Saito, T.
Osaka J. Math.
6 (1969), 303-314

ON A LATTICE ORDERED GROUPOID

Dedicated to Professor Keizo Asano for his 60th birthday

Tatsuhiko SAITO

(Received February 27, 1969)

In most cases a multiplicative partially ordered system satisfies the ditributive law: $a(b \cup c)=a b \cup a c$ (e.g. a lo-semigroup of the ideals in a ring, lo-semigroups of the normal subgroups of a group, etc.). But there are more general examples of multiplicative systems in each of which a weak distributive law: $a(b \cup c)=$ $a b \cup a c \cup(a b) c$ is satisfied. The purpose of the present paper is to develop the theory of normal chain and regular union of a partially ordered groupoid satisfying the weak distributive law.

In §1 we define a lattice ordered groupoid with some conditions and define normal elements and a normal closure in this system and give their properties. In §2 we treat a classification of our system M and show that the classified system also satisfies the same conditions for M. In $\S 3$ we define a normal chain in our system and give some results of the chain. In §4 we consider the modularity of our system and give an extension of direct union, called a regular union, and study some results of the union. In $\S 5$ we show that the results of the preceding sections are applicable to the family of subgroups of a group and that of the ideals in commutative ring, and list the applied results.

The author is grateful to Professor K. Murata for his many valuable advices.

1. Definitions and elementary properties

Let M be a non-void set with the following five conditions (M1~M5).
M1. M is a commutative groupoid,
M2. $\quad M$ is a complete (upper and lower) lattice,
M3. $a b \leq a \cup b$ for all $a, b \in M$,
M4. $a(b \cup c)=a b \cup a c \cup(a b) c$, if $b c \leq b$ or $b c \leq c$.
An element b of M is said to be normal with respect to a, or shortly a-normal, if $b a \leq b$. For the greatest element e of M, an e-normal element of M is simply said to be normal. We shall denote by N and N_{a} the set of all normal elements of M and that of all a-normal elements of M respectively.

M5. $(a b) c \leq(b c) a \cup(c a) b$ holds for normal elements a, b and c.

Examples. (1) Let $\mathbb{C} 3$ be a set consisting of subgroups of a group G. Then (5) satisfies the above conditions M1, \cdots, M5 under the commutatorproduct and the set-inclusion ${ }^{1)}$. In this case normal subgroups of G are normal elements of (8).
(2) The set \Re consisting of the subrings of a commutative ring R satisfies the above five conditions under the module-product and the set-inclusion. In this case the multiplication is associative, and every ideal is evidently normal.

We shall list some elementary properties of M.
Proposition 1. (1) $a \leq b$ implies $a c \leq b c$ for all $c \in M$.
(2) ($a b$) $b \leq a b$ for all $a, b \in M$.
(3) $N \subseteq N_{a}$ for every a of M.
(4) $a(b \cup c)=a b \cup a c$, if a is normal and b is c-normal.
(5) $a b \leq a \cap b$ holds for $a, b \in N$.
(6) N is closed under the join, meet and multiplication.

Proof. For (1), since $a b \leq a \cup b=b$ (by M3), by using M4 we have $b c=$ $(a \cup b) c=a c \cup b c \cup(a c) b \geq a c$. For (2), since $b b \leq b \cup b=b$, by using M4 we have $a b=a(b \cup b)=a b \cup a b \cup(a b) b=a b \cup(a b) b$, and hence $a b \geq(a b) b$. For (3), let b be any element of N, then $b \geq b e \geq b a$ (by (1)), hence we have $b \in N_{a}$. For (4), since a is normal, we have $a b \leq a$ (by (3)). Hence ($a b$) $c \leq a c$. Therefore we obtain $a(b \cup c)=a b \cup a c \cup(a b) c=a b \cup a c$. (5) is obvious. For (6), let a and b be any two elements of N. Then we have $e(a \cup b)=e a \cup e b \leq a \cup b$. Hence $a \cup b$ $\in N$. Since $e(a \cap b) \leq e a \leq a$ and similarly $e(a \cap b) \leq b$, we have $e(a \cap b) \leq a \cap b$. Hence $a \cap b \in N$. By using 5 we have $e(a b) \leq(e a) b \cup(e b) a \leq a b \cup a b=a b$. Hence $a b \in N$.

Definition 1. The greatest lower bound of the set $\{x \mid x \geq a, x e \leq x\}$ is called a normal closure of a, and is denoted by \bar{a}.

The normal closure has the following properties.
Proposition 2. (1) \bar{a} is normal, (2) $a \leq \bar{a}$, (3) $a \leq b$ implies $\bar{a} \leq \bar{b}$, (4) $\bar{a}=\bar{a}$, (5) $\overline{a \cup b}=\bar{a} \cup \bar{b}$, (6) $\overline{a b} \leq \bar{a} \bar{b}$.

Proof. For (1), $\bar{a} e=(\inf \{x \mid x \geq a, x e \leq x\}) e \leq \inf \{x e \mid x \geq a, x e \leq x\} \leq$ $\inf \{x \mid x \geq a, x e \leq x\}=\bar{a}$. (2), (3) and (4) are obvious. For (5), since $\bar{a} \cup \bar{b}$ is normal (by Proposition 1 (6)), we have $\overline{\bar{a} \cup \bar{b}}=\bar{a} \cup \bar{b}$ and hence $\overline{a \cup b} \leq \overline{\bar{a} \cup \bar{b}}$ $=\bar{a} \cup \bar{b}$. On the other hand, since $\overline{a \cup b} \geq \bar{a}$ and $\overline{a \cup b} \geq \bar{b}$, we have $\overline{a \cup b} \geq \bar{a} \cup \bar{b}$. Hence we obtain $\overline{a \cup b}=\bar{a} \cup \bar{b}$. For (6), Since $\bar{a} \bar{b}$ is normal (by Proposition 1 (6)), we have $\overline{a b} \leq \overline{\bar{a}} \overline{\bar{b}}=\bar{a} \bar{b}$.

Lemma 1. $a \cup a b$ is b-normal for all $a, b \in M$.

1) See $\S 5$ of this paper.

Proof. By Proposition 1 (2) $a(a b) \leq a b$, and hence we have $b(a \cup a b)=$ $b a \cup b(a b) \cup(a b)(a b)=a b \leq a \cup a b$.

Theorem 1. If $a \cup b=e$, then $a b$ is normal.
Proof. By Lemma $1 b(a \cup a b) \leq a \cup a b$, and hence we have $(a b) e=$ $(a b)(a \cup b)=(a b)(a \cup a b \cup b)=(a b)((a \cup a b) \cup b)=(a b)(a \cup a b) \cup(a b) b \cup((a b)(a \cup a b)) b$. Since $a(a b) \leq a b$, by using M4 we have $(a b)(a \cup a b)=a(a b) \cup(a b)(a b) \cup((a b) a)(a b)$ $\leq a b \cup a b \cup(a b)(a b)=a b$, and hence $((a b)(a \cup a b)) b \leq(a b) b \leq a b$. Therefore we obtain ($a b$) $e \leq a b$.

Theorem 2. $\bar{a}=a \cup$ ae for any $a \in M$.
Proof. Since $a \leq \bar{a}$ and $a e \leq \bar{a} e \leq \bar{a}$, we have $\bar{a} \geq a \cup a e$. On the other hand, by Lemma $1 a \cup a e$ is normal. By the definition of the normal closure we have $\bar{a} \leq a \cup a e$. Therefore we obtain $\bar{a}=a \cup a e$.

Corollary 3. If $a \cup b=e$, then $\bar{a}=a \cup a b$.
Proof. By Theorem 2 and M4 we have $\bar{a}=a \cup a e=a \cup a(a \cup b)=$ $a \cup a((a \cup a b) \cup b)=a \cup a(a \cup a b) \cup a b \cup(a(a \cup a b)) b$. Since $a(a b) \leq a b$, we have $a(a \cup a b)=a a \cup a(a b) \cup(a a)(a b) \leq a \cup a b$. Since $a \cup a b$ is b-normal (by Lemma 1), we have $(a(a \cup a b)) b \leq(a \cup a b) b \leq a \cup a b$. Hence $\bar{a} \leq a \cup a b$. On the other hand, since $\bar{a}=a \cup a e$ we have $\bar{a} \geq a \cup a b$. Therefore we obtain $\bar{a}=a \cup a b$.

Corollary 4. If $a \cup b=e, a \geq n$ and $a n \leq n$, then $n \cup a b$ is normal.
Proof. Since e and $a b$ are normal, we have

$$
\begin{align*}
& e(n \cup a b)=e n \cup e(a b) \quad \text { (by Proposition } 1 \text { (3)) } \\
& \leq(a \cup b) n \cup a b=(a \cup(a b \cup b)) n \cup a b \\
& =a n \cup(a b \cup b) n \cup(a n)(a b \cup b) \cup a b \quad \text { (by M4) } \\
& \leq n \cup(a b \cup b) n \cup n(a b \cup b) \cup a b \quad \text { (because } a n \leq n) \\
& =n \cup(a b \cup b) n \cup a b=n \cup(a b) n \cup b n \cup((a b) n) b \cup a b \tag{byM4}\\
& =n \cup a b \text { (because }((a b) n) b \leq(a b) b \leq a b \text { and } n b \leq a b) .
\end{align*}
$$

Hence $n \cup a b$ is normal.

2. A classification of M

Let a be an arbitrary fixed element of N. We now define an equivalence relation of M by putting $u \sim v(a)$, if $u \cup a=v \cup a$, where $u, v \in M$. It is easily verified that this relation is stable for the join and the multiplication. That is, $\sim(a)$ is a congruence relation with respect to the join and the multiplication, which is called an a-congruence relation of M. The a-congruence class containing
an element u is denoted by $K_{a}(u)$. The join and the multiplication of the classes are defined by $K_{a}(u) \cup K_{a}(v)=K_{a}(u \cup v)$ and $K_{a}(u) K_{a}(v)=K_{a}(u v)$ respectively. Then the set M / a of the classes forms a partially ordered groupoid with the following properties. (1) $K_{a}(u)=K_{a}(a)$ if and only if $u \leq a$. (2) $K_{a}(u) \leq K_{a}(v)$ if and only if $u \leq v \cup a$. In particular, $u \leq v$ implies $K_{a}(u) \leq K_{a}(v)$. (3) $K_{a}(e)$ and $K_{a}(a)$ are the greatest element and least element of M / a, respectively.

Lemma 2. (1) $\sup _{\alpha}\left\{K_{a}\left(x_{\alpha}\right)\right\}=K_{a}\left(\sup _{\alpha} p\left\{x_{\alpha}\right\}\right)$.
(2) $\inf _{\alpha}\left\{K_{a}\left(x_{\alpha}\right)\right\}=K_{a}\left(\inf _{\alpha}\left\{x_{\alpha} \cup a\right\}\right)$.

Proof. (1) is obvious. For (2), put $b=\inf _{\alpha}\left\{x_{a} \cup a\right\}$. Then, since $b \leq x_{a} \cup a$ for all α, we have $K_{a}(b) \leq K_{a}\left(x_{a}\right)$ (by (2) of the properties of M / a). Suppose that $K_{a}(c)$ is any lower bound of the set $\left\{K_{a}\left(x_{\alpha}\right)\right\}$. Then, we have $K_{a}(c)$ $\leq K_{a}\left(x_{a}\right)$ for all α, hence $c \leq x_{a} \cup a$ (again by the property (2) of M / a). From this, we have $c \leq \inf _{\alpha}\left\{x_{a} \cup a\right\}=b$. Thus $K_{a}(c) \leq K_{a}(b)$. That is, $K_{a}(b)$ is the greatest lower bound of the set $\left\{K_{a}\left(x_{a}\right)\right\}$.

Theorem 5. $\quad M / a$ satisfies the conditions $M 1 \sim M 5 .{ }^{2}{ }^{\text {) }}$

Proof. It is evident that M / a satisfies M1, M2, M3 and M4. For M5, we begin by showing that, if $K_{a}(u)$ is normal in M / a then $u \cup a$ is normal in M. Let $K_{a}(u)$ be normal, then we have $K_{a}((u \cup a) e)=K_{a}(u \cup a) K_{a}(e)=K_{a}(u) K_{a}(e)$ $\leq K_{a}(u)$. Hence we obtain $(u \cup a) e \leq u \cup a$. Let $K_{a}(u), K_{a}(v)$ and $K_{a}(w)$ be normal, we have

$$
\begin{align*}
& \left(K_{a}(u) K_{a}(v)\right) K_{a}(w)=\left(K_{a}(u \cup a) K_{a}(v \cup a)\right) K_{a}(w \cup a) \\
& =K_{a}(((u \cup a)(v \cup a))(w \cup a)) \\
& \leq K_{a}(((u \cup a)(w \cup a))(v \cup a) \cup((v \cup a)(w \cup a))(u \cup a)) \quad(\text { by M5) } \tag{byM5}\\
& =\left(K_{a}(u) K_{a}(w)\right) K_{a}(v) \cup\left(K_{a}(v) K_{a}(w)\right) K_{a}(u) .
\end{align*}
$$

Lemma 3. $\overline{K_{a}(b)}=K_{a}(\bar{b})$ for all $b \in M$.
Proof. Since $K_{a}(\bar{b})$ is normal, we have $\overline{K_{a}(b)} \leq \overline{K_{a}(\bar{b})}=K_{a}(\bar{b})$. On the other hand, put $\overline{K_{a}(b)}=K_{a}(c)$ then $K_{a}(b) \leq K_{a}(c)$, and hence $b \leq c \cup a$. Since $K_{a}(c)$ is normal in $M / a, c \cup a$ is normal in M. Hence we have $\vec{b} \leq c \cup a$. Therefore we obtain $K_{a}(\bar{b}) \leq K_{a}(c \cup a)=K_{a}(c)=\overline{K_{a}(b)}$.

Remark. It can be proved that if M is a modular lattice then so is M / a.
Theorem 6. If $a \cup b=e$, then $\bar{a} \bar{b}=\overline{a b}$.
2) The normality and the normal closure of elements of M / a are similarly defined as M.

Proof. By Corollary 3, we have $K_{\overline{a b}}(\bar{a} \bar{b})=K_{\bar{a} b}(\bar{a}) K_{\overline{a b}}(\bar{b})=K_{\overline{a b}}(a \cup a b)$ $K_{\overline{a b}}(b \cup a b)=K_{\bar{a} b}(a) K_{\overline{a b}}(b)=K_{\overline{a b}}(a b)$, and hence $\bar{a} \bar{b} \leq \overline{a b}$ (because $K_{\overline{a b}}(\bar{a} \bar{b})=$ $K_{\bar{a} \bar{b}}(a b)$ is the least element in $\left.M / \overline{a b}\right)$. On the other hand, by Proposition 2 (6) we have $\bar{a} \bar{b} \leq \bar{a} \bar{b}$.

Theorem 7. If $\bigcup_{i=1}^{n} a_{i}=e$, then $\underset{r \neq s}{\bigcup a_{r} a_{s}}=\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s} \quad(r=1,2, \cdots, n ; s=1$, $2, \cdots, n$).

Proof. First we show that $\bar{a}_{1}\left(\bar{a}_{2} \cup \cdots \cup \bar{a}_{n}\right) \leq \cup \overline{a_{r} a_{s}}$. By Theorem 6, we have $\bar{a}_{1}\left(\bar{a}_{2} \cup \cdots \cup \bar{a}_{n}\right)=\bar{a}_{1}\left(\overline{\left.a_{2} \cup \cdots \cup a_{n}\right)}=\overline{a_{1}\left(a_{2} \cup \cdots \cup a_{n}\right)}\right.$. Put $a_{3} \cup \cdots \cup a_{n}=b_{2}$, then we have

$$
\begin{aligned}
& a_{1}\left(a_{2} \cup b_{2}\right)=a_{1}\left(a_{2} \cup\left(a_{2} b_{2} \cup b_{2}\right)\right) \\
& \left.=a_{1} a_{2} \cup a_{1}\left(a_{2} b_{2} \cup b_{2}\right) \cup\left(a_{1} a_{2}\right)\left(a_{2} b_{2} \cup b_{2}\right) \quad \text { (by M } 4\right) \\
& \leq \overline{a_{1} a_{2}} \cup a_{1}\left(\overline{a_{2} b_{2}} \cup b_{2}\right) \cup\left(\overline{a_{1} a_{2}}\right)\left(a_{2} b_{2} \cup b_{2}\right) \\
& =\overline{a_{1} a_{2}} \cup a_{1}\left(\overline{a_{2} b_{2}}\right) \cup a_{1} b_{2} \cup\left(a_{1}\left(\overline{a_{2} b_{2}}\right)\right) b_{2} \leq \overline{a_{1} a_{2}} \cup \overline{a_{2} b_{2}} \cup \overline{a_{1} b_{2}} .
\end{aligned}
$$

Hence we have $\overline{a_{1}\left(a_{2} \cup b_{2}\right)} \leq \overline{\overline{a_{1} a_{2}} \cup \overline{a_{2} b_{2}} \cup \overline{a_{1} b_{2}}}=\overline{a_{1} a_{2}} \cup \overline{a_{2} b_{2}} \cup \overline{a_{1} b_{2}}$. Let us assume that $\overline{a_{1}\left(a_{2} \cup \cdots \cup a_{n}\right)}=\bigcup_{r \neq s}^{k} \overline{a_{r}} a_{s} \cup\left(\bigcup_{i=1}^{k} \overline{a_{i} b_{k}}\right)$, where $b_{k}=a_{k+1} \cup \cdots \cup a_{n}$. Since $\left.\bigcup_{i=1}^{k} \overline{a_{i} b_{k}}=\bigcup_{i=1}^{k} \overline{a_{i}\left(a_{k+1} \cup b_{k+1}\right.}\right) \leq \bigcup_{i=1}^{k}\left(\overline{a_{i} a_{k+1}} \cup \overline{a_{i} b_{k+1}} \cup \overline{a_{k+1} b_{k+1}}\right)=\bigcup_{i=1}^{k} \overline{a_{i}} a_{k+1} \cup \bigcup_{i=1}^{k+1} \overline{a_{i}} \overline{b_{k+1}}$, we have $\left.\overline{a_{1}\left(a_{2} \cup \cdots \cup a_{n}\right.}\right)=\bigcup_{\substack{k+s \\ r=s=1}}^{a_{r} a_{s}} \cup\left(\bigcup_{i=1}^{k+1} \overline{a_{i} b_{k+1}}\right)$. Putting $k=n-1$ we have $\overline{a_{1}\left(a_{2} \cup \cdots \cup a_{n}\right)} \leq \bigcup_{r \neq s}^{n} \overline{a_{r} a_{s}} \quad \stackrel{r=1, s=1}{\text { Similarly we obtain }} \bar{a}_{i}\left(\bar{a}_{1} \cup \cdots \cup \bar{a}_{i-1} \cup \bar{a}_{i+1} \cup \cdots \cup \bar{a}_{n}\right)$ $\leq \underset{\substack{r \neq s \\ r=1, s=1}}{n} \bar{a}_{r} a_{s} . \quad$ Since $\bigcup_{\substack{\neq s}}^{\cup} \bar{a}_{r} \bar{a}_{s}=\bar{a}_{1}\left(\bar{a}_{2} \cup \cdots \cup \bar{a}_{n}\right) \cup \cdots \cup \bar{a}_{i}\left(\bar{a}_{2} \cup \cdots \cup \bar{a}_{i-1} \cup \bar{a}_{i+1} \cup \cdots \cup\right.$ $\left.\bar{a}_{n}\right) \cup \cdots \cup \bar{a}_{n}\left(\bar{a}_{1} \cup \cdots \cup \bar{a}_{n-1}\right)$, we obtain $\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s} \leq \cup \bar{a}_{r \neq s} \bar{a}_{s}$. On the other hand, by using Proposition 2(6) we have $\underset{r \neq s}{\cup} \bar{a}_{r} \bar{a}_{s} \geq \bigcup_{r \neq s} \bar{a}_{r} a_{s}$.

3. Normal chain

In this and the next sections, we shall assume that $a 0=o$ for any element a of M and the least element o of M and that $(\sup X) n=\sup (X n)$ for any subset X of N and any element n of N.

Definition 2. The chain $\left\{a^{(0)}, a^{(1)}, \cdots, a^{(n-1)}, a^{(n)}, \cdots\right\}$ with $a^{(0)}=\bar{a}$ and $a^{(n)}=a^{(n-1)} e$ is called a minimal normal chain of a determind by e (shortly $a-e$ chain). The chain $\left\{a^{[0]}, a^{[1]}, \cdots, a^{[n-1]}, a{ }^{[n]}, \cdots\right\}$ with $a^{[0]}=a$ and $a^{[n]}=a^{[n-1]} a$ is called an a - a-chain.

The following properties are immediate.
(1) $a^{(n)}$ is normal and $a^{(n)} \geq a^{(n+1)}$ for every whole number n.
(2) $a^{[n]}$ is a-normal and $a^{[n]} \geq a^{[n+1]}$ for every whole number n.

Theorem 8. $\left(\bigcup_{i=1}^{n} a_{i}\right)^{(p)}=\bigcup_{i=1}^{n} a_{i}^{(p)}$ for any $a \in M$.
Proof. By Proposition 2 (5) $\left(\bigcup_{i=1}^{n} a_{i}\right)^{(0)}=\bigcup_{i=1}^{n} a_{i}=\bigcup_{i=3}^{n} \bar{a}_{i}=\bigcup_{i=1}^{n} a_{i}^{(0)}$. Hence the theorem holds for $p=0$. Let us assume that the theorem holds for $p=k-1$. Then we have $\left(\bigcup_{i=1}^{n} a_{i}\right)^{(k)}=\left(\bigcup_{i=1}^{n} a_{i}\right)^{(k-1)} e=\left(\bigcup_{i=1}^{n} a_{i}^{(k-1)}\right) e=\bigcup_{i=1}^{n}\left(a_{i}^{(k-1)} e\right)=\bigcup_{i=1}^{n} a_{i}^{(k)}$. This completes the proof.

Theorem 9. $e^{[p-1]} a \leq a^{(p)}$ for any $a \in M$.
Proof. If $p=1$, this is trivial. Let us now assume that this holds for $p=k-1$. Then we have

$$
\begin{aligned}
& e^{[k-1]} a \leq\left(e^{[k-2]} e\right) \bar{a} \\
& \leq(e \bar{a}) e^{[k-2]} \cup\left(\bar{a} e^{[k-2]}\right) e \\
& \leq a^{(1)} e^{[k-2]} \cup \bar{a}^{(k-1)} e \quad \text { (by M5) } \quad \text { (by the assumption) } \\
& \leq\left(a^{(1)}\right)^{(k-1)} \cup a^{(k)}=a^{(k)} \cup a^{(k)}=a^{(k)} .
\end{aligned}
$$

This completes the proof.
Theorem 10. If $\bigcup_{i=1}^{n} a_{i}=e$, then $\left(\bigcup_{r \neq s} a_{r} a_{s}\right)^{(p)}=\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(p)}$.
Proof. This is easily verified by the induction on p.
Definition 3. The least upper bound of the set $\{x \mid x e=o, x \in N\}$ is called an annihilator of e. A chain $o=c_{0} \leq c_{1} \leq c_{2} \leq \cdots \leq c_{n} \leq \cdots$ is called an upper normal chain, if c_{n} is normal and $K_{c_{n}}\left(c_{n+1}\right)$ is an annihilator of $K_{c_{n}}(e)$ in M / c_{n} for every whole number n.

Lemma 4. Let a be an annihilator of e. Then the equality $a e=o$ holds.
Proof. Since a is normal (by the definition of the annihilator), $a e=$ $(\sup \{x \mid x e=o, x \in N\}) e=\sup \{x e\}=o$ (by the assumption of this section).

Theorem 11. Let $o=c_{0} \leq c_{1} \leq c_{2} \leq \cdots \leq c_{n} \leq \cdots$ be an upper normal chain. Then $\left(c_{n}\right)^{(n)}=0$, and if $a^{(n)}=o$ for some $a \in M$ then $a \leq c_{n}$.

Proof. We show that $c_{n}^{(k)} \leq c_{n-k}$. Since $K_{c_{n-1}}\left(c_{n}\right)$ is an annihilator of $K_{c_{n-1}}(e)$, we have $K_{c_{n-1}}\left(c_{n}^{(1)}\right)=K_{c_{n-1}}\left(c_{n} e\right)=K_{c_{n-1}}\left(c_{n}\right) K_{c_{n-1}}(e)=K_{c_{n-1}}\left(c_{n-1}\right)$. Hence we obtain $c_{n}^{(1)} \leq c_{n-1}$. Let us assume that $c_{n}^{(k-1)} \leq c_{n-k+1}$. Then we have $c_{n}^{(k)}=c_{n}^{(k-1)} e \leq c_{n-k+1}^{(1)} \leq c_{n-k}$. Therefore we obtain $c_{n}^{(n)} \leq c_{0}=o$ if $k=n$.

For the second part of the theorem, we show that $c_{k} \geq a^{(n-k)}$. By the assumption $a^{(n)}=a^{(n-1)} e=o$, we have $K_{c_{0}}\left(a^{(n-1)}\right) K_{c_{0}}(e)=K_{c_{0}}(o)$. Since $K_{c_{0}}\left(c_{1}\right)$
is an annihilator of $K_{c_{0}}(e)$, by the definition of the annihilator we have $K_{c_{0}}\left(c_{1}\right)$ $\geq K_{c_{0}}\left(a^{(n-1)}\right)$. This shows that $c_{1} \geq c_{0} \cup a^{(n-1)}$, and hence $c_{1} \geq a^{(n-1)}$. Let us assume that $c_{k-1} \geq a^{(n-k+1)}$. Then, since $a^{(n-k+1)}=a^{(n-k)} e$ we have $K_{c_{k-1}}\left(c_{k-1}\right)$ $\geq K_{c_{k-1}}\left(a^{(n-k)}\right) K_{c_{k-1}}(e)$. Since $K_{c_{k-1}}\left(c_{k}\right)$ is an annihilator of $K_{c_{k-1}}(e)$, we have $K_{c_{k-1}}\left(c_{k}\right) \geq K_{c_{k-1}}\left(a^{(n-k)}\right)$. Hence $c_{k}=c_{k} \cup c_{k-1} \geq a^{(n-k)}$. Putting $k=n$, we obtain $c_{n} \geq a^{(0)}=\bar{a} \geq a$, as desired.

Definition 4. An element a is said to be nilpotent if $a^{[n]}=o$ for some positive integer n. An element a is said to be semi-nilpotent if there exists a finite chain $a=a_{0} \geq a_{1} \geq a_{2} \geq \cdots \geq a_{n}=0$ with $a_{i-1} a_{i-1} \geq a_{i}(i=1,2, \cdots, n)$.

Proposition 3. (1) If a is nilpotent, then a is semi-nilpotent.
(2) If e is nilpotent, then a is nilpotent for all $a \in M$ and $K_{b}(e)$ is nilpotent in M / b for all $b \in N$.

Proof. (1) If a is nilpotent, then $a=a^{[0]} \geq a^{[1]} \geq \cdots \geq a^{[n]}=0$ and $a^{[i-1]} a^{[i-1]} \leq a a^{[i-1]}=a^{[i]}$. Therefore a is semi-nilpotent.
(2) Since $a^{[i]} \leq e^{[i]}$ and $\left(K_{b}(e)\right)^{[i]}=K_{b}\left(e^{[i]}\right)$, this is obvious.

Theorem 12. If $e(\neq o)$ is nilpotent, then the annihilator of e is not o.
Proof. Suppose that $e^{[n]}=o$ for some positive integer n. Then $e^{[i]}=o$ and $e^{[i-1]} \neq o$ for some $i(1 \leq i \leq n)$. Since $e^{[i-1]} e=e^{[i]}=o, e^{[i-1]}$ precedes the annihilator of e.

4. Regular unions

In this section we shall assume the following condition.
M6. If $b \leq a \cup c$ and $a c \leq a$ or $a c \leq c$, then $b \leq(a \cap(b \cup c)) \cup(c \cap(a \cup b))$ for $a, b, c \in M$.

Lemma 5. If $a \cup c=b \cup c, a \cap c=b \cap c, a \leq b$ and $a c \leq a$, then $a=b$.
Proof. Since $b \leq a \cup c$ and $a c \leq a$, by M6 we have $b \leq(a \cap(b \cup c)) \cup(c \cap$ $(a \cup b))=(a \cap(a \cup c)) \cup(c \cap b)=a \cup(a \cap c)=a$. Hence we obtain $a=b$.

Lemma 6. If a and c are b-normal and $a \leq c$, then $a \cup(b \cap c)=(a \cup b) \cap c$.
Proof. Put $a^{\prime}=a \cup(b \cap c), b^{\prime}=(a \cup b) \cap c$ and $c^{\prime}=b$. Then, since $a(b \cap c)$ $\leq a b \leq a$, by M4 we have $a^{\prime} c^{\prime}=(a \cup(b \cap c)) b=a b \cup b(b \cap c) \cup(a b)(b \cap c)$. Since a and $b \cap c$ are b-normal, $a b \leq a$ and $b(b \cap c) \leq b \cap c$, and we have $a(b \cap c) \leq a b \cap a c$ $\leq a \cap c$. Therefore $a^{\prime} c^{\prime} \leq a \cup(b \cap c) \cup(a \cap c)=a \cup(b \cap c)=a^{\prime}$. And we have $a^{\prime} \cup c^{\prime}=b^{\prime} \cup c^{\prime}, a^{\prime} \cap c^{\prime}=b^{\prime} \cap c^{\prime}$ and $a^{\prime} \leq b^{\prime}$. Hence by using Lemma 5, we obtain $a^{\prime}=b^{\prime}$.

Definition 5. A finite number of elements $a_{1}, a_{2}, \cdots, a_{n}$ of M is said to be
normally independent, if $a_{i} \cap \overline{\left(a_{1} \cup \cdots \cup a_{i-1} \cup a_{i+1} \cup \cdots \cup a_{n}\right)}=o$ for $i=1,2, \cdots, n$.
Definition 6. An element b is called a regular union of $a_{i}, a_{2}, \cdots, a_{n}$, and is denoted by $b=a_{1} \cup \cup^{(R)} a_{2} \cup(R) \cdots \cup{ }^{(R)} a_{n}$, if $b=a_{1} \cup a_{2} \cup \cdots \cup a_{n}$ and if $a_{1}, a_{2}, \cdots, a_{n}$ are normally independent.

An element b is called a k-th nilpotent union of $a_{1}, a_{2}, \cdots, a_{n}$, and is denoted by $b=a_{1} \cup^{(k)} a_{2} \cup^{(k)} \cdots \cup^{(k)} a_{n}$, if $b=a_{1} \cup^{(R)} a_{2} \cup^{(R)} \cdots \cup^{(R)} a_{n}$ and if $\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(k)}=0$ but $\left(\underset{r \neq s}{\cup} \bar{a}_{r} \bar{a}_{s}\right)^{(k-1)} \neq o(r, s=1,2, \cdots, n)$. In particular, 0 -th nilpotent union is called a direct union.

An element b is called a free union of $a_{1}, a_{2}, \cdots, a_{n}$, and is denoted by $b=a_{1} \cup^{(F)} a_{2} \cup^{(F)} \cdots \cup^{(F)} a_{n}$, if $b=a_{1} \cup^{(R)} a_{2} \cup^{(R)} \ldots \cup^{(R)} a_{n}$ and if $\left(\cup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(\boldsymbol{m})} \neq 0$ and $\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(m)} \nsubseteq\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(m-1)}$ for every whole number m.

Lemma 7. $\underset{r \neq s}{\cup} \bar{a}_{r} \bar{a}_{s} \leq \overline{a_{1} \cup \cdots \cup a_{i-1} \cup a_{i+1} \cup \cdots \cup a_{n}}(r, s=1,2, \cdots, n)$ for each $i(1 \leq i \leq n)$.

Proof. Since $\bar{a}_{r} \bar{a}_{i} \leq \bar{a}_{r}$ and $\bar{a}_{r} \bar{a}_{s} \leq \bar{a}_{r} \cup \bar{a}_{s}$, we have $\underset{r \neq s}{\cup} \bar{a}_{r} \bar{a}_{s}=\bar{a}_{1} \bar{a}_{i} \cup \cdots \cup$ $\frac{\bar{a}_{i-1} \bar{a}_{i} \cup \bar{a}_{i+1} \bar{a}_{i} \cup \cdots \cup \bar{a}_{n} \bar{a}_{i} \cup\left(\underset{\substack{\begin{subarray}{c} { \neq s \\ \begin{subarray}{c}{ \pm i, s+i{ \neq s \\ \begin{subarray} { c } { \pm i , s + i } } \end{subarray}}\end{subarray}}{a_{1} \cup \cdots \cup a_{i-1} \cup a_{i+1} \cup \cdots \cup a_{n}}, \bar{a}_{r} \bar{a}_{s}\right) \leq \bar{a}_{1} \cup \cdots \cup \bar{a}_{i-1} \cup \bar{a}_{i+1} \cup \cdots \cup \bar{a}_{n}=}{}$

Lemma 8. If the elements $a_{1}, a_{2}, \cdots, a_{n}$ are normally independent and $a_{i} \geq c_{i}(i=1,2, \cdots, n)$, then $c_{1}, c_{2}, \cdots, c_{n}$ are normally independent.

Proof. $\quad c_{i} \cap \overline{\left(c_{1} \cup \cdots \cup c_{i-1} \cup c_{i+1} \cup \cdots \cup c_{n}\right)} \leq a_{i} \cap\left(\overline{a_{1} \cup \cdots \cup a_{i-1} \cup a_{i+1} \cup \cdots}\right.$ $\overline{\cup a_{n}}=0$.

Lemma 9. If the elements $a_{1}, a_{2}, \cdots, a_{n}$ are normally independent and $c \leq \bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}$, then $K_{c}\left(a_{1}\right), K_{c}\left(a_{2}\right), \cdots, K_{c}\left(a_{n}\right)$ are normally independent, where $c \in N$.

Proof. We have

$$
\begin{array}{rlr}
& K_{c}\left(a_{i}\right) \cap\left(\overline{\left.K_{c}\left(a_{1}\right) \cup \cdots \cup K_{c}\left(a_{i-1}\right) \cup K_{c}\left(a_{i+1}\right) \cup \cdots \cup K_{c}\left(a_{n}\right)\right)}\right. \\
= & K_{c}\left(a_{i}\right) \cap\left(K_{c}\left(\bar{a}_{1}\right) \cup \cdots \cup K_{c}\left(\bar{a}_{i-1}\right) \cup K_{c}\left(\bar{a}_{i+1}\right) \cup \cdots \cup K_{c}\left(\bar{a}_{n}\right)\right) \\
& \quad \text { (by Proposition2 (5) } & \text { and Lemma 3) } \\
= & K_{c}\left(\left(a_{i} \cup c\right) \cap\left(\bar{a}_{1} \cup \cdots \cup \bar{a}_{i-1} \cup \bar{a}_{i+1} \cup \cdots \cup \bar{a}_{n} \cup c\right)\right) & \text { (by Lemma 2) } \\
= & K_{c}\left(\left(a_{i} \cup c\right) \cap \overline{\left.\left(a_{1} \cup \cdots \cup a_{i-1} \cup a_{i+1} \cup \cdots \cup a_{n}\right)\right)}\right. & \text { (by Lemma 7) } \\
= & K_{c}\left(c \cup \left(a_{i} \cap \overline{\left.\left.\left(a_{1} \cup \cdots \cup a_{i-1} \cup a_{i+1} \cup \cdots \cup a_{n}\right)\right)\right)}\right.\right. & \text { (by Lemma 6) } \\
= & K_{c}(c \cup o)=K_{c}(c) . &
\end{array}
$$

Theorem 13. If $\bigcup_{i=1}^{n}(R) a_{i}=b, c_{i} \leq a_{i}(i=1,2, \cdots, n)$ and $\bigcup_{i=1}^{n} c_{i}=d$, then $\bigcup_{i=1}^{n}(R) c_{i}=d$.

Proof. This is obvious by Lemma 8.
Theorem 14. If $\bigcup_{i=1}^{n(R)} a_{i}=b$ and $\bar{c} \leq \bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}$, then $\bigcup_{i=1}^{n}(R) K_{\bar{c}}\left(a_{i}\right)=K_{\bar{c}}(b)$.
Proof. This is obvious by Lemma 9.
Theorem 15. If $a \cup^{(R)} b=e$ and a is normal, then $a \cup^{(0)} b=e$ and b is normal.
Proof. Since $\bar{a} \bar{b} \leq \bar{a} \cap \bar{b}=a \cap \bar{b}=o$, we have $a \cup \cup^{(0)} b=e$. And we have $b e \leq b(a \cup b)=a b \cup b b \cup(a b) b \leq b$ (because $a b=o$). Hence b is normal.

Proof. Put $c=\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(k)}$. Then, by Theorem $14 \underset{i=1}{n} \bigcup^{(R)}\left(K_{c}\left(a_{i}\right)\right)=K_{c}(b)$. And we have $\left(\cup_{r \neq s} \overline{K_{c}\left(a_{r}\right)} \overline{\left.K_{c}\left(a_{s}\right)\right)^{(k)}}=\left(\left(\cdots\left(\underset{r \neq s}{\cup} \overline{K_{c}\left(a_{r}\right)} \overline{\left.K_{c}\left(a_{s}\right)\right)} K_{c}(e)\right) \cdots\right) K_{c}(e)\right)=\right.$ $\left.K_{c}\left(\left(\left(\cdots \underset{r \neq s}{ }\left(\bar{a}_{r} \bar{a}_{s}\right) e\right) \cdots\right) e\right)\right)=K_{c}\left(\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}\right)_{s}^{(\boldsymbol{k})}\right)=K_{c}(c)$, but we have $\left.\left(\bigcup_{r \neq s} \overline{K_{c}\left(a_{r}\right.}\right) \overline{K_{c}\left(a_{s}\right)}\right)^{(\boldsymbol{k - 1)}}$ $=K_{c}\left(\left(\cup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(k-1)}\right) \neq K(c)$. This completes the proof.

Corollary 17. If $\bigcup_{i=1}^{n(R)} a_{i}=b$, then $\bigcup_{i=1}^{n}\left({ }_{i=1}^{(0)}\left(K \underset{r \neq s}{\bigcup} \bar{a}_{r} \bar{a}_{s}\left(a_{i}\right)\right)=K \underset{r \neq s}{\bigcup} \bar{a}_{r} \bar{a}_{s}(b)\right.$.
Proof. This is obvious by Theorem 16.
Theorem 18. If $a \cup^{(k)} b=e$ and $a=\bigcup_{i=1}^{n} a_{i}$, then $\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(p)}=\left(\bigcup_{r \neq s} \bar{a}_{r}^{a} \bar{a}_{s}^{a}\right)^{(p)}$ for $p \geq k-1$, where $\bar{a}_{i}^{a}=a_{i} \cup a_{i} a(i=1,2, \cdots, n)$.

Proof. By Corollary $4 \bar{a}_{i}^{a} \cup a b$ is normal and $a_{i} \leq \bar{a}_{i}^{a} \cup a b$, and hence we have $\bar{a}_{i} \leq \bar{a}_{i}^{a} \cup a b$. By using Proposition 1 (4) and M4, we have $\underset{r \neq s}{\cup} \bar{a}_{r} \bar{a}_{s} \leq$ $\underset{r \neq s}{ }\left(\left(\bar{a}_{r}^{a} \cup a b\right)\left(\bar{a}_{s}^{a} \cup a b\right)\right)=\bigcup_{r \neq s}\left(\left(\bar{a}_{r}^{a} \cup a b\right) \bar{a}_{s}^{a} \cup\left(\bar{a}_{r}^{a} \cup a b\right)(a b)\right)=\cup_{r \neq s}\left(\bar{a}_{r}^{a} \bar{a}_{s}^{a} \cup \bar{a}_{s}^{a}(a b) \cup\left(\bar{a}_{r}^{a} \bar{a}_{s}^{a}\right)(a b)\right.$ $\left.\cup\left(\bar{a}_{r}^{a} \cup a b\right)(a b)\right) \leq \bigcup_{r \neq s}\left(\bar{a}_{r} a_{a}^{a} \cup(a b) e\right)=\left(\bigcup_{r \neq s} \bar{a}_{r}^{a} \bar{a}_{s}^{a}\right) \cup(a b) e$. By using Theorem 8, we have $\left(\cup_{r \neq s} \bar{a}_{r}^{a} \bar{a}_{s}^{a}\right)^{(\boldsymbol{p})} \leq\left(\bigcup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(\boldsymbol{p})} \leq\left(\bigcup_{r \neq s} \bar{a}_{r}^{a} \bar{a}_{s}^{a} \cup(a b) e\right)^{(\boldsymbol{p})}=\left(\cup_{r \neq s} \bar{a}_{r}^{a} \bar{a}_{s}^{a}\right)^{(p)} \cup((a b) e)^{(p)}=$ $\left(\cup_{r \neq s} \bar{a}_{r}^{k} \bar{a}_{s}^{a}\right)^{(p)} \cup(a b)^{(p+1)}=\left(\cup \bar{a}_{r \neq s}^{a} \bar{a}_{s}^{a}\right)^{(p)} \quad$ (because $(a b)^{(k)}=o$). This completes the proof.

Theorem 19. If $\bigcup_{i=1}^{n}(k) a_{i}=e$, then $e^{[k-1]}\left(\cup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)=0$.
Proof. By using Theorem 9, we have $e^{[k-1]}\left(\cup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right) \leq\left(\cup_{r \neq s} \bar{a}_{r} \bar{a}_{s}\right)^{(k)}=0$.
Theorem 20. If $a \cup^{(k)} b=e$, then $\bar{a}^{[k]} \bar{b}=0$
Proof. We shall show that $\bar{a}^{[p]} \bar{b} \leq(a b)^{(p)}$. Since $\bar{a} \bar{b}=\bar{a} b$ (by Theorem 6), we have $\bar{a}^{[0]} \bar{b}=\bar{a} \bar{b}=\bar{a} \bar{b}=(a b)^{(0)}$. Let us assume that $a^{[p-1]} b \leq(a b)^{(p-1)}$. Then we have

$$
\begin{array}{rlrl}
& \bar{a}^{[p]} \bar{b}=\left(\bar{a} \bar{a}^{[p-1]}\right) \bar{b} & \\
\leq & (\bar{a} \bar{b}) a^{[p-1]} \cup\left(\bar{a}^{[p-1} \bar{b}\right) \bar{a} & & \text { (by using M5) } \\
\leq & (\bar{a} \bar{b}) e^{\left[p^{-1]}\right]} \cup(\bar{a} \bar{b})^{(p-1)} e & & \text { (by the assumption) } \\
\leq & (\bar{a} \bar{b})^{(p)} \cup(\bar{a} \bar{b})^{(p)} & & \text { (by Theorem 9) } \\
= & (a b)^{(p)} . & &
\end{array}
$$

Putting $p=k$, we obtain $\bar{a}^{[k]} \bar{b} \leq(a b)^{(\boldsymbol{k})}=0$.

5. Applications

(1) Application to groups

Let G be any group and let $A_{1}, A_{2}, \cdots, A_{n}$ be a finite number of subgroups of G. The following notations will be used: [A_{1}, A_{2}]; the commutator subgroup of A_{1} and A_{2}, $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$; the subgroup which is generated by $A_{1}, A_{2}, \cdots, A_{n}$, \bar{A}_{1}; the normal subgroup which is generated by A_{1}, $\left\{\left[A_{r}, A_{s}\right]\right\}$; the subgroup which is generated by all commutator subgroups $\left[A_{r}, A_{s}\right] r \neq s, r, s=1,2, \cdots, n$,
$A_{1}^{(p)}$; the commutator subgroup [$[\cdots \overbrace{\left.\left.\left[\left[\bar{A}_{1}, G\right], G\right], \cdots\right], G\right]}^{p}$,
$A_{1}^{[p]}$; the commutator subgroup $[[\cdots[\overbrace{\left.\left.\left.\left[A_{1}, A_{1}\right], A_{1}\right], \cdots\right], A_{1}\right]}^{p}$, $A_{1} \wedge A_{2}$; the intersection of A_{1} and A_{2}.

Lemma 10. Let A, B and C be any subgroups of a group G. Then A, B and C have the following properties:
(1) $[A, B]=[B, A]$,
(2) $[A, B] \subseteq\{A, B\}$,
(3) If $[B, C] \subseteq B$, then $[A,\{B, C\}]=\{[A, B],[A, C],[[A, B], C]\}$,
(4) If A, B and C are normal subgroups of G, then $[[A, B], C] \subseteq[[B, C] A]$ $[[C, A] B]$,
(5) If $B \subseteq\{A, C\}$ and $[A, C] \subseteq A$, then $B \subseteq\{A \wedge\{B, C\}, C \wedge\{A, B\}\}$.

Proof. The proofs of (1) and (4) are well-known. For (3), since $[B, C] \subseteq B$, for any elements $b \in B$ and $c \in C$ there exists an element $b^{\prime} \in B$ such that $b c=c b^{\prime}$. Therefore the generator of the commutator subgroup $[\{B, C\}, A]$ can be represented in the form $[b c, a]$, where $a \in A, b \in B, c \in C$. And we have $[b c, a]$ $=[b, a][[b, a], c][c, a]$. Hence $[b c, a]$ belongs to $\{[B, A],[C, A],[[B, A], C]\}$. Thus $[\{B, C\}, A] \subseteq\{[B, A],[C, A],[[B, A], C]\}$. On the other hand, we have $[[b, a], c]=[a, b][b c, a][a, c]$, hence $[[b, a], c]$ belongs to $[\{B, C\}, A]$. The generator of the commutator subgroup $[[B, A], C]$ can be represented in the form $\left[u_{1} u_{2} \cdots u_{m}, c\right]$, where u_{i} are of the form $\left[b_{i}, a_{i}\right], a_{i} \in A, b_{i} \in B(i=1,2, \cdots, m)$.

Since $\left[u_{1} u_{2} \cdots u_{m}, c\right]=\left(u_{1} u_{2} \cdots u_{m}\right)^{-1} c^{-1} u_{1} u_{2} \cdots u_{m} c=\left(u_{1} u_{2} \cdots u_{m}\right)^{-1} c^{-1} u_{1} c c^{-1} u_{2} c \cdots c^{-1} u_{m} c$, where $u_{1} u_{2} \cdots u_{m}$ and $c^{-1} u_{i} c$ belong to $[\{B, C\}, A],\left[u_{1} u_{2} \cdots u_{m}, c\right]$ belongs to $[\{B, C\}, A]$, and hence $[[B, A], C] \subseteq[\{B, C\}, A]$. Therefore we obtain $[\{B, C\}, A]=\{[B, A],[C, A],[[B, A], C]\}$. For (5), let b be any element of B. Then there exist two elements $a \in A$ and $c \in C$ such that $b=a c$. Since $a=b c^{-1}$ and $c=a^{-1} b$, we have $a \in A \wedge\{B, C\}, c \in C \wedge\{A, B\}$. Thus b belongs to $\{A \wedge\{B, C\}, C \wedge\{A, B\}\}$. Hence we have $B \subseteq\{A \wedge\{B, C\}, C \wedge\{A, B\}\}$. (2) is obvious.

By Lemma 10, the results of the preceding sections are applicable to groups. That is, the results in $\S \S 1$ and 2 illustrate the properties of the subgroups (general subgroups, normal subgroups, commutator subgroups, etc.) and factor-groups of a group. The results in $\S \S 3$ and 4 can be applied to the theory of solvable groups and nilpotent groups and theory of direct products, free products, regular products and k-th nilpotent products ${ }^{3)}$ of the subgroups.

We shall list briefly the applied results.
(1) If $\left\{A_{1}, A_{2}\right\}=G$, then $\left.\left[A_{1}, A_{2}\right]=\overline{\left[A_{1}, A_{2}\right.}\right]=\left[\bar{A}_{1}, \bar{A}_{2}\right]$.
(2) $\bar{A}=A[A, G]$ for any subgroup A of G.
(3) If $\left\{A_{1}, A_{2}\right\}=G$, then $\bar{A}_{1}=A_{1}\left[A_{1}, A_{2}\right]$.
(4) If $\left\{A_{1}, A_{2}\right\}=G$ and N is a normal subgroup of A_{1} then $N\left[A_{1}, A_{2}\right]$ is a normal subgroup of G.
(5) If $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}=G$, then $\left.\left\{\overline{A_{r}, A_{s}}\right]\right\}=\left\{\left[\bar{A}_{r}, \bar{A}_{s}\right]\right\}$.
(6) $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}^{(p)}=\left\{A_{1}^{(p)}, A_{2}^{(p)}, \ldots, A_{n}^{(p)}\right\}$.
(7) $\left[G^{[p-1]}, A\right] \subseteq A^{(p)}$ for any subgroup A of G.
(8) If $G=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$, then $\left\{\left[A_{r}, A_{s}\right]\right\}^{(\boldsymbol{p})}=\left\{\left[\bar{A}_{r}, \bar{A}_{s}\right]\right\}^{(\boldsymbol{p})}$
(9) Let $Z_{0}=1 \subseteq Z_{1} \subseteq Z_{2} \subseteq \cdots \subseteq Z_{n} \subseteq \cdots$ be an increasing central chain of G, where 1 is a unit group. Then $\left(Z_{n}\right)^{(n)}=1$, and if $A^{(n)}=1$ for some subgroup A of G then $A \subseteq Z_{n}$.
(10) The center of any nilpotent group is not the unit group.
(11) If G is a regular product of its subgroups A and B, and A is a normal subgroup of G, then G is a direct product of A and B, and B is a normal subgroup of G.
(12) If G is a k-th nilpotent product of its subgroups A and B and $A=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$, then $\left\{\left[\bar{A}_{r}, \overline{\mathrm{~A}}_{s}\right]\right\}^{(\boldsymbol{p})}=\left\{\left[\bar{A}_{r}^{A}, \bar{A}_{s}^{A}\right]\right\}^{(\boldsymbol{p})}$, where \bar{A}_{i}^{A} are the normal subgroups of A which are generated by $A_{i}(i=1,2, \cdots, n)$.
(13) If G is a k-th nilpotent product of its subgroups $A_{1}, A_{2}, \cdots, A_{n}$, then $\left[G^{[k-1]},\left\{\left[A_{r}, A_{s}\right]\right\}\right]$ is a unit group.
(14) If G is a k-th nilpotent product of its subgroups A and B, then $\left[\bar{A}^{[k]}, \bar{B}\right]$ is a unit group.

The proofs are obvious by the following correspondences;
(3) Cf. 1.
(1) \Leftrightarrow Theorems 1 and 6, (2) \Leftrightarrow Theorem 2, (3) \Leftrightarrow Corollary 3,
(4) \Leftrightarrow Corollary 4, (5) \Leftrightarrow Theorem 7, (6) \Leftrightarrow Theorem 8,
(7) \Leftrightarrow Theorem 9, (8) \Leftrightarrow Theorem 10, (9) \Leftrightarrow Theorem 11,
$(10) \Leftrightarrow$ Theorem 12, (11) \Leftrightarrow Theorem 15, (12) \Leftrightarrow Theorem 18,
$(13) \Leftrightarrow$ Theorem 19, (14) \Leftrightarrow Theorem 20.
(2) Applicaton to commutative rings

Let R be any commutative ring with or without unity quantity and let $A_{1}, A_{2}, \cdots, A_{n}$ be a finite number of subrings of R. The following notations will be used:
$\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$; the subring which is generated by $A_{1}, A_{2}, \cdots, A_{n}$,
$A_{1} A_{2}$; the module-product of A_{1} and A_{2},
\bar{A}_{1}; the ideal in R which is generated by A_{1},
$A^{m}=\overbrace{A A \cdots A}^{m}$.
It is easily verified that the set \Re consisting of the subrings of a ring R satisfies the conditions $\mathrm{M} 1 \sim \mathrm{M} 5$ in $\S 1$. Hence the results of the preceding sections can be applied to the set \Re.

We shall list briefly the appied results.
(1) If $\left\{A_{1}, A_{2}\right\}=R$, then $A_{1} A_{2}=\bar{A}_{1} \bar{A}_{2}=\bar{A}_{1} \bar{A}_{2}$.
(2) $\bar{A}=\{A, A R\}$ for any subring A of R.
(3) If $\left\{A_{1}, A_{2}\right\}=R$, then $\bar{A}_{1}=\left\{A_{1}, A_{1} A_{2}\right\}$.
(4) If $\left\{A_{1}, A_{2}\right\}=R$ and B is an ideal of A_{1}, then $\left\{B, A_{1} A_{2}\right\}$ is an ideals in R.
(5) Let $\left\{A_{r} A_{s}\right\}$ be a subring which is generated by all module-products $A_{r} A_{s}, r \neq s, r, s=1,2, \cdots, n$. If $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}=R$, then $\left\{\overline{A_{r} A_{s}}\right\}=\left\{\bar{A}_{r} \bar{A}_{s}\right\}$. (6) $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}^{m}=\left\{A_{1}^{m}, A_{2}^{m}, \cdots, A_{n}^{m}\right\}$.
(7) If $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}=R$, then $\left\{A_{r} A_{s}\right\}^{m}=\left\{\bar{A}_{r} \bar{A}_{s}\right\}^{m}, r \neq s, r, s=1,2, \cdots, n$.

The proofs are obvious by the following correspondences;
(1) \Leftrightarrow Theorems 1 and 6, (2) \Leftrightarrow Theorem 2, (3) \Leftrightarrow Corollary 3,
(4) \Leftrightarrow Corollary 4, (5) \Leftrightarrow Theorem 7, (6) \Leftrightarrow Theorem 8,
(7) \Leftrightarrow Theorem 10 .

University of Fisheries, Shimonoseki

References

[1] O.N. Golovin: Nilpotent prooduct of groups, Mat. Sb. 27 (1950), 427-454.

