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1. Introduction

Let V' be an open set of the n-dimensional euclidean space R", and f: V—R"
be a continuous map such that the fixed point set F={x < V' |f(x)=x} is compact.
If i: VCR”, then i—f maps (V, V—F)to (R", R"—0). Considering the homo-
morphism of the integral homology groups induced by i—f, A. Dold [2] defines
the fixed point index 1 ,€ Z by

(l—'f)*ll‘z = If,“'o )

where y,=H,(R", R"—0;Z) is an orientation of R"and puY€H, (V, V—F; Z)
is the ‘fundamental’ class corresponding to the orientation p,. With this
definition, he proves the following Lefschetz fixed point theorem:

Theorem A. Let V be an open set of R", and f : V—V be a continuous map
such that f(V) is contained in a compact set K CV. Then the fixed point index
I, of f and the Lefschetz number of (f|K)x: Hy(K; Q)—H«(K; Q) are both
defined and they agree, where Q is the field of rational numbers.

Precisely, he proves the theorem in which V is replaced by a euclidean
neighborhood retract Y. However this generalization follows directly from
the above one, because he defines the fixed point index of f: Y—7Y to be that
of the composite iofor: V—V, where i: Y=V, r: V=Y (roi=id) is a euclidean
neighborhood retraction.

On the other hand, R. Brown [1] shows the Lefschetz fixed point theorem for
a compact orientable z#-dimensional topological manifold M (see also [3]).
Taking an orientation of M, let ucH,(M;Z) and UesH"(MXxM, MxM
—d(M); Z) denote the corresponding fundamental class and Thom class respec-
tively, where d(M) is the diagonal of M X M. Denote by U'eH" (MxXM; Z)
the image of U under the natural homomorphism. Then the theorem of Brown
is as follows:

Theorem B. Let M be a compact orientable n-dimensional topological



136 M. NAKAOKA

manifold, and f: M—M be a continuous map. Define f tM—-MxM by f(x)
=(f(x), x) for x&M. Then the Kronecker product f *U', u) is equal to the
Lefschetz number of f4 : Hy(M; Q)—Hy(M; Q).

The purpose of this note is to prove a theorem which contains Theorem
A and B as corollaries.

Let M be an orientable z-dimensional topological manifold which is not
necessarily compact, and f: M—M be a continuous map such that the fixed
point set F of f is compact. Take an orientation of M. Then the Thom class
UeH"(MxM, MXM—d(M); Z) and the fundamental class pr€ H (M,
M—F; Z) are well-defined. Considering f: (M, M—F)—>(MxM, M x M
—d(M)), we define the fixed point index I(f) by

I(f) = <U, fxurreZ.
Then our theorem is stated as follows:

Theorem C. Let M be an orientable n-dimensional topological manifold,
and f: M—M be a continuous map such that f(M) is contained in a compact set
KCM. Then the fixed point index I(f) of f and the Lefschetz number of (f|K)x :
H(K; @)—H(K; Q) are both defined and they agree.

Our proof of this theorem is different from that of Theorem A due to
Dold. Therefore this paper gives another proof of Theorem A.

The method we use to prove Theorem C is essentially the one due to J.
Milnor [4] and is the one employed by Brown to prove Theorem B.

2. A fundamental lemma

Let M be an n-dimensional topological manifold, and d: M —M X M be the
diagonal map. Let K be a compact subset of M.

Lemma 1. There are an open neighborhood W of d(K) in KX M and a
retraction v : W—d(K) such that the diagram

kL, KxM
w—
reay
W

is homotopy commutative, where k and |l are the inclusion maps.
Proof. For r>0, let
O, = {(x,,, x,) ER"| x}-+ -+ +a2<r} .

It is easily seen that there exists a finite set {V/,,-++, V,} of coordinate neighbor-
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hoods of M such that
U h%(0)2K,

where h; : V;~R" is a homeomorphism.
Put

Vi=h(0), Vi=h'(0),
V=0V, v’=UVi.

i=1

The space V”[V”—V" obtained from the closure P” by identifying V"/—V/
to one point is homeomorphic with the n-sphere S”. Therefore a homeomor-
phism f of V" into S"X --- X 8" (s times) is defined by

f(x) = (flpl(x)’ ) sPs(x)) (xE V”) ’
where p; : V" — V”|V"—V/ is the projection and f;: V" |[V"—V/~S8" is a
homeomorphism. Since V’CV” and S”X --- X S"CR™ (m=(n+1)s), we can
regard 7 as a closed subset of R™. Since each V;is an ANR, so is V= CJ V;.
i=1

Consequently, the inclusion map V/CV has an extension g : Q—V, where
O is a neighborhood of ¥’ in R™. It is obvious that there exists £>0 such
that if x, y=V’ and the distance from x to y in R™ is smaller than & then
(1—t)x+tyeQ for any t<[0, 1]. Put

W= {(x, ) EKXV’|d(x, y)<&},

and define r : W—d(K) by r(x, y) = (x, x) .
We can now define a homotopy f, : W—K X M of kor to I by

fdx, y) = (%, g(1—t)x+ty)) . q.e.d.

Let R be a fixed principal ideal domain, and we shall take coefficients of
homology and cohomology from R. Consider the cup product

w: H¥(K X (M, M—K))QH*(K x M)
— H¥Kx (M, M—K)).

Lemma 2. For ac€H*(M) and yeH*KXxM, KxXM—dK)) we
have

J¥y ~ plita = jy - pia,

where p,: KXM—K,p,: KXM—M are the projections and i:K—>M, j:
Kx(M, M—K)—(KxM, Kx M—d(K)) are the inclusion maps.
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Proof. By Lemma 1 and the naturality of the cup product, we have a
commutative diagram
B HYEX) 7 BN K x M, Kx M—d(K))
HHA(K) Y Il
H*(W) ——> H¥W, W—d(K)).
If we define p : d(K)—K by p(x, x)=x (x&K), then it holds that p,ck=p and
p.ok=iop. Therefore it follows that

¥(y ~ pfi*a) = *y — r*E*pfi*a
= Dy rip*i*a = Iy — r¥k¥pfa
= [*(y « pfa).
Since I* : H¥(Kx M, Kx M—d(K ))=H*(W, W—d(K)) is an excision isomor-
phism, we obtain
v~ pfifa = v~ pFa .

This, together with the naturality of the cup product, implies the desired result.
q.e.d.

For topological pairs (X, A) and (Y, B), consider the slant product
[« H¥(X, A)x(Y, B))QH.(Y, B) - H*(X, A).

The following relations hold between the cup, cap and slant products: For
yeEH*(X A)x(Y, B)), acH*(X), B€H*(Y) and beH (Y, B), we have

(1) a~ (y/b) = (pta~)[b,

vI(B ~b) = (v~ p¥B)[b
in H*(X, A), where p, : XX Y—X and p, : XX Y—Y are the projections (see
[5D)-

By an orientation p over R of an n-dimensional topological manifold M we
mean a function which assigns to each x&M a generator u, of H (M, M—x)
which “varies continuously” with x, in the following sense. For each x there
exist a neighborhood N and an element py&H, (M, M—N) such that the
image of py in H,(M, M—y) under the natural homomorphism is u, for each
yeN.

If an orientation over R of the manifold M exists, M is called orientable
over R.

Assume that M is orientable over R and an orientation p of M is given.
Then it is known that, for each compact subset K of M, there is a unique element
nxEH, (M, M—K) whose image in H,(M, M —x) under the natural homomor-
phism is u, for any x&K (see [3]). It is also known that there exists a unique
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element U H"(M X M, M X M —d(M)) such that

<la>:k U: I-"x> =1

for any x&M, where I, : (M, M—x)—>(M XM, M X M—d(M)) is a continuous
map sending ¥EM to (x, ¥)EMXM (see [3], [5]). Denote by UxE
H"(Kx(M, M—K)) the image of U under the natural homomorphism.

A simple calculation shows

(2) Uklux=1.
We shall now prove the following fundamental lemma.

Lemma 3. The diagram

(=1

H(M) HY(K)
YT e / U K/
H,_ (M, M—K)

is commutative, where i : K C M.

Proof. For a€H?(M), we obtain by (1), (2) and Lemma 2

Ukl(et ~ px) = (U~ pfa)ux
= (U~ plv*a)lux = (= 1) (pti*a ~ U)lpx
= (=D)"*a ~ (Uklpx) = (=1)"i*a,

which proves the desired result. q.e.d.

3. Lefschetz fixed point theorem

Let M be an n-dimensional topological manifold which is orientable over
R. Let V be an open set of M, and K be a compact subset of V. Given
an orientation p of M, we shall denote by pfeH, (V, V—K) the element
corresponding to ux under the excision isomorphism H,(V, V—K)=
H, (M, M—K).

If f: V—>M is a continuous map such that the fixed point set F is compact,
then we call

I(f) = <U, fsul>ER

the fixed point index of f, where f:(V, V—F)>(MxM, Mx M—d(M)) is a
continuous map given by f(x):( f(x), x) (x€ V). It follows that I(f) is in-
dependent of the choice of orientation.

For a compact set K such that F c K C M, we have
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(3) I(f) =<U, fsul>,

where fy:H(V, V—K)—=H,(MxM, MxM —d(M)). This follows from
that p% is the image of 4% under the natural homomorphism.

Lemma 4. In the case M=R", we have

(—f)snk = I(f)u, ,

where i—f :(V, V—F)—(R", R"—0) is a continuous map sending x=V to
x—f(x)ER".

Proof. Define A :(R"XR", R"XR"—d(R"))—(R", R"—0) by A(x, y)
=y—x (¥, yER"). Then, for [, : (R", R"—0)—(R"x R", R"X R"—d(R")), we
have Aol,=id. Denote by m,€H"(R", R"—0) the dual to u,=H,(R", R"—0).
Since <{l¥A*m,, p,>=1, we have

A*p,= UsH"(R"X R", R"XR"—d(R")) .
Since Ao f =i—f, we obtain
I(f) = &%, fxul> = <o (i—fansk,

which shows the desired result. q.e.d.

Let N be a graded module over a field R, and @ : N—N be an endomorphism
of degree 0 which factors through a finitely generated graded module. Taking a
homogeneous basis {a,} of N, put

o(a)) = ZH] Trndp (rwER).
Then it follows that 7 ,, is zero except a finite number of A, and that
A(p) = D (—1)¥e%r,,ER
A

is independent of the choice of {a\} (see [2]). A(¢) is called the Lefschetz
number of .

Theorem D. Let M be an n-dimensional topological manifold which is
orientable over a field R, and let f : M—M be a continuous map such that f(M) is
contained in a compact set K CM. Then the fixed point index I(f) of f and the
Lefschetz number A((f|K)x) of the homomorphism (f|K)y : Hy(K)—H «(K)
of homology with coefficients in R are both defined and they agree.

Proof. The fixed point set F of f is a closed subset of K, and hence is

compact. Therefore I(f) is defined.
From Lemma 3 it follows that the diagram
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(=D"(fIK)*

HY(K) 2 gk
A
HY(M) B L H, (M, M—K)

is commutative. It is obvious from the definition of the cap product that the
image of the homomorphism ~ ug is finitely generated. Therefore (f|K)*
factors through a finitely generated module, and hence A((f|K)*) is defined.

Let {a,} {Bu} and {p,} be homogeneous bases of H*(M), H*(M, M—K)
and H*(K) respectively, and put

f(ps) = ; M2
Ug= ,,Z;‘A Cyupy X Bu
{Bu ™~ Ay gD = Yua -
Then it follows from the above commutative diagram that

(=1 f1K)*py = Uk/(f*py ~ 1x)
= g (cenpe X Bu)[(f*py ™ 1K)

== KZ,:‘. CKI"<18M~) f*Pv ~m I-"K>Px
=K¥Mckﬂmv)s<18l" y Oy ™ ll‘K>Px
:K;McmmwKBu ~ Oy, BE)Px

=) CupMy) YurpPx -
Lywh

Therefore we have
A((fIK)*) =AZFJV(— 1) +de8 Pyg iy Yun, -

The diagram

H*(Mx M, M x M—d(M)) S H*(M, M—K)
i* . da*
H*(Kx (M, M—K)) (Pxad)”, H*(Mx (M, M—K))

is commutative, where ¢* is the natural homomorphism. Therefore it follows
from (3) that

I(f) = <U, fanr> = <f*U, pg>
= d*(fxid)*Ug, pg>
= § cv#<d*(f*va 16#); MK>
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l

}‘2 Cyut 3 <Ay~ B, IJ/K>
A
( 1)(n-1) deg Pvcw‘.mw\y'”\ .

s My
A topological manifold which is orientable (over Z) is orientable over @,
Lemma 4 shows that I(f) coincides with I, due to Dold when M=R".

g Cvlh<f*Pv ~ Bus x>

> oy V

;y( 1)#=D9e8 Pug,umy{Bu ~ oty px)

2

s bV
Consequently we obtain I( f)=A((f|K)*). Since A((f|K)*)=A((fIK)x) is
obvious, we have the desired result. g.e.d.
and I(f) for R=Z coincides with I(f) for R=@Q. Therefore Theorem D implies
Theorem C.
Therefore Theorem C implies Theorem A. It is clear that Theorem C implies
Theorem B.
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