COMBINATORIAL PREBUNDLES
 PART II*

Mitsuyoshi KATO
(Received December 6, 1966)
(Revised September 30, 1967)

1. Introduction

It is well known that smooth m spheres embedded in smooth $m+2$ manifolds have the trivial normal bundles, provided $m \geq 3$. This is a direct consequence from the fact that SO_{2} has the same homotopy type as the circle. The purpose of the paper is to show the analogous Theorem for locally flatly embedded PL m spheres of codimension two except for the case $m=4$.

Theorem A. Let $f: S \rightarrow W$ be a locally flat PL embedding of the m sphere S into a PL $m+2$ manifold W. Suppose that W is orientable and $m \neq 2,4$. Then f has the trivial normal 2 cell bundle: That is to say, the embedding f is collared.

The assumption that W is orientable may be weakened by saying that a regular neighborhood of $f(S)$ in W is orientable. If $m \geq 2$, then normal prebundles for f are clearly orientable. We have, therefore,

Addendum. Every locally flat PL embedding of the m sphere of codimension two is collared, provided that $m \geq 5$ or $m=3$.

Remark. The case $m=4$ is unknown for the author.
From Theorem A, we shall deduce:
Theorem B. The $k(\neq 3)$-th homotopy group $\pi_{k}\left(P R_{2}\right)$ of the structural group $P R_{2}$ of 2 prebundles is isomorphic to $\pi_{k}\left(O_{2}\right)$.

The following was proven in [3]:
Proposition 1.1. The structural group ΠL_{2} of PL 2 cell bundles has the homotopy type of the orthogonal group O_{2}.

So we have:
Corollary to Theorem B. $\pi_{k}\left(P R_{2}, \Pi L_{2}\right) \cong 0$ for $k \neq 3$ and $\pi_{3}\left(P R_{2}, \Pi L_{2}\right) \cong$ $\pi_{3}\left(P R_{2}\right)$.

[^0]
2. Applications

Let M and W be $P L$ manifolds. Recall that a $P L$ embedding $f: M \rightarrow W$ is oriented, if M and W are oriented. Two oriented $P L$ embeddings $f: M \rightarrow W$ and $g: M \rightarrow W^{\prime}$ are equivalent if there is an orientation preserving $P L$ homeomorphism $h: W \rightarrow W^{\prime}$ such that $h f=g$. The equivalence of oriented $P L$ embeddings is clearly a proper equivalence relation. Let S_{k} denote the standard oriented $P L k$ sphere. A $P L m$ knot means a locally flat $P L$ embedding $f: S_{m} \rightarrow S_{m+2}$. Then the $P L$ homeomorphism class of $S_{m+2}-f\left(S_{m}\right)$, called the complement, is an invariant of the equivalence class of the knot.

By Theorem A we may sharpen Levine's unknotting theorem in codimension two as follows.

Theorem C. (J. Levine, [5]) Suppose that $m \geq 5$. A PL m knot is trivial if the complement is a homotopy circle.

By Theorem 4.4 in [6] and by Corollary to Theorem B the following existence theorem of a normal PL 2 cell bundle is derived from the obstruction theory for reducing combinatorial prebundles into $P L$ cell bundles. (In Part III, we shall give the precise description of the obstruction theory.)

Theorem D. Let M be a PL m manifold. Suppose that M is compact and $H^{4}\left(M, \pi_{3}\left(P R_{2}\right)\right) \cong 0$. Then any locally flat embedding f of M into a PL $m+2$ manifold W has a normal PL 2 cell bundle. More precisely, if K and L are partitions of M and W such that $f: K \rightarrow L$ is simplicial and that $F(K)$ is full in L, then there is a normal PL cell bundle $v(f)$ for f which is compatible with the dual cell structures of K and L, for compatibility see [6].

By the universal coefficient theorem the assumption $H^{4}\left(M, \pi_{3}\left(P R_{2}\right)\right) \cong 0$ is always satisfied by such a manifold M that $H_{3}(M)$ is torsion free and $H_{4}(M) \cong 0$.

A $P L$ manifold pair (W, M) is smoothable if W and M are smoothable so that there are a smooth manifold pair $(\boldsymbol{W}, \boldsymbol{M})$ and a smooth triangulation $h: W$ $\rightarrow \boldsymbol{W}$ such that $h(M)=\boldsymbol{M}$. Suppose that M admits a normal $P L 2$ cell bundle v in W. Since by Proposition $1.1 \Pi L_{2}$ has the same homotopy type as 0_{2}, the normal bundle v triangulates a vector bundle. Therefore M has a normal $P L$ microbundle in W which triangulates a vector bundle. Thus, applying Theorem D and Theorem 7.3 in [4] we have the following:

Corollary D. 1 Let (W, M) be a locally flat PL ($m+2, m$) manifold pair. Suppose that M is closed and $H^{4}\left(M, \pi_{3}\left(P R_{2}\right)\right) \cong 0$. If W is smoothable then the pair (W, M) is smoothable.

It is well known that there is a non smoothable 5 connected $P L 12$ manifold M which is piecewise linearly embeddable into the euclidean 14 space R^{14}.

Hence we have the following example.
Example. There is an example of a closed 5 connected PL 12 manifold
having a $P L$ embedding into R^{14}, but having no locally flat $P L$ embedding.
Recall that two oriented $P L$ embeddings $f: M \rightarrow W$ and $g: M \rightarrow W^{\prime}$ are microequivalent if there exist neighborhoods U and U^{\prime} of $f(M)$ and $g(M)$ in W and W^{\prime} respectively and a $P L$ homeomorphism $h: U \rightarrow U^{\prime}$ preserving orientations induced from those of W and W^{\prime} so that $h f=g$.

Let M be a closed oriented $P L$ manifold. For any oriented proper embedding f of M of codimension $2, H$. Noguchi has defined an invariant $\chi(f) \varepsilon H^{2}(M)$ under the microequivalence class of f, which is called the Euler class of f.

Remark. In his paper [7], p. 120, the class $\chi(f)$ is denoted by ω and called the Stiefel-Whitney class.

Finally we shall prove the following.
Theorem E. Let M be a closed oriented PL manifold. Suppose that $H^{4}\left(M, \pi_{3}\left(P R_{2}\right)\right) \cong 0$. Then two oriented locally flat PL embeddings $f: M \rightarrow W$ and $g: M \rightarrow W^{\prime}$ of M of codimension two are microequivalent if and only if $\chi(f)=\chi(g)$.

3. Definitions and Lemmas

In the following we restrict ourselves in the $P L$ category.
To prove Theorem A we need the following definition. Let $\{E, K, \Sigma\}$ be an n prebundle. A collared non zero section of E is a pair (G, g) consisting of an embedding $G:|K| \times J^{n-1} \rightarrow \partial E$ and a non zero section $g: K \rightarrow \partial E$ such that $G(x, 0)=g(x)$ for all x in $|K|$, and $G\left(A \times J^{n-1}\right) \subset h\left(A \times \partial J^{n}\right)$ for all pair (A, h) in Σ.

Lemma $3.1(\mathbf{k}) \quad$ Let K be a k dimensional complex and let $\{E, K, \Sigma\}$ be an n prebundle.

Suppose that E has a collared non zero section (G, g).
Then E collapses to $G\left(|K| \times J^{n-1}\right)$.
Proof. We prove Lemma $3.1(k)$ by induction on the dimension k.
(0): Trivial.
$(k) \Rightarrow(k+1)$: Assuming inductively that (k) is proven, we prove $(k+1)$. Let A be an arbitrary $k+1$ simplex of K. Since $\left(G / \partial A \times J^{n-1}, g / \partial A\right)$ is a collared non zero section of $E / \partial A$, it follows from (k) that $E / \partial A$ collapses to $G\left(\partial A \times J^{n-1}\right)$. Hence $E / \partial A \cup G\left(A \times J^{n-1}\right)$ is an $n+k$ cell on the boundary of the $n+1+k$ cell E / A. Therefore E / A collapses to $E / \partial A \cup G\left(A \times J^{n-1}\right)$. Let K^{k} denote the k skeleton of K. By the above argument, E collapses to $E / K^{k} \cup G\left(|K| \times J^{n-1}\right)$. By $(k) E / K^{k}$ collapses to $G\left(\left|K^{k}\right| \times J^{n-1}\right)$. It follows that E collapses to $G(|K|$ $\left.\times J^{n-1}\right)$, completing the induction.

Lemma 3.2 Let M be a closed m manifold and let N be a normal n prebundle of an embedding $f: M \rightarrow W$ over a partition K of M such that $N \subset \operatorname{Int} W$.

Suppose that N has a collared non zero section (G, g).

Then the following three statements hold;
(1) There is an embedding $F: M \times J^{n} \rightarrow W$ such that $F\left(M \times J^{n-1} \times I\right)=N$ and $F(x, 0)=G(x)$ for all x in $M \times J^{n-1}$, and
(2) any regular neighborhood of $f(M)$ in W is homeomorphic to the product space $M \times J^{n}$, and
(3) $W-f(M)$ and $W-g(M)$ are homeomorphic.

Proof. By the existence of a collar of ∂N in W, see Corollary to Lemma 24 in [11], there is an embedding $F_{1}: M \times J^{n} \rightarrow W$ such that $F_{1}\left(M \times J^{n-1} \times I\right) \subset N$ and $F_{1}(x, 0)=G(x)$ for all x in $M \times J^{n-1}$. Since $F_{1}\left(M \times J^{n-1} \times I\right)$ collapses to $G\left(M \times J^{n-1}\right)$, and since by Lemma $3.1 N$ also collapses to $G\left(M \times J^{n-1}\right)$, it follows that they are regular neighborhoods of $G\left(M \times J^{n-1}\right) \bmod \partial V$-Int $G\left(M \times J^{n-1}\right)$ in W-Int V, where V denotes the submanifold $F_{1}\left(M \times J^{n-1} \times[-1,0]\right.$. By the uniqueness of relative regular neighborhoods there is a homeomorphism $F_{2}: W \rightarrow$ W such that $F_{2} / V=$ id., and $F_{2} F_{1}\left(M \times J^{n-1} \times I\right)=N$. Then $F=F_{2} F_{1}$ is the required embedding in (1).

Let U denote the image $F\left(M \times J^{n}\right)$. Then U is obviously a regular neighborhood of $g(M)$ in W. Since U collapses to $F\left(M \times J^{n-1} \times I\right)=N$, it follows that U is a regular neighborhood of $f(M)$ in W. By the uniqueness of regular neighborhoods. we have (2). To prove (3) we choose partitions K_{1}, K_{2} and L of $f(M), g(M)$ and W respectively such that K_{1}, K_{2} are full subcomplexes of L and that $N\left(K_{1}{ }^{\prime}, L^{\prime}\right)$ and $N\left(K_{2}{ }^{\prime}, L^{\prime}\right)$ are contained in Int $F\left(M \times J^{n}\right)$, where $N\left(K_{i}{ }^{\prime}, L^{\prime}\right)$, $i=1,2$ stand for derived neighborhoods of $K_{i}, i=1,2$ in L. Thus we have infinite sequences of derived neighborhoods.
$U \supset N\left(K_{i}{ }^{\prime}, L^{\prime}\right) \supset \cdots \supset N\left(K_{i}{ }^{(p)}, L^{(p)}\right) \supset \cdots i=1,2$ such that for any neighborhoods V_{1}, V_{2} of $f(M), g(M)$ in W respectively there is an integer p so that $N\left(K_{i}{ }^{(p)}, L^{(p)}\right) \subset V_{i}$ for $i=1,2$.

By virtue of the regular neighborhood annulus theorem in [1], p. 725, there are homeomorphisms
$h_{1}: U_{-} f(M) \rightarrow \partial U \times[0, \infty)$ and $h_{2}: U-g(M) \rightarrow \partial U \times[0, \infty)$ such that $h_{i}(x)=(x, 0)$ for all x in ∂U and for $i=1,2$.

Thus we have the required homeomorphism $h: W-f(M) \rightarrow W-g(M)$ by setting h / W-Int $U=$ id. and $h / U-f(M)=h_{2}{ }^{-1} h_{1}$.

This completes the proof of Lemma 3.2.

4. The proof of Theorems

In the section, we shall prove Theorems A, B and E.
Proof of Theorem A. Since W is orientable, f has an oriented normal prebundle N over $S=\partial \Delta_{m+1}$. Let A be an m simplex of S and let B denote both the complex $S-A$ and the cell S-Int A. By Corollary 4.2 in [6], N / B and N / A are trivial prebundles. Hence we have trivializations $h_{1}: B \times\left(J^{2}, 0\right) \rightarrow N / B$ and
$h_{2}: A \times\left(J^{2}, 0\right) \rightarrow N / A$ so that $h_{2}^{-1} h_{1} / \partial A \times J^{2}: \partial A \times\left(J^{2}, 0\right) \rightarrow \partial A \times\left(J^{2}, 0\right)$ is an orientation preserving 2 prebundle isomorphism.

In case $m=1$; Since $\pi_{0}\left(P R_{n}\right) \cong \pi_{0}\left(0_{n}\right) \cong Z_{2}$, for all n and the non trivial element is the class of orientation reversing homeomorphisms of ($J^{n}, 0$) onto itself, it follows that $h_{2}{ }^{-1} h_{1} / \partial A \times J^{2}$ is extendable to an isomorphism $h_{3}: A \times\left(J^{2}, 0\right)$ $\rightarrow A \times\left(J^{2}, 0\right)$.

Hence the required isomorphism $h: S \times\left(J^{2}, 0\right) \rightarrow N$ is obtained by setting $h / B \times\left(J^{2}, 0\right)=h_{1}$ and $h / A \times\left(J^{2}, 0\right)=h_{2} h_{3}$, completing the proof in case $m=1$.

In case $m=3$, ; (The proof is essentially given in [7], p. 124.)
We consider the restriction $h^{\prime}=h_{2}{ }^{-1} h_{1} / \partial \dot{A} \times \partial J^{2}$.
Since h^{\prime} induces the identity map of $H_{2}\left(\partial A \times \partial J^{2}\right)+H_{1}\left(\partial A \times \partial J^{2}\right)=Z+Z$, it follows from the Theorem 13.2 in [0] that h^{\prime} is isotopic to the identity or T. But T may not be extended to a homeomorphism of $\partial A \times J^{2}$ fixing $\partial A \times O$. Therefore h^{\prime} is isotopic to the identity.

So we may extend $h_{2}{ }^{-1} h_{1} / \partial A \times J^{2}$ to a homeomorphism of $\partial\left(A \times J^{2}\right)$ fixing $\partial A \times O$.

By the join extension, we have a homeomorphism h_{3} of $A \times J^{2}$ fixing $A \times O$ such that $h_{3} / \partial A \times J^{2}=h_{2}^{-1} h_{1} / \partial A \times J^{2}$.

Thus we have the required isomorphism

$$
h: S \times\left(J^{2}, 0\right) \rightarrow N
$$

by setting $h / B \times J^{2}=h_{1}$ and $h / A \times J^{2}=h_{2} h_{3}$, completing the proof in case $m=3$.
In case $m \geq 5$; Firstly we show that N has a collared non zero section. For N / B we have a collared non zero section $\left(G_{1}, g_{1}\right)$ by setting $g_{1}(x)=h_{1}(x, 0,1)$ for all x in B and $G_{1}(x, u)=h_{1}(x, u, 1)$ for all (x, u) in $B \times J$. Let X and Y denote the $m+1$ sphere $\partial\left(A \times J^{2}\right)$ and the $m-1$ sphere ∂A. Then the embedding $\times 0^{2}$: $Y \rightarrow X$ has a trivial normal prebundle $Y \times J^{2}$. Put $g^{\prime}=h_{2}{ }^{-1} g_{1} / Y$ and $G^{\prime}=h_{2}{ }^{-1} G_{1} /$ $Y \times J$. Then (G^{\prime}, g^{\prime}) is a collared non zero section of $Y \times J^{2}$. By Lemma 3.2 there is an embedding $f: Y \times J^{2} \rightarrow X$ such that $X-g^{\prime}(Y)$ is homeomorphic to $X-Y \times 0$, and that $f(Y \times J \times I)=Y \times J^{2}$ and $f(x, 0)=G^{\prime}(x)$ for all x in $Y \times J$. Since $X-Y \times 0$ is a homotopy circle and since $m-1 \geq 4$, applying the argument due to J. Levine in [5], and then using the existence theorem of a compatible collar, see Lemma 24 in [11], we have a collared non zero section $\left(G_{2}, g_{2}\right)$ of N / A such that $G_{2} / Y \times J$ $=G^{\prime}$. Thus the required collared non zero section (G, g) of N is well defined by setting $(G, g) /(A \times J, A)=\left(h_{2} G_{2}, h_{2} g_{2}\right)$ and $(G, g) /(B \times J, B)=\left(G_{1}, g_{1}\right)$.

Secondly we prove that N is actually trivial.
Again by Lemma 3.2 there is an embedding $F: S \times J^{2} \rightarrow W$ such that $F\left(S \times J^{2}\right)$ $=N$ and $F(x, 0)=G(x)$ for all x in $S \times J$. We will change the homeomorphism into an isomorphism. Let a and b denote interior points of A and B respectively. Then $h_{1}\left(b \times \partial J^{2}\right) \cap F(S \times J \times 1)=F(b \times J \times 1)$. Consider the intersection of $h_{1}(b \times$ ∂J^{2}) and $F\left(a \times \partial J^{2}\right)$. Since $1+1-(m+1)=1-m<0$, by the general position
argument, see Chapter 6 of [11], we may assume that $h\left(b \times \partial J^{2}\right) \cap F(S \times J \times 1 \cup a \times$ $\left.\partial J^{2}\right)=F(b \times J \times 1)$, and moreover for a sufficiently small regular neighborhood C of a in Int $A, h_{1}\left(b \times \partial J^{2}\right) \cap F\left(S \times J \times 1 \cup C \times \partial J^{2}\right)=F(b \times J \times 1)$.

Let D denote the $k+1$ cell $S \times \partial J^{2}-$ Int $\left(S \times J \times 1 \cup C \times \partial J^{2}\right)$, and let L denote the 1 cell $b \times\left(\partial J^{2}\right.$-Int $\left.J \times 1\right)$.

Then $F^{-1} h_{1}(L)$ and L are two arcs in D, and $F^{-1} h \mid \partial L=\mathrm{id.}$.
Since $m+1-1=m>2$, by Corollary 1 to Lemma 9 in [11] we may also assume that $F^{-1} h_{1} / b \times \partial J^{2}=$ id.. Moreover by the uniqueness of regular neighborhoods of $b \times \partial J^{2}$ in $S \times \partial J^{2}$, we may assume that $F^{-1} h_{1}\left(B \times \partial J^{2}\right)=B \times \partial J^{2}$. Then the homeomorphism $F^{-1} h_{1} / B \times \partial J^{2}$ is clearly extendable to a homeomorphism $H: S \times \partial J^{2} \rightarrow S \times \partial J^{2}$. Thus the homeomorphism $F H: S \times \partial J^{2} \rightarrow \partial N$ is an isomorphism of the associated 1 sphere prebundle ∂N of N. Therefore by 3.1 in [6], N is trivial, completing the proof.

Proof of Theorem B. Combining Addendum to Theorem A and the Theorem 4.6 in [6], we conclude that $\pi_{m-1}\left(P R_{2}\right)$ consists of only one element for $m \geq 5$ and $m=3$.

Hence $\pi_{m}\left(P R_{2}\right) \cong 0 \cong \pi_{m}\left(0_{2}\right)$ for $m \geq 4$ and $m=2$. Since $\pi_{0}\left(P R_{2}\right) \cong Z_{2} \cong \pi_{0}\left(0_{2}\right)$, it remains to prove that $\pi_{1}\left(P R_{2}\right) \cong \pi_{1}\left(0_{2}\right)$.

By Proposition 1.1 and by the Proposition 3.1, (ii) in [6], we have $\pi_{1}\left(\Pi L_{2}\right)$ $\cong \pi_{1}\left(0_{2}\right)$ and $\pi_{1}\left(P R_{2}\right) \cong \pi_{1}\left(\partial P R_{2}\right)$, where $\partial P R_{2}$ stands for the structural group of 1 sphere $\partial J^{2}\left(=S^{1}\right)$ prebundles.

Since each element of $\pi_{1}\left(\partial P R_{2}\right)$ is represented by a homeomorphism h of $I \times S^{1}$ onto itself fixing $\partial I \times S^{1}$, we associate to each element $\{h\}$ of $\pi_{1}\left(\partial P R_{2}\right)$ the homotopy class $w\{h\}$ of the map
$p_{2} h(\times e):(I, \partial I) \rightarrow\left(S^{1}, e\right)$, where $e=(0,1), p_{2}: I \times S^{1} \rightarrow S^{1}$ and $(\times e): I \rightarrow I \times S^{1}$
stand for the maps $(x, y) \rightarrow y$ and $x \rightarrow(x, e)$
for x in I and y in S^{1}, respectively. Then the function $w: \pi_{1}\left(\partial P R_{2}\right) \rightarrow \pi_{1}\left(S^{1}\right)$ is clearly a well defined homomorphism such that a diagram

stands for the homomorphism induced from the inclusion map. Hence w is surjective. It remains to prove that w is injective. Notice that for $\{h\}$ in $\pi_{1}\left(\partial P R_{2}\right), w\{h\}$ coincides with the winding number of h which is defined in [0], p. 313. Therefore by the Theorem 7.2 in [0], if $w\{h\}=w\{g\}$, then homeomorphisms h and g of $I x S^{1}$ fixing $\partial I x S^{1}$ are isotopic keeping $\partial I x S^{1}$ fixed.

Hence $\{h\}=\{g\}$, completing the proof.
Proof of Theorem E.
Suppose that $\chi(f)=\chi(g)$. Since ΠL_{2} is homotopy equivalent to 0_{2}, it should
be noted that the isomorphism class of every orientable 2 cell bundle x is completely determined by the Euler class $\chi(x)$.

Let K, L and L^{\prime} denote partitions of M, W and W^{\prime} respectively such that $f: K \rightarrow L$ and $g: K \rightarrow L^{\prime}$ are simplicial and $f(K)$ and $g(K)$ are full in L and L^{\prime} respectively. By Theorem D , there are normal cell bundles $v(f)$ and $v(g)$ for f and g which are compatible with the dual cell structures of K, L and K, L^{\prime} respectively. It follows from the definitions of $\chi(f)$ and $\chi(g)$ see [7], p. 120, that $\chi(f)=\chi(v(f))$ and $\chi(g)=\chi(v(g))$. Hence $\chi(v(f))=\chi(v(g)$.

Therefore $v(f)$ and $v(g)$ are isomorphic. Thus f and g are microequivalent. This completes the proof of Theorem E.

Tokyo Metropolitan University

References

[0] H. Gluck: The embedding of two spheres in the four sphere, Trans. Amer. Math. Soc. 104 (1962), 303-333.
[1] J.F.P. Hudson and E.C. Zeeman: On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745.
[2] M.A. Kervaire: Les noedes de dimensions superieures, Bull. Soc. Math. France 93 (1965), 225-271.
[3] N.H. Kuiper and R.K. Lashof: Microbundles and Bundles Part C, (mimeographed).
[4] R.K. Lashof and M. Rothenberg: Microbundles and smoothings, Topology 3 (1965), 357-388.
[5] J. Levine: Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
[6] M. Kato: Combinatorial prebundles Part I, Osaka J. Math. 4 (1967), 289-303.
[7] H. Noguchi: One flat 3-manifolds in 5-space, Osaka J. Math. 1 (1964), 117-125.
[8] H. Noguchi: Obstructions to locally flat embeddings of combinatorial manifolds, Topology 5 (1966), 203-213.
[9] S.P. Novikov: On manifolds with free abelian fundamental groups and their applications, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 207-246, (in Russian).
[10] L. Siebenman and J. Sondow: Some homeomorphic sphere pairs that are combinatorially distinct, Comment. Math. Helv. 41 (1966-67) 261-272.
[11] E.C. Zeeman: Seminar on Combinatorial Topology, (mimeographed), Inst. Hautes Études Sci. Paris, 1963.

[^0]: * During the preparation of this paper the author was partially supported by the Yukawa Foundation.

