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1. Introduction

This paper is a sequel to our earlier one [6] and we are concerned also with
the radical of a group algebra of a finite group, especially of a ^-solvable group.
Let G be a finite group of order | G \ :=png', where p is a fixed prime number, n
is an integer 2̂ 0 and (/>,£')=!• Let Sp be a Sylow p-group of G and k a field
of characteristic p. We denote by 9i the radical of the group algebra kG (These
notations will be fixed throughout this paper). Let B be a block of defect d
in kG. Then %IB is the radical of B. First we shall show (9Ϊ5)^=O, when
G is solvable or a />-solvable group with an abelian Sylow />-group. In §3, we
assume Sp is abelian. Let H be a normal subgroup of G and 9t the radical of
kH. It follows from Clifford's Theorem that $Rc9ϊ, hence 2=kG-<3i=<3i'kG
is a two sided ideal contained in ?i. If [G: H] is prime to p, we have 8 = ϊ ί
(Proposition 1 [6]). In another extreme, suppose [G:H]=p. Then we can
show there exists a central element c in 31 such that 3l=%-\-(kG)c. Hence if
G is ^-solvable, SJΪ can be constructed somewhat explicitly using a special type
of a normal sequence of G (Theorem 2). If Sp is normal in G, then ϊί is gen-
erated over kG by the radical of kSp ([7] or Proposition 1 [6]). Hence Theorem
2 may be considered as a generalization of the above fact to the case that Sp is
abelian. In the special case that Sp is cyclic, our main results will be improved
in the final section.

Besides the notation introduced above we use the following; H will always
denote a normal subgroup of G, 5ft the radical of kH and δ=AG 9ΐ. For a
subset T in G, NG(T) and CG(T) are the normalizer and the centralizer of T in
G. For an element x in G, [x] denotes the sum of the elements in the conjugate
class contaning x. Finally, we assume k is a splitting field for every subgroup
of G.

2. Radical of a block

We begin with some considerations on the central idempotents. Let 31=
{η i} be the set of the block idempotents in kH. G induces a permutation group

on SI by Vi~^g~1Vigy g^G Let Sr••$$*> be the set of transitivity. We use the
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same letter 3f, to denote the set of the blocks whose block idempotents are in

3>.. Consider the sum £*•—Σ^ taken over the idempotents in £jff . S{ is a central

idempotent in kG, hence it is the sum of certain block idempotents in kG, say

£f =2jδ/? Let $ f be the set of the blocks of ΛG whose block idempotents

appear in the summation above. The different $, are disjoint, since £,•£,•=()

for /=t=y, and there is a 1-1 correspondence

The following lemma is obvious.

L e m m a 2.1. Let M be a principal indecomposable (irreducible resp.) module

belonging to a block in 3», . Then every principal indecomposable {irreducible resp.)

kH-direct summand of MH belongs to a block in 3»f

 !>. Conversely if N is a principal

indecomposable (irreducible resp.) kH-module belonging to a block in ^iy then every

principal indecomposable (irreducible resp.) kG-direct summand (kG-composίtίon

factor module resp.) of the induced module NG=kG®kHN belongs to a block in $,-.

The following result is completely due to Fong [3].

Lemma 2.2. Suppose [G:H]=q is a prime number. Then we have
(1) ((IE), (3J) in [3]) Every block of kG in & has the same defect group.

We denote it by D.

(2) ((IF) in [3]) If q+p, then D is a defect group of some block in $, . In

particular, every block in $, or in 3ί« nas tne same defect.
Here we recall some of the results in [6]. Let kH=@^(kH)ei be a direct

sum of principal indecomposable modules, where e{ is a primitive idempotent
of kH. We assume the first {(kH)eiy •••, (kH)er} is the set of the non-isomorphic
ones. From the natural exact sequence, 0-><3l->kH-+kHI<3i->0y we have the
following commutative diagram and natural isomorphisms,

kG®kHI3i -> 0 (exact)

I!
kGfi > 0 (exact),

where ® = ®kH>

Naturally we may regard kH/<S{c:kGβ=A. The above isomorphisms
induce an isomorphism kG®(kH/ίR)ei^Aei, where e{ indicates the class of e{

in kH/ίR. For an irreducible &£f-module V> the inertia group is the subgroup
H*(V)={χ(ΞG\x®V~V as kH-modules).

Now we assume [G:H]=p. kHjίR is arranged in the following form,

1) MH is the kH-module obtained by restricting the operators to kH.
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Σ u^kHfSί)^ where z/t (£#/3ΐ)^ denotes a direct sum

of u{ modules isomorphic to (k/7/9t)e, and ui=dimk(kHI'${)ej. We assume
H*((kHI^.)e()=G(l<i<m) and H*((kH/ίR)ei) = H(m<i^r). Thus A=

In [6] we proved;

(1) The composition factor modules of Ae{ are all isomorphic. We denote

it by M{. For i<m> Ae{ is irreducible and 0 Σ UiAe{ is a semisimple algebra

over k. For l < ί < m , the composition length of Ae£ is /> and Ci=uiAei is a
block of A. Furthermore we have {Mi)H—(kHI'Si)ei.

(2) 3*>c8.

Lemma 2.3. v4^ ts indecomposable.

Proof. It suffices to show this only for z<m. From the first part of (2),
Ae{ is indecomposable or completely reducible (Proposition 2 [6]). Suppose it
is completely reducible. Then C^u^βi is a simple algebra over k and Ae{—
p Mj. Thus we have dimkCi=p u2. However since Cf is a simple algebra
over a splitting field, we have dimk Ci=(dimkMi)

2=u2. This is a contradiction.

Corollary 2.4. {kG)e{ is indecomposable.

REMARK 1. It follows from this corollary that the representatives of primi-
tive idempotents of kG can be taken from kH. This is a key point for the later
arguments.

Lemma 2.5. Aβi is irreducible if and only if M{ is (Gy H)-projective.

Proof. If Ae{ is irreducible, then Mi=Aei=kG®(kHI<Si)ei. Thus M, is
(G, i/)-projective. Conversely, suppose Ae{ is not irreducible and M, is (G,
/f)-ρrojective. Then Aeic^kG®{Mi)H and M{ is a direct summand of kG®
(Mi)Hi which contradicts the indecomposability of Ae{. This completes the
proof.

In [4], Green proved the following; Let B be a block and D its defect group.
Then every irreducible module M belonging to B is (G, D)-projective. Moreover if
M is of height 0, then D is the vertex of M.

Lemma 2.6. Let H be a normal subgroup of index p. Let B be a block of
kG and D the defect group. If D(zH, then we have JΪJ3—%B.

Proof. It suffices to show that (ίίlei=2ei for certain primitive idempotents e{

such that Σ ^ —δ, where δ is the block idempotent of B. We may assume
each e{ is in kH by Remark 1. Since Aei=(kGβ)ei^^kGeil2eii M{ belongs to
B. Hence M, is (G, Z))-projective. However, since H contains D by the
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assumption, we know M{ is (G, i/)-projective. Thus Ae{ is irreducible by
Lemma 2.4, which means ςίflei=2ei since (9ΐ/δ)£; is a maximal submodule of Ae{.
This completes the poof.

Theorem 1. Suppose G is a solvable group, or a p-solvable group with an
abelian Sylow p-group. Let B be a block of defect d. Then we have (3lB)pd=0.

Proof. We proceed by induction on the order of G. We may assume
there exists a proper normal subgroup H of index p or prime to p.

Case 1. [G: H] =p. Let D be the defect group of B and δ the block idempo-
tent. Since H contains all the ̂ -regular elements, δ is actually in kH. Hence
we have δ ^ Σ ^ and B=kG'^Biy where η{ is a block idempotent in kH and
Bi is the corresponding block of kH of defect d{. Let ψ/ be the linear character
which defines the block B,. Then we have ψi'(S) = ^2ψ/(ηi)=l. Hence

D Π H contains the defect group of Biy in particular d^d{. If DdH, we have
$IB=2B by Lemma 2.5. Thus ('iflB)*i=kG-Σ*(lRBi)*'i=O, since

by the induction hypothesis. If D<tH, then we have d<di and thus pd^p pdi.

Since (9tfl)*c8fi, we have (9fcβ)*rfc(8fl)*''=ΛG.Σ(9t#<)*rf'=0

Ctftt? 2. [G: //] w />πVrce to p.

(a) Suppose G is solvable. We may assume [G:H] is a prime number.
Let/be a primitive idempotent in B. Since (kG)f is a projective ΛG-module,
it is a also projective as a Aϋ-module. Hence (kG)f is isomorphic to a direct
sum of principal indecomposable modules of kH, say {{kG)f)H^^i (kH)ej. By

Lemma 2.2, each {kH)e{ belongs to a block of defect d in kH. Thus Wdf=
(Sipd(kG)f^yΣl ffi>pd£, = 0 by the hypothesis. Since/ is an arbitrary idempotent in

B, we have ( 3 ^ ) ^ = 0 .

(β) Suppose G is a ^-solvable and Sp is abelian. We cannot assume
[G:H] is a prime number in general. However, from the proof of the (a) part,
it is sufficient to show that (2) in Lemma 2.2 holds also in this case.

We recall that the defect groups of the blocks in $ t are conjugate in G.
Let D be one of them. Using the same notation as that of the beginning of
this section, we have

Lemma 2.7. Suppose G is p-solvable, Sp is abelian and [G:H] is prime
to p. Let D be the defect group of some block B in $,-. Then D is conjugate
to D in G. {In this case we write D=D).

Proof. Let M be any irreducible ^G-module belonging to B. The height
of M is 0 by Thoerem (3F) [3]. Hence we have vG{M)=D by Green's Theorem
refered above, where vG(M) is the vertex of M in G. Since H is normal, MH
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is a direct sum of irreducible &ίf-modules belonging to a block in ί^ : MH=
Θ Σ ^ We have also vH(Ni)=D. Since [G:H] is prime to py M is (G, H)-

G

projective. Therefore there exists some iV, such that vG(M)—vH(Ni). Thus

we have D = flG(M) = vH(Ni) = D. This completes the proofs of Lemma 2.7
σ G

and Theorem 1.

3. Generators of the radical

In this section we assume S p is abelian. Furthermore we assume the field
k is the residue class field o/po, where p is a fixed prime divisor of p in a alge-
braic number field containing the | G | -th roots of unity and o is the ring of
p-integral elements. For σEzθy cr* indicates the image of σ by the natural map
o->o/po. First we shall determine a geneator of sJl/8 over kG. If [G:H] is
prime to py then 9i=δ. If [G:i/]=^) and the defect group of a block B is con-
tained in Hy then we have %IB=%B. Hence we may consider only those blocks
whose defect groups are not in H.

Lemma 3.1. Suppose [G:H]=p. Let B be a block, D its defect group and

let φ be the linear character which defines the block B. If D(tH, then there exists

an element x in G but not in H such that </>([#]) φ θ .

Proof. Let y be a ̂ -regular element such that D is a defect group of y and

</>([y])Φθ. Since [G:H]=p, y is contained in H. Let ξ be an irreducible

character of height 0 in B. Then ψ([y])=(^\ ^ Y W 4 ^ Y * £ ( j O * = l = 0 >

where n(y) is the order of the centralizer of y in G and z is the degree of ξ.

Since DctH, there exists an element αGfl and a<£H. Then we have NG(ay)

=NG(a)f]NG(y)z^Dy since D is abelian. Hence D is a defect group of ay.

Thus -7!—J— is also a to-integral element and f-J—J— ) Φθ. On the other
n(ay) z \n(ay) z/

hand, since αy^jα and α is a ^-element, we have £ (dy)^=ξ(y)m^F^' Thus

0([«y])= ( f ^ )*l(gy)*=<=0- T n i s completes the proof.

Let 5j_, •••, β s be the blocks of kG and Su •••, δ s the block idempotents
respectively. Let ^ f be the linear character which defines the block B(. Then
{ψ\'' * Φs\ 1S t n e set of the linear characters on the center of kG. Since the
center is a commutative ^-algebra, its radical is the intersection of the kernels of
ψi's. In particular, for any element z of the center, (z—ψi(z))8i is an element
inΉ.

Proposition 3.2. Suppose [G:H]=p and the defect group of the block Bέ is
not contained in H. Let x be any element in G such that x<ξH and ψi([x])Φ 0. Then
we have
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Proof, we put δ = δ ; and ψ=ψi for convenience Let δ = Σ ^ be a de-

composition into the sum of primitive idempotents. We may assume each βj

is in kH by Remark 1. Let e=ej be arbitrary and fixed. Since x is not in H, we

may put x=av, where ap~ι^H and v^H. Then we have {[x\—ψ{[x\))p~λ§e

=ap-χzλ+ap~2z2-^ hflSj-i+^ίM)*"1*, where z^kH. The right hand is not

contained in 2e=ap-1<3ie+®ap~2ίfie(B — (BϊRe9 since ψ([x])Φθ. Hence we have

a sequence

However, since ^J# has /> composition factors, ( [ # ] — ^ ([#])) ^ £ must be

maximal, that is ([*] —φ([x]))Ae=(^lβ)e. Therefore we have kG ([x]—ψ([x]))e

+2e=3le. and thus <ίflB=2B+kG([x]—ψ([x]))8> since e is arbitrary. This com-

pletes the proof.

Corollary 3.3. We put c = 2 ( M — ^ / ( M ) ) ^ - , wÂ rβ δ,
the block idempotents of the blocks whose defect groups are not is H and x{ is any

element of G such that x{<$H and φi{[xi\)φ 0. Then we have yiB=%B+(kG)c.

From the above Corollary we have the following Theorem.

Theorem 2. Suppose G is p-solvable and Sp is abelian. Consider a normal

sequence,

G - H.ZDG^H.-DG^H^ .. z>GH^>HMz>GH+1 = {1},

where Gi+1 is the minimal normal subgroup of Hέ such that [Hέ: Gi+1] is prime to

p and Hi is a normal subgroup of G£ of index p (possibly Hi=Gi+1). Then there

exists a central element c£ in kG{ such that {c, }?=1 generate 9Ϊ over kG. In particular

}?=! generates ϊi over kG, where β>, is the radical of the center of kG,.

4. The case where Sp is cyclic.

In this section we assume Sp is cyclic and we shall improve the main results

of the preceeding sections. Let θ be a generator of Sp and U=NG(Sp)ICG(Sp).

Lemma 4.1. U is a cyclic group. Let t be the order of U and σ in NG(Sp)

correspond to a generating element of U. Then t divides p-ί and σ~1θσ=θι. The

conjugate class containing θ in NG(Sp) consists of θ, θι, •••, θι*~ι. Furthermore, let

φ be the Brauer homomorphism of the center of kG into the center of kNG(Sp).

Then we have φ([θ])=θ+θ1^ \-θι'~\

Proof. The first half is well known. We omit the proofs. Since the defect

group of θ is SPy we know φ([θ]) is the sum of the elements in the conjugate

class containing θ. Thus we have φ([θ])=θ+θ1^ \-θι'~\

REMARK 2. Though the proof is easy, the following fact is worth while
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remarking. By the definition t is the order of / mod pn. However, since t is
prime to p, t is also the order of / mod p.

Lemma 4.2. // G has a normal subgroup of index p, then G has a normal
p-Sylow complement.

Proof. By Burnside's Theorem, it suffices to show that NG(Sp)=CG(Sp).
We use the same notation as that of Lemma 4.1. The transfer map G-*Sp

induces an isomorphism G/T—ZΓiSp, where Z is the center of NG(Sp) and T
is the minimal normal subgroup of G such that GjT is abelian />-group ([8]).
We have G/Tφ{l} by the assumption, hence there exists θk in Sp, 0<k<pn

and θk commutes with σ. Since σ~ιθσ=θι, we have σ~1θkσ=θk=θιk. It
follows that pn divides (/— \)k. Since pnχk, (/—I) is divisible by a suitable
power pno (wo>O). Thus we have 1=1 mod p. Hence we have ί = l by Remark
2. This completes the proof.

Lemma 4.3. Let I and t be integers such that t is the order of I mod p.
We assume I is greater than p. Let F(X)=X+Xι+X*2-\ \-Xιt~ι—t be a
polynomial over k. Then we have F(X)=(X—l)tG(X)) where G(X) is a poly-
nomial over k and G(l)Φθ.

Proof. It suffices to show that F(\)=F'(l)=.~=Fct-O(l)=0 and F c ί )(l)Φ
0, since \^t<p (the characteristic of k). It follows directly that F(l)=0 and

Fv:>(l)=*ϊlIi(li-iy..(l*-Ό+l). We put Y(Y-\)-(Y-Ό+l)=ilajY>', then

we have Σ α y = 0 and Fcf°(l) = Σ « / ( Σ *wj) If j<v<t, then ^lmj=

^ μ_ί ' = - 1 . Thus F c ϋ ) ( l ) = - Σ β y = 0 . For v=t, we have Fct\l)=

Σ(—«,)+(*— l ) = ί Φ θ . This completes the proof.

Now let δj δ^ be the block idempotents of the blocks of full defect.
It is clear that φi([θ])=h in ky where h is the number of the elements in the
conjugate class containing θ in G. In particular, we have

Proposition 4.4. Let t be the order of U and f=ί-^L-. Then for some i

, we have ([#]—A/δ. ΦO. In particular, we have S^ΦO.

Proof. Since [G:NG(Sp)] = l mod p, we have h=[G:NG(Sp)] [NG(Sp):
CG(Sp)] = t mod p. Hence φ(([θ]-hyδi)=(θ+θι+-+θt-1-tyφ(8i). As is
well known, φ(δ t ) is not zero and a block idempotent in kNG(Sp) and further-
more ΣΦ(S, ) = 1 Hence it is sufficient to show that (0+0'H [~θιi~1—t)fφ0.
By Remark 2, t is also the order of / mod p. We use Lemma 4.3 replacing / by
l+pn if necessary and we get F(θ)=θ+θι+-θιt~1-t=(θ-l)tG(θ). Further-
more G(l)φO means that the sum of the coefficients of G(X) is not zero, Henςς



96 Y. TSUSHIMA

G(θ) is a unit in kSp (see [5] or pp. 189 [2]) Thus we have F(θγ={θ—\)^'1

Corollary 4.5. If Sp has a normal complement in G, we have ([#]—h)pn~x

O, for alii

Proof. It follows from the assumption that t=ί and f=pn— 1. Hence we
need to show only that ^ ( ^ " ^ ( δ ^ φ O for all i (/<z<r). Now suppose
i ^ O ^ δ / ^ O for some i, where δ/=φ(δ, ). Then we have ((9—l)^M"1δ/=0,
since G(θ) is a unit. From this it follows that Θ^Si'+αJ^S/-] h
α^θSir= — 8if

y where α^k. However this is a contradiction, since all the
elements of G which appear in the summation in the left hand side are ̂ -irregular
and the right hand side is a sum of ^-regular elements. This completes the
proof.

Lemma 4.6. Let @ be the radical of the center of kG. If Sp has a normal
complement in G} we have 3l=kG &.

Proof. There exists a normal subgroup H of index p. Since Sp has only
one subgroup of order pv for 0<z;<w, all the defect groups of the blocks of
defect smaller than n are contained in H. Hence by Corollary 3.3, we have
sjl=2+kG'([θ]—h)p, where p is the sum of the block idempotents of the
blocks of full defect. Let T be the normal complement. There exists a normal
sequence,

G = G. ΏG^G.-Ώ ••• ^GM^ZDGn = T,

where Gk+ί is the normal subgroup of Gk of index/). Gk is unique and even
normal in G. It is clear that θpk generates a Sylow ^-subgroup of Gk and the
conjugate class containing θpk in Gk is also the conjugate class in G. We denote
by hk the number of the elements in the class. Also it is clear that the sum, say
pky of all the block idempotents of the blocks of full defect in kGk is central in
kG. Now, replacing G and H by Gk and Gk+1 respectively, we have %lk=2k

Jτ
kG {[θpk]-hk)Pki where Wk is the radical of kGky 2k=^kG^k+1 and ^ + 1 is the
radical of kGk+1. Thus {([θpk]—hk)pk}

n

kzl generate 91 over kG and they are
central. This completes the proof.

Theorem 3. Let G be a p-solvable group with a cyclic Sylow p-group.
Then we have

(1) %l=kG-&τ, where @τ is the radical of the center of kT and T is the
minimal normal subgroup such that [G: T] is prime to p.

(2) Let d be the defect of a certain block of kG. Then there exists a block of
defect d, say B such that pd is the smallest integer for which (>JlB)pd=0. This
holds for any block of defect d, if G has a normal p-Sylow complement.
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Proof.

(1) Let 91 be the radical of kT. Since [G: T] is prime to p, we have 31=
8=&G 9t. Since G is />-solvable, Γhas a normal subgroup of index p. Then
T has a normal />-Sylow complement by Lemma 4.2. Thus we have 3l=kG $ϊ
=kG(kT.&τ)=kG &τ by Lemma 4.6.

(2) We prove by induction on the order of G. First, we prove the second
statement. We have only to show (StBJ^^φO for any block B of defect d.
If d=n, we have already proved this in Corollary 4.5. Hence we may assume
d<n. Let H be a normal subgroup of index p. H also has a normal p-Sylow

complement. Let δ be the block idempotent of B and 8=^Vi, where vi
i = l

is a block idempotent in kH. Since d<.n, the defect group of B is contained
in H. Therefore we have (ίlB=2B=<3iB and d=d( for all i (1 <i<m), d{ being
the defect of the block corresponding to ηt in kH. Thus we have yipd~18=

kG Θ Σ S R ^ ' ^ ΦO by the induction hypothesis. Now we prove the first part.
1 = 1

If G has a normal subgroup of index p> our statement is obvious by Lemma 4.2
and the second part just proved. Thus we may assume there exists a proper

normal subgroup of index prime to p. From the 1-1 correspondence $,•<->£$,•

and Lemma 2.7, it follows that there exists a block of defect d in kH. Let ^

be the set which contains a block B such that (5R5)/>rf~1Φθ. Then there exists

a primitive idempotent e in B such that S t ^ e φ O . Let (kG)e= 0 Σ (&G)/y be

a sum of principal indecomposable modules of kG. Each (kG)fj belogs to some
block in &. We have eΣ3 f l^" 1 Λ=3 ί l A < ί " 1 β=ΛG 3l^- 1βφ0. Hence there

exists some/y such that •JΪ '̂ΎyφO. This completes the proof.
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