NICE FUNCTIONS ON SYMMETRIC SPACES

Dedicated to Professor Atuo Komatu for his 60th birthday

Masaru TAKEUCHI

(Received February 3, 1969)

Introduction

A smooth function f on a compact smooth manifold M is called a Morse function on M if the critical points of f are all non-degenerate. A Morse function f on M is called a nice function on M if

Index of f at $p=f(p)$ for any cirtical point p of f.
The existence of a nice function was proved by S. Smale and successfully used by him in solving the Poincaré conjecture (Smale [4]). For any Morse function f on M, the Morse inequality:

Number of critical points of $f \geqslant \operatorname{dim} H_{*}(M, \boldsymbol{K})$
holds for any coefficient field \boldsymbol{K}. A Morse function f is called economical for \boldsymbol{K} if the equality holds in the above Morse inequality for \boldsymbol{K}.

The purpose of the present note is to show that for a symmetric R-space M (For the definition of an R-space, see Section 1.) we have a nice function on M, which is also economical for \boldsymbol{Z}_{2}, by choosing a suitable spherical function on M.

Recently A. Hattori constructed as follows a nice function on the Grassmann manifold of m-subspaces of $(\boldsymbol{m}+n)$-space $\boldsymbol{F}^{\boldsymbol{m + n}}$ over $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}$ or the algebra \boldsymbol{H} of real quaternions: Let

$$
x_{j}=\left(\begin{array}{l}
x_{1 j} \\
x_{2 j} \\
\vdots \\
x_{m+n j}
\end{array}\right) \in \boldsymbol{F}^{m_{+n}} \quad(1 \leqslant j \leqslant m)
$$

be an orthonormal basis of an m-subspace x of $\boldsymbol{F}^{\boldsymbol{m + n}}$ with respect to the standard metric $\sum \alpha_{i} \bar{\alpha}_{i}$ of \boldsymbol{F}^{m+n}, where $\alpha \mapsto \bar{\alpha}$ is the canonical involution of \boldsymbol{F}. We put

$$
l_{i}=\sum_{j=1}^{m} x_{i j} \bar{x}_{i j} \quad(1 \leqslant i \leqslant m+n)
$$

Then Hattori's nice function f is given by

$$
f(x)=d\left\{\sum_{i=1}^{m+n} i l_{i}-\frac{m(m+1)}{2}\right\}, \quad d=\operatorname{dim}_{R} \boldsymbol{F}
$$

The class of symmetric R-spaces includes the Grassmann manifolds and we can confirm that our spherical functions for them are nothing but Hattori's nice functions.

In addition we shall show that for an R-space M we have another economical Morse function on M for \boldsymbol{Z}_{2} by choosing a suitable length function on M defined by means of an imbedding of M into a Euclidean space, which generalizes length functions on classical groups constructed by S. Ramanujam [3] and is essentially the same as our spherical function.

1. Spherical functions on \boldsymbol{R}-spaces

We recall here the notion of R-spaces and some properties of them. Let G be a connected semi-simple Lie group with finite center and g the Lie algebra of G. An element Z of g is called real semi-simgle if $a d Z$ is a semisimple endomorphism of g whose eigenvalues are all real. For a real semisimple element Z of \mathfrak{g}, the sum $\mathfrak{n}^{+}(Z)$ of positive eigenspaces of $a d Z$ is a nilpotent subalgebra of g. A subgroup U of G is called parabolic if there exists a real semi-simple element Z of \mathfrak{g} such that U is the normalizer in G of $\mathfrak{n}^{+}(Z)$. The quotient space $M=G / U$ of a connected semi-simple Lie group G with finite center modulo a parabolic subgroup U of G is called an R-space.

Let $M=G / U$ be an R-space and Z a real semi-simple element of the Lie algebra \mathfrak{g} of G such that U is the normalizer in G of $\mathfrak{n}^{+}(Z)$. Let \mathfrak{f} be a maximal compact subalgebra of g , which is perpendicular to Z with respect to the Killing form (,) of \mathfrak{g} and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} with respect to \mathfrak{f}. Then the maximal compact subgroup K of G generated by \mathfrak{f} is transitive on $M=G / U$ (Takeuchi [5]). It follows that if we put $K^{*}=K \cap U$, we have $M=K / K^{*}$. Moreover we have (Takeuchi [5])

$$
\begin{equation*}
K^{*}=\{x \in K ; A d x Z=Z\} \tag{*}
\end{equation*}
$$

The smooth function f_{X} on $M=K / K^{*}$ for $X \in \mathfrak{p}$ defined by

$$
f_{X}(x o)=(A d x Z, X) \quad \text { for } \quad x \in K
$$

where o is the origin of M, is a spherical function on $M=K / K^{*}$ associated with the representation $(A d, \mathfrak{p})$ of K.

Now we take a maximal abelian subalgebra \mathfrak{b}^{-}of \mathfrak{p} containing Z and extend it to a Cartan subalgebra \mathfrak{h} of \mathfrak{g}. Let \mathfrak{g}_{c} be the complexification of \mathfrak{g} and σ the complex conjugation of g_{c} with respect to the real form \mathfrak{g} of \mathfrak{g}_{c}. The real part \mathfrak{h}_{0} of the complexification \mathfrak{h}_{c} of \mathfrak{h} is equal to $\sqrt{-1} \mathfrak{h}^{+}+\mathfrak{h}^{-}$, where $\mathfrak{h}^{+}=\mathfrak{h} \cap \mathfrak{l}$. The root system $\tilde{\mathfrak{r}}$ of \mathfrak{g}_{C} with respect to \mathfrak{h}_{c} is identified with a subset
of \mathfrak{h}_{0} by means of the duality defined by the Killing form (,) of \mathfrak{g}_{c}. We introduce a linear order $>$ on \mathfrak{H}_{0} in such a way that for any $\alpha \in \tilde{\mathfrak{r}}$ we have

$$
\begin{gathered}
\sigma \alpha \neq-\alpha \quad \text { and } \quad \alpha>0 \Rightarrow \sigma \alpha>0 \\
\alpha>0 \quad \Rightarrow \quad(\alpha, Z) \geqslant 0
\end{gathered}
$$

The Weyl group W of \mathfrak{g}_{c} on $\mathfrak{h}_{\boldsymbol{c}}$ is a subgroup of the orthogonal group on \mathfrak{h}_{0} with respect to the Killing form of g_{c}. For an element s of W we put

$$
\Phi_{s}=\left\{\alpha \in \tilde{\mathfrak{r}} ; \alpha>0, s^{-1} \alpha<0\right\} .
$$

We denote the cardinality $\# \Phi_{s^{-1}}$ of $\Phi_{s^{-1}}$ by $n(s)$ and call it the index of s. We put $\tilde{\mathfrak{r}}_{1}=\{\alpha \in \tilde{\mathfrak{r}} ;(\alpha, Z)=0\}$ and define

$$
W^{1}=\left\{s \in W ; s \sigma=\sigma s, \Phi_{s} \cap \tilde{\mathfrak{x}}_{1}=\phi\right\} .
$$

Then for any element s of W^{1} we can find an element $a(s)$ of the normalizer in K of \mathfrak{h}_{0} such that $A d a(s)=s$ on \mathfrak{Y}_{0}. The element $a(s)^{-1} o$ of M does not depend on the choice of $a(s)$ so that we shall denote the element $a(s)^{-1} o$ by $s^{-1} o$.

Now we take an element H of \mathfrak{G}^{-}such that $(\alpha, H) \neq 0$ for any root α with $\sigma \alpha \neq-\alpha$. Then (Takeuchi-Kobayashi [6], Takeuchi [5]) $s \mapsto s^{-1} o$ gives a bijective correspondence of W^{1} to the set of critical points of f_{H}. Moreover (Takeuchi [5]) $s^{-1} o$ is the "origin" of the $n(s)$-dimensional cell V_{s} of the standard cellular decomposition $M=\bigcup \cup V_{s \in W^{1}}$ of M, which is economical for \boldsymbol{Z}_{2} in the sense that $\left\{V_{s} ; s \in W^{1}\right\}$ gives a basis of $H_{*}\left(M, \boldsymbol{Z}_{2}\right)$.

Theorem 1. Let H_{0} be an element of the negative Weyl chamber of \mathfrak{G}^{-}, that is,
$\left(\alpha, H_{0}\right)<0$ for any positive root α with $\sigma \alpha \neq-\alpha$.
Then the spherical function $f_{H_{0}}$ on M is a Morse function and for any element s of W^{1} we have

Index of $f_{H_{0}}$ at $s^{-1} o=\operatorname{Index} n(s)$ of s.
Corollary. $f_{H_{0}}$ is an economical Morse function on M for \boldsymbol{Z}_{2}.
Proof. For $X \in \mathscr{E}^{\mathscr{1}}$ and $s \in W^{1}$ we have

$$
\begin{aligned}
\left(X f_{H_{0}}\right)\left(s^{-1} o\right) & =\left.\frac{d}{d t}\left(A d\left(\exp t X a(s)^{-1}\right) Z, H_{0}\right)\right|_{t=0} \\
& =\left(\left.\frac{d}{d t}(A d \exp t X)\left(s^{-1} Z\right)\right|_{t=0}, H_{0}\right)=\left(\left[X, s^{-1} Z\right], H_{0}\right) \\
& =-\left(s^{-1} Z,\left[X, H_{0}\right]\right)
\end{aligned}
$$

It follows that the Hessian \mathscr{H} of $f_{H_{0}}$ at $s^{-1} o$ is given by

$$
\mathscr{H}\left(X s^{-1} o, Y s^{-1} o\right)=\left(s^{-1} Z,\left[X,\left[Y, H_{0}\right]\right]\right) \quad \text { for } \quad X, Y \in \mathscr{A} .
$$

Now we want to find a basis of the tangent space $M_{s^{-1}}$ of M at $s^{-1} o$, convenient for the computation of the quantity $\left(s^{-1} Z,\left[X,\left[Y, H_{0}\right]\right]\right)$.

Let τ be the anti-linear automorphism of g_{c} such that $\tau \mid \mathfrak{f}=1$ and $\tau \mid \mathfrak{p}=$ -1 . Then there exist root vectors $\left\{X_{\alpha}\right\}$ of \mathfrak{g}_{c} with respect to \mathfrak{h}_{c} with $\left[X_{\infty}, X_{-\infty}\right]$ $=-(2 /(\alpha, \alpha)) \alpha$ and $\tau X_{\alpha}=X_{-\alpha}$. For a positive root α with $\sigma \alpha \neq-\alpha$ we define $S_{\infty} \in \mathfrak{f}$ and $T_{\infty} \in \mathfrak{p}$ as follows. If $\sigma \alpha=\alpha, S_{\infty}=(1+\tau) X, T_{\infty}=(1-\tau) X$. If $\sigma \alpha<\alpha$ and $\alpha+\sigma \alpha$ is not a root, $S_{\infty}=(1+\tau)(1+\sigma) X_{\alpha}, S_{\sigma \alpha}=(1+\tau) \sqrt{-1}(1-\sigma) X_{\alpha}$, $T_{\alpha}=(1-\tau)(1+\sigma) X_{\alpha}, T_{\sigma \alpha}=(1-\tau) \sqrt{-1}(1-\sigma) X_{\alpha} . \quad$ If $\sigma \alpha<\alpha$ and $\alpha+\sigma \alpha$ is a root, $S_{\alpha}=\sqrt{2}(1+\tau)(1+\sigma) X_{\alpha}, S_{\sigma \alpha}=\sqrt{2}(1+\tau) \sqrt{-1}(1-\sigma) X_{\alpha}, T_{\alpha}=\sqrt{2}(1-\tau)$ $(1+\sigma) X_{\alpha}, T_{\sigma \alpha}=\sqrt{2}(1-\tau) \sqrt{-1}(1-\sigma) X_{\alpha}$. Let $\bar{\lambda}$ denote the orthogonal projection to \mathfrak{G}^{-}of an element λ of \mathfrak{H}_{0}. Then we have (Takeuchi [5])

1) $\left[H, S_{a}\right]=(\alpha, H) T_{\alpha},\left[H, T_{a}\right]=(\alpha, H) S_{\infty} \quad$ for $H \in \mathfrak{h}^{-}$,
2) $\left[S_{\alpha}, T_{\infty}\right]=(4 /(\bar{\alpha}, \bar{\alpha})) \bar{\alpha}$,
3) $\alpha \neq \beta \Rightarrow\left(\left[S_{\alpha}, T_{\beta}\right], \mathfrak{h}\right)=\{0\}$.

On the other hand, \mathfrak{f} is spanned over \boldsymbol{R} by the centralizer \mathfrak{f}_{0} in \mathfrak{f}^{-}of $\left\{S_{\alpha}\right\}$. But $\mathfrak{f}_{0} s^{-1} o=A d a(s)^{-1} \mathfrak{f}_{0} o=\{o\}$ since $\operatorname{Ad} a(s)^{-1} \mathfrak{f}_{0}=\mathfrak{f}_{0}$ because of $s \mathfrak{h}^{-}=\mathfrak{h}^{-}$and since \mathfrak{f}_{0} is contained in the Lie algebra of K^{*}. It follows that the tangent space $M_{s^{-1}}{ }_{o}$ of M at $s^{-1} o$ is spanned over \boldsymbol{R} by $\left\{S_{\infty} s^{-1} o\right\}$. We have from 1), 2), and 3)

$$
\begin{aligned}
\mathscr{H}\left(S_{\alpha} s^{-1} o, S_{\beta} s^{-1} o\right) & =\left(s^{-1} Z,\left[S_{\alpha},\left[S_{\beta}, H_{0}\right]\right]\right) \\
& =-\left(\beta, H_{0}\right)\left(s^{-1} Z,\left[S_{\alpha}, T_{\beta}\right]\right) \\
& =\left\{\begin{array}{cc}
0 \quad \text { if } \quad \alpha \neq \beta \\
\frac{-4\left(\alpha, H_{0}\right)}{(\bar{\alpha}, \bar{\alpha})}\left(s^{-1} Z, \alpha\right) \quad \text { if } \alpha=\beta .
\end{array}\right.
\end{aligned}
$$

We note here that $-4\left(\alpha, H_{0}\right) /(\bar{\alpha}, \bar{\alpha})>0$. Now we need the following lemma giving the signature of $\left(s^{-1} Z, \alpha\right)$.

Lemma 1. For a positive root α we have

1) $\sigma \alpha \neq-\alpha$ and $\left(s^{-1} Z, \alpha\right)<0$

$$
\Leftrightarrow \quad\left(s^{-1} Z, \alpha\right)<0
$$

$$
\Leftrightarrow \quad \alpha \in \Phi_{s^{-1}}
$$

2) $\sigma \alpha \neq-\alpha$ and $\left(s^{-1} Z, \alpha\right)>0$ $\Leftrightarrow \quad\left(s^{-1} Z, \alpha\right)>0$

Proof of Lemma 1. Assume that $\sigma \alpha=-\alpha$. Then $\left(s^{-1} Z, \alpha\right)=(Z, s \alpha)=$ $(\sigma Z, \sigma s \alpha)=(Z, s \sigma \alpha)=-(Z, s \alpha)=-\left(s^{-1} Z, \alpha\right)$ so that $\left(s^{-1} Z, \alpha\right)=0$. Therefore it suffices to show that

$$
\left(s^{-1} Z, \alpha\right)<0 \Leftrightarrow s \alpha<0 .
$$

If $\left(s^{-1} Z, \alpha\right)<0$, then $(Z, s \alpha)<0$. It follows from the choice of our linear order on \mathfrak{F}_{0} that $s \alpha<0$. Conversely if $s \alpha<0$, then $-s \alpha>0$ and $s^{-1}(-s \alpha)=-\alpha<0$ so that $-s \alpha \in \Phi_{s^{-1}}$. But since $\Phi_{s} \cap \tilde{\mathfrak{r}}_{1}=\phi$ because s is an element of W^{1}, we have $\left(s^{-1} Z, \alpha\right)=(s \alpha, Z) \neq 0$. On the other hand we have $(s \alpha, Z) \leqslant 0$ from the choice of the order again. Thus we have $\left(s^{-1} Z, \alpha\right)<0$.

From the above lemma we see that the negative space $M_{s^{-1} o}$ of \mathcal{H} is spanned by $\left\{S_{a} s^{-1} o ; \alpha \in \Phi_{s^{-1}}\right\}$ and the positive space $M^{+} s^{-1} o$ of \mathscr{G} is spanned by $\left\{S_{\alpha} s^{-1} o\right.$; $\left.\alpha>0,\left(s^{-1} Z, \alpha\right)>0\right\}$. But $\operatorname{dim} M=\#\{\alpha \in \tilde{\mathfrak{r}} ;(\alpha, Z)<0\}=\#\left\{\alpha \in \tilde{\mathfrak{r}} ;\left(s^{-1} Z, \alpha\right)<0\right\}$ since the Lie algebra of U is the sum of non-negative eigenspaces of $a d Z$ on g (Takeuchi [5]). It follows from Lemma 1 that $\operatorname{dim} M=\#\left\{\alpha>0 ;\left(s^{-1} Z, \alpha\right)<0\right\}$ $+\#\left\{\alpha<0 ;\left(s^{-1} Z, \alpha\right)<0\right\}=\# \Phi_{s^{-1}}+\#\left\{\alpha>0 ;\left(s^{-1} Z, \alpha\right)>0\right\}$. Therefore the Hessian \mathscr{H} is non-degenerate and the index of $f_{H_{0}}$ at $s^{-1} o=\operatorname{dim} M_{s^{-1} o}^{-}=\# \Phi_{s^{-1}}=$ the index $n(s)$ of s.
q.e.d.

Remark. If X is a regular element of \mathfrak{p}, that is, there exists an element k of K such that $H_{0}=A d k X$ is an element of the negative Weyl chamber of \mathfrak{h}^{-}. then f_{X} is always an economical Morse function on M for \boldsymbol{Z}_{2}, since then $f_{X}(x o)=$ $f_{H_{0}}(k x o)$ for $x \in K$. If M is the Grassmann manifold over \boldsymbol{C} or \boldsymbol{H}, the dimensional consideration of cells yields that f_{X} for regular X is an economical Morse function on M for any coefficient field.

2. Nice functions on symmetric \boldsymbol{R}-spaces

Throughout this section we assume that the eigenvalues of $a d Z$ are 0,1 and -1 . Then the inner automorphism $\exp a d \pi \sqrt{-1} Z$ of g_{c} is involutive, leaves \mathfrak{l} invariant and is extended to the automorphism θ of K. Let $K_{\theta}=\{k \in K$; $\theta k=k\}$. Then K^{*} lies between K_{θ} and the connected component of K_{θ}. It follows that $M=K / K^{*}$ is symmetric. Conversely, if $M=G / U$ is an R-space such that $M=K / K^{*}$ is symmetric, then U is determined by an element Z of g such that eigenvalues of $a d Z$ are 0,1 and -1 (Nagano [2]).

Lemma 2. (Takeuchi [5]) Let $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ be the fundamental root system with respect to the linear order on \mathfrak{H}_{0} we have chosen in Section 1. Then for any element s of W^{1} there exist fundamental roots $\alpha_{i_{1}}, \cdots, \alpha_{i_{n(s)}}$ such that

$$
Z-s^{-1} Z=\sum_{k=1}^{n(s)} p_{i_{k}} \alpha_{i_{k}}, \quad p_{i_{k}}=\frac{2\left(Z, s \alpha_{i_{k}}\right)}{\left(\alpha_{i_{k}}, \alpha_{i_{k}}\right)}=\frac{2}{\left(\alpha_{i_{k}}, \alpha_{i_{k}}\right)} .
$$

Let $\delta=\frac{1}{2} \sum_{\alpha>0} \alpha$ and $\delta_{0}=\bar{\delta}$. It is known that $2\left(\delta, \alpha_{i}\right) /\left(\alpha_{i}, \alpha_{i}\right)=1$ for any i, thus we have $(\delta, \alpha)>0$ for any positive root α. It follows that for any positive root α with $\sigma \alpha \neq-\alpha$ we have $\left(-\delta_{0}, \alpha\right)=-\left(\frac{1}{2}(\delta+\sigma \delta), \alpha\right)=-\frac{1}{2}((\delta, \alpha)$
$+(\delta, \sigma \alpha))<0$ since $\sigma \alpha>0$. Therefore $-\delta_{0}$ is an element of the negative Weyl chamber of \mathfrak{h}^{-}.

Theorem 2. Let $M=G / U=K / K^{*}$ be a symmetric R-space. Then

$$
f=f_{-\delta_{0}}+\frac{1}{2} \operatorname{dim} M
$$

is a nice function on M.
Proof. Recalling that $\operatorname{dim} M=\#\{\alpha \in \tilde{\mathfrak{r}} ;(\alpha, Z)<0\}=\#\{\alpha \in \tilde{\mathfrak{r}} ;(\alpha, Z)>0\}$ and considering that $(\alpha, Z)=0$ or 1 for any positive root α, we have $\left(Z, \delta_{0}\right)=$ $(Z, \delta)=\frac{1}{2} \sum_{\alpha>0}(Z, \alpha)=\frac{1}{2} \operatorname{dim} M$. For an element s of W^{1} we take an expression of $Z-s^{-1} Z$ as in Lemma 2. Then we have

$$
\begin{aligned}
f\left(s^{-1} o\right) & =\left(s^{-1} Z,-\delta_{0}\right)+\frac{1}{2} \operatorname{dim} M \\
& =-\left(s^{-1} Z, \delta_{0}\right)+\left(Z, \delta_{0}\right)=\left(Z-s^{-1} Z, \delta_{0}\right) \\
& =\left(Z-s^{-1} Z, \delta\right) \\
& =\sum_{k=1}^{n(s)} \frac{2\left(\alpha_{i_{k}}, \delta\right)}{\left(\alpha_{i_{k}}, \alpha_{i_{k}}\right)}=n(s)
\end{aligned}
$$

It follows from Theorem 1 that $f\left(s^{-1} o\right)$ equals the index of f at $s^{-1} o$. q.e.d.

3. Length functions on \boldsymbol{R}-spaces

Now we come back to a general R-space $M=G / U=K / K^{*}$. The group K acts on \mathfrak{p} under the adjoint action as isometries of Euclidean space \mathfrak{p} with respect to the Killing form (,) of \mathfrak{g}. Owing to the equality (*) in Section 1, we may identify $M=K / K^{*}$ with the K-orbit through Z in \mathfrak{p}. Then the spherical function f_{X} on M is nothing but the height function on M with respect to the direction $X \in \mathfrak{p}$, that is,

$$
f_{X}(Y)=(Y, X) \quad \text { for } \quad Y \in M \subset \mathfrak{p}
$$

Now we consider the length function L_{X} on M from the point X of \mathfrak{p} defined by

$$
L_{X}(Y)=(Y-X, Y-X) \quad \text { for } \quad Y \in M \subset \mathfrak{p}
$$

Then we have

$$
L_{X}(Y)=-2(X, Y)+(Y, Y)+(X, X)=-2 f_{X}(Y)+(Z, Z)+(X, X)
$$

It follows from Section 1 that if H is an element of \mathfrak{G}^{-}such that $(\alpha, H) \neq 0$ for any root α with $\sigma \alpha \neq-\alpha$, then $s \mapsto s^{-1} Z$ gives a bijective correspondence of W^{1} to the set of critical points of L_{H}.

Theorem 3. If X is a regular element of \mathfrak{p}, then the length function L_{X} on M is an economical Morse function for \boldsymbol{Z}_{2}. In particular if H_{0} is an element of the positive Weyl chamber of \mathfrak{h}^{-}, that is,

$$
\left(\alpha, H_{0}\right)>0 \quad \text { for any positive root } \alpha \text { with } \sigma \alpha \neq-\alpha
$$

then for any element s of W^{1} we have

$$
\text { Index of } L_{H_{0}} \text { at } s^{-1} Z=\text { Index } n(s) \text { of } s .
$$

Proof. It follows from Remark in Section 1 and the above equality that L_{X} is an economical Morse function for \boldsymbol{Z}_{2}. Moreover Theorem 1 implies the second statement since $-H_{0}$ is an element of the negative Weyl chamber of \mathfrak{g}^{-}.

The second statement may be derived as follows by means of the diagram of the symmetric pair ($\mathfrak{g}, \mathfrak{l}$), which will give another proof of Theorem 1. The classical Morse theory for geodesics yields that if $s^{-1} Z$ is a non-degenerate critical point of $L_{H_{0}}$

$$
\text { Index of } L_{H_{0}} \text { at } s^{-1} Z=\sum_{0 \lll 1} \delta(t)
$$

where $\delta(t)$ is the multiplicity of the point $t H_{0}+(1-t) s^{-1} Z$ if this is a focal point relative to M along the transversal geodesic segment $\left\{\tau H_{0}+(1-\tau) s^{-1} Z ; 0 \leqslant \tau \leqslant 1\right\}$ to M and $\delta(t)=0$ otherwise. On the other hand it is known (Bott-Samelson [1]) that $L_{H_{0}}$ is a Morse function on M and

$$
\delta(t)=\#\left\{\alpha>0 ; \sigma \alpha \neq-\alpha,\left(\alpha, t H_{0}+(1-t) s^{-1} Z\right)=0\right\} .
$$

But for a positive root α with $\sigma \alpha \neq-\alpha$, the equation $\left(\alpha, t H_{0}+(1-t) s^{-1} Z\right)=0$ has a solution t such that $0<t<1$ if and only if $\left(\alpha, s^{-1} Z\right)<0$. It follows from Lemma 1 that $\sum_{0<t<1} \delta(t)$ equals the cardinality of $\Phi_{s^{-1}}$, that is, the index $n(s)$ of s. q.e.d.

Osaka University

References

[1] R. Bott and H. Samelson: Application of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958), 964-1029.
[2] T. Nagano: Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965), 428-453.
[3] S. Ramanujam: Topology of classical groups, Osaka J. Math. 6 (1969), 243-249.
[4] S. Smale: Generalized Poincaré conjecture in dimensions greater than four, Ann. of Math. 74 (1961), 391-406.
[5] M. Takeuchi: Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, Sec. I, 12 (1965), 81-192.
[6] M. Takeuchi and S. Kobayashi: Minimal imbeddings of R-spaces, J. Differential Geometry 2 (1968), 203-215.

