# A GROUP ALGEBRA OF A p-SOLVABLE GROUP 

Yukio TSUSHIMA

(Received February 2, 1968)

## 1. Introduction

This paper is a sequel to our earlier one [6] and we are concerned also with the radical of a group algebra of a finite group, especially of a $p$-solvable group. Let $G$ be a finite group of order $|G|=p^{n} g^{\prime}$, where $p$ is a fixed prime number, $n$ is an integer $\geqq 0$ and $\left(p, g^{\prime}\right)=1$. Let $S_{p}$ be a Sylow $p$-group of $G$ and $k$ a field of characteristic $p$. We denote by $\mathfrak{R}$ the radical of the group algebra $k G$ (These notations will be fixed throughout this paper). Let $B$ be a block of defect $d$ in $k G$. Then $\mathfrak{R} B$ is the radical of $B$. First we shall show $(\mathfrak{R} B)^{p^{d}}=0$, when $G$ is solvable or a $p$-solvable group with an abelian Sylow $p$-group. In §3, we assume $S_{p}$ is abelian. Let $H$ be a normal subgroup of $G$ and $\Re$ the radical of $k H$. It follows from Clifford's Theorem that $\mathfrak{R} \subset \mathfrak{M}$, hence $\mathfrak{R}=k G \cdot \mathfrak{R}=\mathfrak{R} \cdot k G$ is a two sided ideal contained in $\mathfrak{R}$. If $[G: H$ ] is prime to $p$, we have $\mathcal{B}=\mathfrak{R}$ (Proposition 1 [6]). In another extreme, suppose $[G: H]=p$. Then we can show there exists a central element $c$ in $\mathfrak{R}$ such that $\mathfrak{R}=\mathfrak{Q}+(k G) c$. Hence if $G$ is $p$-solvable, $\mathfrak{N}$ can be constructed somewhat explicitly using a special type of a normal sequence of $G$ (Theorem 2). If $S_{p}$ is normal in $G$, then $\Re$ is generated over $k G$ by the radical of $k S_{p}$ ([7] or Proposition 1 [6]). Hence Theorem 2 may be considered as a generalization of the above fact to the case that $S_{p}$ is abelian. In the special case that $S_{p}$ is cyclic, our main results will be improved in the final section.

Besides the notation introduced above we use the following; $H$ will always denote a normal subgroup of $G, \mathfrak{R}$ the radical of $k H$ and $\mathcal{R}=k G \cdot \Re$. For a subset $T$ in $G, N_{G}(T)$ and $C_{G}(T)$ are the normalizer and the centralizer of $T$ in $G$. For an element $x$ in $G,[x]$ denotes the sum of the elements in the conjugate class contaning $x$. Finally, we assume $k$ is a splitting field for every subgroup of $G$.

## 2. Radical of a block

We begin with some considerations on the central idempotents. Let $\mathfrak{A}=$ $\left\{\eta_{i}\right\}$ be the set of the block idempotents in $k H$. G induces a permutation group on $\mathfrak{A}$ by $\eta_{i} \rightarrow g^{-1} \eta_{i} g, g \in G$. Let $\tilde{\mathfrak{Y}}_{1} \cdots \widetilde{\mathfrak{Y}}_{s}$, be the set of transitivity. We use the
same letter $\tilde{\mathfrak{I}}_{i}$ to denote the set of the blocks whose block idempotents are in $\tilde{\mathfrak{F}}_{i}$. Consider the sum $\varepsilon_{i}=\sum \eta_{i}$ taken over the idempotents in $\tilde{\mathfrak{J}}_{i} . \quad \varepsilon_{i}$ is a central idempotent in $k G$, hence it is the sum of certain block idempotents in $k G$, say $\varepsilon_{i}=\sum \delta_{k}$. Let $\Im_{i}$ be the set of the blocks of $k G$ whose block idempotents appear in the summation above. The different $\mathfrak{Y}_{i}$ are disjoint, since $\varepsilon_{i} \varepsilon_{j}=0$ for $i \neq j$, and there is a $1-1$ correspondence

$$
\mathfrak{\Im}_{i} \leftrightarrow \tilde{\mathfrak{I}}_{i}
$$

The following lemma is obvious.
Lemma 2.1. Let $M$ be a principal indecomposable (irreducible resp.) module belonging to a block in $\mathfrak{\Im}_{i}$. Then every principal indecomposable (irreducible resp.) $k H$-direct summand of $M_{H}$ belongs to a block in $\tilde{\mathfrak{I}}_{i}{ }^{1}$. Conversely if $N$ is a principal indecomposable (irreducible resp.) kH-module belonging to a block in $\tilde{\mathfrak{F}}_{i}$, then every principal indecomposable (irreducible resp.) $k G$-direct summand ( $k G$-composition factor module resp.) of the induced module $N^{G}=k G \otimes_{k H} N$ belongs to a block in $\Im_{i}$.

The following result is completely due to Fong [3].
Lemma 2.2. Suppose $[G: H]=q$ is a prime number. Then we have
(1) ((1E), (3J) in [3]) Every block of $k G$ in $\mathfrak{\Im}_{i}$ has the same defect group. We denote it by $D$.
(2) ((1F) in [3]) If $q \neq p$, then $D$ is a defect group of some block in $\tilde{\mathfrak{F}}_{i}$. In particular, every block in $\Im_{i}$ or in $\widetilde{\mathfrak{S}}_{i}$ has the same defect.

Here we recall some of the results in [6]. Let $k H=\oplus \sum(k H) e_{i}$ be a direct sum of principal indecomposable modules, where $e_{i}$ is a primitive idempotent of $k H$. We assume the first $\left\{(k H) e_{i}, \cdots,(k H) e_{r}\right\}$ is the set of the non-isomorphic ones. From the natural exact sequence, $0 \rightarrow \mathfrak{R} \rightarrow k H \rightarrow k H / \Re \rightarrow 0$, we have the following commutative diagram and natural isomorphisms,

where $\otimes=\otimes_{k H}$.
Naturally we may regard $k H / \Re \subset k G / \mathcal{R}=A$. The above isomorphisms induce an isomorphism $k G \otimes(k H / \Re) \bar{e}_{i} \cong A \bar{e}_{i}$, where $\bar{e}_{i}$ indicates the class of $e_{i}$ in $k H / \Re$. For an irreducible $k H$-module $V$, the inertia group is the subgroup $H^{*}(V)=\{x \in G \mid x \otimes V \simeq V$ as $k H$-modules $\}$.

Now we assume $[G: H]=p . k H / \Re$ is arranged in the following form,

[^0]$k H / \Re=\sum_{i=1}^{m} u_{i}(k H / \Re) \bar{e}_{i} \oplus_{i=m+1}^{r} u_{i}(k H / \Re) \bar{e}_{i}$, where $u_{i}(k H / \Re) \bar{e}_{i}$ denotes a direct sum of $u_{i}$ modules isomorphic to $(k H / \Re) \bar{e}_{i}$ and $u_{i}=\operatorname{dim}_{k}(k H / \Re) \bar{e}_{i}$. We assume $H^{*}\left((k H / \Re) \bar{e}_{i}\right)=G(1 \leqslant i \leqslant m)$ and $H^{*}\left((k H / \Re) \bar{e}_{i}\right)=H(m<i \leqslant r)$. Thus $A=$ $\oplus_{1 \leqslant i \leqslant m} u_{i} A \bar{e}_{i} \oplus_{m<i \leqslant r} \sum_{i} A \bar{e}_{i}$.

In [6] we proved;
(1) The composition factor modules of $A \bar{e}_{i}$ are all isomorphic. We denote it by $M_{i}$. For $i<m, A \bar{e}_{i}$ is irreducible and $\oplus_{m<i \leqslant r} u_{i} A \bar{e}_{i}$ is a semisimple algebra over $k$. For $1 \leqslant i \leqslant m$, the composition length of $A \bar{e}_{i}$ is $p$ and $C_{i}=u_{i} A \bar{e}_{i}$ is a block of $A$. Furthermore we have $\left(M_{i}\right)_{H} \simeq(k H / \Re) \bar{e}_{i}$.
(2) $\mathfrak{R}^{p} \subset \mathfrak{R}$.

Lemma 2.3. $A \bar{e}_{i}$ is indecomposable.
Proof. It suffices to show this only for $i \leqslant m$. From the first part of (2), $A \bar{e}_{i}$ is indecomposable or completely reducible (Proposition 2 [6]). Suppose it is completely reducible. Then $C_{i}=u_{i} A \bar{e}_{i}$ is a simple algebra over $k$ and $A \bar{e}_{i} \simeq$ $p \cdot M_{i}$. Thus we have $\operatorname{dim}_{k} C_{i}=p \cdot u_{i}{ }^{2}$. However since $C_{i}$ is a simple algebra over a splitting field, we have $\operatorname{dim}_{k} C_{i}=\left(\operatorname{dim}_{k} M_{i}\right)^{2}=u_{i}{ }^{2}$. This is a contradiction.

Corollary 2.4. $(k G) e_{i}$ is indecomposable.
Remark 1. It follows from this corollary that the representatives of primitive idempotents of $k G$ can be taken from $k H$. This is a key point for the later arguments.

Lemma 2.5. $\quad A \bar{e}_{i}$ is irreducible if and only if $M_{i}$ is $(G, H)$-projective.
Proof. If $A \bar{e}_{i}$ is irreducible, then $M_{i}=A \bar{e}_{i}=k G \otimes(k H / \Re) \bar{e}_{i}$. Thus $M_{i}$ is $(G, H)$-projective. Conversely, suppose $A \bar{e}_{i}$ is not irreducible and $M_{i}$ is $(G$, $H)$-projective. Then $A \bar{e}_{i} \simeq k G \otimes\left(M_{i}\right)_{H}$ and $M_{i}$ is a direct summand of $k G \otimes$ $\left(M_{i}\right)_{H}$, which contradicts the indecomposability of $A \bar{e}_{i}$. This completes the proof.

In [4], Green proved the following; Let $B$ be a block and $D$ its defect group. Then every irreducible module $M$ belonging to $B$ is $(G, D)$-projective. Moreover if $M$ is of height 0 , then $D$ is the vertex of $M$.

Lemma 2.6. Let $H$ be a normal subgroup of index $p$. Let $B$ be a block of $k G$ and $D$ the defect group. If $D \subset H$, then we have $\mathfrak{R} B=\Re B$.

Proof. It suffices to show that $\mathfrak{R} e_{i}=\ell e_{i}$ for certain primitive idempotents $e_{i}$ such that $\sum e_{i}=\delta$, where $\delta$ is the block idempotent of $B$. We may assume each $e_{i}$ is in $k H$ by Remark 1. Since $A \bar{e}_{i}=(k G / \mathbb{Q}) \bar{e}_{i} \simeq k G e_{i} /\left\{e_{i}, M_{i}\right.$ belongs to $B$. Hence $M_{i}$ is $(G, D)$-projective. However, since $H$ contains $D$ by the
assumption, we know $M_{i}$ is $(G, H)$-projective. Thus $A \bar{e}_{i}$ is irreducible by Lemma 2.4, which means $\mathfrak{M e} e_{i}=\left\{e_{i}\right.$ since $(\mathfrak{M} / \mathbb{R}) \bar{e}_{i}$ is a maximal submodule of $A \bar{e}_{i}$. This completes the poof.

Theorem 1. Suppose $G$ is a solvable group, or a $p$-solvable group with an abelian Sylow p-group. Let $B$ be a block of defect $d$. Then we have $(\mathfrak{H} B)^{p^{d}}=0$.

Proof. We proceed by induction on the order of $G$. We may assume there exists a proper normal subgroup $H$ of index $p$ or prime to $p$.

Case 1. $[G: H]=p$. Let $D$ be the defect group of $B$ and $\delta$ the block idempotent. Since $H$ contains all the $p$-regular elements, $\delta$ is actually in $k H$. Hence we have $\delta=\sum \eta_{i}$ and $B=k G \cdot \sum \widetilde{B}_{i}$, where $\eta_{i}$ is a block idempotent in $k H$ and $\widetilde{B}_{i}$ is the corresponding block of $k H$ of defect $d_{i}$. Let $\psi_{i}{ }^{\prime}$ be the linear character which defines the block $\widetilde{B}_{i}$. Then we have $\psi_{i}{ }^{\prime}(\delta)=\sum_{i} \psi_{i}{ }^{\prime}\left(\eta_{i}\right)=1$. Hence $D \cap H$ contains the defect group of $\widetilde{B}_{i}$, in particular $d \geqq d_{i}$. If $D \subset H$, we have $\mathfrak{M} B=\Omega B$ by Lemma 2.5. Thus $(\mathfrak{R} B)^{p^{d}}=k G \cdot \sum_{i}\left(\Re \widetilde{B}_{i}\right)^{p^{d_{i}}}=0$, since $\left(\mathfrak{R} \widetilde{B}_{i}\right)^{p^{d_{i}}}=0$ by the induction hypothesis. If $D \nsubseteq H$, then we have $d<d_{i}$ and thus $p^{d} \geqq p \cdot p^{d_{i}}$. Since $(\Re B)^{p} \subset \Omega B$, we have $(\Re B)^{p^{d}} \subset(\Omega B)^{d^{d_{i}}}=k G \cdot \sum_{i}\left(\Re \widetilde{B}_{i}\right)^{p^{d_{i}}}=0$.

Case 2. [ $G: H]$ is prime to $p$.
$(\alpha)$ Suppose $G$ is solvable. We may assume [ $G: H$ ] is a prime number. Let $f$ be a primitive idempotent in $B$. Since $(k G) f$ is a projective $k G$-module, it is a also projective as a $k H$-module. Hence $(k G) f$ is isomorphic to a direct sum of principal indecomposable modules of $k H$, say $((k G) f)_{H} \cong \sum_{i}(k H) e_{i}$. By Lemma 2.2, each $(k H) e_{i}$ belongs to a block of defect $d$ in $k H$. Thus $9 \mathfrak{l}^{p^{d}} f=$ $\Re^{p^{d}}(k G) f \cong \sum_{i} \mathfrak{R}^{p^{d}} e_{i}=0$ by the hypothesis. Since $f$ is an arbitrary idempotent in $B$, we have $(\mathfrak{R} B)^{p^{d}}=0$.
( $\beta$ ) Suppose $G$ is a $p$-solvable and $S_{p}$ is abelian. We cannot assume [ $G: H]$ is a prime number in general. However, from the proof of the $(\alpha)$ part, it is sufficient to show that (2) in Lemma 2.2 holds also in this case.

We recall that the defect groups of the blocks in $\tilde{\mathfrak{y}}_{i}$ are conjugate in $G$. Let $\tilde{D}$ be one of them. Using the same notation as that of the beginning of this section, we have

Lemma 2.7. Suppose $G$ is $p$-solvable, $S_{p}$ is abelian and $[G: H]$ is prime to $p$. Let $D$ be the defect group of some block $B$ in $\Im_{i}$. Then $D$ is conjugate to $\widetilde{D}$ in $G$. (In this case we write $D=\widetilde{D})$.

Proof. Let $M$ be any irreducible $k G$-module belonging to $B$. The height of $M$ is 0 by Thoerem (3F) [3]. Hence we have $v_{G}(M)=D$ by Green's Theorem refered above, where $v_{G}(M)$ is the vertex of $M$ in $G$. Since $H$ is normal, $M_{H}$
is a direct sum of irreducible $k H$-modules belonging to a block in $\tilde{\Im}_{i}: M_{H}=$ $\oplus \sum N_{i}$. We have also $v_{H}\left(N_{i}\right)=\widetilde{D}$. Since $[G: H]$ is prime to $p, M$ is $(G, H)-$ projective. Therefore there exists some $N_{i}$ such that $v_{G}(M) \underset{G}{=} v_{H}\left(N_{i}\right)$. Thus we have $D=v_{G}(M) \underset{G}{=} v_{H}\left(N_{i}\right) \underset{G}{=} \tilde{D}$. This completes the proofs of Lemma 2.7 and Theorem 1.

## 3. Generators of the radical

In this section we assume $S_{p}$ is abelian. Furthermore we assume the field $k$ is the residue class field $\mathfrak{o} / \mathfrak{p o}$, where $\mathfrak{p}$ is a fixed prime divisor of $p$ in a algebraic number field containing the $|G|$-th roots of unity and $\mathfrak{o}$ is the ring of $\mathfrak{p}$-integral elements. For $\sigma \in \mathfrak{o}, \sigma^{*}$ indicates the image of $\sigma$ by the natural map $\mathfrak{o} \rightarrow \mathfrak{o} / \mathfrak{p o}$. First we shall determine a geneator of $\mathfrak{\Re / R}$ over $k G$. If $[G: H]$ is prime to $p$, then $\mathfrak{R}=\mathcal{Q}$. If $[G: H]=p$ and the defect group of a block $B$ is con-
 whose defect groups are not in $H$.

Lemma 3.1. Suppose $[G: H]=p$. Let $B$ be a block, $D$ its defect group and let $\psi$ be the linear character which defines the block $B$. If $D \nsubseteq H$, then there exists an element $x$ in $G$ but not in $H$ such that $\psi([x]) \neq 0$.

Proof. Let $y$ be a $p$-regular element such that $D$ is a defect group of $y$ and $\psi([y]) \neq 0$. Since $[G: H]=p, y$ is contained in $H$. Let $\xi$ be an irreducible character of height 0 in $B$. Then $\psi([y])=\left(\frac{|G|}{n(y)} \frac{\xi(y)}{z}\right)^{*}=\left(\frac{|G|}{n(y) \cdot z}\right)^{*} \xi(y)^{*} \neq 0$, where $n(y)$ is the order of the centralizer of $y$ in $G$ and $z$ is the degree of $\xi$. Since $D \nsubseteq H$, there exists an element $a \in D$ and $a \notin H$. Then we have $N_{G}(a y)$ $=N_{G}(a) \cap N_{G}(y) \supset D$, since $D$ is abelian. Hence $D$ is a defect group of $a y$. Thus $\frac{|G|}{n(a y) \cdot z}$ is also a $\mathfrak{p}$-integral element and $\left(\frac{|G|}{n(a y) \cdot z}\right)^{*} \neq 0$. On the other hand, since $a y=y a$ and $a$ is a $p$-element, we have $\xi(a y)^{*}=\xi(y)^{*} \neq 0$. Thus $\psi([a y])=\left(\frac{|G|}{n(a y) \cdot z}\right)^{*} \xi(a y)^{*} \neq 0$. This completes the proof.

Let $B_{1}, \cdots, B_{s}$ be the blocks of $k G$ and $\delta_{1}, \cdots, \delta_{s}$ the block idempotents respectively. Let $\psi_{i}$ be the linear character which defines the block $B_{i}$. Then $\left\{\psi_{1} \cdots \psi_{s}\right\}$ is the set of the linear characters on the center of $k G$. Since the center is a commutative $k$-algebra, its radical is the intersection of the kernels of $\psi_{i}{ }^{\prime}$ s. In particular, for any element $z$ of the center, $\left(z-\psi_{i}(z)\right) \delta_{i}$ is an element in $\mathfrak{N}$.

Proposition 3.2. Suppose $[G: H]=p$ and the defect group of the block $B_{i}$ is not contained in $H$. Let $x$ be any element in $G$ such that $x \notin H$ and $\psi_{i}([x]) \neq 0$. Then we have $\mathfrak{R} B=\left\{B+k G \cdot\left([x]--\psi_{i}([x])\right) \delta_{i}\right.$.

Proof. we put $\delta=\delta_{i}$ and $\psi=\psi_{i}$ for convenience Let $\delta=\sum e_{j}$ be a decomposition into the sum of primitive idempotents. We may assume each $e_{j}$ is in $k H$ by Remark 1. Let $e=e_{j}$ be arbitrary and fixed. Since $x$ is not in $H$, we may put $x=a v$, where $a^{p-1} \notin H$ and $v \in H$. Then we have $([x]-\psi([x]))^{p-1} \delta e$ $=a^{p-1} z_{1}+a^{p-2} z_{2}+\cdots+a z_{p-1}+\psi([x])^{p-1} e$, where $z_{i} \in k H$. The right hand is not contained in $\mathfrak{Q} e=a^{p-1} \mathfrak{R} e+\oplus a^{p-2} \mathfrak{R} e \oplus \cdots \oplus \Re e$, since $\psi([x]) \neq 0$. Hence we have a sequence

$$
A \bar{e} \supsetneq([x]-\psi([x])) A \bar{e} \supseteqq([x]-\psi([x]))^{2} A \bar{e} \supsetneq \cdots \supseteqq([x]-\psi([x]))^{p-1} A \bar{e} \supsetneq 0 .
$$

However, since $A \bar{e}$ has $p$ composition factors, $([x]-\psi([x])) A \bar{e}$ must be maximal, that is $([x]-\psi([x])) A \bar{e}=(\Re / \mathbb{R}) \bar{e}$. Therefore we have $k G \cdot([x]-\psi([x])) e$
 pletes the proof.

Corollary 3.3. We put $c=\Sigma\left(\left[x_{i}\right]-\psi_{i}\left(\left[x_{i}\right]\right)\right) \delta_{i}$, where $\delta_{i}$ ranges over all the block idempotents of the blocks whose defect groups are not is $H$ and $x_{i}$ is any


From the above Corollary we have the following Theorem.
Theorem 2. Suppose $G$ is $p$-solvable and $S_{p}$ is abelian. Consider a normal sequence,

$$
G=H_{0} \supset G_{1} \supset H_{1} \supset G_{2} \supset H_{2} \supset \cdots \supset G_{n} \supset H_{n} \supset G_{n+1}=\{1\},
$$

where $G_{i+1}$ is the minimal normal subgroup of $H_{i}$ such that $\left[H_{i}: G_{i+1}\right]$ is prime to $p$ and $H_{i}$ is a normal subgroup of $G_{i}$ of index $p\left(\right.$ possibly $\left.H_{i}=G_{i+1}\right)$. Then there exists a central element $c_{i}$ in $k G_{i}$ such that $\left\{c_{i}\right\}_{i=1}^{n}$ generate $\mathfrak{\Re}$ over $k G$. In particular $\left\{\mathbb{S}_{i}\right\}_{i=1}^{n}$ generates $\mathfrak{\Re}$ over $k G$, where $\mathfrak{S}_{i}$ is the radical of the center of $k G_{i}$.

## 4. The case where $S_{p}$ is cyclic.

In this section we assume $S_{p}$ is cyclic and we shall improve the main results of the preceeding sections. Let $\theta$ be a generator of $S_{p}$ and $U=N_{G}\left(S_{p}\right) / C_{G}\left(S_{p}\right)$.

Lemma 4.1. $U$ is a cyclic group. Let $t$ be the order of $U$ and $\sigma$ in $N_{G}\left(S_{p}\right)$ correspond to a generating element of $U$. Then $t$ divides $p-1$ and $\sigma^{-1} \theta \sigma=\theta^{l}$. The conjugate class containing $\theta$ in $N_{G}\left(S_{p}\right)$ consists of $\theta, \theta^{l}, \cdots, \theta^{t^{t-1}}$. Furthermore, let $\phi$ be the Brauer homomorphism of the center of $k G$ into the center of $k N_{G}\left(S_{p}\right)$. Then we have $\phi([\theta])=\theta+\theta^{l}+\cdots+\theta^{t^{t-1}}$.

Proof. The first half is well known. We omit the proofs. Since the defect group of $\theta$ is $S_{p}$, we know $\phi([\theta])$ is the sum of the elements in the conjugate class containing $\theta$. Thus we have $\phi([\theta])=\theta+\theta^{l}+\cdots+\theta^{l^{t-1}}$.

Remark 2. Though the proof is easy, the following fact is worth while
remarking. By the definition $t$ is the order of $l \bmod p^{n}$. However, since $t$ is prime to $p, t$ is also the order of $l \bmod p$.

Lemma 4.2. If $G$ has a normal subgroup of index $p$, then $G$ has a normal p-Sylow complement.

Proof. By Burnside's Theorem, it suffices to show that $N_{G}\left(S_{p}\right)=C_{G}\left(S_{p}\right)$. We use the same notation as that of Lemma 4.1. The transfer map $G \rightarrow S_{p}$ induces an isomorphism $G / T \simeq Z \cap S_{p}$, where $Z$ is the center of $N_{G}\left(S_{p}\right)$ and $T$ is the minimal normal subgroup of $G$ such that $G / T$ is abelian $p$-group ([8]). We have $G / T \neq\{1\}$ by the assumption, hence there exists $\theta^{k}$ in $S_{p}, 0<k<p^{n}$ and $\theta^{k}$ commutes with $\sigma$. Since $\sigma^{-1} \theta \sigma=\theta^{l}$, we have $\sigma^{-1} \theta^{k} \sigma=\theta^{k}=\theta^{l k}$. It follows that $p^{n}$ divides $(l-1) k$. Since $p^{n} \nmid k,(l-1)$ is divisible by a suitable power $p^{n_{0}}\left(n_{0}>0\right)$. Thus we have $l \equiv 1 \bmod p$. Hence we have $t=1$ by Remark 2. This completes the proof.

Lemma 4.3. Let $l$ and $t$ be integers such that $t$ is the order of $l \bmod p$. We assume $l$ is greater than $p$. Let $F(X)=X+X^{l}+X^{t^{2}}+\cdots+X^{t^{t-1}}-t$ be a polynomial over $k$. Then we have $F(X)=(X-1)^{t} G(X)$, where $G(X)$ is a polynomial over $k$ and $G(1) \neq 0$.

Proof. It suffices to show that $F(1)=F^{\prime}(1)=\cdots=F^{(t-1)}(1)=0$ and $F^{(t)}(1) \neq$ 0 , since $1 \leqslant t<p$ (the characteristic of $k$ ). It follows directly that $F(1)=0$ and $F^{(v)}(1)=\sum_{i=1}^{t-1} l^{i}\left(l^{i}-1\right) \cdots\left(l^{i}-v+1\right)$. We put $Y(Y-1) \cdots(Y-v+1)=\sum_{j=1}^{v} a_{j} Y^{j}$, then we have $\sum a_{j}=0$ and $F^{(v)}(1)=\sum_{j=1}^{v} a_{j}\left(\sum_{m=1}^{t-1} l^{m j}\right) . \quad$ If $j \leqslant v<t$, then $\sum_{m=1}^{t-1} l^{m j}=$ $\frac{l^{j}\left(l^{j(t-1)}-1\right)}{l^{j}-1}=-1$. Thus $F^{(v)}(1)=-\sum a_{j}=0 . \quad$ For $v=t$, we have $F^{(t)}(1)=$ $\sum_{j=1}^{t-1}\left(-a_{j}\right)+(t-1)=t \neq 0$. This completes the proof.

Now let $\delta_{1} \cdots \delta_{r}$ be the block idempotents of the blocks of full defect. It is clear that $\psi_{i}([\theta])=h$ in $k$, where $h$ is the number of the elements in the conjugate class containing $\theta$ in $G$. In particular, we have $\psi_{i}([\theta]) \neq 0$.

Proposition 4.4. Let $t$ be the order of $U$ and $f=\frac{p^{n}-1}{t}$. Then for some $i$ $(1 \leqslant i \leqslant r)$, we have $([\theta]-h)^{f} \delta_{i} \neq 0$. In particular, we have $\mathfrak{N}^{f} \neq 0$.

Proof. Since $\left[G: N_{G}\left(S_{p}\right)\right] \equiv 1 \bmod p$, we have $h=\left[G: N_{G}\left(S_{p}\right)\right]\left[N_{G}\left(S_{p}\right)\right.$ : $\left.C_{G}\left(S_{p}\right)\right] \equiv t \bmod p$. Hence $\phi\left(([\theta]-h)^{f} \delta_{i}\right)=\left(\theta+\theta^{l}+\cdots+\theta^{t-1}-t\right)^{f} \phi\left(\delta_{i}\right)$. As is well known, $\phi\left(\delta_{i}\right)$ is not zero and a block idempotent in $k N_{G}\left(S_{p}\right)$ and furthermore $\sum \phi\left(\delta_{i}\right)=1$. Hence it is sufficient to show that $\left(\theta+\theta^{l}+\cdots+\theta^{i^{i-1}}-t\right)^{f} \neq 0$. By Remark $2, t$ is also the order of $l \bmod p$. We use Lemma 4.3 replacing $l$ by $l+p^{n}$ if necessary and we get $F(\theta)=\theta+\theta^{l}+\cdots \theta^{t-1}-t=(\theta-1)^{t} G(\theta)$. Furthermore $G(1) \neq 0$ means that the sum of the coefficients of $G(X)$ is not zero. Hence
$G(\theta)$ is a unit in $k S_{p}$ (see [5] or pp. 189 [2]) Thus we have $F(\theta)^{f}=(\theta-1)^{p^{n-1}}$ $G(\theta)^{f} \neq 0$.

Corollary 4.5. If $S_{p}$ has a normal complement in $G$, we have $([\theta]-h)^{p^{n-1}}$ $\delta_{i} \neq 0$, for all $i(i \leqslant i \leqslant r)$.

Proof. It follows from the assumption that $t=1$ and $f=p^{n}-1$. Hence we need to show only that $F(\theta)^{p^{n-1}} \phi\left(\delta_{i}\right) \neq 0$ for all $i(l \leqslant i \leqslant r)$. Now suppose $F(\theta)^{p^{n_{-1}}} \delta_{i}{ }^{\prime}=0$ for some $i$, where $\delta_{i}{ }^{\prime}=\phi\left(\delta_{i}\right)$. Then we have $(\theta-1)^{p^{n_{-1}}} \delta_{i}{ }^{\prime}=0$, since $G(\theta)$ is a unit. From this it follows that $\theta^{p^{n-1}} \delta_{i}{ }^{\prime}+a_{1} \theta^{p^{n-2}} \delta_{i}{ }^{\prime}+\cdots+$ $a_{*} \theta \delta_{i}{ }^{\prime}=-\delta_{i}{ }^{\prime}$, where $a_{i} \in k$. However this is a contradiction, since all the elements of $G$ which appear in the summation in the left hand side are $p$-irregular and the right hand side is a sum of $p$-regular elements. This completes the proof.

Lemma 4.6. Let $\mathfrak{S}$ be the radical of the center of $k G$. If $S_{p}$ has a normal complement in $G$, we have $\mathfrak{R}=k G \cdot \subseteq$.

Proof. There exists a normal subgroup $H$ of index $p$. Since $S_{p}$ has only one subgroup of order $p^{v}$ for $0 \leqslant v \leqslant n$, all the defect groups of the blocks of defect smaller than $n$ are contained in $H$. Hence by Corollary 3.3, we have $\mathfrak{R}=\mathfrak{Q}+k G \cdot([\theta]-h) \rho$, where $\rho$ is the sum of the block idempotents of the blocks of full defect. Let $T$ be the normal complement. There exists a normal sequence,

$$
G=G_{0} \supset G_{1} \supset G_{2} \supset \cdots \supset G_{n-1} \supset G_{n}=T,
$$

where $G_{k+1}$ is the normal subgroup of $G_{k}$ of index $p . G_{k}$ is unique and even normal in $G$. It is clear that $\theta^{p^{k}}$ generates a Sylow $p$-subgroup of $G_{k}$ and the conjugate class containing $\theta^{p^{k}}$ in $G_{k}$ is also the conjugate class in $G$. We denote by $h_{k}$ the number of the elements in the class. Also it is clear that the sum, say $\rho_{k}$, of all the block idempotents of the blocks of full defect in $k G_{k}$ is central in $k G$. Now, replacing $G$ and $H$ by $G_{k}$ and $G_{k+1}$ respectively, we have $\mathfrak{R}_{k}=\mathfrak{R}_{k}+$ $k G\left(\left[\theta^{p^{k}}\right]-h_{k}\right) \rho_{k}$, where $\mathfrak{\Re}_{k}$ is the radical of $k G_{k}, \mathfrak{R}_{k}=k G \cdot \Re_{k+1}$ and $\Re_{k+1}$ is the radical of $k G_{k+1}$. Thus $\left\{\left(\left[\theta^{p^{k}}\right]-h_{k}\right) \rho_{k}\right\}_{k=0}^{n-1}$ generate $\mathfrak{R}$ over $k G$ and they are central. This completes the proof.

Theorem 3. Let $G$ be a p-solvable group with a cyclic Sylow p-group. Then we have
(1) $\mathfrak{R}=k G \cdot \mathfrak{S}_{T}$, where $\mathfrak{S}_{T}$ is the radical of the center of $k T$ and $T$ is the minimal normal subgroup such that $[G: T]$ is prime to $p$.
(2) Let d be the defect of a certain block of $k G$. Then there exists a block of defect $d$, say $B$ such that $p^{d}$ is the smallest integer for which $(9 R B)^{p^{d}}=0$. This holds for any block of defect $d$, if $G$ has a normal $p$-Sylow complement.

## Proof.

(1) Let $\mathfrak{R}$ be the radical of $k T$. Since $[G: T]$ is prime to $p$, we have $\mathfrak{R}=$ $\mathfrak{E}=k G \cdot \Re$. Since $G$ is $p$-solvable, $T$ has a normal subgroup of index $p$. Then $T$ has a normal $p$-Sylow complement by Lemma 4.2. Thus we have $\mathfrak{R}=k G \cdot \Re$ $=k G\left(k T \cdot \mathfrak{S}_{T}\right)=k G \cdot \mathfrak{S}_{T}$ by Lemma 4.6.
(2) We prove by induction on the order of $G$. First, we prove the second statement. We have only to show $(\mathfrak{\Omega} B)^{d^{d-1}} \neq 0$ for any block $B$ of defect $d$. If $d=n$, we have already proved this in Corollary 4.5. Hence we may assume $d<n$. Let $H$ be a normal subgroup of index $p$. $H$ also has a normal $p$-Sylow complement. Let $\delta$ be the block idempotent of $B$ and $\delta=\sum_{i=1}^{m} \eta_{i}$, where $\eta_{i}$ is a block idempotent in $k H$. Since $d<n$, the defect group of $B$ is contained in $H$. Therefore we have $\mathfrak{R} B=\Omega B=\Re B$ and $d=d_{i}$ for all $i(1 \leqslant i \leqslant m), d_{i}$ being the defect of the block corresponding to $\eta_{i}$ in $k H$. Thus we have $\Re^{p^{d}-1} \delta=$ $k G \cdot \oplus \sum_{i=1}^{m} \Re^{p^{d-1}} \eta_{i} \neq 0$ by the induction hypothesis. Now we prove the first part. If $G$ has a normal subgroup of index $p$, our statement is obvious by Lemma 4.2 and the second part just proved. Thus we may assume there exists a proper normal subgroup of index prime to $p$. From the 1-1 correspondence $\mathfrak{Y}_{i} \leftrightarrow \widetilde{\mathfrak{Y}}_{i}$ and Lemma 2.7, it follows that there exists a block of defect $d$ in $k H$. Let $\tilde{\mathfrak{Y}}_{i}$ be the set which contains a block $\widetilde{B}$ such that $(\mathfrak{R})^{p^{d-1}} \neq 0$. Then there exists a primitive idempotent $e$ in $\widetilde{B}$ such that $\Re^{p^{d-1}} e \neq 0$. Let $(k G) e=\oplus \sum_{j}(k G) f_{j}$ be a sum of principal indecomposable modules of $k G$. Each $(k G) f_{j}$ belogs to some block in $\mathfrak{Y}_{i}$. We have $\oplus \sum_{j} \mathfrak{R}^{p^{d-1}} f_{j}=\mathfrak{R}^{p^{d-1}} e=k G \cdot \mathfrak{R}^{p^{d-1}} e \neq 0$. Hence there exists some $f_{j}$ such that $\Re^{p^{d-1}} f_{j} \neq 0$. This completes the proof.

Osaka City University

## References

[1] R. Brauer: Representations of Finite Groups, Lectures on Modern Mathematics Vol. 1. John Wiley \& Sons, New York, London, 1963.
[2] C.W. Curtis and I. Reiner: Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, London, 1962.
[3] P. Fong: On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263-284.
[4] J.A. Green: On the indecomposable representations of a finite group, Math. Z. 70 (1959), 430-445.
[5] S.A. Jennings: The structure of the group ring of a $p$-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
[6] Y. Tsushima: Radicals of group algebras, Osaka J. Math, 4 (1967), 179-182.
[7] D.A. Wallace: On the radical of a group algebra, Proc. Amer. Math. Soc. 12 (1961), 133-137.
[8] H. Zassenhaus: The Theory of Groups, 2nd ed. Chelsea, New York, 1949.


[^0]:    1) $M_{H}$ is the $k H$-module obtained by restricting the operators to $k H$.
