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0. Introduction

A Lie group is said to be simple if its (real) Lie algebra is simple. The
purpose of our paper is to classify all connected simple Lie groups. Let G be a
simply connected simple Lie group and g its Lie algebra. Any subgroup S of
the center C of G determines a group G/S locally isomorphic to G, and con-
versely any connected Lie group locally isomorphic to G is determined in this
manner. The problem of enumerating all the nonisomorphic connected Lie
groups locally isomorphic to a given G reduces to the study of the action of the

. group of automorphisms of G on the center C of G. In fact we have:

Lemma. Let C be the center of a simply connected simple Lie group G and
S,, S, subgroups of C. Then G|S, and G|S, are isomorphic if and only if there is
an automorphism o of G such that o S,=S,.

Proof. The “if” part is trivial. For the “only if” part we let ¢’ be an
isomorphism from G/S; onto G/S,. We denote the natural map G— G/S;
by 7z;(i=1, 2). 'Take open sets U,, U, of G containing the identity of G such
that z;| U; (=1, 2) is a homeomorphism and ¢ 'z, (U,)=n,(U,). Let o be the
unique homeomorphism from U, onto U, defined by o'z, =n,0. Then o is a
local automorphism of G, and can be extended to an automorphism of G, in
virtue of the simple connectedness of G and we shall denote this extended
automorphism also by o. Since G is generated by U, the relation o'z, =7z,0
remains true on G. The only if part now follows from kernel z;=S; (i=1, 2).

q.e.d.

The center C was studied by Cartan [1] and later by Dynkin and Oniscik

[2], Sirota and Solodovnikov [8], Takeuchi [9] and Glaeser [3]. The automor-
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phisms of the simply connected simple Lie group G are in one to one correspon-
dence with the automorphisms of the real simple algebra g. These automor-
phisms were studied by Cartan [1] and later by Murakami [6], Takeuchi [9]
and Matsumoto [5]. We shall use the results of Dynkin and Oniscik (for
compact G), Sirota and Solodovnikov (for noncompact G) and Glaeser, which
show that one can pick a set of representatives in a Cartan subalgebra §) of g
which maps onto the center C of simply connected G by the exponential map.
These representatives of C in §) are given in terms of roots suitably imbedded
in §. For an arbitrary automorphism o of G we have o-exp=exp-do, so
in view of the fact that G is simply connected, in order to classify the subgroups
S of the center C with respect to automorphisms of G, it suffices to study the
effect of the automorphisms (in fact only of the outer automorphisms) of g on the
representatives of C in §. This study is almost trivial for compact G because
Aut g/Inn g is of order 1 or 2 except when g is of type D,, where Aut g and
Inn g are the group of automorphisms and the group of inner automorphisms of
g respectively. For noncompact G we make use of Murakami’s description
of Aut g/Inn g as orthogonal transformations on the Cartan subalgebra §.
One should note that [8] and [6] are both based on Gantmacher’s classification
of real simple Lie algebras, and hence, that the choice of the same Cartan sub-
algebra §) in [8] and [6] allows the two studies to be combined here.?

1. Real forms of a complex simple Lie algebra

Let gc be a complex simple Lie algebra. The Killing form (,) on gc is
given by (», y)="Tr (ad x) (ad y) for x, yeg.. Let . be a Cartan subalgebra
of gc, A the set of all nonzero roots of g. with respect to §. and IT a system
of simple roots in A. Let ), be the real part of §, i.e., h={h=h|a(h) is real
for all e=A}. Then we have §.=H,QC. (,)|¥, is positive definite, so IT and
A can be imbedded in ¥, by the correspondence ai—h, given by (k,, h)=a(h)
for all €}, (and consequently for all A=Y;).

Let gc=bc+§ g, be the eigenspace decomposition of g with respec to §.

From each g. one can choose a root vector e,+0 so that (e,, e_,)=—1 and
N,g=N_, _g hold, where o, BEA. Here N, g is the structure constant given
by [es, €s]=Na pturp if @, B, a+BEA. We note that N, g are real numbers.
We also note that we have [e,, e_,]=—h, for a €A, by the choice of e,.

Let u,—e,+e_, and v,=i(e,—e_,). Then the real linear space spanned
by By, %, vs (A EA) gives a compact form of g, and as all compact forms of
gc are mapped to each other by inner automorphisms of g., one can consider

0) After this work was completed we learned about the paper A.I. Sirota: Classification
of real simple Lie groups (in the large). Moskov. Gos. Ped. Inst. Ucen. Zap. No. 243 (1965),
345-365, in which the author carries out the same idea as ours described above. However, the
way of obtaining the automorphisms is quite different from ours.
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any compact from g, of gc to be given in this manner.

All non-compact real forms g of g. are obtained from some compact form
g, of gc and some involutory automorphism J of g,, namely, if t={xeg,| Jx=x}
and q={x<=gq,| Jx=—x} then g=Ff+4iq [8, §5] [4, III, §7]. We shall see next
that J can be chosen in a specific manner.

Let us start with a compact form g, of g;, a Cartan subalgebra §. of g.
and root vectors e, (¢ €EA) so that g, is spanned by b, u,, v, (@€A). Fix
a system of simple roots IICH,. We say that two automorphisms of g, are
conjugate if one of them is transformed into the other by an inner automorphism
of g,. An automorphism of any real form of g can be considered as an auto-
morphism of g.. One can show that any involutory automorphism J of g,
is conjugate to an automorphism of g, which leaves IICY, invariant [6 (2),
Proposition 2], so we now assume that J leaves IICY), invariant.

In the proof of the fact that / can be chosen to leave IIC}, invariant, one
starts with a maximal abelian subalgebra §’ of ¥ and shows that the maximal
abelian subalgebra §)” of g, containing §’ is uniquely determined. Because of
the compactness of g,, §)” is mapped onto #f), by an inner automorphism S of
g, Then SJS7* leaves #Y), invariant and induces an orthogonal transformation
in §, which permutes elements of II. So by assuming that J leaves IIC},
invariant, we are also making the assumption that ¢, N f is maximal abelian in
f. We make use of this fact in §4.

For involutory automorphism J of g, leaving Il invariant we define a
normal automorphism J, of gc uniquely by the conditions i) /,|9c=J |hc and
ii) Joes=e;ca for a €I1. Note that J, depends on the choice of the ¢,’s. From
the construction of J, [6(2) p. 109] one can deduce that J,(u#,)= 4%,
Jo(vs)==47;@ for a €A, and hence Ji(g,)=g,. Thus J; is an involutory auto-
morphism of g,,.

Then one can still further show that an involutory automorphism J of g,
leaving IT invariant is equal to J, exp (ad #h,), where %, is some element in 9,
such that Jh,=h, and J, is the normal automorphism of g, determined as above
[6 (2), Proposition 3].

2. Aut g/Inng as orthogonal transformations of I,

The following is an outline of Murakami’s results on Aut g/Inng [6]. Let
ac» be, IC ACH,, {€4}, 6,=1{1y, Us, V) be as in §1. Then if g is a real form
of gc, we can assume that g is determined from g, by /=], exp (ad ih,). In
particular if g is compact we let J=identity.

The groups of automorphisms of g, g, and g. are denoted by Autg,
Autg, and Aut g respectively and Autg, Autg, are considered as subgroups
of Autg.. Let K be AutgNAutg,, K, the connected component of K
containing the identity and Q) the subset of Autg given by {exp ad x|x<1q},
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where g=1--iq is the decomposition determined by J. Then Autg=Q.X and
the group Inn g of inner automorphisms of g is equal to Q.K;, so Aut g/Inng
=~ K| K, We note that if g is compact then Q=/{e}.

Let K* denote the subgroup of elements of X leaving f). invariant. Then
K=K, K*, so if we let KF=K*NK, we have K/K,= K*/KF and
Aut g= K*Inn g.

We note that any automorphism of g. leaving f. invariant leaves A in-
variant, hence induces an orthogonal transformation on §,. Hence any o in
K* induces an orthogonal transformation on §,. If o|f, is the identity
then ce X§. Letting € and & denote the group of orthogonal transformations
on b, induced by automorphisms in K* and KF respectively, we then have
KH*|K§F=T[S.

Thus we conclude that Aut g/Inn g = Z/S.

Let Je,=v,e;> and set

A= {aEAlj(a) =0, vy = 1}
A, ={BEA|J(B) =B, va=—1}
A, = {E€A| J(E)*+E}

For €A, if (J(€), £)+0, then £+ J(E)EA,.

Theorem. (Murakami)
I. If 7 is an orthogonal transformation of V), then T X if and only if
@) vJ=J7
(i) TA;=A; (=1, 2, 3)
are satisfied.
II. For yeA, let o, be the reflection of Y, defined by

oy(h) = h—2y(h)/y(Why  (hEh,) .

Then © is generated by

(i) oa asA,

(i) op, where B=E+J(E), EEA, and (J(£), £)+0
(i) oo where EEA, snd (J(£), £)=0.

RemaRrk. (1) When we apply this theorem in the following sections we
consider T€ X as a linear transformation on Y.
(2) Let Jie,=poue5w- Then we have

Vg = Mo EXP (la(ho)) .

This is useful because in the classification of simple real forms A4, is given
explicitly in terms of a;(h,)(a; EI1,) and often J, is equal to the identity.
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3. The compact case

Consider connected simply connected compact simple Lie group G whose
Lie algebra is g. Let g. be the complexification of g. Using the notations
in §1 and §2, we can assume J to be the identity and g=g, to be spanned by
29,, 4, and o, (a EA).

In this case A=A, A,=¢, A,=¢, hence ¥ is the set of all orthogonal
transformations of §, leaving A invariant and & is the set of orthogonal trans-
formations generated by o,, c €A. Then &, T=PS, PN S=/{e}, where P
is the subgroup of ¥ of all orthogonal transformations of B, leaving II invariant
(cf. Satake [7], p. 292, Corollary). Thus Aut g/Inn g consists of two elements
for 4,(n=2), D,(n+4), E,, is isomorphic to the symmetric group on three
letters for D,, and consists of the identity element only for 4,, B,, C,, E;, E,,
F, and G,.

Consider now the Cartan subgroup H (the maximal toroidal subgroup) of
G corresponding to h=¢f),. H contains the center C of G. The exponential
map on §, exp: H— H is epimorphic. Let T,={h€h|exp heC} and T, =
{heb|exp h=e}, where e is the identity of G.

Theorem. (Dynkin and Oniscik [2])
(i) heT=a(h)=0 (mod 27i) for all a € A.
(it) T, is the lattice in ) generated by o' =(2ni|(hy, hy))2h,, 00 EA.

Using this theorem a complete set of representatikes of I",/T"; can be found
in 9, which maps onto C by the exponential map [2].

oi—do is an isomorphism of Aut G, the group of automorphisms of G,
onto Autg by virtue of the simple connectedness of G. Restricted to Inn G,
the group of inner automorphisms of G, it is an isomorphism from Inn G onto
Inng. The inner automorphisms leave the center C of G elementwise fixed.
Two subgroups of C are considered equivalent if one is transformed onto the
other by an automorphism of G. As Autg/Inng=%/&=P, C=T,/T', and
o-exp=exp-do the equivalence of subgroups of C is determined by the action
of T/&=P on T,/T,. The structure of T,/T, is well known and we obtain
the following table.

Type of g¢ C=T,/T, Number of inequivalent
classes of subgroups of C

A4, (»n=1) Zir Number of divisors of n+41
B, (n=2) Z 2

c, (n=3) Z, 2

Dyss (R22) Z 3

Dy (k=2) Z,x Z, 3if k=2, 4 if k=3

E, Z, 2
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E, Z, 2
E, Z, 1
F, Z, 1
G, Z, 1

Here Z, denotes the cyclic group of order z as usual.

The subgroups of cyclic groups are characteristic, so the only case to be
verified in this table is the case of D,,(k=2). In this case we must find the
explicit structure of I',/T,. To find T, we set {=2s;a} and derive con-
ditions on the s,’s imposed by the system of congruences (£, @,;)=0 (mod 277),
j=1,--,n. Then as Ty={af, ---, al},; a set of representatives of nonzero
elements of T",/T, for D,, is given as

(i) for k=2

z = (a1tay)2, z=(az+ai)l2, =z = (aitas)?2
(i1) for k=3

2 = (it ast -t dast+az,-1)/2

z, = (A1t a)[2

2, = (ai—f—aé—l—---+aék_s+d£k)/2
(cf. [2], I, 4).

For k=2, B is the group of orthogonal transformations of §, determined
by the permutations on the roots a,, a, «, The group P is transitive on
{21, 2, 2;} so all subgroups of C of order 2 are equivalent. For k=3, P=
{1, (2k—1, 2k)}, where (2k—1, 2k) is the orthogonal transformation of §, de-
termined by the interchange of the two roots «,,_, and «,,. The orbits of P

on {z,, 2,, 2,} are {2, 2,} and {z,}. So there are two inequivalent classes of
subgroups of C of order 2.

4. The center for the noncompact case

Let G be a connected simply connected noncompact simple Lie group,
whose ILie algebra is g. Let g; be the complexification of g. Using the
notations in §1 and §2, we can assume g to be determined from g, by
J=J,exp (ad ih,). The following is an outline of Sirota and Solodovnikov’s
result on the center of G [8].

Let g, be the real form of g, determined from g, by J, and let g,=¥,41q,
be its decomposition, where f,={x=gq,| J,x=x} and q={xEg,| Jox=—x}.
The subalgebra f, is semi-simple and 79,Nf, is a maximal abelian subalgebra
of f,. (This depends on our choice of J which forced if,Nf to be maximal
abelian in f). f,®C has a system of simple roots IT,CH,N 7f consisting of

& = (a+J(@)2, a0
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(cf. Lemma 3, §11, [8]).

Let g=%-+iq be the decomposition of g determined by J. As?f is compact,
f is equal to direct sum pEPb, where the ideal p=[f, f] is semi-simple compact
and D is the center of f. Any Cartan subalgebra §’ of f is of the form
h’'=0,+D, where Y, is a Cartan subalgebra of p and conversely.

Let the subgroups of G corresponding to f, p and b be denoted by K, P
and V respectively. Here P is simply connected compact semi-simple and
we have K=PV. Let H, be the maximal torus in P corresponding to b,.
Then the subgroup H' of K corresponding to %)’ is of the form H'=H,V.
The center C of G is contained in K (cf. [4], p. 214, Theorem 1.1) and the
center decomposes into C,V, where C, is the center of P. As P is compact,
C,CH,, so we have CCH’'. The exponential map on Y)’, exp: h)'—H’, is
epimorphic. Let now §'=1:h,N¥ (cf. §1), and let T,={h<h’|exp heC} and
T,={h€Y’ |exp h=¢}.

Theorem. (Sirota and Solodovnikov [8])

(1) Ti=Ty(g.)Nb, :

where T,(g,)={h<E1b,| a(h)=0 (mod 277) for all a € A}.
For hef'=h,NE, we have

heT, < a,(h)=0 (mod 2xi) for all &;TI, .

(i) T=T.(p),
where Ty(p)={h<EY, |exp h=¢é}.

This theorem enables us to pick a complete set of representatives of T',/T,
in §” which maps onto the center C of G.

Let us consider how Aut G acts on C. As in §3, because of the simple
connectedness of G, the map o—do gives isomorphisms Aut G=Autg and
Inn G=1Inng. Furthermore we have o-exp=exp-do and Autg=K* Inng
(§2). AsInn G acts trivially on C, in order to study the action of Aut G on
C, it suffices to study the action of A* on I',/T,. One should note that K*
leaves A, 79, and 9’ invariant (§2), and hence leaves T, and T, invariant. Thus
it suffices to consider the action of T/& on T\/T,.

Remark. (1) For a simple algebra g, if J, is the identity, then ¥,=g,,.
If gc is one of the classical simple algebras, then the types of g for which J,
is not the identity, are A1I,, AIl, and half of DI,, DI, being divided into two
parts according to whether J, is the identity or not. For these three types, to
obtain the system A, of all non zero roots of f,QC one takes the system {@|&=
(a+J())/2, a= A} and excludes those & such that a=J(«) and e,+ J,e,=0.
This exclusion actually occurs only for A1, (n even), and the & to be excluded
are those given by a=+4(\;—\;) where i+j=n-+2 (cf. §5, 6).

Note also that if J,=identity, then #f), N =7, so rank f=rank g..



258 M. Goro anD E.T. KoBavasHI

ReMARK. (2) In I=pPb, dimb=1 or 0. The system Ap of all roots
of pRC is given by {@|a=(a+J(a))/2, a€A—A,} (A, was defined in §2).
Using the theorem of Dynkin and Oniscik (§3), one sees that T, is generated by

v = (2mil(hay ha)2hs,  AE (+)

where £; is given by (h;, h)=a&(h) for all k€.

One should note that h;=,Cip. Let p;QC be a simple factor of pRC.
Actually p®C is simple or the direct sum of two simple algebras. (cf. §6) The
Killing form (,) of g restricted to p;QC is invariant and non-degenerate,
hence, is a constant multiple of the Killing form <,> on p;QC. For a root
a@ of p;C one can define ky;&7h, Np; @ C such that <{k; h>=a(h) for all
heih, Np;QC. Then we have

ka/<ka: ka> = h&/(h&) ha‘i)

which justifies the use of (*) above in the application of the theorem of Dynkin
and Oniscik.

The center C of G is cyclic if the Lie algebra g of G is a real form of an
exceptional complex simple algebra except for one real form of E, for which
C=Z,xZ, But in this case Autg/Inng consists of the identity only (cf.
Takeuchi [9]) so we can conclude that the subgroups of the center C of G are
characteristic if the Lie algebra g of G is a real form of an exceptional complex
simple algebra.

In the rest of this paper we will deal with the cases where g is a real form
of a classical algebra of type 4, B, C and D.

5. The structure of T/S for the classical simple algebras

In [6, (1)] Murakami shows how one can determine the structure of
Aut g/Inn g=%/& when g, is of type A, using his characterization of ¥ and &
given in §2.  'We shall employ his argument to determine the structure of /&
when g. is of type B, Cand D. The argument for type A is repeated here for
the sake of completeness.

Let € be the set of all orthogonal transformations of §, leaving A invariant
and & be the set of orthogonal transformations generated by o,, a=A. Then
S<g, E=PS, BN S={e}, where P is the subgroup of ¥ of all orthogonal
transformations of §, leaving II invariant [7]. & is the Weyl group of gc.
The structures of € and & for the classical simple algebras are well known. The
theorems of Murakami (cf. §2) show that T ¥ and &< &, and enable us to
determine the coset structure of /& from the structures of € and &.

In what follows, the dual space of §, is identified with §, via (, )|, and
most of the time we use the same symbol for an element in §, and the cor-
responding element in the dual space of f,.
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5.1. If gc is of type 4, a system of simple roots II is given by
O = A=Ay, O = Np—Ng, > 5 Oy = ANy Ay
and a system of roots A is given by
TNy = (@it ta;) (<))
5.1.1. Ifg is of type AI,, n odd, n=3, then one can let J,+E, dc,pn(h)
=mn, and a;(h,)=0 for &=(n+1)/2. We then haveV
jo()'i_xj) = 7\'”+2—j_7\m+2—x‘ (l<])
]o(ex.-—i\j) = (_1)i+j+leJ0()\,'—)\j)
from which we derive
Joi—2)) = M= @i = nt-2.
Remembering that n+2 is odd, we thus have
A, = empty
A, = {£(\—))lit) = n+2}
Ay = (=) litj=nt2} .

For N;—\,=A; we note that 7, j, n4+2—i, n+2—j are all distinct and hence
(M=, Jl(vi—n;))=0. Thus by Murakami’s theorem in § 2 & is generated by
T -0 A A, where A, —\,;EA,. These T g -A 0N A interchange A; and A,
Aniz—; and A, ; but leave A, fixed, where k=1, j, n4+2—1i,n+2—j. We have
§=6+7J,6. We know that &=, where S is the symmetric group on n+1
letters, the isomorphism vr: &— S being given by s(A;)= Ay for s€&
and all 2. We shall 1dent1fy S with S and write (i) for (@) As —J,e& we
can write T=6+(—1)S. Note that —1Z. For s&&, we have

seZos], = Jsos()+s(n+2—i) = n+2 forall z,

From this we see that TN C‘%z@?)—l—o-)\a_A
have

S, forany 1<a=<n-+1.» Thus we

n+2-a

SS: == @_}_(T)\a_)‘ @‘I‘( 1)@"1"0’)\ “Ay 2 a( 1)@ .

5.1.2. If gis of type AIL,, n even, n=2, then we can let J,=+FE and A,=0.
Using what was said for J;#E in 5.1.1 and remembering that z is even and
h,=0 now, we have

a+2—-n

1) The derivation of the second equation requires computation similar to that in 5.4.2.
2) cf. Appendix
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A, = empty

By = {2 i+j = n+2}

Ay = {£ =N li+j Fn+2} .
For N,—)\;€A,, we have (\;—X;, J((A;—2X,))=—N\i XNpizoi)—Njs Amia—j)s
hence
=0 ifsj(n+2)/2

A=y, ]0(7“_7“")){ + 0 ifiorj=(nt+2)/2.

We have (A ;—Ncpio) +Jo(Mi—ANmiase) =Ni— Apip_; for all 2. Hence © is gener-
ated by o,,- Aproei (1<n/2) and oy, _x 0 rn-ap (6 jF(n+2)/2 and z—l—] +n+2).
We have T— S+J6= S4(— 1)@ Note that —1€Z. For se&=S, we

have
seTe s, = Js = s(@)+s(n+2—1i) = n+2 forallz,

thus TN &=6% and T=6+(—1)S.

5.1.3. If g is of type AII,, n odd, n=3, then we can let J,=&E and 2,=0.
Using what was said for J,=F in 5.1.1, and remembering that z» is odd and
h,=0 now, we see that

A, = {+ (=) i+) = n+2}
A, = empty
Ay = {+Ni—Nj) | i+j F=n+2}

and (M—Xj, J,(vi—X;)=0 for \,—1; €A, © is generated by o,
(i+j=n+2) and oy, s 0,0, 2 (i+7%n+2). We have T=6+J,6=6+(—-1)S
and —1=% as before. For s&@=S, we have again

seTes), = s s@)+s(n+2—1i) =nt2 for all 7,

so as before we again have £NS&=8» and T=G14(—1)S.

5.14. If g is of type AIIl,, n=1, then we can let J,=E, a,(h)=r,
a;(h)=0 for i=m. For each m, 1<m=[(n+1)/2], we have a real form of g
of type A,. Distinct values of m determine nonisomorphic real forms. Using
Vo= €Xp (10ty(h,)) (cf. §2), we see that

A= {+\—\)li<j=m or m<i<j}
= {2 i=m<j}
A; = empty.
We have ©=&, xS,. Here, if m=+1 and n=1, then &, is generated by Tri-nj0

1<j=m, and is isomorphic to the symmetric group on m letters, 1,---, m, while,
if n#1, then &, is generated by o, - rp m<i<j, and is isomorphic to the
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symmetric group on n—m-+ 1 letters, m+1,---,n+1. The isomorphisms
,(r=1, 2) are given by s(\;)=\y, . for s€&,. For m=1, &,={1}. For
n=1, &,=8,={1}. For n+1, we have T=6+]S=6+(—1)S and —18.
For s=&=S, we have

e {se@lx@z if n4+142m
s =4
$€(6,X8,)+0,,(6,x6,)  if nt+1=2m
where Oy =0 A -Aps1TMg-Apyiz  "OA,-7,,,» HlEDCE
_{ S+(—1S if n+132m
| S (—1)8 40, Btou(—1)S  if nt1=2m.

For n=1, §=&=S=symmetric group on two letters, and &={1}. Thus
T={1, 00 -
5.2. If g¢c is of type B, a system of simple roots IT is given by
Ay = Ny— Ny Ay = Ny— Ny, o, Uy = Ny 1 — Ay Oy = A,

and a system of roots A is given by

+i—N)) = £(ait+a;y) (<))
AN = (=) +N) = H(ai+Fa, +a,)
:l:()'i—l_)\'j) = :l:(7\'i—7\n)+(7\j“7\n)+27\n) (i<j)

— t((@t @) a4t ay).

5.2.1. If g is of type BI,, n=2, then one can let J,=E, a,(h)=m,
a;(h)=0 for i%m. For each m, 1 <m=n, we have a real form of g, of type
B,. Distinct values of m determine nonisomorphic real forms. We see that

A, = {+i—n;), A+ for i<j<m or m<i<jand +\; for i>m}
A, = A—A,
A, = empty

Hence & =9,76, xD,S,, where &, and &, are as in 5.1.4, except that the
indices for &, run from m-+1 to z» now, and where D,"={d|d(\;)=E;,
E&i=+1 for i<m, &=1 for m<i, [1§;=1} and D,={d |d(\;)=EN;, &=1 for
i<m, &=41for m<i}. For m=n—1, &,={1}, for m=n, D,=6,={1}. For
m=1, D*=6,={1}. We have T=6=D8,, where D is the subgroup of the
elements d such that d(\;)=&n;, €;=41, &, is the subgroup generated by
o»-»; and is isomorphic to the symmetric group on z letters. We have DA, C A,
s0 Dc ¥ and §,NT=6, xS,. Hence

T=64+pS
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where p,=d €D such that d\;)=—x, and d(\;)=X, for i +k.
5.3. If gc is of type C, a system of simple roots IT is given by
O = N—Ngy 5, Ay = Ny 1 — Ny, O, = 2N,
and a system of roots A is given by

£ A) = (et tay ) )
EOAN)) = (i) +(0—N,)+20,)
= (a4 +a, )+ (a;++a,,)+a,) (i=jallowed here)

5.3.1. If g is of type CI,, n=3, then we can let J,=E, a,(h)=mn,
ot;(h,)=0 for i +=n. Then we have

A = {2*2(7\1'—'7”1‘)}
A, = {£AN)))
A; = empty
We see that & is isomorphic to the symmetric group on # letters. We have
T=6=938, and TND={1, —1}. Hence T=G(—1)S.
5.3.2. If g, is of type CII,, n=3, then we can let J,=E, a,(h)=m,
a;(h,)=0 for i=m. For each m, 1 <m=[n/2], we have a real form of g of

type C,. Distinct values of m determine nonisomorphic real forms. We see
that

A= (), (AN )i SjSm or m=i<j)

A, = A—A,

A, = empty
Hence we get €=9,6, xD,8,=(S, xS,), where the subgroups are as in
5.2.1. except that the elements of ©, do not have the restriction IT§;=1, which

those of D," have. For m=1 we let ®, =, = {1}. Here T=6=38, and
DT so we have

30@0:{ S, xS, %fn:i=2m
(6, X8,)+0,,(6,x8,) if n=2m,

where o, =0\ _x,,,00-a,,,"""%xr,-2,- Hence

< _{ S if n2m
| &40, & ifn=2m.

5.4. 1If gc is of type D, a system of simple roots II is given by

a, = 7\‘1-'7\2: a, = Ag= Ay s Oy = Ny — Ny, Oy = 7\'#—1+kn
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and a system of roots A is given by

=) = (@it +a;.) (i<j)
HNAA;) = (X)) F=2) (M +10))
= :I:((ai+“'+an—2)+(aj+"'+an-1)+an) (Z<])
5.4.1. If g is of type DI, n=4, and ]0=E then we can let «,,(h)=n,

ot(h,)=0 for i==m. For each m, 1 <m=[n[2], we have a real form of g. of type
D,. Distinct values of m determine nonisomorphic real forms. We see that

A = {—N), FGHN)) | =i<jm or m<i<j}

A, = A—A,

A, = empty
Hence as in 5.2.1 we get &=3,"&, x D,*&,, where D, is the subgroup of D, of
elements satisfying I16;=1. If m=1, we let D,"=& ={1}.

(i) For n=5 we have £=&1p,S, where the notation p, was introduced
in 5.2.1. Furthermore =9+, where D" is the subgroup of D of elements
satisfying I1§;=1. Thus T=D6, As Dcg, to determine T we only have
to consider NS and see that

~ S, x8, if n=2m
e | .
(8,X8,)+0.(8,x&,)  if n=2m

where o, was given in 5.3.2. Hence

B { @—Fp,@—}—p"@—{—plp”@ if n=2m
o @+p1@—I—p”@—l—plp“@—{—o-,,o@—I—o-,,op1@+a,,opn@—|—0',,0plp,,@ if n=2m.

(ii) For n=4 we have izS@@, where S, is the group consisting of
elements keeping a, fixed and permuting «,, a;, @,. We have &=3*&, as
above. We consider the cases m=1 and m=2 separately.

(a) If m=1, then

A = {fa, d(atay), oy, t(atata), H(ata), tat .
Let d €D*, s&&, and suppose
dsA; = {£A =), =), Eu—N), OGN, Eu+N), £}

Note that A\, +N,=a,+a,+a,+a,+a, and N+N,=a,+a,+a,+a,. As
dsA, contains \,+2\, and/or A+, and as all € S,, leave both of these fixed,
we have odsA, =+ A, for all s=S,,,. Hence if odsA,=A, for =S, d=D"
and s&&,, then s&€®, and o =1 or o(a,, @,), where by o(a;, ar;) we shall denote
the element of S, which permutes a; and «; and leaves «, (k=1,j) fixed.
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Note that o(a, a,)=p,. If we now denote the element d= D such that
d(N;)=—N;, d(\;)=—N); and d(\)=n; for k=14, j, by p; ;, then we can write
T=6+p,,84+pS+pp, S .
(b) If m=2, then
A, = {ta,, +a, H((a+a)H(a+a)ta,), +a),
so SiyA,=A,, hence S, cZ. It is clear that D*cI. We observe that
TNG = (&,x8,)+0,(S,xS,)
where o, =0, _2,0x,-1,- Hence we conclude that
T = S(B+p,840.8+p,0.,9) .

5.4.2. If g is of type DI,, n=4, and J,=E then we can let a,,(h,)=7,
a;(h,)=0 for i=tm if m=+0, and let 5,=0 if m=0. For eachm, 0=<m=<[(n—1)/2],
we have a real form of g; of type D,. Distinct values of m determine non-
isomorphic real forms. In order to determine A; (=1, 2, 3) we shall first
compute the value of u, (cf. §2). By [6, (1) p. 128] p, must satisfy

(ml)  pop_o = 1
(m2)  puip = (NJOCw),]o(B)/NM,ﬂ)l"wlLB
(m3)  po, = 1.

We find for i <j<k

(e 1) [e)\,-—xjy exj-)\k] = €x;-n,
(3 2) [ex,--)\j, exj+>\,,] = €xea;
(e3) [ekr?\k’ eA,-Hk] = e

(e4) [er;srp eAj_,\k] = ey, -
For i <j—1 we have by (m2)
tni-n; = (N -a; oot - Va2 un oA JEa-xj aHa, g, -
So using (el), (¢2) and (m3) we have
Baga, = 1 fori<j (1)
For i <n—1 we have from (m2)
I'JA;-M,.=(NJ0<A,-—A,,_1, Jotx.._w\,.)/NA;—A,.-l.An_lﬂ,.)lh,-—xn-,m,,_ﬁx,,
so using (el), (e2), (m3) and (1) we get

I‘l')\,'*')\j:l fOl‘i<n (2)
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For £ <j <n we have from (m2)
B+ a; = (NJO(Ai-A”), JO()\j+)\”)/N)\‘~—}\”, Aj+)\,‘)ﬂl)\,~—)\,,p’)\j+)\" .

Using (e3), (e4), (1) and (2) we conclude that u, ,;=1. Finally we use (m1)
and have p,=1 for all a€A. Now we find

Ay = {E—N), FA)E<jSmoor m<i<j<nm}
A, = {FN—N), EAN)IEm<j<m}
A, = {:I:()\;—X,,), :I:()\,-—l—)x,,)li<n}

Note that (A;—2,,, A;+27,)=0 and that

A& if k+i, n
a-'\i+)‘n0-)‘i')‘n(7\‘k) = —7\.,‘ if k:l
-\, if k=n

Now we see that S=3"(&, x &,), where as before D* is the group of elements
d such that d\;)=&N\;, &=-+1 for 1<i<n with II§;=1, while &, is the
group generated by o, for 1<i<<j<m and &, is the group generated by
or-r; for m<i<j<m If m=0 or 1 then & ={1}. If n=4 and m=2 then
S,={1}. o . .

(i) For m=5 as in 5.4.1 we have I=&,. As DA,=A, we have DCT.
Furthermore

&, x 8, o ifn—142m
(6,X8,)+0,,(8,xS,) if n—1=2m

ene—|

where o, =0, _x,, Ta,-2,.,5° " "Or, -2, Ience

% _{ S+p,S if n—1%2m
o @+pn@—!—o‘,1@—|—a,,1pn@ if n—1=2m .
(ii) For m=4 as in 5.4.1 we have £=S5,6=S8, 'S, We have two

separate cases: m=0 and 1.
(a) If m=0 then

Ay = {£i—N), 20N 1i<j <3}
We note that the following three elements of A,,

NN, = a2, +a+a,
MFN = oo, tasta,
A=Ay = A,

are all fixed by any ¢ € S,,. Thus if odsA,=A, for e € S, d=D* and s,
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then dsA, contains +(\,+2\,), (A +X,), +=(A,—2,), hence s€&, and oA, =A,.
The remaining three positive elements of A, not listed above are

ANy— Ny = Oy My— Ny = Oy N HN = a0+
so the condition o A,=A, implies o=1 or c=0(a;, @,). Hence we have
T = B+o(a, a,)S.
(b) If m=1 then
A= {£ =N £} = {0t £(Fata,);) .

For =S, we note that o(A,—N\,)=N,—A,;, so if odsA,=A, for o= S,
de®D" and s&S then dsA, contains +(\,—2,), and thus s€&, and o=1 or
(o, o). Hence

T =BG+o(a;, ).

54.3. If g is of type DIII,, n=5, then we can let J=E, a,(h)=m7,
oy (h)=0 for %n. Then we see that

A= {i(xi_)’j)}
Ay = {£Mi+1))
A; = empty

We have ©=8,=~S. As in 5.4.1 we have T=T6,. As TND={1, —1} we
have

T =6+(—1)S.

6. The structure of f, and f. The action of /& on I',/T,.

In this section we determine the action of ¥/& on T',/T\, when g, is
a classical simple algebra, using the structure of T,/T', given by Sirota and
Solodovnikov in [8] and the explicit coset decomposition of ¥/& determined
in §5. In order that this section be self-contained, we shall elaborate on some
details that were omitted in [8]. In particular we shall indicate how to derive
the structures of pQC and {,QC. Insome cases we choose representatives of
T,/T, different from those in [8].»

In §4 we have seen that T, is generated by v= (27i/(h,, h,))2h,, &E A,.
Note that if J,=F, then we have y=a'=(27i/(h,, h,))2h,. This is the case
if g is one of the following types: 4II1,, BI,, C1,, CII,, DI, with J.=E, DIII,.

6.1.1. If gis of type AI, (denoted I, in [8]), » odd, n=3, then {,QC is

3) We have corrected the errors in [8] that were pointed out by H. Freudenthal in
Zentralblatt 102, 21-22.
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of type Ci,i1p and E=p is of type Di,ipp. In fact we know by [8], §11,
Lemma 3, that {,QC is semi-simple and that II,={@,, ***, @cy_1/2r Tinivs}
is a system of simple roots for it. The Killing form (, ) of gc restricted to
£,®C is invariant and nondegenerate. If f,QC were not simple, then II,
would decompose into disjoint proper subsets, orthogonal to each other with
respect to the restriction of (, ) to {,QC. But computation shows that this
is not the case, so we conclude that {,QC is simple and that (, )|{,QC is a
constant multiple of the Killing form of {,®QC. Then

(dn a~1) == (d(n—l)/Z) d7("—1)2) = (d(n-)-l)/z’ a(n+1)/2)/2

shows that {,QC is of type C,.,>,. To determine the structure of f, we
note that A—A,=A, because A,=¢, and hence that the root system of pQC
is given by {@|aEA,} (cf. §4, Remark (2)). Then we find that

HP == {&(n—l)/Z? &(n—a)/z’ Sty dn B}
is a system of simple roots for p®QC, where
—B = &1_‘—2&2_*—'”+2a(n—1)/2+&(n+1)/2 A

As rank pQC <rank {,®C we conclude that b={0} and f=p. Furthermore
an argument similar to that for f,, using the restriction of the Killing form of g,
to EQC, will show the simplicity of {QC and then we can determine its type.

We let v,=(271/(hz;, h/z,))2hs, (j=1, - , (n+1)/2) and note that
_(2771/(}13) hB))ZhB = '71‘1“2'}'2_*_"‘+27(n—1)/2+2')'(n+1)/2
(which we shall write —vg) .
Then we have
1-‘o = {'Y(n—l)/z, Yn-/25 **" s V1s 'YB}Z

= {’)’(n_n/z, Yin-r2s *** »Y1» 2')’<n+1>/z}z

To obtain T, we have first I',={¢|(¢, @,)=0 (mod 27i), j=1, -, (n+1)/2}.
Writing §=3>1s,y; we can find conditions imposed on s;(j=1, -+, (n+1)/2)
in order that { &T,. From this we see that
= {71, s Yantn/2s 2‘}2
where
g = (')’1“"')’3‘*‘ "'+7(n—3)/2+')’(n+1)/2)/2 if (n+ 1)/2 odd

4) Fora=a;+-+a;-; (1<j)
i) Ifi<j—1<(n+1)/2 then @=&+ - +&;
i) Ifi<(n+1)/2<j—1 (and i<n+2—j) then &= —f —&, — 2@, —--+ —2&; -1 —& —+--

—‘in—l-l—j
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2= (Vitvst Y02 if (n+1)/2 even.

Thus the center C is given by

={&+Ty> =Z, if (n++1)/2 odd

C=T[T, {
=+ Tox{+To=Z,X Z, if (n+1)/2 even

where 2, =Yy 117

The outer automorphisms to consider are —1 and =0, -r,,., - Lhe
action of —1 on C is clear. The action of ¢ on C is determined by the
following relations. For (n+41)/2 odd, we have

o3+ =Y +Vt At VenpET,,

and for (n41)/2 even, we have
OR—% = Y, =% and o3, = —3,.

We consider two subgroups of C equivalent if one transforms to the other by
an automorphism of G. Using the action of £/& on T',/T, we determine
the number of inequivalent classes of subgroups of the center C and list it in
the following table. Here and in the following tables the asterisks * mark the
cases where there are classes containing more than one subgroup of C.

order of subgroup 1 2 4 Total
(n+1)/2 odd 1 1 1 3
(n+1)/2 even 1 2% 1 4

6.1.2. Ifgisof type AI,, n even, n=2, then as 4,=0 we have /=], and
hence £=%,. Consequently ¥ is semi-simple and v={0} and f=p. The system
of roots for t,QC=ERC=pRC is given by {@|acA,} (because A,=¢ in this
case) and we see that II,=Ilp={&,, &,, ---, &,.,} is a system of simple roots.”
Using the Killing form of g, restricted to f®QC and arguing as in 6.1.1, we
conclude that fQC is simple. Then

(dl ’ dl): "':(&Cn—z)/w a~(n—2)/2) = 2(@7,,/2, an/z)

shows that QC is of type B,,,.
Letting v,=(27i/(hz,, h3,))2hs; (j=1, -+ , n/2), we have

Fo = {71) oy Vin-2)/25 'Yn/z}Z
and as in 6.1.1 from T',={¢ | (¢, &,)=0 (mod 277), j=1, -+, n/2} we get

5) Fora=a;+:+a;-, (<))
i) Ifisj—1=n/2 then @a=a&;+ - +&;-,
i) Ifisn/2<j—1(andi<n+2—j)then@&=a& +:  +&+1-;+2@+2-;+" +2&,/,
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I = {'Yv ty Yin-2/2» (')'n/z)/z}z .
Thus the center C of G is given by
C= FI/FO = (2, + T = Z,.

where 2,=(7,.)/2. The only outer automorphism to consider is —1 and the
action on C is trivial.

6.1.3. If g is of type AII, (denoted J, in [8]), » odd, n=3, then A,=0,
hence J=], and f=f,, so b={0} and f=p. The system of roots for {,QC
=tQC=pRC is given by {@|ac A} (in this case A,=¢). Using the same
argument as above we conclude that II,=IIp={@,, --- , @1} ® is a simple
system of roots, and that {QC is simple. Then

(@, &) = = = (Acu_vres An-vrz) = (Anrvter Aenrors)[2
shows that EQC is of type Ci,. .y, -
Letting v;=(271/(hs;, hz;))2hz; (j=1, ---, (n+1)/2), we have
To= {71 = s Yntvrad z -

As in 6.1.1 we derive from I'={¢|(¢, a;)=0 (mod 277), j=1, -+, (n+1)/2}
that

= {'71: ty Ynr/2o z}z .

where

2= ("1 +7st +Yn-wntYamror)2  if (n+1)/2 odd
2= (77t +Ymvr)2 if (n+1)/2 even

Thus the center C of G is given by
C=T\I',={+4Tp=Z.

The only outer automorphism to consider is —1 and its action on C is trivial.

6.1.4. If g is of type AIII, (denoted A7 in [8]), n=1, then J,=E, hence
t,—=g,. We have II,={a,, -+, @,}. We have I =p Pp,Pb, where b =1iRh,,
and p,®C and p,QC are simple of types A4,,_, and 4,_,, respectively, except
that p,={0} if m=1, and p,=p,={0} if n=1. To verify this, we first note that
A, being empty the root system of p@C is given by A,, which is empty if n=1
and which is the disjoint union of two subsystems {4+(X\;—\,)|7, j<m} and

6) For a=a,++aj-; (1<)
i) Ifi< —1=(n+1)/2 then @=a&;+ - +&;
i) Ifi<(n+1)2<j—1 (and i<n-+2—j) then
=&+ +&p+1-j 28y 42—+ +28G -2 HEG+ /2



270 M. Gorto anD E.T. KoBavasut

{£v—)Im<i<j} if n>1. Thus {a,, -, Q,_,} and {@py, -, @} are
systems of simple roots for simple algebras p,QC and p,QC such that p=pDp,.
One should also note that the Killing form on pQC is the restriction of that for
gc. From a;(h,)=0 for i4=m and the structure of p we see that [k, p]=0.

We now let v, =(27i/(hy,, hy)))2hs; (j=1,-+, n). Forn=1, we have T',= {0}
and T',{v,/2}, and the center C is given by

C=I\T,={nf2>=Z.

The action of T on C is given by o _», (v:/2)=—7,//2. For n>1, we have

To={¥5 s Yonots Vonts =" Vb2 -
From T',={¢|(¢, a;)=0 (mod 2xi), j=1, -+ , n} we obtain

Ty= {1, VY )z
where u,=(1/n+41) ﬁ] kye. Here we could replace u, by u,=(1/n41)
Xil (n—k+1)y, just 1als well. 'Then the center C is given by
C=T,T,={4+TOX{+To=Z,XZ,

where d=(m, n+1) and z,, 2, are given by

2, = (m|dyu,—(n—m-+1/d)u,
2, = Mu,+Mu, (M, M,eZ satisfying Mm-+M,(n—m-+1) =d).

Here we have chosen 2, and %, so that if we write z;=>] s, ; then s,,=0 for z,
and s,,=d|(n+1) for z,.

If n+12m the only outer automorphism to consider is —1. The action
of —1 is clear. If n+1=2m, then n—m-+1=m=d and we have

% =t = (1n+1)(3] (14 17 —2 31 bv)
= (—2/(n+1))k§n Ry (mod Ty) .

We can let M,=1, M,=0. Then we have z,=u,. We only have to consider the
action of —1 and . The action of —1 is clear. As for O, WE have

re3)=(—2)(n D) 33 (k—myat S (k-tmyy)
=(-2a+ D) Zhr =5 (modT,).
To find o, (2,), consider
mtu,=v,, (mod T')

Because o (at,,) = — (o, ++-+a,) we have
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O (A1) = — (u,+u,) (mod T,) .
We also have
O (1) = T (thy— 1) =2, = U,—U, (mod I'y),
hence
02y(2) = 0 () = (1)2) (— (1) — (u,—w,)) = —u, = —2,—2, (mod T) .

For n=1, each non-negative integer gives a subgroup of C and distinct integers
give subgroups which are inequivalent under automorphisms of G. For n>1,
the subgroups of C =T,/T'; are of the form

laz,+T o X<bz+b2,+T>=Z;,XZor 1 XZ

where a, b, and b, are non-negative integers such that if a==0, then a|d, 0<5,<a,
if a=0, then 0=<b,<d, and if b,=0, then b,=0. If n+1342m, then the only
outer automorphism to consider is —1, so for each choice of (a, b,, b,) we have
a subgroup of C, distinct triples defining subgroups which are inequivalent
under automorphisms of G. If n+1=2m, then we have to consider o,, along
with —1 and the subgroups of C given by (a, b, b,) and (a, b,’, b,") are sent
onto each other by o, if and only if

1) a=a *0, b,=5, and b—b,= —b,’ (mod a)
or 2) a=a'=0,b,=b," and b—b,= —b’ (mod d) .

6.2.1. If g is of type BI, (denoted BZ" in [8]), n=2, then J,=E and we
have f,=g, and II,={a,, -**, a@,}. For m=1, we have f=pPv, where pQC is
simple of type B, _,, while b=:7RA, In fact as the system of roots for pQC is
A={+MN;+N;), 1<i<j; £, 1<k} we see that {a,, -+, a,} is a system
of simple roots for pQC, and thus by the argument in 6.1.1 we can derive the
simplicity and the type of p®@C. Then from «;(h,)=0, i1, we conclude that
[#, P]=0. For 1<m<mn, t=p, Py, where p, ®C and p,QXC are simple
and of types D,, and B,_,, respectively. This can be seen by observing
that A, decomposes into two disjoint subsystems {+(\;4-r))|{<<j=<m} and
{+ NN Im<i<j} U{£N;|m<i}, orthogonal to each other with respect to
the Killing form on g, then picking systems of simple roots {«,,_,,*, a,, o, B},
where —B=n+N,=a,+2a,++2a,,” and {&,, ***, Ap_y, at,; for the
subsystems and finally applying the argument in 6.1.1 for each subsystem.
From rank p,+rank p,=n=rank f we conclude b={0}. For m=n, we get I=D,
where pRC is simple and of type D,, by the same agrument as in 6.1.1.

Let o ;=(27i/(hy;, ha,))2hy; (j=1, ++- , n) and vg=(27i/(hg, hg))2hs. Then

7) Ifi<j<m then 4+2;=—f—(ay+2a,++ 20—y + @+ +aj_y).
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— Yo=Y+ 2%, + 270175 From Ti={{|(€, a;))=0 (mod 27), j=1, - ,n}
we get
Ty= {70 %20 s Voers Val Bz
If m=1, then I';={y,, -**, 7.}~ so the center C is given by
C=T\T\, =<2+ Tox2+Tp=2ZX2Z,,

where z,=7v, and 222')’”/2. If 1<m<mn then T',= {(Yl) s Ym—1s Vot °°° s
Vs Y8 2={V1s " s V1> 2¥m> Ymi1» *** » Vu}z, hence the center C is given by

Cg PI/FO = <zl_|_:[‘0>>< <22+1-‘0> &= ZZ >< ZZ

where z,=v,, and 2,=v,/2. If m=n then To={vy,, -+, Vo1, Ve}z={V1> *** »
Yw-1» Yn}z and thus the center C is given by

C=TT,=<2+tTp=2Z,
where z,=1v,/2. The outer automorphism to be considered is p,, We have

PR = 2

PR = 2 ifm>1.
If m=1, then a,,=a, and

Pty = M=) = =X —Ny = — (a2t ),
hence
PRy = P = =YtV V)=V = —%  (modT).
For m=1, the subgroups of C are of the form
b2, +b,2,+T>x<az,+ Ty =ZxZ,or ZX1.

Here b, is a non-negative integer, a and b, take values 0 and 1. If a=0, then
either b,=5b,=0 or 5,>0. If a=1, then 5,=0. Each of these subgroups is
stable by p,, so they are all inequivalent under the automorphisms of G. For
m>1, the subgroups of C are all pointwise fixed by automorphisms of G.

6.3.1. Ifgisof type CI, (denoted IC, in [8]), n=3, then J,=F and {,=g,
and II,={a,, **, @,}. We have f=pPb, where pRC is simple and of type
A,_, and b=iRh,. To show this we just have to observe that the system of
roots A—A,=A,={+(\;—,)}(A, is empty) of pQC has a system of simple
roots {a,,,a,,} and apply the argument in 6.1.1. We again see that
[%0, P]=0 from a;(h,)=0, for i ==n.

Let ')’j=(2”i/(hw,-) hwj))Zhaj (j=1,+,n). We have T)o={v,, ", Vu-i)z
and from I',={¢ (¢, a;)=0 (mod 27i), j=1, -+, n} we get
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Pl = {()’1’ o Vnos z}Z

where

2= (Y47t +7.)2 if n odd
2= (Y47t A 7a)/2 if n even.

Hence the center C is given by

[ {a4To = Z if n odd

C=T\,T, =
/o | <x4+TOXL+T>=2Z,xZ  if neven

where 2,=v,,.

The outer automorphism to consider is —1, so the action is clear. Hence,
if n is odd, then each non-negative integer gives a subgroup of C, inequivalent
under automorphisms of G, and if # is even, then the enumeration of subgroups
is the same as in the case of BI,, m=1 (6.2.1) and the subgroups are all
inequivalent under automorphisms of G.

6.3.2. If g is of type CII, (denoted C2™ in [8]), n=3, then J,=F and
t,=g, and Il,={e,, -, a,}. We have £=p,PDp,, where p,QC and p,QC are
simple and of types C,, and C,_,, respectively. In fact, the root system
A, of p®C decomposes into two subsystems {+ (A;—\;)|i<j<m} and
{£(n;i—x;)|m<i<j}. The two subsystems are orthogonal to each other with
respect to the Killing form of g.. The first one has {«,,_,, -+, @,, B} where
—pB=2a,++-+2a,_,+0a,, as a system of simple roots, while the second one
has {«,,,, *** , Q,_;, @}, as a system of simple roots. We derive the simplicity
using the argument in 6.1.1 and the types follow from

(alg al) = = (an—n an—l) = (anr a,,)/2 = (18: 18)/2 .

Letting ;= (27i/(ha;, ha,))2hy; and g = (27i/(hg, hg))2hg we have —vyp=
Y+ +vY,-i+v.. We have then

I-‘0 = {'Ym—l’ V1 VB Vet *°° s V-1 rYn}Z = {’YI’ 0y 'Yn}Z

and as T, is exactly the same as in 6.3.1, ie., T'y={v, ",V 2}z,
2=(v,+v;+:)/2, we see that the center C is given by

Cgl—‘l/l—‘o = <z—|—I‘0>zZ3 .

The only outer automorphism to consider is o, and it occurs only when n=2m.
The action of o, on 2 is trivial in this case. At any rate the center is pointwise
fixed by all automorphisms of G.

6.4.1. 1If g is of type DI,, n=4, and J,=FE (denoted D™ in [8]), then
t,=g, and II,={a,, .-+, a,}. Welet 1<m=<([n/2]. If m>1, then t=p=p,DY,,
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where p,®QC and p,QC are simple and of types D,, and D,_,, respectively,®
and if m=1, then £=pPv, where pRC is simple and of type D,_,. To see
the structure of £, we observe that the root system A, of p®QC decomposes into
two subsystems {4+(A;£2;)|¢<j<m} and {+(\;4N;)|m<i<j}, orthogonal
to each other with respect to the Killing form of g, and that the first subsystem
is empty if m=1. For m>1 letting 8= —(\,+),) we see that {&,,_,, -, &;, B}
is a system of simple roots for the first subsystem,” while {@,,+1, *** , ¥y o)
is a system of simple roots for the second. The rest of the argument goes as
before. For m=1, the empty first subsystem is replaced by b=iRh,. We
have [h,, p]=0 from a;(h,)=0 for 7 1.

Letting v ,=(2ni/(h,,, hy;))2h,, (j=1, -+, n) and p=(27i[(hs, hg))2hs we
have yp=9,42(v,+ "+ V4-2) +Vn-1tVs.  From T,={£|(¢, a;)=0 (mod 2z),
j=1,--,n} we obtain T',={v,, -+, ¥,_,, %, %}z where

= (VYurt7a)2
:{ (VAT FYu2) 24 (Vui—va)4 if m odd
' (M7 + o+ Vn-2)24Vu-1/2 if n even

For m=1 we have Ilp={a,, -+, @,}, hence T'y={v,,**, v,}z and thus the center
C is given by

C=T\|T, = {z+Tpx<{z+Ty=Z,XZ.

For m>1 we have Ily={a,,_,, ** , @1, B} U {Qpmi1s *** s Apy, Ay}, hence T'y=

{'}'m—la Y1 VB Vomt1s " s Vo1 'Yn}Z = {'71’ ty VYm—1s Z'Ym, Ym+1s °°° s ')’n}z-
Thus we can write T,={z, 2, 3,, T',}z, where 2,=v,,. If n is odd the center
C is given by

C=T\T,=<+TO>X{x+Tp=2Z,XZ,.
If n is even and m is odd the center C is given by
C=T,T,={+4+T o x{z+To=Z,XZ,.
If n is even and m is even the center C is given by
C=T\[T, =<+ T X{2+T X2+ =Z,X Z,X Z, .

(i) For n=5, if n+=2m, then we have to consider the action of p, and p,,
while if #=2m, then we have to consider the action of p,, p, and oy, .
(a) If n=5 and m=1, then

p(z) ==%.

8) Except p, is not simple for m=2, and p, is not simple for n=4, m=2.

9) Ifi<j<mthen ;+24;={(a++a;_y)+(ag+--+a;)+B}.
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If furthermore # is odd, then

p(z) 2= (P + Y1+ Yt V)2 = —v— 0 —7,,=0  (modT)

and if z is even, then

pi(2)F2a+2=(0 Y1tV +70)2=0  (mod T).

For p,, regardless of the parity of #, we have

Pa(?) = 2
pa(B)—2 = — (V1 —7a)[2=% (mod T,) .
The subgroups of C=T,/T, are of the form
{az+ToxLbz+b2,+Tp=Z,XxZor 1XZ.
Here b, is a non-negative integer and @ and b, take values 0 and 1. If a=0, then
either b,=56,=0 or ,>0. If a=1, then b,=0. The subgroups given by the
triple (a, b,, b,) are stable under the automorphisms except for those given by

(0, 0, &,) and (O, 1, b,), where b, is odd, which map onto each other by p,,.
(b) If =5, n odd and m>1, then

Y. if modd
Pl(z1)+z1E (P171+71+7n—1+7n)/2+{ .
0 if m even

0 if m odd

—%,, if m even

= —('>'2+~--+'ym_1)—('>'m+1—|—---+%._2)+{

(mod T'y)

{ 0 if modd
g, if meven

pi() = 2,

Y = 2, if modd

e ta={ ! (mod T

if m even

pa(2) = 2, .
The number of inequivalent classes of subgroups of the center C under the
automorphisms of G are given in the following table.

order of subgroup 1 2 4 8 Total
number of classes 1 3 2% 1 7

(¢) If n=5, n even, m>1 and m odd, then
P1(z1)_zl+24+25(P171_71)/2+7m+(7n—1+7n)/2

= —(Vot F V) = (Vonrr o+ Vuc2)
=0  (modT,)
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pi(2) = =
pa(2)—2+2=7,=0 (mod T')
pul®) = 5

Moreover, if n=2m, then 2, =(v,+v,+ ++Vm+ " +7a1)/2. Taking note
especially that o (a,,)=—(ct;++--+a,_,), we find that
oe(2)=—2 (mod T'y)
and finally
0',0(2‘1)—25')’",_1—!—"'—'—')/,,_25')/,,,5231 (mOd Fo) .

The number of inequivalent classes of subgroups of C under the automorphisms
of G are given in the following table.

order of subgroup 1 2 4 8 Total
n=2m 1 3 2% 1 7
n=2m 1 2% 2x 1 6

(d) If n=5, n even, m>1 and m even, then
pi(2)+2+2+2=0 (modT,) (asin (c))

p(x) =2, p(z) =2,
pa(2)=2+2 (mod Ty), p.(2)=2, p2)=2.

Moreover, if n=2m, then noting that o («,,)=—(a,++a,_,) and that
oa(O,)=0p 2+, )+, +a,, we obtain

0e(21) = 21, 0o (3)=2+3,, 0g(2)=—2, (modT,).

The number of inequivalent classes of subgroups of C under the automorphisms
of G are given in the following table.

order of subgroup 1 2 4 8 Total
n=2m 1 4% 4k ] 10
n=2m 1 3* 31 8

(i1) Let us consider the case for n—=4 now
(a) If n=4 and m=1, then the automorphisms to be considered are p, ,
and p,. The center is given by

C= PI/FO = <2’+P0> X <'zl—i—1-‘o>g Zz XZ ’
where 2=(v,+v,)/2 and 2,=(v,+%,)/2. We have

Pr2¥ =2 p,%=—2 (modT,)

PR =2 p2=2-+2(modT)
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As in (i) (a) the subgroups of C are of the form
laz+Tox<{b2+bzT>=Z,XZ or 1XZ.

They are stable under the automorphisms of G, except those given by (0, 0, 4,)
and (0, 1, b,), where b, is odd, which map onto each other by p,.

(b) If n=4 and m=2, then the automorphisms to be considered are
P1,4> 0z, and those of S;. The center is given by

C=T,[T, = {2 +ToX{z+T > X2+ T =7, X Z, X Z,,

where z,=(v,+7,)/2, 2=(v,+7,)/2 and 2,=v,. The action of the automor-
phisms of G is given, mod T, by the following:

P& = —2—%, P12 =X P = 2,
Tr B = & T B =2,1% Te B =2,

ooy, o)z, = 2 ola,, a)z=z+=2 ala,, a)z, =z,
oo, )z, == ala, a)z =z, a(a,, o)z, =z,

The number of inequivalent classes of subgroups of the center C' under the
automorphisms of G are given in the following table.

order of subgroups 1 2 4 8 Total
number of classes 1 2x 2% 1 6

6.4.2. If g is of type DI,, n=4 and J,+E (denoted D3"+1 in [8]), then
t,QC is simple and of type B,_, and f=f%, for m=0, while f=p=p,Pp, for
m=1, where p,QC and p,QC are simple of types B,, and B,,_,,_, respectively.
Here note that 0<m=[(n—1)/2]. We have found that u,=1 for all €A in
5.4.2. Hence the root system of ¥{,QC is {&|aA}. The simple system of
roots Il,={&,, - ,&,_,, &,_,}, where &=a; for i=1,+-- ,n—2 and &,_,=
(2,_,+a,)/2, does not decompose into two mutually orthogonal subsystems
with respect to the Killing form of g. so we know that {,QC is simple, and
we verify the type by observing that

(ay, o) =+ = (s, OAps) = 20y, Ay y) -

To determine the structure of ¥ we note that the system of roots for ¥QC is
{alaeAUA;={+ NN i<j=mor m<i<j<n}U{+N\]|i<nm}. For
m=1, we can decompose this into two subsystems, orthogonal to each other
with respect to the Killing form of g¢c. {@pu_1s @z, ==+, @1, B} is a system of
simple roots for one of the subsystems, while {@,,,,,**, @,_,, &,_,} is a system
of simple roots for the other. Here B8=—\=—(a,+a,+ - +a, ,+a&,.)).
II, is the union of the two systems of simple roots. The two subsystems give
the two subalgebras p, and p, and the simplicity and type of each p,QC are
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obtained by applying the argument of 6.1.1 on each subsystem.

Letting v;=(27i/(hs;, hz,))2hs, (j=1, -+ ,n—1) and vs=(27i[(hs, hs))2hs
we have y5=—2(7,+%,+**+YVn_2)— Yu. From I'={¢|¢, &;)=0 (mod 271),
j=1, -, n—1} we get T'={v,, """, Yus» Vus/2}z. If m=0, we have I';=
{Vis " s Vu-stze If m=1, we have

Fo = {'Ym—n Y 'YB}ZU {7m+1, ty Vu—2s ')'n—l}Z
= {')’1) Sy Ym-1» 2')/m’ Vm+1s **° > 71:—1}2
Hence the center C is given by

AT»=Z, if m=0

C=T,T',= .
Ty {<z+r,,>><<z,+ro>f=vzz><zz if m>1

where 2=, _,/2 and z,=v,,,.
(i) For n=5, the outer automorphisms that we have to consider are p,
if n—152m, and p, and o, if n—1=2m. We have
PnR = R 5 PaRy = Ry,
and if n—1=2m, then
Cr@—3=2,, 07%=3 (modT,).

The number of inequivalent classes of subgroups of the center C' under the
automorphisms of G are given in the following table.

order of subgroup 1 2 4 Total
- m=0 1 1 0 2

m=1, n—1%2m 1 3 1 5

m=1, n—1=2m 1 2% 1 4

(i) For n=4, the only outer automorphism we have to consider is o(c;,, @,).
We have, for m=1, 2=7,/2 and &=+, and both are fixed by o(a,, a,).
Hence all subgroups of the center C are stable under the automorphisms of G.
Thus, if m=1, then there are three subgroups of order 2, inequivalent under the
automorphisms of G.

6.4.3. 1If g is of type DIII, (denoted JD, in [8]), n=5, then J,=E, {,=q,
and I,={«a,, -+, a,}. We have f=pdPb, where pQC is simple and of type
A,_,. 'The root system for p®C is A, ={+ (M=)}, is empty) and
My={a,, =+, A,_,} is a system of simple roots for A,. We have b=iRh, and
[A, $]=0.

Letting v;=(27i/(hy ), 1 ))2hs; (j=1, -+, n), we have T,={v,, -, Yuoilz
and T',={7,, ***, Yu_2» & 2}z as in 6.4.1. The center C of G is given by
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+To=Z if » odd

C=T,/T,=
Ty { A ToXe+ T o =Z,XZ if n even

where 2z and z, are as defined in 6.4.1. 'The only outer automorphism we have
to consider is —1. If # odd, then each non-negative integer gives a subgroup of
C. If n even, then each triple (a, b,, b,) gives a subgroup of C. Here b, is a
non-negative integer and @ and b, take values 0 and 1; if a=0, then either
b,=b,=0 or b,>0; if a=1, then b,=0. All subgroups of the center C are stable
under the automorphisms of G.

7. Table of number of inequivalent classes of subgroups

We shall now collect the results of §6 on the subgroups of the center C. In
the table below N(r) means that the subgroups of order r of the center C of
noncompact G are partitioned into N inequivalent classes under the automor-
phisms of G. As before, the asterisk * indicates the non-trivial action of Aut
G. In particular, by N(r)* we mean that amongst the IV inequivalent classes of
subgroups of order 7 some contain more than one subgroup of C, and by coun-
table* we mean that amongst the countably many inequivalent classes there are
some that contain more than one subgroup of C.

q C Number of inequivalent
classes of subgroups of C
Al, nodd, n=3
(n+1)/2 odd Z, (1) 1(2) 14
(n+1)/2 even ZyX Z, 1(1) 2(2)* 1(4)
n even, n=2 Z, 1(1) 1(2)
All, mnodd, n=3 Z, 1(1) 1(2)
Alll, n=1 Z, countable
n>1 ZyXZ
n-+1=%2m countable
n+1=2m countable*
BI, n=2
m=1 Z,XZ countable
l<m<n Z,XZ, 1(1) 3(2) 1)
m=n Z, 1(1) 1(2)
Cl, n odd, n=3 Z countable
neven, n=3 Z,}XZ countable
Cll, nz=3 Z, 1(1) 1(2)
Di,, ]=Eo
(i) n=5
m=1 Z,XZ countable*

m>1, n odd Z, X Z, 11) 3(2) 24)* 1(8)
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m>1, m odd, n even Z,X Z,
n=2m 1(1) 3(2) 24)* 1(8)
n=2m 1(1) 2(2)* 2(4)* 1(8)
m>1, m even, n even Z,XZ,XZ,
n=2m 1(1) 42)* 44)* 1(8)
n=2m 1(1) 3(2)* 34)* 1(8)

(il) n=4
m=1 Zy X Z countable*
m=2 Z,XZ,X Z, 1(1) 2(2)* 2(4)* 1(8)
DL, J.+E
(1) n=5
m=0 Z, 1(1) 1(2)
m=1 Z, X Z,
n—1+2m 1(1) 3(2) 1(4)
n—1=2m 1(1) 2(2)* 1(4)
(i) n=4
m=1 Z, 1(1) 12
m=0 Z,X Z, 1(1) 3(2) 14)
DIII, nodd Z countable
n even Z,XZ countable

Appendix

In 5.1.1, 5.1.2 and 5.1.3 we made use of the following lemma which we shall
now prove.

Lemma. Let S be the symmetric group on n-+1 letters and H the subgroup
of S defined by H={s< S |s(i)+s(n+2—i)=n+2 for all i=1, -+ ,n+1}. Then
H is generated by the following permutations:

1) (@, j)) (n+2—1i, n4-2—j), where 1=i<j=<n+1, i+j+n+2 and if n even,
i, j % (n4-2)[2.

2) (¢, n+2—1i), where 1 <i<n-1.

It suffices to have all of 1) and one (i, n+2—1) in 2) to generate H.

Proof. Considerafixeds, 1<:<n-1,andafixedseH. When s is written
as a product of disjoint cycles, let a be the cycle containing 7 and b be the cycle
containing ¢'=n-+2—i. Then either a and b are disjoint or a=b.

If a and b are disjoint, then @ and b have the same length, say k, and we have

a = (i, (@), $@), -+, 7)) = (@ s@)s (@), $C)) -+ (*7°(@), 7))
b= (", s(@"), -+, @) = (& SN, S@)) - (8F75(E), *7E))

Hence the product ab can be written as the product of permutations in 1), namely
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those of the form (s77%(7), s7(d))(s"7'(Z"), s/(¢')), j=1, -+, k—1.
If a=b, then choose the smallest # such that s’()=:". Then we have
s*(")=t and the action on ¢ by s and its powers is

i — () = $@) = -+ —> 7)1 o> 5(17) = o —> 8T >

where all terms are distinct in this sequence, except the first and the last are the
same. We see that a can be written as

a = (i, s(z), =, 873, 7', s(2'), -+, $TI(E"))
= (@ s@)', s(@)) -+ (7@, T @ONTHE), STENG 1)
so again the cycle a is a product of permutations in 1) and 2).
The last claim is proved by noting that if j+j'=n-2, then (7, i')=(, j)
7 (G 3") &) (@55 qed.
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