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1. Introduction

Elliptic boundary value problems for bounded domains have been studied by
many authors ([2], [7], [8], [9], etc.). A powerful tool was the so-called coercive
inequalities introduced by N. Aronszajn. Under the Lopatinski condition,
Schechter obtained L2-estimates of solutions of general elliptic boundary value
problems by using Fourier transforms. Agmon, Douglis and Nirenberg got
the Schauder estimates and L^-estimates by means of singular integral operators.
We should mention among these, the work of Agranovich and Vishik [2], which
treated a vast class of elliptic boundary value problems. However there are
few literatures in the case of unbounded domains. Among these, we mention
Browder's paper [4], in which he introduced the concept of uniformly regular
domains and investigated Dirichlet problems for such domains. In this paper,
extending Aronszajn's coercive inequalities to unbounded domains, we study
general elliptic boundary value problems for fairly general unbounded domains.

Let Ω be an open set of w-dimensional Euclidean space En and let us
denote its closure and boundary by Ω and Γ respectively. Let us consider a
linear partial differential operator of order 2m:

A = Σ aμ(x)D» ,
M<2m

where the coefficients aμ(x) are complex-valued functions defined in Ω and a
system of linear boundary operators of order less than 2m:

Bj = J 2 bj^W j = 1, 2, .. , m ,

where the coefficients bjμ{x) are complex-valued functions defined in some
neighborhood of Γ.

We make the following assumptions on Ω and (Ay {Bj}J=ι) (precise defini-
tions and notations will be given in §2).

(A.I) Ω is uniformly regular of class C2m+s+\



104 Y. HIGUCHI

(A.2) There exist constants θ (0<:θ<2π) and %>() (independent of x, £, and
λ) such that

where λ=reicΘ/2m\ and P(x> ξ) is the characteristic polynomial of A.
Theroughout this paper λ will mean complex numbers with argument θ\2m

(A.3) For every real, tangential vector r at xGΓ and the unit inner normal
vector v0 at x^Γ, the polynomial P(x, r^-zvo)—\2m in z has exactly m roots
zΐ(x> T, λ) (k—l, 2, •••, m) with positive imaginary part for | λ | + l τl 4=0.

(A.4) Set P+(z) = Π (z-zt(x, T, λ)) and

where Qj(x, ξ) is the characteristic polynomial of Bj and the integration is taken
along a closed curve in the complex #-plane enclosing all the roots zΐ(x, T, λ)
(k=l, 2, •••, m). We assume that there exists a constant 72^0 (independent of
xy T and λ) such that

^ , T, λ)) I > γ2( I T 12+ I λ 12)"/2,

where N= Σ (%

(A.5) {Bj}j=1 forms a normal system, that is,

(i) mj^mk if jΦ#, mj<2m.

(ii) ρy(Λ,i/0)Φθ former.

(A.6) (Assumptions on the smoothness of coefficients)

(i) α μ (x)^^(Ω). In addition, if s— 0, the coefficients aμ{x) for \μ\==2tn
are uniformly continuous in Ω.

(ii) M ^ ) e ^ 2 W I + 5 " W y ( Γ )
Then we have

Theorem 1. Under the above assumptions {A. ί)-(A. 6), there exist constants
c and rλ>ΰsuch that for

(1.1) | w | L + 5 + l λ | 2 c 2 w + s Ί «

+ Σ «Bjuy2m+s_mj_Cl/2,+ I λ I

if I λ I >r,, wA^ λ = ^ ( θ / 2 w ) .

REMARK 1.1. Theorem 1 is equivalent to the following
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Theorem Γ. Under the above assumptions (A. 1)-(A. 6), there esist con-
stants c' and r{>0 such that for u<=H2m+s(Ω),

(1.1)' i|w|i^+.-h |X|^2w^i|z/|

if\\\>r[.
Next we have to make stronger assumptions to obtain the existence theorem,

that is,

(A*. 1) Ω is uniformly regular of class C6m+s+\

(A*.2), (A*.3), (A .4) and (A*.5) are identical with (A.2), (A.3), (A.4) and (A.5)
respectively (remark that (A.4) and (A.5) imply that there exists a constant
7 3 >0 such that

where xGΓ and v is any normal vector at x).

(A*.6) (Assumptions on the smoothness of coefficients)
(i) " β μ (
(ii) bjμ

Then we have

Theorem 2. Under the above assumptions, let | . λ |>r o Then, for any
/(x)e// s(Ω), there exists a unique solution u(x)^H2m+s(Ω) satisfying

(A-\2m)u=f in fl,

BjU = 0 on Γ , j = 1, 2, •••, m .

Theorem 1 will be proved in §6 and Theorem 2 in §8. Notations and
precise definitions of terminologies mentioned above will be given in §2. In
§3 we give the definition of the boundary norms. §§4-5 are devoted to the study
of linear partial differential operators in a half space. We consider the adjoint
boundary system in §7.

Finally, I would like to express my gratitude to Professor S. Mizohata for
various suggestions and corrections. I would also like to thank Mr. K. Asano
for helpful discussions.

2. Notations and definitions

Let Ω be an open set in En and let us denote its closure and boundary by
Ω and Γ respectively. Let x=(xlf x2, •••, xn) be a point of En

y ξ=(ξiy ξ2y •••, ξn)
be any real vector and μ=(μly μ2, •••, μn) be any «-tuple of non-negative inte-
gers. We shall use the following notations:



106 Y. HIGUCHI

μ\=

where Dk=djidxk, k=l, 2, •••, n.

For operators A and J?y introduced in §1, we denote their characteristic

polynomials by

P(x, ξ) = Σ «M(*)T
|/X|=2w

and

respectively.

Furthermore, the formally adjoint operator A* of A will be defined, if it

has a meaning, by

A*v= 7

and the characteristic polynomial of A* is

(x μ\ _ yi

Now, we give the definitions of domains considered here and the function

spaces on them (We use the notations and terminologies of Browder [4] on the

definition of domains).

DEFINITION 2.1. Let m and s be two integers such that m>0 and

Ω is said to be uniformly regular of class C2rn+S+1 if there exist an open covering

{Nk} of Γ, a family of homeomorphisms {Φ }̂ of Nk upon the unit ball

B1={y; | j | < l } , and an integer R such that the following conditions are

satisfied:

(1) Let N'h= Φk\Bl/2)y where Bl/2 = {y | y \ < J}. Then UN'k contains

the R~^neighborhood of Γ.

(2) For each k, Φk(Nkf]Γ)=Bt = {y;\y\<l,yn>0}y while

(3) Any (i?+l) distinct open sets {Λ }̂ have an empty intersection.

(4) Let Ψk be the mapping of B1 on Nk which is inverse to Φk. Then Φk

and Ψk are mappings of class C2fn+S, and if Φjk and ΨJk are the 7-th com-

ponents of Φk and Ψk respectively, there exists a constant M (independent of xy y

and k) such that \DβΦJk(x)\^My \DβΨJk(y)\<:M, \Φnk(x)\ < M.dist (x, Γ)

for \β\ <2w+ί, Λ:eΛΓfe a n d j e ^ .

(5) To the normal direction at xGΓ corresponds the normal direction at
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In Browder's definition the condition (5) is not explicitly stated, but we
make this assumption to avoid the ambiguity in our reasoning. Of course, our
domains defined above are uniformly regular of class C2m+S in Browder's sense.

The following lemma due to Browder [4] makes clear the structure of unifor-
mly regular domains of class c2m+s+1.

Lemma 2.1. Let ΩaEn be uniformly regular of class c2m+s+\ Then there
exists a constant δo>O such that given δ with 0<δ<δ 0 , there exist a countable open
covering {Nk} of Π with the diameter less than δ, a family of functions {ηk} with
Vk(x)^C2

0

m+s(Nk)y and a family of homeomorphisms {Φk} of Nk into En which
satisfy the following conditions:

(1) There exists an integer R (independent of 8) such that at most R distinct
numbers of {Nk} have a non-empty intersection.

(2) For every k, the image Nk under Φk is the ball Bδ of radius δ about the
origin. If NkΓίΓΦφ9.ΦANknΩ)=B; = {y; \ y\<5, yn>0}, Φk(Nkf)Γ)=Σs
= {y I y I < δ, y„=0}. Furthermore, let Φk = {ΦJk} and Ψk = {ΨJk}. Then Φk

and Ψk are mappings of class C2m+S, and there exists a constant K (independent of
xyy, k andS) such that \DβΦJk(x)\ ^K} \DβΨJk(y)\ ^K for all β with \β\ <

(3) There exists a constant K (independent of x but depending on δ) such that
for every a and β with \ a \ <^2m-\-sy \ β \

(4) For x e Π, 0 < vk{x) < 1 and^ vk(x)2= 1.

(5) There exists a constant p with 0 < p < l (depending only on ή) such that
Ω S UN'k, where iV;=Ψft(£pδ), with BpS={y; \y\<PS).

k

REMARK 2.1. If iVfeΠΓ=φ, we can take as Nk & w-dimensional ball of
radius less than δ with some point in Ω as a center and if JVfcΠΓΦφ, the
image of a w-dimensional ball contained in Bx under Ψk of Definition 2.1. If
JVfenΓΦφ, Φk satisfies the condition (5) of Definition 2.1.

Next we give the definitions of some function spaces.

DEFINITION 2.2. HJ(Ω). Let Ω be an open set in En. u^Hj(Ω) if
(Ω) for | α | < y . HJ'(ΓL) is a Hubert space equipped with the inner

product

( , ) j Σ (

We set

IMI? = («,«), for «€=H>(Ω).

We also use the semi-norm
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DEFINITION 2.3. iSy(Ω), i9'(Γ). Let Ω be a domain of En whose
boundary Γ is a hypersurface of class C2m+S in the ordinary sense. We say that

Ω), 0<y<w, if a(x)<EC'(Ω) and /)*«(#), | α | </, are bounded in Ω.
is equipped with the norm

Let b(x) be a function defined in a neighborhood of Γ. We say that b{x)
belongs to iS ̂ Γ), 0<7<2w+ί, if i(x)GC y in the domain of definition and if
for all \a\ <y, Dab(x)|Γ are bounded on Γ. We give the following norm

W*)l5..βcr>=Σ sup I D»b{x)\\

REMARK 2.2. The neighborhood of Γ mentioned above may depend on each
b(x). Moreover, in the above definition, we can require the domain of definition
only to be a part of Ω containing a neighborhood of Γ. In fact, such a function
can be extended as a C''-class function into a neighborhood of Γ.

The following lemmas due to Browder [4] are used in a later section in
proving a priori estimates and the regularity of the solutions of our boundary
value problems.

L e m m a 2.2. Let Ω be uniformly regular of class C2m+S+1 and {Vk(x)} be

a family of functions satisfying the conditions of Lemma 2.1. Then, there exist

constants Kj and KJ8>0, 0 < y < 2 m + ί , such that for u<^H2m+s(Ω)y

Σ ih7i«ιι;<tfy..ιι«ιι;

L e m m a 2.3. Let Ω be uniformly regular of class C2tn+S+1. Then, there

exist constants Cj and C y ε > 0 such that for M G / / 2 W I + S ( Ω ) , we have, for

where λ and 8 are arbitrary positive numbers.

3. Boundary norms

In this section we give the definition of the boundary norms employed in
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Theorem 1. To begin with the simplest case of a half space, we shall use the
following notations: y' = (y19 — , jyO* £' = (£i, — » ?*-i), E?= {.? = (/> jθ>
j>w>0}. Let v(y) = v(y\ yn)<=HJ(E?). We know that the trace v(y\ +0)
belongs to 7/ 7'~cl/2)(2?Λ~"1). Let us introduce a new notation for boundary norms.
Let υ19 v2^HJ(E"), then

where

(3.2) ύ{(ξ', +0) = (ar)- '- 1 "* ( e-*'="vίy\ +0)dy'.

In particular denote

(3.3) <ϋ>3-α/2> = <̂ > ̂ >y-α/2)

We know that

(3.4) <*>5-α/2><<71^15 for

where cy is a constant depending only on^ (see, for example, Schechter [8]),
The following lemma is also useful for our reasoning.

Lemma 3.1. For v^Hί{E^), zee have

(3.5) <ϋ>ϊ<λ-Ί«

where X is an arbitrary positife number.

Proof.. \υ(y>, +0) | 2 = -\"JL\v(y', yn)\2dyn = -\Ί-^
Jo dyn Jo \dyn

\v(y, yn)\dyn \^v+v^
dyn Jo \dyn dy

<2
Jo 3v_ J

\v\*dyn.

The integration in y' gives (3.5).

Now let b(y')<Ξi ^(E"-1), i ) e / / ^ + " ) . Applying (3.4), we get

Hence

(3.6)

more precisely,

(3.7)

Let Ω be a uniformly regular of class C2m+S+1 and take {Nk}y {Φk} and {vk}
corresponding to a fixed δ ( 0 < δ < δ 0 ) in Lemma 2.1. Let u(x)^Hj{Ω)
(0</<2m+ί). Then.(^JM) (Ψ^))GH^'(βί) . Since this function vanishes in
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a neighborhood of | y | = | δ | , we can consider this as an element of HJ(E+),

hence its trace to the hyperplane yn = 0 belongs to Hi~a/^{En"1). Now we

define the boundary norm on Γ as follows:

DEFINITION 3.1. For u^Hj{Ω) (0<j*ζ2rn+s), let us denote

(3.8) <«>5-α/2>.r = Σ <(v2

ku)(Ψfc(y))>Ui/»,E»-i
jfkr\ΓΦΦ

The convergence of the right-hand side is shown as follows: By (3.4),

where cJ8 is a constant independent of k. Taking account of Lemma 2.2, we

get

(3.9) <tt>5-α/2).r<olNI5

It should be remarked that the left-hand side of (3.8) depends on the

partition of the unity. However as we shall show in Appendix, the norms

^^j-α^.Γ+^^o.Γ are equivalent to each other. Hence we can define the space

HJ'~(1/2:)(T) independently of the choice of the partition of the unity.

Finally, let 6(#)e ^ ( Γ ) , (0<j<2m+s) (see Definition 2.3). For

, 0))(v2

ku)(Ψk(y\

where we used (3.6) by putting b(y')=b(Ψk(y\ 0)) and taking its j-norm on

Eni Π B8. Now from the expression,

b(ψk(y', 0)) = b(ψlk(y', 0), - , Ψnk(y', 0)),

taking account of (Ψlk(yr, 0), •••, ΨnM(y', 0 ) ) e Γ , we see that

Thus we have

(3.10) <*(«M*)>5-ci/2).r<const. I b(x) | ;

Finally let us remark the following estimate:

(3.11) <*(*M*)>S.r<const. Ib(x)\ϊ

4. A priori estimates for operators with constant coefficients in a
half space

In this section we consider operators with constant (complex) coefficients

in a half-space E+. Modifying the notations of preceding sections, we denote
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the points of E+ by x=(x', t), where x'=(xly •••, xn^)y and the points in the dual

space by ξ=(ξ', T).

Let s be a non-negative integer, and u^Hs(E+). In this case the norm \\u\\s

and the semi-norm \u\s can be expressed by means of the Fourier transform

in x'. In fact, let ύ(ξ, t) be the Fourier transform of a in x\ then

INI? « έ ( Γα+ iriT*î Wf, o w * .
A=i JEn~ι Jo

I«I ϊ * Σ t Γ I ξ'\ κs-"'> I D>ta(ξ', t) 12dξ'dt.
k=i JE"'1 Jo

We need the following interpolation lemma, whose proof we refer, for

example, to Mizohata [6].

L e m m a 4.1. There exist constants C y > 0 and C y β >0 (depending only on s,j

and β) such that for u<=Hs(El) and

(4.1) X2^^\u\^Cj(\u\2

s+\2s\u\l)y λ > 0 .

(4.2)

andif\>l,

(4.3)

Now let us consider linear differential operators with constant coefficients

in the half space E+:

t) Σ
\μ\+k=2tn

BJ(Dx',Dt)= Σ bftJftDt,
\μ.\+k=mj

where nij=£mky ntj<2myj = ίy 2, •••, my and we denote the characteristic poly-

nomials by

A(ξ',τ)= Σ βrf"^*,
W+k=2m

We assume now that (Ay Bj) satisfies the following conditions:

(L.I) |«μ

(L.2) l ^ ( r , ^ ) - λ 2 w | > 7 2 ( I Π 2 + | λ | 2 + τ T for (r,^)^^ M and

\=reicθ/2m\

(L.3) For every (ξ'y τ)φ(0, 0) the polynomial in T ̂ 4(f', T ) — λ 2 w has just m

roots τ^( | ' , λ) with positive imaginary part.
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(L.4) Set A+(ξ', λ, T) = Π (τ-τί(f ' , λ)) and

where the integration is taken along a closed curve in the complex τ-plane

enclosing all the roots τ+(f, λ). We assume that

I det (djk{ξ\ λ)) I >γ3( I | , 12+ I λ 12)N/2 (N = Σ (*/-./+1)) >

where γ n γ2 and <y3 are positive constants.

Let us remark that, by (L.3), the normal direction at the boundary is not

characteristic for any Bj. In fact, if Bjo is so, then 5yo(0, τ)=0, hence we have

djok(Oy λ)--0, contrary to the condition (L.4).

At first we prove the following

Proposition 4.1. Under the above assumptions, given any f(x'y

and (&(*')> —>Λ.(*'))G U H2m+s-mΓ^2\En-% there exists a unique solution

u(x', t; \)£ΞH2m+s(E:) satisfying

(4.4) (A(D^ Dt)-\^)u(x\ t; λ) ---f(x\ t), t>0 ,

(4.5) 5,(ZV, Dt)u{x\ 0; λ) = gj(x')9 j = 1, 2, - , m ,

where \—reicΘ/2m\ u(x\ t; λ ) ̂ w i ^ expressed in the form

(4.6) n ( * ' , /; λ ) = wίΛ?', ί; \)+v(x', t;\)9

where

(4.7) Λ ( f , f, X) = (2r)-V

(4.8)

r,λ). ^ ^ j ι

where

i r pitττk-i

(4.9) Ik(t; ξ\ λ) — —^ i —^—7 rfr .

In the formula (4.7), F(ξ\ T) represents the Fourier transform of JF(#', ί)G

Hs(En) an extension of f(x\ t) to the whole space En and in (4.8),

DJk(ξ', λ) represents the (/, Λ)-cofactor of the matrix [djk{ξ\ λ)].

Proof. Since the existence and the uniqueness of the solution u(x\ t; λ)
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is well-known, we restrict ourselves to explain how to deduce the expression of
u. By the well-known method we can define the extension F(x\ t)^Hs(En) of
/(#', t)<^Hs(E+) (linear operator) such that

(4.10) | f Ί . < C | / | # >

where C is a constant depending only on s. It is evident that the function
w(x\ t; λ), inverse transform of ώ(ξ', t; λ), belongs to H2m+s(En), and it satisfies

(A(DX>, A ) - λ 2 " > ( * ' , t; λ) = F(x\ t).

Put u(x\ t, X)=v(x\ t; \)-\-w(x\ t; λ). Taking the Fourier transform in x\
we see that

(A(ζ\ Dt)-\2m)ύ(ξ; t; λ) =/(5', t; λ), t>0 ,

Bj(ξ\ Dt)ΰ(ξ\ 0; λ) = &(r)-B,(f ' , A ) ^ r , 0; λ ) .

Namely ύ(ξ\ t; λ) is a solution of an ordinary differential equation in t con-
taining the parameter (£', X), and satisfying the m boundary conditions at £=0.
Then it is also well-known that the solution is expressed by (4.8) (see also
L. Hόrmander [5] and J. Peetre [7]).

In the second place, we give the a priori estimate for the solutions given in
Proposition 4.1.

Proposition 4.2. Under the above assumptions, there exists a constant

*(7i, 72, 73)>0 such that for utΞH2m+s(E?),

(4.11) I ^ i " w + , + IX1 2 ^ 2 - + ^ I //1 § < ^ ( Ύ l , τ 2 , Ύ3)[ I (^—X 2 w)w 15+ IX1 2 Ί(- ί—
+ Σ «Bjuy2m+s.mj.cM+ \xr-—r^KBjUy0)].

Proof. At first let us consider the estimate of w. For this purpose we
introduce the quantity a and (η, λ') as follows:

(4.12) a = {l£T+IM2}1/2, b>x')

Let us remark that

(4.13) \vγ+\\'\'=l.

Then, by virtue of (L.2),

(4.14) \A(ξ', τ ) - λ 2 m | >ry2a"

Now, using the Plancherel formula in (4.7),
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λ ) | 2 + α 2 c 2 f " + s W > t; X)\2)dt

The integration in ξ' gives

(4.15) |«<ΛΓ', /; X)l2ii.+,+ | Λ?', 0 1 l S ) ,

where the semi-norms are taken in En> and £2 depends only on m, s.
In the second step, we estimate \Bj(ξ\ Dt)w(ξ\ 0; λ) | appearing in (4.8).

At first, it is evident that

BJ£', Dt)ώ(ξ\ 0; λ) = (2π)-U2

By the Schwarz inequality,

\ τ)dr .

A-X2m

j(M2+|£|2+|λ|2)s|F(r,τ)|2Jτ.

Take τ ' = α " V as the new variable in the first integral, then

(4.16)

dτx

Taking account of (L.I) and (4.14), we see that there exists a positive constant
Φi, Ύ,) such that (4.16) is estimated hy φ l t y!)a2cmr2m-s\ί+ | τ ' 12)~ι. Thus,

(4.17) IBj(ξ\ Dt)ώ(ξ\ 0; λ ) \ 2 < φ 1 9 J2)a2(»ί.-2ί»-S)+l
X

z, S)φί9

hlx

\(\D°F(ξ',t)\2+a2S\F(ξ\t)\2)dt.

Finally, we estimate v(x\ t; λ). Let us remark that DJk(ξ', \)jD(ξ', λ) is
homogeneous of degree (m—nij—k) in (£', λ). Next, the conditions (L.1)-(L.4)
imply that there exist three constants depending only on (γx, γ2, γ3):

l, γ 2 ) ,Im τΐ(η
(4.18) j \

On the other hand,

(4.19) Ik(t; ξ', X) = ak-mIk(at v, X'), k= 1, 2, - ,

(4.20) D*m"h(f, r . λ) = h+2m+s{t; r , λ).
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Now, by (4.18), we see that there exists a constant c3{jly γ2, γ3) such that

(4.21) \Ik(at; v, λ')l ^φ19 <y29 7

In fact, in the definition of (4.9), we can take a fixed closed curve of integration
independent of (η> λ').

Now

\DJk(ξ\ X)ID(ξ', λ ) | 2 V\Ik(t; r , \)\2dt<φ» γ2, Ύ3)φly γ2, <γ3)x
ι Jo

*=i δ 0

In view of (4.20),

Jo

Thus, from (4.8)

α2c2w>+ί3 [~\ύ(ξf, t; \)\2dt+Γ\D2

t

m+sHξ', t; λ) |Vί
Jo Jo

< ^ Σ [\gj(ξ')\2+1βy(r, A ^ ( r , 0; λ ) ! * ] ^ , ,

in view of (4.17), this is again estimated by

CB(Ύ» 72, Ύs) ( Σ α^-+ —y-^^ i ^.(r) 1 2 + Γ i ^ ( f ' » o 12dt+<χ2S Γ i A ? ' ' o 12^)
y=i Jo Jo

Taking account of (4.10), this estimate and (4.15) prove the estimate (4.11)

5. A priori estimates for operators with variable coefficients in
a half space

In this section we use the notations of §4 and consider linear partial differen-
tial operators with variable coefficients in a half space

A(x, Zλ/, Dt) - A0(D^ Dt)+ Σ
IW+*

Bj(x', Dx>, Dt) = Bj0{Dx>, A ) + i w

where my<2m, mj^mfc9 j=l> 2, •••, m, cμfe(0) = 0 for |/
for |/x|+^—m y. /l0 and BJO are homogeneous differential operators of degree
2m and my respectively.

We assume that (AQ> Bj0) satisfies the assumptions (L.1)-(L.4) of §4, and
c^x)^&{En) and ^ ' ( E j 2 ^ 5 - ^ " - 1 ) .
Let us introduce the two quantities
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ζ= Σ supkμfe(x)|2+ Σ sup \bjμk{x')\\
\\+k 2m xeE" \μ\+k = m- x'eEn-1

where each supremum is taken in the whole space. Then we have

Proposition 5.1. Under the above assumptions, there exists a positive con-

stant ζ0 depending only on ̂ (7^ γ2> Ύ3) (introduced in Proposition 4.2) such that, if

0> the following inequality holds

(5.1) \u\lm+s+\\\2'2m+s'\u\l<Ac{ryly γ2

+ I λ 12SI (A-X^)u I ϊ

for | λ | > r 0 (λ=re f ' c β / 2 m ) ), wAiri r0 w determined by c(yu y2, γ3) tfwd M. Mor£

precisely, r0 can be considered as an increasing function of M.

Proof. From Proposition 4.2.

+ Σ «S*«>L+.-y-αΛ>+ I λ 12^ s-mr^\B j ou)l)\ •
j = l

From now on, we assume that | λ | > l and that S be a positive number less

than 1. From (5.2) we have

(5.3) \u\2

2m+s+\\\2^^\u\2

0-2c(Ύlf γ2, 7 3 ) / < γ (right-hand side of (5.1)),

where

j = I (A-AO)U i;+1 x i»i ( Λ - 4 > I ^+ Σ <(fiy-JB»2

2

w+s-m,-c,/2)

+fj |λ | I C Ϊ - + —/-^

The decomposition

(^-Λ)«= |wΣ2

gives

Applying Lemma 4.1,

(5.4) I (A-A0)u IJ<lC(ζ+6M) I u |

Applying Lemma 4.1, we have
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(5.5) \xr\(A-A0)u\l^

The decomposition

(Bj-BJO)= Σ bjμk(x')DΪ'Dk

tu+ Σ bjμk{x')Dζ'D1u

gives, applying (3.7),

Applying Lemma 4.1,

( 5 . 6 ) < ( B j - B J O ) u y 2 m + s _ m . _ C ί / 2 ^ ( c 3 ζ + c 3 ε M ) I u \ \ m + s + c j C " M \ u \ % .

Finally,

I λ 12,2m^-m r ^ K φ .^BJO)U>1 < c ' I λ I *»»+—»,->/»>[ i x i -if i«i ιj+1

+ \\\-ιM\u\*m)+\\\ζ\u\lJ+\\\M\\u\\*Mj_J.

In fact, consider a term ζbjμtk(x')D^Dk

tuyiy where | ^ | -\-k-nij. Making use of
Lemma 3.1., this term is estimated by

c{ I λ I - 11 bjμk{x')D»>Dk

tu I f + I λ I I bjlίk{x')D»>Dk

tu \ 0}

^{ iλ i-ui^ i iy+i+^iwi iy j+i

In the case where | μ \ +k<mJy we have similarly

Therefore, we have

(y./J I λ, I J \\Pj — ̂ jo)u/o^CA\L)-\-lVί\κ\ )\U\2m+s

Adding the right-hand sides of (5.4)-(5.7), we have

J < {(c1+c2+C 3+c4)r+φ1+c2+c3)M+M I λ I -2} I u2
2ra+,

+ I λ I * ί-+«{(ί1C+ί,C")Λf I λ I -2c2m+s'+(^+c4)ζ+(Cε'+c4)M I λ I -2} I M

Now we take f0 and £ as follows:

+ c + ί Γ + c ) f< l t γ2, 79)(ci+c2+ίΓ3+c4)f0

(5.8)
2c(γi; 72, τ3)(c14-C2+^)^£ = -T-1

o

then we see that, if we take | λ | 2 in such a way that
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we have

2c(yι,y2,y3)(l+c1Ct+Cί+csCί'+c4)M*ίh\\2

9

6

y(l«IL+s+|λ| :

Thus we have (5.1). Finally, we remark that 6 is a decreasing function of M.
Since the constants Cβ, C/, Cε" are all decreasing functions of 6, they are
increasing functions of M. Therefore, the quantity defined by

r0 = {I2c(yly γ2, Ύs)(l+ClC9+.~+cA)M}1'2

is an increasing function of M.

REMARK. The proof shows that ζ can be replaced by

ζ'= Σ sup \cμk(x)\2+ Σ sup \bjμk(x')\\
\μ\+k=2m Λ:εsupp[κ] \μ\+k — mj *esupp[w]

where supp [u] means the support of u. It is the same with M. Thus, if we
consider only the functions whose support are contained in JBJ, then, in the
definition of ζ and M, each supremum can be replaced by the one taken over B$.

6. Proof of Theorem 1

In this section we give the proof of Theorem 1. Our method is to reduce
the proof to the results of §5 by using {Nfc, Φk, ηk, δ} mentioned in Lemma 2.1.
Let Ack\y, D) and Bγ\y, D) be the transformed operators of A(x, D) and
Bj(x, D) and denote their principal parts by Aok\y> D) and Bjo(y> D). The main
point of the proof is to show that (Aok\y9 Z>), Bjo(y9 D)) satisfies the conditions
(L.1)-(L.4) of §4 with constants y19 y2y y3 independent of k and δ.

Denote u(Ψk(y)) by vk{y) and ηk(Ψk(y)) by vk(y). Let us begin with an
elementary lemma.

Lemma 6.1. Let Ω be uniformly regular of class C2m+S+1. Then

where cλ(j) is independent of δ.
2) Suppose that wEίf^'(Ω), j <2m-fί, and that the support of u is contained

in Nk. Thenfor\>ίy
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where c2(j) is a positive constant independent of k and δ.

3) For M G ^ ' + I Y I ( Ω ) , j+\y\ <2m+s, there exists a constant c(a, βy δ)>0 such

that

Σ \DΛ

yηk{y)D^k{y)Dlvk{y)\)<c{a,β, δ)M| 2

+ l v l .

Proof.

2) Since vk(y) = u(Ψk(y)), in view of the condition \D*Ψk(y)\^K (see

Lemma 2.1.), we see easily

Now iii view of Lemma 2.3, |MI*>o<c$( | u | j Q + | u | o c ) . Hence

Adding to this the evident inequality | vh \ \ < C | u | o, multiplied by (λ2-7—1), we

have

= CJC'J I u I la+{cjc'}+(\^- 1)C} I β I i>Q ,

setting c2(j)=max (cjc'}, C),

Σ {Iβ»I ? + λ 2 > I vkI j }<c 2 ( ;)( I uI J f Q + V > IuI g> Q).

Another inequality is proved in the same way as above by considering u(x)

=»*(Φ*(*)).
1) We apply 2) to the function η\(x)u(x). Then

On the other hand, by the interpolation lemma on Ω (see Lemma 2.3), we have

where c0 is a small constant independent of k and δ. So using Lemma 2.2, we

have

Thus

3) Since Vk{v)=zVk(^rk{y))y vk{y)=^u(y^k(y))y representing the derivative

Dl(D*ηk(y)D%ηk(y)Dlvk(y)), \v\=jy as a linear combination of
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{DyU(Ψk(γ))}loύUlyl + ̂ { with coefficients in the polynomials of D%ηk(Ψk{y))>

D%Ψk(y), we see easily the desired inequality.

L e m m a 6.2. We suppose (AΛ)-(A.β). Further, suppose that there exists a

partition of unity {Φky Nky ηky δ} in Lemma 2.1 such that, for u^H2m+s(Cl), the

inequalities

(6.1) I vlvk I L + s + I λ I ^2m+s> I η\oh I ? < C [ I {A^-X2m)(η\vk) I ί

Σ
+ I λ 1

)[ I (Λ-X"»)(vϊu) 11 + I λ 12Ί (A~X2m)(vU) I g

Λ-λι~X*;«) = vl(A-X2m)u+φk(x),

W - Σ
l l l 9 | l

hold for k=l, 2 , , with some fixed constant C and \X\ > r 0 (independent of k).

Then there exists r1 such that the inequality (1.1) holds for | λ | > r x .

Proof. In view of Lemma 6.1, 2),

(6.2)

Now

(6.3)

where

Since ̂ (Λ:)

(6.4)

Next, put

where Ψjk(y) = Σ

Then

(6.5) <*$B(tf».)>L,.-»,-

+2

Now, by (3.4),

| γ | < w y - 1

λ I

1 λ 12

and making use of Lemma 3.1,

21λ 12<2m+s-mrwχψJk>
2

Ό^21λ I**"•+-«,-»I^If+21λ 12c2" + | ψ y A | J .
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Adding in k, and making use of Lemma 6.1. 3),

(6.6) 2 < ψ J k > l m + s _ m r C m + 2 1 λ I

<c'{\\u\\'2m+M.1+ \X\

In view of Lemma 2.3, this is estimated again by

S\u\ lm+s+c"C I λ I «im+-» I u 11, for | λ | > r x .

(6.2)-(6.6) and Lemma 5.1, 1) prove (1.1).

Proof of Theorem 1. Let (Ack\y, D\ Bf(y, D)) be the transformed

operators of (A(x, D), Bj(x> D)) by the transformation Φk(x). From Lemma

6.2, it remains to prove that (Ack\ Bψ) satisfies the assumptions (L.1)-(L.4) of

§4 with constants γx, γ2, γ3 independent of k and δ, and that the quantities ζk

become uniformly small as δ is taken small.

(6.7)

(6.8)

where D~Dy..

Let us introduce the linear transformation:

(6.9) ξ = T^η , where

We interpret this as follows: Tck\ more precisely, T^ maps the vectors v at the

point y to the vectors ξ at x—Ψk(y). This mapping is isomorphism. We can

say more:

1) Tikύvy=ck{y)vx, x=Ψk(y), where vx(vy) represents the normal of unit

length at xGΓ (at y^S, where S: yn=0).

2) For any tangent vector η' at j ^ S , Tck\' is a tangent vector at x—ψk[y).

Evidently

(6.10) C-χ\η\<\T^η\<c\v\ ,

where c is a positive constant independent of k and δ.

In particular

(6.11) c-^ck(y)<c.

Hereafter we change slightly the notations. We dentoe the tangent vectors

at xGΓ by ξ'x or simply by ξ', and that of y^S by ηr.

Let A(

o

k\yy D\ B$(yy D) be the principal part of Ack\y, D) and Bγ\y, D)

respectively. We have
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, v) = Λ(Ψ*(>')> T^η), Bγo\y, η) = Bj0{Ψk{y),

Then it is easy to see that we can take <y1 and γ2 in (L.I) and (L.2) independently
of k and δ, in view of (6.7), (6.8), and that the quantities ζk become uniformly
small (in k) if δ is taken small. Consider now (L.3).

Let %ΐcfc:>(y,v'j λ) be the roots with positive imaginary part of Aok\y, η'-\-zvy)
- λ 2 " - 0 . Now, A£\y, v'+zvy)=A0(Ψk(y)
-\-ck(y)zvx), where x=^Ψk(y). Hence

*tικ(y, V', λ) = zt(Ψk(y), T^v', \)cb(y)-1.

Hence (L.3) is satisfied. Consider

Π (z-zΐ«°\y, v', λ))
1 = 1

Since B%(y, η'+zvy)=Bi0(Ψk(y), T^v'+ck(y)zvx), putting ck{y)z=z' in the
integral, we have

Iλkj\y, V', λ) = cύyr-'LtjiΦύy), T^v', λ ) .

Hence, |detL$(y, v',\)\= ck(y)N'\ detLij(Φk(y), T<kW, λ) |

Now, in view of (6.10) and (6.11), we see that (L.4) is verified with a constant
independe of k and δ. Finally, by (6.7) and (6.8), we see that the quantities Mk

(in Φk{Nk)) introduced just before Proposition 5.1 are bounded sequences (for
each fixed δ).

In conclusion, to apply Lemma 6.2, we choose a partition of unity
{Φk(x), Nk, 8} as follows: Since yly j 2 and γ3 can be considered independent of
k and δ, the ζ0 in Propositon 5.1 can be considered independent of k and δ.
Thus we choose δ in such a way that ζ8 k introduced before Proposition 5.1 (see
the remark at the end of that proposition) be less than ξ0 for all k.

7. A priori estimates for adjoint systems

Let Ω be a bounded domain of class C 2m+s+1 (which is necessarily uniformly
regular of class C2m+S+1) and assume that (A, Bj) satisfies the assumptions of
Theorem 2. Then we know that there exists another boundary system
{/?}}, 7=1, 2, •••, my which is called an adjoint system, such that, for all
u, v<^H2m(Ω\ the identity

(7.1) ((A-\2m)u, v)-(u, (A*-λzm)v) = Σ (Bju, Cjv)Γ+ Σ (CJa, B'}v)Γ
; = 1 j=l

holds, where Cj(x, D) and Cj(x, D) are also differential operators. More
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precisely, ({Sy}y = 1 ,...,„,, {C#y =i,...,J and ({fij}y=1 ,...,m, {Cj}J=slt...ttm) form two
Dirichlet systems (in the sense of Aronszajn-Milgram [3]). The form (w, v)Γ

means \ uvdS.
Jr

We know that (A*—λ2w, {5$} J=1 2 ... m) satisfies also the assumptions of
Theorem 1 (see N. Aronszajn [3] or M. Schechter [9]). In this section we shall
show that the above fact remains true in our case and derive an a priori estimate
for such an adjoint system, which is used in proving Theorem 2. Our statement
is as follows:

Proposition 7.1. Under the assumptions of Theorem 2, there exists another

system {Bfi (which is called an adjoint system) satisfying (7.1), and that

(A*—X2m, B'5) satisfies the assumptions of Theorem 1 (the constants appearing there

may be different). Bf

5 are all independent of λ.

Before proving this proposition, we begin with some remarks.

Let A(Dt) be a differential operator of order 2m such that ^4(τ)φO for τ^E1.

We assume that A(τ)=zO has m roots rj(counting the multiplicities) with positive

imaginary part (therefore m roots rj with negative imaginary part). Given

{Bj(Dt)}j=12f...m satisfying the following condition: Bj(τ) are lineary independent
m

modulo A+(τ)= Π (τ—τj)y and assume that the order m5 of B,>(τ) is less than

2m. Then

Lemma 7.1. Suppose that there exists another m differential operators B'3(Dt)

such that the identity

(7.2) (A(Dt)u, v)-(u, A*{Dt)v) = ±

holds for all u(t\ v(t)ϊΞH~(E\). Then {βj(τ)}y-i,-,™ ore linearity independent

modulo A_(τ)= Π (τ—τj).(

Proof. Suppose that B](T) are linearly dependent modulo A_(τ). Then it

is easy to see that there exists a function vo(t)^H°°(E\), vo(t)^O such that

A*(Dt)Ό0(t)=0> £j(D,)?;0(0)=-0. Now we know that, under the assumptions,

there exists a (unique) function u(t)^H°°(E\) such that A(Dt)u(t)=-vQ(t),

Bj(Dt)u(0)=0. This contradicts with (7.2).

Now we consider the simplest case in En. The boundary is xn=0, and

Ω=/? i = {*„>()}. Let A(D), {Bj(D)}j=lt2 ... m be differential operators of homo-

geneous order 2m, mj(<2m)> respectively. More precisely,
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(7.3) A(D) =JZjhJy = aΰDlm+<D')Dlm-ι+-+a2m{D')

Bj(D) =Jgmb,J>μ = V*'+*/iΦ W - ' + +iΛ-yΦ')'

where D'=(Dly-»,Dn_^). We assume the same conditions as in Theorem 1:

(7.4) I A{ξ)-\2mi > 7 l ( I ξ i 2 + I λ 12Γ, λ - r e " ^ .

Let τj(£', λ) be the m roots with positive imaginary part of A(ξ\ z)—\2m—0.

Bj{ξ'yz) are assumed lineary independent modulo .4+(#)= Π (z- τj(ξ\ λ)).

More precisely, we assume that the Lopatinski's determinant satisfies

(7.5) I det LJk(ξ\ λ A-\2fn

y Bj) \ >γ2( | f 12+ | λ | 2 ) ^ 2 .

Now we construct [B]} in the following way (see Schechter [9]).
Take n, v^H2m (E%). The integration by parts gives

(7.6)

where

(7-7)

Now we add the differential operators {-D5Γ*"}»=i,2,...,m {m'i<2nί) to the given system
{Bj(D)}, where {m1, , mm} Γl {#zί, , ̂ } = Φ By rearrangement, we may
assume that the order of Bj is j . We denote the original set by {Bm}j=lt...tfH

and the added set by {Bmj}J=m+L ... 2m. This rearrangement made, let

D'^ + .+bjj^D^DAbjDί (j=0 , - , 2m—1).

Then we have

(7.8) A! = dJO(D')Bo+dj1(D')B1+-+dJBJ ,

where dij(ζ') are uniquely determined. More precisely they are polynomials of

bj\ bh(ξ') (i,j=0, 1 , - , 2m-l) . If we put

(7.9) C/D) = - , 2Σ?dkJ(D')N2m-UD', DH),

we have

(7.10) (Au, v)-(u,A*v)=2!E(B;U, Cjv)= Σ (B u,C v)+ Σ (B «, C β).

If we put B'j = Cmj+m, C'3 = Bmj+my C~Cmp (j = l, 2, . ytn) and using the

original index, we can write (7.10) under the form
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(7.11) (Au, v)—(u, A*v) = Σ (Bju, Cjv)+ Σ (C>, βjϋ).

Clearly, (Bj, Cj)J=1 >2... m and (/?$, Cy)y=i2... m form two Dirichlet systems.

Now we claim

Lemma 7.2. />* ws assume (7.4) «rarf (7.5), αwd that

there exists a positive constant γ£ depending only on M, rγ1 and j 2 such that,

for all {A, Bj} satisfying those conditions, the adjoint system {A*—λ2wι, B'}) thus

constructed satisfies

(7.12) \detLJk(ξ', λ; A*-V">, B'J)\>Ύχ\ξ'\*+ l τ l T / 2

Proof. The above construction shows that, if we put A(Dt)—A(ξr, Dn)

—λ2w, Bj(Dt)=Bj(ξ', Dt\ then the identity (7.2) holds for all ξ\ λ. This means

that the left-hand side of (7.12) does not vanish for all (£', λ)Φθ. Since this

is a continuous function of (ξ', λ), and homogeneous in (ξ\ λ), we conclude that,

there exists a positive minimum when | ξ' \ 2-j- | λ 12= 1, for each fixed (A, B'5).

Now we consider the space of the points P={aμ> bJμ}, in the cartesian

coordinates. The set satisfying the conditions mentioned above forms a compact

set F in that space. Next, let us remark that the polynomials B'5{ζ\ ξn) are all

continuous functions of P. Thus, the mapping defined for | ξ' \ z-\- I λ 12— 1, and

is continuous. We can see that there exists y'2>0 satisfying (7.12).

Proof of Proposition 7.1. Since Γ is supposed to be unifromly regular, we

consider at first the local construction of adjoint systems by using the mappings

Φ^τ). We shall construct the adjoint system Bfjck\x, D) (j=l, 2 , •••, m) in

each Aτ

k. However, we shall construct them in such a way that their principal

parts B'/O

k\xy D) coincide with each other. Namely, if x^Nkf}Ni ΠΓ, then we

have Bί

j

(i)

k\xy D)^B%l\x, D)(j=l, 2 , , m). For that purpose, we consider an

open set Nk, and the mappying y=φk(χ) (χ=ψk(y)). Hereafter, we omit the

suffix k.

By assumptions, Φ(x) satisfies the conditions;

1) Λ ; G Γ « Φ Λ ( ^ ) = 0 (that is yH=Ό),

2) To the normal directions at x corresponds the normal direction at

S:yH=0.
Now

in 13^ — \ ^ ^ — /^ ̂ ^
dx( J=ι dx{ dyj i = i Jl* dyj
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Attached to this, we consider the linear mapping

(7.14) ?. = ΣΦ/.tfy,

or more simply

(7.15) ξ=Tv.

We interpret this in the following way: For the vector η at the point y, Tη
represents the vector at the point x=Ψ(y).
We see easily the following facts;

1) For y^Sy let vy be the normal of unit length at the point yy then Tvy

-=c(xy T)pχy where vx is the normal of unit length at the point χ=ψ(y) and
c(x, T) is a scalar.

2) Let η'y be a tangent vector aty^S, then Tη^ξZ, where g£ is a tangent
vector at

3) Let I T\=detΦJti. We may assume it to be positive. Then J~-τ~

= \T\~\ We see that dS=c(x, T)Jdy', where c(x, T) is the quantity introduced
in 1), and dS is the surface element of Γ.

Now let A(xy D) be a differential operator of order 2m. Let us denote its
principal part by A°(xy D) and its transformed operator by JL{yy D). We know
that the principal part Jt°(yy D) is defined by

(7.16)

More precisely,

(7.17)

Moreover, if « e Γ , then

A\x, T(Vnvy+v')) = A\x, vnTVy+Tv').

In view of 1) and 2), we see that, if

(7.18) Λ°(x,zvx+ξ') = a0(x)zm+a1(x,ξ')zm-1+-+am(x,ξ'),

then

(7.19) JP(y,v) = ao(y)(c(x, T^Γ+a^y, Tv')(cvn)
m-^ +ajy, TV'),

Conversely, given a homogeneous differential operator a(yy D') where D'=
(Dyiy •••, Dyni)y if a(yy η

f) can be written as

(7.20) a(y,v')

with a homogeneous polynomial h(x, ξ)y then the operator a(yy D') is equal,
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neglecting the lower terms, to the transformed operator h(x, Z)|). In this sense,
we shall call the polynomial a(y, ηr) of the form (7.20) quasi-invariant. Let us
remark that the product of two quasi-invariant polynomials is quasi-invariant.
Finally, the transformed operator Z)v is c(Φ(x)y T)Dn.

Now we construct the adjoint system. We proceed just in the same way
as in the simplest case explained as above. Let us write

Jt(y,D',Dn) = J]Λ2m-k(yyl

We observe that

Jl\m-k{y> v') is quasi-invariant.

(Au, v)-(u, A*υ) = (JL(y, D)u, v)j-(u9 Jl*(y, D)v)j,

where ( , ) 7 means the scalar product with the measure Jdy. By integration by
parts,

where ( , ) c J means the integration on S with the surface measure cjdy' and

2 m ^ f i V (
j=0

Let us remark that

(7.21) N^-ύy, v', cDn) =
y=o

Next, we add to the system {#,}, the m differential poerators {Dj*ί}ί=1 >2... m

(nii<2ni)y where {m2y •••, raw} Π {m{, •••, m'm}=φ. By rearrangement, we denote
this by {Bj(x, -D)}/=0,...,2m-i We may assume that the order of Bj is j . Let
J$j(y, D) be the transformed operator of Bj. Then

(7.22) £, = <Bί0(y, D')+$n{y, D)(cDn)+ - +bJ(y)(cDnY .

Hence

(7.23) {cDny = g Λy,O, D')<Bj(y, D', cDn),

AjΊ(y,D') = bj(y)-\ (j = 0, 1, - , 2m-Λ),

where Ao

i}(y, v) are also quasi-invariant, for 3Pι}{y, v') are all so. Put

Then
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(7.24) (Au, υ)-(u, A*v) = g*( 3y«, ί » s , e / .

Let us remark that

(7.25) C](y, v', cDn) = - ί Σ ' Λ W * V^L-,-*^, 7', *A.).

Denote by Cj the transformed operator of Cj. We observe that the principal

part of Cj is invariant with respect to Φ.

This remarked, write (7.24) in the scalar product in the x-space:

2Έ(BjUy Cjv)Γ - Σ (Bm.u, v)+ ΈJBmju, Cm.v).

Up to now, we omitted the suffix k. Now we put the suffix k. Put

Br = Cmj+m> C'} = Bmj+m, C? =Cmi ( j=l,2, ,«),

then observing B~Bm. (j— 1, 2, •••, m) in the original notation, we can wrrite

(7.26) {Au, v)-(u, AH) = Σ (BjU, C?v)

for ϋ having its support in Nk.

From the above construction, we observe the following fact: In order to

know the principal parts of Bγk)(xy D) ( / = 1, •••, nί) at the point Λ:OGΛ^, it

suffices to construct the adjoint system by the process explained just before

Lemma 7.2, replacing there A(x, D\ Bj(x, D) by A°(x0, D), B%x0, D) and Γ by

the tangent plane at x0. For this reason, we dentoe the principal part of B'}
ik\xy

D) simply by B')0(x, D). This is the same with Cγ\

Now

(Au, v)-(u, AH) = Σ (Au, v\v)- Σ (u, A*(VIΌ))
k k
in m

= Σ (Bju, Σ CΫ\VW))+ Σ (C'ju, Σ B't»\vlv) •

Put Bί

jv=Yι B'fkχrfiϋ)y CjV=Σl Cck\η2

kυ). Then we see that (7.1) holds. We

see also that the principal part of B'} is nothing but B'jQ(x, D). Then, by virtue

of Lemma 7.2, we see that the condition (A.4) is satisfied for (A* — X2m> B'5).

Since it is easy to check the other conditions, we omit it.

From Proposition 7.1, we have the following

Theorem 1*. Under the assumptions (A*> I)-(A*, 6), there exist constants

c*>Q and rf>0 such that for u<EΞH2m+s(Ω),

+ Σ «BΆ+s-mj-cφΛ I λ I
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if \ X I >rf, where X=reicθ/2m> and m'5 is the order of B^

8. Existence theorem (Proof of Theorem 2)

In this section we give the proof of Theorem 2. We use the method of the
proof employed by M. Schechter [9]. But we need one lemma on the global
regularity of solutions of our boundary value problems.

Lemma 8.1. Suppose that (A—X2m, {Bj\f=1) satisfies the assumptions of

Theorem 1. Then, if (A-X2m)u=f<=Hs(Ω), MG/. 2 (ί])Πff 2 w + s (ί)nΛ 7

k ) for each

Nk and BjU^O ( ; = 1 , 2, —, m)9 it follows that u<=ΞH2m+s(ΓL).

This lemma is an extension of Theorem 3 in Browder [4], in the case of Dirichlet
boundary value problem. The proof of Lemma 8.1 will be given at the end of
this section.

Proof of Theorem 2. Consider the quadratic form in i/2m(Ω);

[u, υ] =-. ((A*-λ2">)u, (Ά*-Km)v)+ g«BJ«, B'^2m^rωi>

+ I λ I «c*--»}-cv«<BJ«, B',v\).

From Theorem 1* for s=Q, we have

(8.1) C-1\\u\\lm<[u9u]<C\\u\\lm9

and it follows from (8.1) that [«, u]1/2 defines a norm equivalent to the usual one
of H2m(Ω). We denote by ξ> the space H2m(Cί) equipped with the positive
Hermitian form [u, v\. ξ> is a Hubert space and its elements and topology
coincide with those of H2m(Ω). On the other hand, for f<=Hs(Ω), ©->(/, v) is
a bounded anti-linear functional on ξ>. Hence, by the Theorem of Riesz, there
exists a unique w^$&{=H2m(Ω)) such that

(8.2) [w, »] = (/, Ό) for all v^H2m(Ω).

On the other hand, if we consider the problem in each Nkf it is known
that wEΞH^^iΩΓiNk) (see, M. Schechter [9]. Theorem 6.1). Then, put

u = (A*-\2m)wζΞL2(a)C\H2m+s([ϊnNk).

Take a function v<^ Clm(Nk) which satisfies B]v \ Γ = 0 . Then (8.2) becomes

Since u^H2m+s(Ω,Γ\Nk)y we can apply the identity (7.1). Then taking account
of Bjv\ Γ = 0 (j=l, 2, •••, m)> the left-hand side is equal to

((A-X2m)uy v)- g (Bju, Cjv)v .

Supposing in particular that v^C2

0

m(CίΓ\Nfι), we conclude at first that
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{A-X2m)u=f, x(ΞΩ,f)Nk (hence *eΩ).

Therefore,

Σ (#y«, C » Γ = 0 for all v<Ξ Clm(Nk)

satisfying i?j^ | Γ = 0.
Since {B'jy Cj)™=1 forms a Dirichlet system, we see that 2?yw|Γ=0 (/=1, 2,

•••, m) for all Λ G Γ Π Λ 7 * , and hence for all x^T. Finally, applying Lemma 8.1,
weseethattt£Ξ//2'w+s(Ω).

We conclude this section with the

Proof of Lemma 8.1. From the assumptions of the lemma, it follows that

u<=H2m+s(K) for any compact set ί c Ω . From Lemma 2.1, \jN'kz>n, where

Nί=Ψk(Bμί). Let N0={y; \yA<h i=l , 2, - , n}, NS = {y; \yA<h i=h 2,
- , n ~ l , l>3>*>0} and B0={y; \y\<n1/2+l}.
Then, there exists a homeomorphism Ψo of class C2m+S of 5 0 on B8 carrying Bl/2

onto J?pδ with an inverse Φo of class C2m+S. Furthermore, if we define

and if we set

(ζ(Φ0(Φk(x))
ζk(x) =

( o
it follows that ζ\™+!M£ H2m+S(Ω Π Nk). Then the following estimate holds (see,
Browder [4]).

(8.3) Σir*θβ«llo<£ Σ Wζϊ&uW

where 8 is an arbitrary positive number, and Kε is independent of k. From
Theorem 1, we have

(8.4) i lε-ϊ-^tti i i,.+,+1 x i a c 2 - + ^ι ιc2" +

+ Iλ [ »\\(A-\*m)(ζ*m+ u)\\l+ Σ «8jtf2r+su)>lm+s-Mj-Cl
/2,

Since Z)»(£Γ+SM) = ?Γ+ ίflα«+ Σ Caβ(x)ξ^Γfiu, \a\*ζ2m+s,
l l l |

we have

Σ ||zr(£Γ+ί«)IIS>2
|05|<2w + s |Λ|<2w + s

where Kx is a constant independent of k.
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Similarly,

Σ \\Da(A^\2m)(ζ2r^u)\\l<2 Σ \\ζ\m+sD«{A-X2m)u\\l+K2 Σ \\ζΐ]Dβu\\l.
|Λ|<* |α5|<s |β|<2m « i

On the other hand,

Bj(ζ2m+Su) = ζ2

k

m+sBjU+ Σ djβ(x)ζ2

k

m+s-mJ
\β\<mj-ι

Since B5u\ Γ —0, and taking account of (3.10), we have

<K2

Since (Bj(ζ2

k

m+Su)yl is estimated in the same way taking account of Lemma 3.1,

we have finally

Σ \\WD*u\\l<Cx Σ \\ζ2

k

m+sDΛ(A-X2fn)u\\l+C2

Since 0 < ζk{x) < 1> by using (8.3), we obtain

(8.4) Σ llff1β^ll?
|αί|<2i» s

Since ^ ( Λ ; ) > Λ : > 0 for x^N'ky where K is a constant independent of A, adding in
k, we have \\u\\2m+s< + oo.

Appendix

To justify Definition 3.1, more precisely to define the space Hj~σ/2\T)y we

want to prove a theorem which is knowrn when Γ is compact.

Given any two partitions of untiy {Nky Φky τ?fe} and {N'k, Φ'ky ζ'k} satisfying

the following conditions:

1) There exists an integer Rx (resp. R2) such that at most Rt (resp. R2) distinct

numbers of Nk (resp. of N'k) have a non-empty intersection.

2) Φ'k satisfies the same conditions as (2) of Lemma 2.1 with δ and K. Φ'k
satisfies also the same conditions wτith δ', K'.

3) There exists θx<\ (resp. Θ2<\) such that vk(^k(y)) (^esp. ζk(Ψ'h(y)) has its

support in Bθl8 (resp in Bθ^) {k=\, 2, •••).

4) Σlo^WIΊθβ^)l2<^, ΣI^^)IΊββU^)l2<^,
for \a\ + \β\<2m+l.

5) 0<vk(x), ζk(x)<l, Σ ^ ) = l , ΣfϊW=lι for x^n-
Then wτe can define two different semi-norms <w>y_(1/2) following Definition 3.1.

Let us denote them by <w>y_Ci/2),i and <M>i_Cl/2)i2 respectively. Now wτe claim
oo

P r o p o s i t i o n . Two norms < w > j _ c i / 2 ) , i + Σ \vlu\l and < M > ? - c i / 2 ) f 2 + Σ \ζlu\l

are equivalent to each other.
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To prove this, we prepare several lemmas.

Lemma A.l. Let u(x) be a function defined on Γ such that supp [u]czNi Π

iVίΠΓ, then

where 0 < s < l and c} cf are two positive constants independent of i, k.

Proof. We change slightly the notations. Let v(y)=u(Ψi(y))> z=Φ'k(x),
and yik(z)=Φioφ/

k~
1=φi (Φ'k(z)) and let us denote v(z)=v(yik(z)). Now we

know that in En~x the ί-norm (0<s<l) has the relation

which can be seen by taking the Fourier transform of v(y2) after changing yλ by
y=yi—V2 Denote vfft(ar1)=^i» yik(^)=y2y dy=Jik(z)dz. Then the right-hand
side can be written

it
N o w c-11zλ—z21 < I y 1 — y 2 \ < c o \ z λ — z 2 \ , c'1^ | / / A f ( ^ ) | < ^ ,

where coy cx are constants independent of i, ^. Thus the lemma is proved.

Lemma A.2. Lef ^ ( y ) ^ / / 5 ^ - 1 ) , 0 < ί < l , anda(y)<ΞB\En-1). Let js(y)
be the temperate distribution whose transform of Fourier is \v\s- Then there exists

a constant c(s> n) such that denoting

Cv =•- [ γ s * , a]v = Ύs*(a(y

we have

Proof. Let a(η)^Co be a function which takes the value 1 in a neighbor-
hood of the origin and 0 < α ( 7 ) < l . By the decomposition \v\s=a(v)\v\s

+ (1— a(v))\v\s, and taking the inverse transform of Fourier, we have the
corresponding decomposition γ 5 = y 0 + 7 i , where $0=a(v)\v\s- Then

[Ύ**> a\v = [γ0*, φ + f T i * , a]v .

Since ||[γo*> β]^li^^lΛlolkll> ^ suffices to consider the second term. At first, let
us show that
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shows that, if we take 2p<n+l+sy \y\2prγλ{y) is continuous and bounded.
Next, yff-r^yffs—yffo shows, since ^ γ 5 is a function of homogeneous of degree
—(n— 1 + ί - 1), that yi

rγ1 is locally summable. Hence yf/^U (i—l, 2, •••,
i f - 1 ) .

Now

[7i*, ά\v = ^7i(x~y)Πy)-a(x)

using a(y)—a(x)~^a(x,y)(yi—Xi), the Hausdorff-Young inequality gives

Lemma A.3. Let a(y)<Ξ$\En-ι\ v(y)<=LHs{En-χ), 0<O<l. Then

I < y > { y ) L < s u p I a ( y ) \ \ v \ s + c ( s , n)Ia(y)\ JML .

Proof.

ys*(av) = tf(%f

Taking the L2-norm of the both sides and in view of the previous Lemma, we
get the above inequality.

Lemma A.4. Under the same assumption as in Lemma A. 1, for 0 < j<C2m-\- /,

y + . [ I u(Ψ'k(y)) 12

} + s+ I u(Ψi(y)) \l]<\ u^ 8
< CUs[ I u(Ψ'k(y)) I ? + 5 + I ιι(Ψ«y)) 12

0] .

Proof. For | a \ —j,

D«ϋ(z)=D%{yik(z))=Σj«β(*)D^ where \cΛβ{z)\<K (indepen-

dent of i, Λ). Thus, for I a I =; ,

Irrΰ{z) i,< Σ I U*)^«Cvi*(*))I.+ Σ Iirf
lβ! = ; lβl<i-i

By virtue of Lemma A.I and A.3, this is estimated by

c(\v(y)\J+s+\Hy)\\w)-

This is estimated again by ^[ItfOOIy+s+II^OOIIz,2]- The converse inequality is
obtained changing the role of y and z.

Now we prove Proposition in the following form.

Theorem. Two norms <«>j+ 5 i+Σ \v2

ku\l and < w > j + 5 2 + Σ WMl are
k ' k

equivalent, where 0< j<2w+/—1,
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REMARK. | τfyι | * means |\v2(Ψ k(y))u(V M \\\B"~

Proof. Put

= Σ 1*?ffϊ« 1 2

+ + Σ
ik +s+ Σ

ik

where in I12(u) the semi-norm | ζ2y2u \ 2

+s is calculated by the transform Φ t (#),

whereas in /21(w) \y2ζ2u\ 2

J+S is calculated by Φ'k(x).

At first we remark that I12(u) and I2i(u) are equivalent by virtue of Lemma

A.4. Our purpose is then to prove that Ix(u) and I12(u) are equivalent, because

the equivalency of I2(u) and I21(u) is proved by the same reasoning.

Let υi{y)=u(Ψg{y)). For | a | =; ,

nfc) = ζ2

kD«(y2vi)+
lβK

shows, taking account of Lemma A.3,

where K'o is independent of /, k.

From the assumption, we see that there exists an integer R' such that each

supp [Vi] has at most R' numbers of supp [ζk] having common points (R' is

independent of t). Hence

Σ I D « { ζ \ v ϊ v { ) I ί < 2 Σ \\ζ2

i'Ύs*Da(v2

ivi)\\h+2K'()

2R'\\vz

ivi\\2

Hj
k k

implies that, since Σ?t(^)^l> Λ e right-hand side is estimated by

Therefore

ΣIζWiV;\) + s <2\v 2 v { 1
2

} + s + CIIvίv,]\h<C'(\ri\Vi1
2

)+s+1\V

2Vi\\lή ,
k

where C" is a constant independent of /. Thus we have proved

/i2(«)< const. I^u).

Conversely, (*) gives the decomposition
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Taking account of Lemma A.3,

I o a ( » . ) I s

Then, since "Σξi(x)>8 for all

Σ I £"(»,•) I ϊ > \ I fat I x,+.-2R'κt\\η<vi\\Ήi
k,Λ \ΰ6\ = j Z

Summing up in /, we have

Thus we have proved 712(z/)> const. Ix{u).
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