

Then by putting

V(s ) = -2 {fpuc, als, D]o(x, 1)
we have

[, It e — 0

when §—0. From
Ps(x, 1) = SaiT{%(t—T)[a(x, ) —a(x, ]} [o(x, 7)—o(x, £)]dr

+S¢5(t——r)[a(x, ) —a(x, 1)]o(x, 7)dr

the desired property of r; is led. The first one can be shown more easily.
Thus the passage to the limit of (3.6) when 8—0 proves Proposition.
Q.E.D.

4. Existence of the solution (Proof of Theorem 1)

In the case where the coefficients of L depend on ¢, we use the method of
Cauchy’s polygonal line®, for which it is need of the existence and a certain
estimate of the solution for non zero boundary data in the case where the coeffici-
ents are independent of ¢.

Let us denote by L(¢,) and B(Z,) the operators

0? 0
L(t,) = ﬁﬁ—ao(x, tO:D)g—}—az(x, t,: D)

B(t,) = i_o-l(s) t,) 0

s 1
on,, ar o5 )

5) See, for example, Mizohata [8] Chapter 6.
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respectively. Now we shall treat the existence of the solution for L(#,) and
B(t,).

Proposition 4.1. Given {u,x), u,(x)} €E,, f(x, t)eEHL*(Q)) and g(s, ) E
EUHH(S))N EFL(S)), if the compatibility condition at t=0

0
on,

0

(4.1) uy(x)—0o (s, L) u(x)+oy(s, t)u(x) =g(s,0) on S

is satisfied there exists one and only one solution u(x, t) of the mixed problem

L), 0] = fv, ) in Qx(0, T)
B(t,)u(x, t) = g(s, t) on Sx[0, T)

(e, 0) = o), 2 (v, 0) = 1,(v)

(4.2)

such that u(x, )€ EYHHQ))N ENH(Q)) N EXLHAY).

Proof. When g(s, )=0, (4.1) means {u,(x), u,(x)} €D(t,). Thenif f(x, t)E
EUD12(Q)), Lemma 2.4 assures the existence of solution U(#) of (2.17), thus
u(x, t) the first component of U(%) is a solution of (4.2) in E}(H'(Q))N EHLX(Q))
and u(x, t)e H*Q). We can see that U(t)eE)(E,) from

ui)ea(t,),

AV = -2 U0 —F () =€)

and by using the inequality (2.3), thus u(x, t)=EYH?*(Q)) is shown. The con-
dition f(x, t)=E£Y(D12(Q)) is removed with the aid of the fact that £}(D}12(Q))
is dense in &}(L*(2)) and the energy inequality (3.2).
When g(s, #)50, at first assume that g(s, t) is sufficiently smooth, then we
can construct a function w(x, t)e}(H?*(Q)) such that
B(t,)w(, ) — g(s, 1) -
Then the obtained result assures the existence of a function
o(x, )EEYHX Q)N ELH(Q)) N EHLH L))
satisfying
L(t,)[o(x, )] = f(x, )—L(t:)[w(x, 7)]
v(x, 0) = uy(x)—w(x, 0)
B 0) = ()~ (2, 0)

B(t,))v(x, t) =0



354 M. Ixawa

since {u,—w(x, 0), 1,—w'(x, O} € D(t), f(x, 6)— L{ts)[wo(x, )| € ENLAQ)). Thus
u(x, t)=2v(x, )+w(x, 1)EEYHY Q)N EXH Q)N EHLXQ)) is a solution of the
mixed problem (4.2). Then if we know the existence of a sequence of initial
data {ue(x), uu(x)} EE, and sufficiently smooth boundary data g(s, £) such that

(4.3) B(t:){uro(x), up(%)} = (s, 0)
(44) {uro(®), wn(%); = {uo(x), w(x)}  in E,
(4.5) g5, t) = g(s, 1) in EYHYH(S))N E(LA(S)),

Proposition is proved. Indeed u,(x, ¢) the solution of (4.2) for {ug(x), ()}
and g,(s, ) exists and the sequence u,(x, t) (k=1, 2,--) is a Cauchy sequence in
EAHY Q)N EHH(Q)) N EHL¥LQ)), this is seen by applying (3.2) for wu.(x, t)
—u,(x, £). Then the limit of u(x, £) is the required solution of (4.2) for
{uo(x)’ ul(x)} and g(s, ?). '

Now let us show the existence of such {u,(x), u,:(x)} and gg(s, t). Since
sufficiently smooth functions in &}(H"*(S)) are dense in EY(H*(S))N E(LA(S)),
there exists a sequence g(s, ¢) of sufficiently smooth functions in E}(H'*(S))
which tends to g(s, t) in EYHY*(S))N EH(L*(S)). Of course

(4.6) < gw(s, 0)—g(s, 0>, = 0 when k— oo,

If Q is the interior of S the boundary value problem

(ax(x, t;: D)+Ng)u =0 in Q
4.7) {

(%to—ko-z(s, 0))u —gq(s) on S

has a unique solution u= H?*(Q) for any ¢(s)e H'*(S) for a large X,>0 and
the following estimates holds

(4-8) ||u||§,1.2(m <K<9(3‘)>l/22 .

Then if we take wuyo=u,(x)+,(x), up(x)=u,(x), where #,(x) is the solution
of (4.7) for taking q(s)=g.(s, 0)—g(s, 0), they are the required ones, for (4.4)
follows from

lutgo(26) —so(2)1 12, 2000 <KL ga(s, 0)—8(s5 O)1re”

and (4.3) and (4.5) are evident.

When Q is the exterior of S, let S, be a sufficiently smooth hypersurface
containing S in its interior and denote by Q, the domain surrounded by S and
S,. a(x)be a C~-function such that a(x)=1 near S and a(x)=0 near and out-
side of S;. Consider
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(—ay(x, t,:D)+Np)u =0 in Q,
<—a_+a'z(s’ to))“ = ¢(s) on S
on,, -

0
\ (ﬁro_l_%(s’ t,,))u =0 on S,
instead of (4.7). Then we have

[ullZ, L2cap <KLg(s)ure

therefore
||0cu||§_Lz(mgK'<q(s)>1/22 .
Hence ugo(X)=1u,(x)+ (), (x)
U (%) = uy(%)
are the required ones. Thus Proposition is proved. Q.E.D.

Proposition 4.2. Let u(x, t)eEYWH Q) N EFH(Q))N EYLHQ)) for t=t,.
1If
L(t,)[u(x, )] = flx, ) EYD12(Q))
B(t,)u(x, t) = g(s, yeE(H(S)),

then for t>1, the estimate

t
(4.8) TN sate) < e[| Ut st + S MEENF g0y dr

t
+a [ Kels, Pt (s O]
0
holds where c,, ¢, do not depend on u and t,.

Proof. Apply Lemma 3.1 to this case taking as ¢t=¢, being an initial plane.
Here the coefficients of the operators are independent of . We have

(4.9) Tty <e WU oo+ I de
+af <ats, ).
Now suppose that '(x, £) is also in SY(H*Q))N EXH(Q))N EXLXQ)). Then
AU = -5-UO—F)=ENE) N EUE)
BENA)UE) = B(6)(-2-Ue)—F ()

= B(t)(-4- v0) =L Bty U = ¢/ ),
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since F(t) 9(t,) forall t. By applying again Lemma 3.1 for JA(t,) U(t) it follows
that

(#10) I AEU@OIFse < AU s
+ ] I FE s drt <g'(s, 1) dr].
U = IUOIFEse+ AT+ B VO
by inserting (4.9) and (4.10)
<e O Ut + 1AL U@ e
+ [ EEIPact drt- I dr

o <ats, rar+af gl rar
BN Ut —< Bt Ut < BN Ui
= e U+ || IFEIRsy dr

+af, <ats, > artaf <o mrar
+<g(s, )i —< &S, t)>1r’] -
And <g(5» t)>1/22_<g (31 to)>1/22

t 4 .
= S —<g($, T)>1/z dr
ty dr

— S 24 g(s, )1l E'(S, TDudr

< { Kelss ow+<e (s owhdr

Then if we take ¢,=>¢,+1, (4.8) follows.
To remove the additional condition that

u'(x, )EEUH Q)N EH Q)N EHLA(Q))

we make use of the mollifier as used in the proof of Proposition 3.1 and by taking
account of the fact @y, commutes with L(z,), B(¢,), the proof will be carried
out without any difficulty.

Hereafter we denote {g(s, 7)), +<g'(s, ™))" by <L g(s, 7)>%

Lemma 4.1. There exists a constant ¢,>0 such that for any t, t'€[0, T]
and UEE, the following estimate

(4.11) NUPgey <(1H4-co| t—t" DIN U9t
holds.
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Proof. Remark that for all U€E,
(4.12) NUIPawe) <(1+¢," | t—t DI U
holds since

11 scr—N1U sty = 33 (s, )=y, )

<const. |'—¢| «|ul[} L2
<const. |t'—¢|-||U|Pac) -
MUNPawy = NUIPse)+ 1A YU Py +<BEYU D
S(+e' [ =t)UIPa HIAR)VUIPs ) +<BE)UD,")
<(I+c" | =tD)UPae AR Uity +<BEU D"
F2ARU oo l(AR) =A@ Ullace
HI(AR) =AU Pty + 2 BEYU DL (B(E)—BE) U v
H(B(E)—BB) U,
ST+ —=tDINUNPxe +e" |t =t U
+e? |t =t ||UNPsece)}

Ou iu_)
ox;’ 0x;

here we used the estimates

I(A@) =AUy <const. [t'—2 ||| U3
<const. M|¢'—t|*|[| Ul
(B(E')—BB)U >y, <conmst. |t'—2 ||| U]l sc) -
Thus we get (4.11) by taking c,=c,"+2(c,"T)%. Q.E.D.
Under these preparations we prove the existence of the solution for zero

initial data.
Suppose that

f(x, )eEHD1AQ))
o(s, S ENH(S))
8(5,0)=0.
Let
Apity=0<t,<t,<--<ty=T
be the subdivision of [0, 7] into k equal parts. u,(x, t)is the Cauchy’s polygonal

line for this subdivision, which is constructed as follows:
Let u,(x, t), defined for t<([t,, ¢,], be the solution of

L(to)[uko(x’ t)] =f(x’ t) in QX(t, tx]
B(t,) u(, t) = g(s, t) on SX[t, ]

uko(xv to) = u;eo(x: to) =0,
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and for 7>1 wu,,(x, ), defined for t<[t;, ¢;,,], be the solution of
L(t)[uri(, t)] = f(x, 1) in QX(t, ti,]
B, 1) = 6, O+ [(B(E) — Bt s e-s
Upi(%, 1) = ug;_ (%, t;)

whi(%, 2;) = uh; (%, 1) .
Then u,(x, t) is defined for t[0, T] by
up(x, t) = up;(x, t) if te(t, ti]-

The existence of such u(x, ¢) (/=0, 1,---, k—1) is assured by Proposition 4.1,
since the compatibility condition (4.1) is satisfied at each ;. Consequently we
find

w(x, )EE(HNQ)NEYH'(Q))  for te[0, T]
and
up(x, 1) EHLNQ)) if tt;,

from which it follows that
ui(x, )e H*(Q X (0, T)) .

Now we shall show that for some constant K>0

(4.13) ||ue(x, t)”z,Lz(nxCo,T))<K
holds for all k. Let

Up; = {uki(x’ 1), Whi(, t)} .

We get
(414) B uplx, 1> <2Lgls, 1) o+ const. (|| Une_ (8| Pances
if t=£¢; by combining these estimates

<B(ti)ul¢i(x’ t)>1/22<2<g(51 t)>1/22+2<(~@(ti)_-@(ti—1)) Uki—l(tt')>1/22

<2 g(s, Oy’ tconst. |t —2; P U sy (8N I102)?
<B(ti) u;ei(x’ t)>1/zz<2<g,(s’ t)>1/22+ﬁ<(-@(ti)_ﬁ(ti—x)) Uki-1(ti)>1/22
<2<g'(5‘, t)>1/22+COI‘lSt. ”[Uki—x(ti)”lz-ﬂ(t-‘) *

In order to derive (4.13) we shall show the following:
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(415) UMy <e(14+a )

t t
<[P acydr+ (26 < gts. 7y >dr]

for te[t;, t;4,] (=0, 1, 2 .., k—1). For i=0, this is nothing but the inequality
(4.8). Suppose that (4.15) holds for —1, then by taking ¢ as #;, it follows

(416) Uk @lPs-p <e(14e )

i, t
x[(reir s drt+26( < g6s, ry>rar]
And
(4.17) NU k@1t = Ui (81125008
by (4.11)
T :
<14 ) Vs (tIPsce -

by using (4.16)
T 34-2 t'. t’.
<et(1ab) T MF@IRae a2 < g 7) >ar |
k 0 0
by using again (4.11)
-1t t;
<ei(1te D) T [HIF@IRae dr+26 < g6, 1) >2dr |
k 0 0
Taking account of (4.14) the application (4.8) to U,; gives
t
TP sce <e=**o| Tt Esce+ [, NF@IIP ey dr
t
+26 {<gl >+ NUnteIPaceo) dr |
- 2¢,c"T
cCt=tp 1 CATNY )
<ee o] (14255 D) Uik
t t
+{ Felrae dr2a] <, m)>0ar]

by (4.17)

AT PR ar+ (20 g5, 1y >7ar)
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t t
+ FEIacy e+ 26« g6, 7 >0dr]

<e (18T I PR aco dr+26] < gls, 1) >7dr]

Hence by the mathematical induction (4.15) is proved. From (4.15) by using
(2.3), there exists M”>0 such that

(+18) IU@IE<M [ IF@IRdr+ | < g5, 7)>*dr]

holds for t&[0, T], where M" is independent of %, f(x, ¢) and g(s, t), and since
f |2
(4.19) | U] <const- QUL+ IIFON

holds excepting ¢=¢;. By combining (4.18) and (4.19), (4.13) is shown.

Thus {u,(x, t)} (k=1, 2, ---) is a bounded set in H*Q X (0, T')), consequently
weakly compact. Therefore there exists a subsequence &, (p=1, 2, -+-) of k
and u(x, t)e H*Q X (0, T)) such that

u/,)

— u weakly in H¥(Q X (0, T))
when p increases infinitely. It is easily seen that u(x, t) satisfies

(4.20) Lu(x, t)] = f(x, t) in the sense of 9'(Qx (0, T))
(4.21) B(t)u(x, t) = g(s, t) in the sense of H'*(Sx (0, T)).
Since (4.20) is shown by the same observation as that of Cauchy problem, we only

show (4.21).
The mapping

H(Qx (0, T))2w — B(t)we H(Sx (0, T))

is strongly continuous, then the weak convergence of u,, to u in H*(QX (0, T))
implies that B(t)u,, converges to B(f)u weakly in H'*(Sx(0, T)). On the
other hand from

T 2
Bty (%, £)—g(s, )>° <const. (k_)
»
we see B(t)u, (x, t) converges strongly to g(s, #) in L*(Sx (0, T)). Thus we get
(4.21).
Remark that for some M’
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® J
(4.22) = (i) (_6_> u(x, ?)
i+]al<? ox ot

holds since from (4.18) we have for all 2
<_§_)“ _Q_)juk(x,t)z

0x ot L@ xCo,m

V(5w

Now we prove that u(x, t) is the solution of (1.5) in

EAH Q) NEHH Q)N EHLHQ))

2
<M'r?
LZ@x(o,m

i+lal<2
J<1

2

dt<M't?

L%

J'+,Ia|<ZSo
J<l1

by exchanging the values of u(x, ¢) on a set measure 0 if necessary.

Put
uy(x, t) = (pacue)(x, 1) EET(HYQ))
then
(&)=l S Yn 612
for te[0, T—3,] if 0<a<§2-e.
We get
(4.23) u(x, 0) >0 in HQ)
(4.24) w'(% 0)— 0 in H'(Q)

when §—0. Indeed, (4.22) means
NEIEEE

n (%—)jus(x, 0)
<<S‘Pa(_’f)

< ps(—ndr-[pu(—)

2

d<M't (j=0,1),

2-7, L%
then

2 2
2

S cp,,-(—-r)(—a%)j u(x, 7)dr

Il 2
d-r)
2—j, L%

2

-5 LA . 2-7, LA

(s
(2o
(—:T—)] u(x, ) I dr
<const. M'.§,

this shows (4.23) and (4.24).

dr

27 L@

1 28|
< const, — S
S Js

\z—j,zﬁcm
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Applying @,:, to both sides of (4.20) and (4.21) we get

Lluy(x, 2)] = fo(x, )—(Cau)(, 2)
B(t)us(x, 1) = ga(x, t)—(Tste)(, 1)

and if 0<8<§2‘l swhen &[0, T—§,] Csu has the form

> [packy ag;(x t)](—é)—)a( 9 )ju

1@+ j<z2 ox/ \'ot
By applying (3.2) to uy(x, t)—us(x, ) it follows

(4.25)  lus(t) —ug (2134 1us"(£) — g/ (O 3+ | (£) — ez (D) ?
<e(T)[|[u5(0) —uy(0)| 13+ 125" (0) — 2y "(O)| |3

HIAO = O+ 1146, D—Firw, D dr

+{ <as'(e, g, 7 dr-+ sup el T)—ge (e DS
+I(Cae)e, 0)—(Cra)e, O+

+IE Caer, D=2 (Coupt, e

+[ (2 e, (-2 ), ) dr

+ sup ((Ta)(s, 7)—(Tw)(s ] -

Recall that (3.7) holds for any u(x, t)e H*(Q x (0, T)). Then by using
(3.7), (4.23) and (4.24) we find that the right-hand side of (4.25) tends to zero
when §, 8’ tend to zero. This implies u4(x, ) is a Cauchy sequence in
EAH Q)N EHHN(Q))N EHLA(Q)), therefore the limit wu(x, #) is also in
EUHH Q)N EHHHQ))N EHLXHQ)). Evidently u(x, 0)=u'(x, 0)=0. Thus we
get

Lemma 4.2. Given f(x, t)eEH(Dr(Q)) and g(s, t)eE(H(S)), if
2(s, 0)=0, the mixed problem

Llu(x, )] = f(x, 1)
B(t)u(x, t) = &(s, 1)
ou
,0)=—"(x,0)=0
u(z, 0) = 2% 5, 0
has a unique solution in the space

EAH Q) NEH Q)N EXL(Q)) -
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Lemma 4.2 can be extended for any f(x, {)e&}(L*(Q)) and g(s, t)e
EYH"(S)) N EXL*(S)) such that g(s, 0)=0 if we take account of the fact that
f(x, t) is approximated by functions in £}(D}2(Q)) and g(s, ) by functions in
EH(H'*(S)) vanishing at £=0. Then

Proposition 4.3. Given f(x, t)eE}(LX(Q)) and g(s, t)eEHHA(S))N
EHLAS)), if g(s, 0)=0 the mixed problem (1.5) has a unique solution satisfying

u(x, 0) =u'(x,0)=0
u(x, 1) E(HX Q)N EH Q)N ENL(Q)) -
Now we prove Theorem 1. Assume that
{us(%), u (%)} € HY(Q) X H¥Q)
and the compatibility condition at =0 is satisfied.

Set
w(x, 1) = uy(x)+tu,(x) .

Let o(x, t) be the solution of

Lo(x, 1)] = f(x, )—L[w(x, 1)]
B(t)v(x, t) = g(s, t)— B(t)w(x, t)
o(x, 0) = v'(x, 0)=0.

The existence of such solution is assured by Proposition 4.3 since L[w(x, t)]e
EYLHQ)), B)w(x, t)eEYH*(S)) and

&(s, 0)—[B(&)w(x, t)],—, = g(s, 0)—B(O)U, = 0
Then
u(x, t) = v(x, t)+w(x, t)

is the required solution of Theorem 1. At this point by using again the energy
inequality (3.2) and the density of H*(Q)x H*Q) in H*(Q)x H'(Q) the addi-
tional condition that {u,(x), u,(x)}eH*(Q)x H*Q) is removed. Indeed, for
{uy(x), u,(x)} = H(Q) X H'(Q) we choose {u,,(x), us(x)}=H Q)X H¥(Q) such
that

{uko(x)’ ukx(x)} - {uo(x)’ ul(x)} in Ez
and set

xS, 1) = &(s, 1)+ B(0){uuo(x), usi(%)} —4(s, 0) .

Then g,(s, t) converges to g(s, t) in EAH'7(S))NEHLAS)) and gy, 1)
= B(0){ur,(x), ug,(x)}. The just obtained result assures the existence of the
solution wu,(x, t) for {uy(x), u,(x)} and g,(s, £). It is found that u,(x, t) is a
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Cauchy sequence in EYH*(Q))NENH(Q))NELLAQ)) by applying (3.2) for
uy (%, £)—u,(x, t). Then its limit u(x, #) is the solution for {u,(x),u,(x)} and g(s, t).
Thus the proof is completed.

5. Regularity of the solution (Proof of Theorem 2)

The solution of this problem becomes more regular according to the re-
gularities of the initial data, the second member and the boundary data. Of
course they must satisfy the compatibility condition of higher order because this
equation is hyperbolic. Here we describe the compatibility condition of order m®:
Suppose the given functions are that of Theorem 2. Define \successively u,(x)
(»=2, 3 ,-+-, m+1) by

p—2 i
(5.1) ue) = =% (P %)at* (s, 0:D)u, 4 ()
+ai(x, 0: D)u,_,_,(x)} +f?">(x, 0),
evidently u,(x)€ H™**"#(Q). Then the following relations hold

52 3(2)FPO s, 4, 0} =P 0) for p=0,1,2,m.

At first we prove
(5-3) u(x, e EY(HHQ))N EFHN Q) NETH(LHQ)) -

Consider the solution (x, ) of the problem
. ~ N[ m ~cm-
() LEam(, 0] = — 31 () L@ PG, D4+ (x, 1)
(1) B@)a™(x, t) = — z'j: (Zl) B®(t) 4™ #(x, £)-+g™(s, 1)
(i) a®(x, 0) = u,(x) (p=0,1,2,---,m+41)

The existence of such #(x, t) is shown by the method of successive approximation
with the aid of Theorem 1 and the energy inequality (3.2). Define #(x, t)
(j=1, 2, ---) successively as follows: Let v,(x, t) be the solution

(55) L) = — 33 (W) LPMasm s, 01+ 0
(5.6) B(t)v, = — 31 () BR(asmo s, 0+, 1)
(5.7) (%, 0) = u,,(%), v,'(x, 0) = u,,,,()

6) The condition (1.6) is the compatibility condition of order 0.
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and 7 (x, t) is defined by

%, 1) =u x Uma(¥) 4 (=)0, (0 ydr
G8) ) = ot tu(w)o £t [ G (3,

Here we take

(5.9) (%, 1) = (@) () oo+ = ml)x@ .
Let us see that # (x, £) can be defined successively in EP(H*(Q))N EFH(H(Q))N
EP(LHQ)). When j=1, since #(x, )7 (HQ)), f™(x, )= EH(LA(Q)) and
g£(s, t)eEUH'*(S))N EXLA(S)) it suffices to make sure the compatibility con-
dition of order 0. Indeed, if we take account of (5.9) the compatibility
condition for v,(x, ) is nothing but (5.2) for p=m. Thus the existence v,(x, t)
EUHY Q)N EHHN(Q))N EYLXQ)) is shown, then #,(x, 1)eEP(H(Q)NEP
(H'Q))NEP*(LXQ)). Now suppose that @;_,(x, )eEP(H*(Q))N EFT(H(Q))
NEP(LYQ)). Then the right-hand sides of (5.5) and (5.6) are in &}(L*(Q2))
and EYH(S))N EHLH(S)) respectively, and the compatibility condition of
order m assures the compatibility condition of order 0 for v,(x, t). Thus the
existence of v,(x, t) in EY(H*(Q))N EHH (Q))N EHLHQ)), therefore & ,(x, t) in
EMHQ))NEPTHNQ) N E™HLAQ)) are derived. By the mathematical
induction we see that #,(x, ) can be defined for all j.

Next we show that #,(x, t) is a Causchy sequence in EP(H*(Q))N
EPTH(Q))N EFH(LHQ)). By applying (3.2) for v,,,(x, t)—v,(x, t) it follows

(5.10) 19, 4:(, ©)—2,(x, B)I3+[054.(x, 8)—2;" (%, DI
+||'U/j/+1(x» t)_'vj”(x) t)llz

<D Z () EPlas = -2, D)l

112 () o Er @ ) —aiw D) s
B () g B = )= s

+ SE£,< 2 (:’)B(k)('r){u”" P(x, 7)— A%, 7))y
for j=1,2,3,-.-

Remark that if k<m-+1—1

to(f__\mAl-k—i
5P (x, 1) —as2y(x, 1) = So_—(gfz—l—?—k—i)!{v?_”(x’ 7)—v3E3(x, 7)) dr

and
u(m+2 t)(x t) u(m+2 i)(x’ )_ v<z l)(x t)_v(z l)( s t).
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Then we find if k<m+1—1

~ ~ t
|15 (%, ) —a§2,(x, 2)|| < const. IS o5~ (%, 7)—v55°(, 7l dr|®
o

t N
<eonst. T [lo=* (x, r)—of25"(x, )l dr
[
and
”df,"'”"”(x, t)—ﬁf,':‘{z"”(x, t)“%

= [[9f#=0(x, ) —0f350(=, 2|1 -
From these estimates (5.10) is led to
0;4(% 1) —=2;(%, DIE+[v]4(%, O)—2, (%, DI
oy, £)—o; (% DI
<const. | o, (x, 7)—o,.,(x, DE+lo, (% ) —h (s DI
o5 (% 7)—v)_i(x, 7)]dT,

from which it follows that

S 110, (s =05, DI+ 0a(r £)—,'(, 2

” / = KT)/

Flihts 0, (5 Dl < T KLY
for all t€[0, T]. This assures the convergence of v;(x, t) in EYH*Q))N
EHH Q)N EYL*Q)), therefore that of & ,(x, ) in EP(H*(Q))NEF(H(Q))N
EP*(L*(Q)). Then the limit of 7 ,(x, t), which is denoted by #(x, ?), is the
solution of (5.4). 'This is derived by the passage to the limit of (5.5) and (5.6)

and the definition of s ,(x, ¢).
(5.5) and (5.6) are

A (L, 0)) = f(w,

(A
4" (Bya(s, 1) = g™(x, 1).
dt

Our definition of #®(x, 0)=u,(x) is taken as

[;}'It—:(L[a(x, t)])] = f®(x, 0) (k=0,1,2,,m)

=0

and the compatibility condition of order 7 means that

[";it:—(B(t) ﬁ(x; t))] = g(k)(s, 0) (k p— O’ 1’ 2 yeeey m) .

t=0
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Thus #(x, t)eEP(H(Q))N EPTHHY(Q))N EPH(LHQ)) is a solution of problem
(1.5). The uniqueness of solution assures (5.3).
To derive the regularity with respect to x, we make use the following Lemma:

Lemma.” Suppose that the coefficients of a,(x, t:D) belong to B**Q X

[0, T1) and

(5.11) wx, HeHP™(Q)  for all t and €EXLHQ))
(5.12) ay(x, t:Dyu(x, t) = q(x, )< E(H?(Q))
(5.13) ainu(x, 1) = 1(s, ) EHHPVA(S))

where p=>0, k=0 then
(5.14) u(x, )eEHH? Q) .

Now let us prove Theorem 2. From (5.3) it follows

(5.15)  ayw, t:D)u(x, t) = — gt u—aI%u+f(x, feer-(H(Q))

(5.16) L, t) = 0, 2% — o ut-g(s )& (H™A(S)) .
on, ot
Of course from these relations u(x, t)e H*(Q) for all ¢, then the application of
Lemma by taking p=1, k=m—1 proves
u(x, t)yeEr(H(Q)) .

If m>1, it turns out the right-hand side of (5.15) €&P-*(H*Q)) and
that of (5.16) e &7 ~*(H*/*(S)) by the just obtained result. And u(x, t)e H*(Q)
holds for all ¢, then by applying Lemma oncemore by taking p=2, k=m—2, we
get
u(x, )T HH(Q)).

Repeating this process step by step, finally Theorem 2 is proved for any m.

Appendix
We show that the condition (1.3) is necessary for the treatment in L*-sense
of the mixed problem with nonhomogeneous boundary condition.
_az—— o and B:i,
ot ox* 0y ox

Let Q={(x, y); x>0, —co<y<<oo}, L=

7) 'This is Lemma 3.5 of our previous paper [3].
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Consider the mixed problem

Llll=0 in Qx(0,T)
(P) [Bu].— = 8(3, 1)
u(w, 3, 0) = 25, 3, 0) = 0.

When g(y, t) is sufficiently smooth and its support is contained in #>§&, the
solution u(x, y, t) of (P) exists uniquely in EY(H*(Q))N EHH (Q)N EHLAH(Q))
and it is also smooth. This is derived from the existence theorem for the
homogeneous boundary condition with the aid of the construction of a sufficiently
smooth function o(x, y, ) such that [Bv],_,=g(y, ). But concerning the
problem (P) the energy inequality of the type (3.2) is never held. We show the
following:

Theorem A. Whatever we choose T and C the following energy inequality

2 2

A1) [, t)nz,fw}laa-“t—(x, 9, )

0%u
— (%, 9,
atz(xy )

2
> ds
L2

X

1, L%

L%

<C{ S:(Hg(y, S)ilﬁ,Lzmer”%~(y, 5)

+ sup |lg(y, s)“%,l.z(ag)}
o<s<t

for all te[0, T
never holds.

At first we note some lemmas without proof.

Lemma A.l. Let k, and k, be constants such that k,>k,>0. Put r=p
+iv. Then for all

neE[n+k, n+2k]
Ve[n_kza n—|—k2]

we have
(A.2) VP2 <eNn e,

where ¢, and c, are positive constants depending on k,, k, and p.

Lemma A.2. Let n be real and Re r>0. For any f(x)eLR,) and g
a complex number, there exists one and only one solution u(x) in H*(R.,) of the boundary
value problem



Mixep PROBLEM FOR HYPERBOLIC EQUATIONS 369

(LYt fu) = fx) - >0

i odx

1 d B
T L =e

and u(x) is given in the form

ei5+ X

A3 u(x) = w(x
(A.3) (%) 8 ~+2(x)

+

where w(x) is the Fourier inverse image of

bE) = L (fe)+p®)

E+r' 47
here pe) = B SO ap

£, (E.) is the square root with positive (negative) imaginary part of —(n*+4-7°).

We prove Theorem A by contradiction. Assume that (A.1) holds for some
C and T. Let k() be a sufficiently smooth function with support contained
in [§, T,] (0<§,<T,<T), and we choose k,>0 as

(A4) S':z |Fle " HOen) *dn > [ e hie) 1 at

holds where v is a fixed positive constant. Next take &, as k,>k,. Let k() be a
sufficiently smooth function whose support contained in [k,, 2k,] and denote its
Fourier inverse image by k(y). Put

&a(y, 1) = e™k(y) e™h(t) ,

evidently g,(y, t)e&7(H(R)).
Denote by u,(x,y, t) the solution of (P) for f=0, g=g,, i.e. u,(x,y, 1)
EYHA Q)N EHH(Q)) N EHLHQY)) satisfies

,<az_62_az

y Y 1 =0
or o ay2>””(xy )

0
Bun(o’ Y ) =gu(y, 1)
X

u,(x, y, 0) = 61;,, (x,9,0)=0.

0

By employing the notations of
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E(t) = llun(, 3, I -+l (5, 3, DIE s+l (5 3, Dl
eu(® = [ U189, 1 20w H124 (3, Dlitza} de
+ 5P [1£a(5, Il 200 »
it follows from (A.1)
(A5) E,()<Cey(t).

Let a(t) be a function in C=(R) such that

1, t<T
a(t):{ °
0, t>T,
where T,<T,'<T. Then
A
A6 (_—__—_) t)un(x, , ¢
(A.6) T P T LOLACER
d
=222 (%, 5, 1L @), 3, )

(A.7) ;—x(a(t)u;(x, ¥ 1) | = at)g(y 1) = (9, )

AO)u(x, 3, 0) = - (@l 3, ) | = 0.
Put
v”(x, B2 t) = a(t)u,,(x, 2 t)
Ful, 3, 1) = 2 % (1) Qna, o, D+ Ou,x 3, 1),

and evidently we have

(A.8) lloa(x, ¥, OlF+1va’ (%, 3, DI+ 1l0a"(x, 3, 2)?]°<const. E,(2)
(Ag) an(x1 B 2) t)”%“‘”fnl(x: Y, t)||2<const. E”(t) .

The equations (A.6) and (A.7) are transformed into the following after Fourier-
Laplace transformation

(F-LY 4y, 1 1) = fuls, 1, )
Lt mn) | = ),

where 7=9+iv. The application of Lemma A.2 for each (9, 7) gives
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(A.10) D (x, m, 7) = etrros ST Loy 0y
lE+(77, )

== v;'l)(x’ Ty T)+wn(x’ 7, T) .
Now

S“ dvr S 7o (x, 7, 7)|2dx

S_wdus_wd - w’ ST + ﬂ | Bn—n) || h(y+i(p—m)) |*

ntk, nt2k, 7[774 - 214 v 2
>S.,_kzd”sn+kl D E T)|n==+72|”3(” m) 1 h(y i —m))|

by using Lemma A.1
ﬂLk))S “Vh(y-+it—m) (" (her—m)*dn

(Cx\/n n+ky
> V] ke

from (A.4) and the choice of £(x)

> Ky e e

Therefore we get for some constant ¢,>0

(A.11) s dus dn | o®(x, 7, 7)|? dx>(61\/n‘+cz)30

And we estimate the second term of (A.10).

(" | an|"_agrve, 2, m1e

2

7
Etrtr

ng | an" ar(n I 1 1 1Y

< su
\ce.’l.")gna

<const. |~ av|" an|" ae(infu(e, m, 1+ 1npe, m, 1.
(" (" an(" aeinpe,n, 217

_ S_wdvs_mdn'n Im E;(’i, 7)|* S_mgf”(? 277;"’2) E‘ S g

<const

8 TS

& n V)ena

= |E— E+(77» T)I

371
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<[ o _anfp IRELDP] ST

- |E—E_(n, T)]
< d
ZS "”S d’?S | nf (&, 7, 7)|2dE .

Then it follows
(A.12) g de dnS dg| 7', (&, 7, T)|*

< const. g dvs d?’/‘S Infu(E, 7, 7)|2dE

o |

[a T3, 1)
<const.{ " (s, 3, Dl dt
I

< const.

<const.\  E,(t)dt<const. e, (T).
And now
o0 o0 T| 5° 2
S dyS de e —uv,(x, y, t)‘ dt
—00 0 6y

= g_ d’?S dx§ | 90 ,(%, 7, 7)|*dv

>S de d"S dx?”’”‘“(x, 0, 7|

—3S a'ns de dx | 7°wa(x, 7, 7)|?
from the estimates (A.11) and (A.12)
n4

e _+¢y—const. e,(T).

( Nn +Cz)3
On the other hand by taking account of (A.5)

[" af ax["len 2 a

< const. S E,(t)ds
0

7 V(% 5 1) ar

<const. Te,(T).

Thus it follows that for some ¢, ¢,
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qell)> T aeedD),

then

(A.13) (es+el) en(T)>(—m 0"

From the definition of g,(y, t) it is easily seen that
e (T)<const. n*.

Then (A.13) leads that it holds for all

n4

e/ntay”

(c;+c,) const. n*>

This is a contradiction. Thus Therem A is proved. Q.E.D.

OsakA UNIVERSITY
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