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1. Introduction

In this paper we shall define the concept of combinatorial prebundles and
prove the fundamental properties. Roughly speaking, a combinatorial prebundle
is an object something like a PL bundle, but having only a trivialization over
each simplex of the base complex. The advantage of weakening fiber structures
is that the theory of regular neighborhoods can be fully applied for attacking
normal prebundles.

The paper is organized as follows. In § 2 the concepts are introduced. The
structural groups and principal bundles for prebundles are defined as abstract
simplicial (abbreviated by a. s.) groups and a. s. bundles respectively. In
particular the structural group PRn of combinatorial n cell prebundles contains
the structural group ULn of PL n cell bundles as a subgroup. In §3, by virtue
of Zeeman's unknotting theorem [13], we show the stability theorem of the
homotopy groups of PRn which is quite similar to that of the orthogonal group
On (see 3.3). In §4 we prove the existence of a normal prebundle for every
locally flat PL embedding. It is shown that microequivalence classes or iso-
neighboring classes in the sense of Hiroshi Noguchi [10] of locally flat PL
embeddings of the m sphere of codimension n are one to one corresponding to
elements of πm.1(PRr) (see 4.6) and that isomorphism classes of PL tubes in
the sense of M.W. Hirsch [4] for the standard (m-\-n,m) sphere pair are one to
one corresponding to elements of πm(PRn, TlLn) (see 4.7). Thus we obtain
unified criteria for non existence and non uniqueness of normal PL cell bundles
by means of the homomorphism ik: πk(H Ln)^πk(PRn) (see 4.8). One of these
criteria gives us an interpretation of Hirsch's example of a PL embedding of the
8 sphere of codimension 4 having no normal PL cell bundle [4], II (see 4.9).
In view of the result of C.T.C. Wall and A. Haefliger [2] it is deduced that the
stable homotopy groups of PRn and those of ULn coincide.

In the subsequent paper we shall show the existence of a collar neighborhood
for a locally flatly embedded PL m sphere of codimension two for m>5 with a
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number of interesting implications for PL locally flat embeddings of codimension

two.
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whose guidance and ideas encouraged the author into the present study and
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to the referee for suggesting in details.

Added in Proof. Rourke and Sanderson have also obtained an analogous

theory, called the block-bundle theory, which is stronger than ours; Bull. A.M.S.

vol. 72, 1966, pp. 1036-1039.

2. Prebundles and the a. s. principal bundles

In the following we shall work in the PL category consisting of polyhedra
covered by rectilinear locally finite simplicial complexes and piecewise linear
maps. Thus all maps, manifolds, and bundles are always understood to be
piecewise linear.

Let P be a polyhedron and let p be a fixed point of P. A (P, p) prebundle
is a triple {E, K9 2 } consisting of

(1) a polyhedron E called the total space,

(2) a complex K called the base complex and
(3) a collection 2 of pairs (A,f) satisfying the following four conditions:

(a) Each pair (A, /), called a trivίalizatίon of E over A, consists of a
simplex A of K and an embedding/: AxP->E.

(b) For each simplex A of K there is a pair (A,f) in Σ and \Jf(A X P)
=E, where the union is taken for all (A,f) in ΣJ

(c) If (A,f) and (B,g) belong to X] and if A fΊ B is a non empty simplex
C then f(A XP)f)g(BxP)=f(CxP)=g(CxP) and flCxp^g/Cxp.

(d) The collection 2 is maximal with respect to the condition (c).
A second (P,p) prebundle {E\ K} Σ ' } is isomorphism to {E, if, Σ } if there

is a homeomorphism h: E->E' called an isomorphism such that hf(AxP)=
g(AxP) and hfjAxp=gjAxp for (A, f) in Σ and (A,g) in Σ ' A product
polyhedron \K\XP has the natural trivialization over each simplex A of Ky

that is the inclusion map AxPd \K\ XP. The (P,p) prebundle so obtained
is called the product (P,p) prebundle over K and simply denoted by Kx(P,p).
A (P,p) prebundle is called to be trivial if it is isomorphic to the product
prebunlde Kx(P, p). Let L be a subcomplex of K. Then the restricted
prebundle {E/L, L, Σ/£} is defined by setting ^IL = {(A,g)<=JllA<=L} and
EIL=\Jg(AxP), where the union is taken for all (A,g) in J]/L.

The concept of P prebundles is also defined in the same fashion as (P, p)
prebundles deleting the conditions concerning the fixed point p.
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REMARK. For a (P, p) bundle over the base space B, see [5], and any partition
K of B, we have naturally a (P, p) prebundle called the underlying prebundle
over K.

For a P prebundle {E, K, Σ } a cross section c:\K\-^E is an embedding
such that c(A)df(A X P) for each pair (A, f) in Σ Every (P, />) prebundle has
a cross section i: \K\^E called the /> section which is defined by setting for
each point x of | K \

i(x) = f(χy p) if # in A and if (.4, /) in Σ

Let Jn denote the n fold cartesian product of the closed interval [—1, 1]
and let 0 denote the origin (0, •••, 0) in/ Λ . Then a (/*, 0) prebundle is simply
called an n prebundle, and the 0 section is called the zero section. For an n
prebundle {£, i£, Σ } the associated n—ί sphere (djn) prebundle {dE, K, ΘΣ}
is obtained by setting 9 Σ = {(A h')jhr = h/AxdJn for (A, h) in Σ } and
dE=\Jh'(AxdJn)y where the union is taken for all (A, hf) in 8 Σ A non z e r o

section of an n prebundle is a cross section of the associated sphere prebundle.
Let A and B be polyhedra and let/: A^B be a map. For a polyhedron

P maps fxP: AxP^BxP and Pxf: PxA->PxB are defined by setting for
each xinA and for each y in P

/XP(*, JO = (/(*), y) and Px/(y, x ) = (j,/(^)).

We shall mean by a simplex both the polyhedron and the complex consist-
ing of the faces. A complex K is called to be ordered if the vertices are totally
ordered. For ordered complexes K and L a monotone map F: K^L is a
simplicial embedding preserving order of the vertices. Let us consider the unit
simplex Δ^ in the euclidean q-\-l space R9+1 with cooridinates (x0, ••• , xq).
The vertices e°, ••• , e9 of Δ^ are the unit points on the coordinate axes of R9+1.
If we regard RQ as the subspace of Rg+1 given by xq=0 then Aq_1 is a face of
Δ<7 and has vertices e°9 ••• , eq~λ. Let ΩM denote the category consisting of
objects Δ<7, q = 0, ••• ,n (possibly n=°°) and monotone maps d: Δ^^Δ^,
p<q<n. Let S denote the category of sets and maps and let G denote the
category of groups and homomorphisms. An n dimensional abstract simplicial
(abbreviated by a.s.) complex K* is a contravariant functor K*: ΩM->5. A
simplicial map between a. s. complexes K* and L* is a natural transformation
/: K*->L*. A q simplex of K* is an element of K*(Ag)=K* and a face map
of i£* is an image K* (d)=d*. In the above replacing S by G, we may also define
the concept of a.s. groups. Following A. Heller [3], p.p. 303-304, we may
define the concept of product a.s. complexes and a.s. bundles.

Now we define the a.s. group PR(P,p) as follows; A q simplex of PR(P,p)
is an isomorphism of the product (P, p) prebundle Δ^ X (P, p) onto itself. The
operation of composing isomorphisms makes the set PR(P, p)q of q simplexes
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into a group. The monotone maps d: Δ ^ ^ Δ ^ induce homomorphisms
d*: PR(Py pγ->PR(P, p)q given by d*f=F for / in PR(Py p)q in such a way
that a diagram

\dxP \dxP

commutes. Thus PR(Py p)=^{PR(Py p)9

y d*} is an a.s. group.
Following Milnor, §5 in [9], we define the associated principal PR(P, p)

bundle of a (P, p) prebundle {Ey Ky Σ } a s follows. Choose some ordering for
the vertices of K. The base complex K is the a.s. complex consisting of all
monotone simplicial maps F: Aq—>K. A q simplex of the total space E*
consists of

(1) & q simplex F of K*9 together with
(2) a map/: AqxP-^E which is factored as follows:
f=h(FxP) for (F(Aq)y h) in Σ
The functions d*: E*9-*E*9 are defined by the formulas rf* (F, /) =

(Fd, f(dxP)). The right translation function E*xPR(P, p)-+E* is given by
(F>f)g=(F>fg)' Since the group PR(P, p) operates freely on £*, it follows that
E* is an a.s. principal PR(P, p) bundle with the orbit complex K*.

The following Propositions are easily verified, see pp. 25-26 in [9].

Proposition 2.1. Two (P, p) prebundles {E, K, Σ } and {£', K,' Σ ' } are

isomorphic if and only if E* and E'* are isomorphic.

Proposition 2.2. Let K be a complex. A principal PR(Py p) bundle E*

over K* is isomorphic to the associated principal bundle of a (P, p) prebundle

{E, K, Σ}
In the rest of the section we shall define the homotopy groups of the a.s.

structural groups of prebundles.
For each integer k>0, we specify the face maps d\\ ΔAr_1->Δfe, i = 0 , ••• , k

given by the vertex assignments:

dϊ(ej) = βj if 0<j<i and

di(ej) = eJ+1 if i<j<k-\.

An a. s. complex K is said to be an a. s. Kan complex if for every pair of
integers (/, k) such that 0<i<k and for every k—1 simplexes/,,•••,//-i,/t+1, , f*
in K such that dγ~^^ fe=d(

e

k~1^ f5 for e<j and e^iφj, there exists a k simplex
f in K such that

= fe for eΦi.
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Let (G, H) be a pair of a.s. groups such that Ή is an a.s. subgroup of G.
Then the group pair (G, H) is said to be a Kan group pair, if G and H are a.s.
Kan complexes.

For a Kan group pair (G, H) we define the relative homotopy groups
πfc(G, H) (k>0) as follows;

Let C(G, i/) be the a. s. subgroup of G of which k simplexes (k> 1)/ satisfy
that

dTf= id., for i== 1, ••• , * - l , and dΐf belongs to //.

We put Bk(G, H) = dk

0

+1*(Ck+1(G, H))9 Z
k(G,H)=Ck{G, H)Π Kernel rfj*,

and Z°(G, #)=G°for&>0.
Then we have:

Lemma 2.3. The subgroup Bk(G, H) is a normal subgroup of Z*(G, H).

Proof. Let / be a k simplex of B*(G, H) and let g be a k simplex of
Z\G, H). We must show Xhzt g~xf g belongs to B\G, H). Let F be a H I
simplex of C(G, H) such that do+1*F=f. Since (G, H) is a Kan group pair, we
have a A+l simplex E of G such that dk

0

+1*E=g, dlϊ\*E belongs to if,
di+1*E=id.9 for i=2, - , k and </ί+1*£ belongs to G. Let D=EΨE. Then
rfίiΓZ) belongs to # , rfJ+1*Z) = id., for / = 1, ••• , Λ. Hence Z) belongs to
C*+1(G, ^ ) . Since g~1fg=d^1*D, it follows that ^ belongs to B\G, H),
completing the proof.

Now we define the Λ-th homotopy group of (G, H) by πk(G, H) —
Z*(G, H)/B*(G9 H). In case H={id.}9 we shall denote the group πk(G, H) by
πk{G). Then we have a homomorphism

induced from the homomorphism df: Zk(G, H)-+Zk\H, {id.}).
By the usual manner we have the following exact sequence, which will

be called the homotopy exact sequence for the Kan group pair (G, H):

(G, H) ̂ H πk(H) - X πk(G) -^U πk(G, H)

, H) A , Wo(fl) _ ! % ^o(G) -*L> ^0(G, Jϊ).

Proposition 2.4. Let P be a polyhedron and let p be a fixed point of P. The
a. s. structural group PR(P,p) (PR(P)) of (P,p) prebundles (P prebundles) is an
a. s. Kan group.

Proof. Given k—ί simplexes/0, ••• ,//_!,/t+1, .•• ,/ft in PR(P,p) such that
d)z^fe=dk

e"
Ύiffj for e<j and e^i^j, then they define a (P, >̂) prebundle isomor-

phism^: Vx(P,p)->Vx(Pyp) such that d?g=fe for έ? = 0, , ι - l , / + ! , — ,Λ,
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where V=dAk— dki{Ak_^). Let h: IX | V | ->Ak be a homeomorphism such that

h(0, x) = x for all points x in | V | .

Then a (P, ̂ ) prebundle isomorphism

/: AkX(P,p)->Akx(P,p) is given by f={hxP){IXg){h"xP).
Since/1 Vx (P, j/))=<§

f, the & simplex/ in PR(P, p) is the required one. In
the same way, we may prove that PR(P) is an a. s. Kan group, completing the
proof.

All a. s. subgroups of the structural groups of prebundles which will appear
in the rest of the paper will be a. s. Kan groups. For example, the c. s. s.
structural groups of bundles are Kan groups as a. s. groups, since c. s. s. groups
are always c. s. s. Kan complexes.

Proposition 2.5. Every (P, p) prebundle {E, K, 2 } is trivial, if K is
collapsible.

Proof. Since the restricted prebundle over a vetex is trivial, it suffices to
show that if Ko elementary collapses to K19 and if /: Kx X (P, p)-*E \ Kx is an iso-
morphism, then there exists an isomorphism

F:K0X(Pyp)-+E\K0 such that F \Kλx{P, p) = f.

Let KQ—Kt consist of a principal simplex A of Ko and its free face B and
let V be the complex dA—B. Let h: Ax(P,p)->E\A be a trivialization.
Then h'1/ \ VX (P, p) is an isomorphism of Vx (P,p) onto itself. By Proposition
2.4, we have an isomorphism #: Ax{P, p)->Ax{P,p) such that g\Vx(P,p)=

Then the required isomorphism F is obtained by setting
FI Kx X (P, p)=f and F \ A X (P, p)=hgy completing the proof.

3. The stability theorem

The structural groups of prebundles are written as follows: PRn =
PR(Γ,0), PR'n = PR{Jn\ dPRn = PR{dJn\ and d0PRn = PR(dJn, e\ where e
denotes the point (0n~\ 1) in djn.

The structural groups of (Jn, 0) and (Rn, 0) bundles are written ULn and
PLn respectively. Thus PR'n contains PRn and HLn as subgroups.

Moreover the following injections are obtained :
in-m: PRm->PRn(m<n) is defined by the formula ί Λ " w ( / ) - / x / M " w

for all/in PRmy and j : 8PRn->PRn is defined as follows; For each / in dPRq

n

assuming inductively that y(/)/(the k skeleton of Δ^) Xjn\jAq X djn is already
obtained, set for each k+1 face A of Aq with the barycenter a,j(f)IAxJn to be
the join extension of j(f)ldAxJn\JAxdJn from {a, 0). Then the homeomer-
phismj(/) so defined is uniquely determined by/. Thus;: dPRn-^PRn is an
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a. s. injection. Let 3: PRn^>dPRn denote the homomrophism defined by the
restriction dh=hjAqxdJn for all h in PRq

n.
Then the composition di1: PRn-+d0PRn+1 is also an injection.

Proposition 3.1. The following three injections are homotopy equivalences)

( i ) The inclusion map PRn C PRn,

(ii) the injection j : dPRn -> PRn and

(iii) the injection di1: PRn-> 80PRn+1.

That is, the following relative homotopy groups vanish for all k

πk(PR'n, PRn\ πk(PRnyj(dPRn)) and πk(dQPRn+1, di^PRJ).

Proof of (i). For any element of πk(PRή, PRn) we may take a representa-
tion/in PR'n\ such that//3Δ^Xθ=id.. Since (Akxjn, Δ^xO) is a flat cell pair
it follows from Corollary 1 to theorem 9 in [12] which is valid for any flat
embedding that there is an ambient isotopy g of Ak Xjn keeping d(Ak Xjn) fixed
such that gflAk X 0=id., or gf in PR^. Then g represents the trivial element of
πk{PRny PRn), and gf represents also the trivial element of (PR'n, PRn). Hence
/ represents always the trivial element. Thus the relative homotopy group
πk(PRή, PRn) consists of only the trivial element. This completes the proof
of(i).

Proof of (ii). For any element of πk(PRn,j(dPRn)) we may take a repre-
sentation/in PRk

n such Ui2LtfldAkXjn=jd(f)ldAkXjn. Since 9(/)=θy9(/), or
f~1(jd(f))ld(AkXjn)=id.f it follows from the join extension argument in the
Lemma 8 in [11] t h a t / " 1 ^ / ) ) is isotopic to the identity keeping d(AkXjn) and
Ak X 0 fixed. Thus / and j d(f) represent the same element of πk(PRn, j (dPRn)).
However, j 9(/) belongs to j(dPRn) and hence represents the trivial element in
πk(PRnyj(dPRn)). Therefore / represents the trivial element, completing the
proof.

Proof of (iii). For any element of πk(d0PRn+1, di\PRn)) we may take a
representation/in dQPRk

n+1 such UιsitfldAkXdJn+1=gXjjdAkXdJn+1 for some
isomorphism g of the product (Jn> 0) prebundle dAkX(Jn, 0).

Let e denote the point (0n, 1) in djn+1. Since f/AkXe=id., and since
f(AkXjnXί) and Akxjnxl are regular neighborhoods of AkXe\JAkXjnX\
mod(dAkX(dJn+1 — IntJnXl)) in AkXdJn+\ it follows from the uniqueness of
relative regular neighborhoods [6] that there is an ambient isotopy g: AkXdJn+1

->AkXdJn+1 keeping AkXe and dAkXdJn+1 fixed so that gf{AkXjnX\) =
Akxjnxl. Since g represents the trivial element of πk(d0PRn+ly di\PRn)\ f
and gf represent the same element. Now we define an element h in PRn by
setting

(%, u), 1) = gf(x9 u, 1) for all (*, u) in AkXj\
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Then di\h) and gf coincide on Akxjnxl\JdAkXdJnv\ and AkX{dJn+1-
IntJnX\) is a k+n cell. It follows from the Alexander trick that (^/)"1(θί1)(A)
is isotopic to the identity keeping AkXjnXl and dAkXdJn+1 fixed. Hence/
and di\h) represent the same element.

Since di\h) belongs to di1(PRn)y f represents the trivial element, completing
the proof.

Proposition 3.2. πk(dPRn+1, 90Pi?w+1)~ 0 for k+\<n.

Proof. For any element of πk(dPRn+1, d0PRn+1) we may take a representa-
tion / in dPRn+1 such that//9ΔAXβ=id.. Let ef denote the point (0M, —1) in
djn+1. Consider the intersection oίf(AkXe) and AkXe\ Since k+k—(k+n)=
k—n< — \, it follows from the general position argument (see Chapter 6 in [12])
that there is an abmient isotopy g: AkXdJn+1->AkxdJn+1 keeping AkxdJn+1

fixed such that gf(AkXe) is disjoint from Δ^Xe'.Let £ be a positive number
and let 8jn denote the n fold cartesian product of the closed interval [—£, £].
Choosing sufficiently small number £, we may assume that gf(AkXe) is disjoint
from AkX8jnX(-ί). Then AkX(dJn+1-IntJnX(-l)) is a k+n cell, and
gf(AkXe) and AkXe are two k cells which coincide on the boundary dAkXdJn+1.
Since gfjdAkXe=Ίά., it follows from Corollary to Theorem 9 in [12] that if
rc>3, then there is an abmient isotopy h: Ak X dJn+1->Ak X djn+1 keeping
dAkXdJn+1 and AkX8jnX(— 1) fixed such that hgfjAkXe = iά.y or hgf in
30Pi?Λ+1. In case (ft, A)=(2, 1), by Lemma 9.1 in [1], we may also obtain such
an ambient isotopy h. Since Λ, g and hgf represent the trivial element, it follows
that / represents the trivial element, completing the proof.

For m<n identify PRm with the subgroup in-m(PRm) in PRn.
Let in

k~
m: πk(PRm)^πk(PRn) denote the homomorphism induced from the

injection in~m: PRm->PRn. From Propositions 3.1 and 3.2 we immediately
derive the following.

Theorem 3.3. The relative homotopy groups πk(PRn, PRm) vanish for all
k<m<n. That is, the homomorphίsms in

k~
m: πk(PRm)^πk(PRn) are surjective

for all k<m<n and ίnjective for all k<m—l<n.

4. Normal prebundles

Let/: M-> W be an embedding of an m manofild Minto an m-\-n manifold
W and let K be a partition of M. An n prebundle {iV, K> 2 } is a normal
prebundle for f over K, if

(1) JV.is a closed neighborhood oίf(M) in Wand
(2) / : Λf —> W coincides with the zero section.

Then it is not hard to see that N is a regulra neighborhood oίf(M) in W
and that / is locally flat. For simplicity the normal prebundle {N> Kf 2 } is
denoted by N or iV(/).
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Let {E, K, Σ } and {E, Kly Σ J be (P, p) prebundles. We say that
{E, Kiy Σi} is a subdivision of {E, K, Σ}> if Kx is a subdivision of K and if for
each simplex A of K there is (̂ 4, /) in Σ s u c n t n a t

/: A1X(P,p)-+E\A1 is an isomorphism from AλX(Pyp) to {2?|A>
A> ΣilA}> where Ax is a subcomplex of Kx covering A.

Theorem 4.1 (m). Let K be a k (<m) dimensional complex. Given an n
prebundle {E} K, Σ } and a subdivision Kλ of K, then there exists a subdivision
{E, Ku ΣJ

Corollary 4.2 (m). Let {E, K, Σ ) be an n prebundle such that \K\ is an
m cell. Then {E, K, Σ } «" trivial.

Proof of Corollary 4.2 (m). Since \K | is a cell, \K\ is collapsible. Hence
there exists a subdivision Kx of K such that Kx is collapsible. By Theorem 4.1
(m) there is a subdivision {£", ϋΓ^ Σ J °f {̂ > ^> Σ } By Proposition 2.5,
{£, ifx, Σ i ) is trivial. Therefore {E, K, Σ ) is clearly trivial, completing the
proof.

To prove Theorem 4.1 (m) we need:

Theorem 4.3 (m). Let S be an m sphere with a partition K and let W be
an m-\-n manifold. Let f: S->W be an embedding. If N1 and N2 are normal
prebundles for f: 5-> W over K, then they are isomorphίc. Moreover, if N1 and N2

are contained in Int W, then there is an ambient isotopy F of W keeping f(S) fixed
such that F \ N: N1-^N2 is a prebundle isomorphism.

Proof of Theorems 4.1 (m) and 4.2 (m). Let us prove 4.1 (m) and 4.2 (m)
by induction on the dimension m.

(i) Theorem 4.1 (0) is obvious.
(ii) Theorem 4.1 (m) {Corollary 4.2 (m)) implies Theorem 4.3 (m).

Proof of (ii). Since Nλ and 7V2 are regular neighborhoods of f(S) in W,
replacing Nx and N2 by smaller regular neighborhoods, if necessary, we may
assume that Λ^ and N2 are contained in Int W. Let A be a principal simplex
of K and let B denote the cell S— Int A and also the partition K —A.

Since iVt /J9, /=1,2 are regular neighborhoods of f(B) modf(A) in W, it
follows from the uniqueness of relative regular neighborhoods [6] that there is an
ambient isotopy H: W-+W keeping f(S) fixed such that H(N2IB)=NJB.
Since B is a cell, by Corollary 4.2 (m) NJB ί = l , 2 are trivial n prebundles.
Choosing trivializations h{\ Bx(Jn> 0)-+Ni/B i=l, 2, suitably, we may assume
that hγΎHh2\ BxJn->BxJn is orientation preserving. By the Lemma 8 in [11],
h^ΎHh2jd(B Xjn) is isotopic to the identity keeping dB X 0 fixed. By embedding
the isotopy on a compatible collar of (d(NJB), df(B)) in (W-Int(NJB),f(A)),
see [12], we may extend Hh2hΐι to an ambient isotopy G: W-* W keeping f(S)
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fixed. Since H'^NJA) and NJA are regular neighborhoods of f(A)\JN2/dA

mod d(NJB)-Int(N2ldA) in W-Int(NJB), we may assume that H-'GiNJA)
=N2fA. Thus H~XG is the required ambient isotopy, completing the proof,

(iii) Theorems 4.1 (m— 1) and 4.3 (wz—1) ίVwpίy Theorem 4.1 (m) (m>

Proof of (iii). Let L be the subcomplex of Kx covering | Km~x | . By

Theorem 4.1 (ιw-1), we have a subdivision {E\Km~\ L, Σz,} of {Sli^^"1,

ϋC1*"1, Σ l ^ * ' 1 } - Let A be an m simplex of i£ and let Ax be the subcomplex

of Kx covering A. Let (^,/) belong to Σ Then f\dAx(J", 0) gives a trivial

normal prebundle of ί\dA: dA->d(E\A) over dAί9 where ί: |ϋΓ|->S is the

zero-section of the n prebundle {E, Ky Σ } While {E \ dAy dAiy Σz, I 8Λ) is a

normal prebundle of i\dA: dA1->d(E\A). Since E\dA is contained in

Int d(E \A)=d(E \A) and since dA is an τ/z—1 sphere, it follows from Theorem

4.3 (m— 1), there exists a homeomorphism #: θ ^ |^4)->3(£l \A) such that for

each simplex B of dA19gf\Bx(Jn, 0) belongs to Σz,19-4i

By the join extension argument, we may extend the homeomorphism g to a

homeomorphism h of the pair (E \ A, i{A)) onto itself such that h \ i(A)=identity.

Then for each simplex C of A19 hf\ Cx(Jn, 0) gives a trivialization compatible

with Σ z J 9 Λ Thus the subdivision {E\Km~\ L, Σ i } m ay be extended

over A1. Since for each m simplex A of K we may obtain such an extension

independently, we have the required subdivision {E, Kiy Σi}> completing the

proof.

By (i), (ii) and (iii), Theorems 4.1 (m) and 4.3 (m) are now complete.

Theorem 4.4. Let f: M->W be a locally flat embedding of an m manifold
M into an m-^n manifold W. For any partition K of M there is a normal pre-
bundle N for f over K,

Proof. Let K' and L be a subdivision of K and a partition of W respectively
such that/: K'—>L is simplicial and that f{K') is full in L.

Let K'k denote a subcomplex of the barycentric subdivision of K' covering
the k skeleton of the dual cell complex of K'. For each m — k simplex A of
K' let C and D denote the dual k and k+n cells of A zndf(A) in K' and L
respectively, and let P denote a subcomplex of K'k covering C. We shall prove
the following Proposition for k=mbγ induction.

[A:]: There is an n prebundle Nk=\JDa over K'k such that the zero section
coincides with the restriction f\\K'k\ and that Nk/PC6=D{Λ, where a ranges over all
indices of m—k simplexes Aa of K'.

[0]: Obvious.

[Λ]«=>[A: + 1]: Let A be an arbitrary m—k— 1 simplex of K'. Since by
the Lemma 1 of [10] f/C: C^D is flat, there is a homeomorphism h: CxJn->D
such that h(x, 0)=f(x) for all x in C.
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Then NkjdP and h(8C Xjn) are normal prebundles for//9C: ΘC->dD over
ΘP. By Theorem 4.3 and by a join extension, we have a homeomorphism
g: D^D such that glf(C)=id., and ghjdCxJ": dCxJn->NkjdP is a trivializa-
tion. Then Â yields the required trivializations over simplexes B of P, which
extend those of Nfc/dP, by setting ^A/β xjn: £ x/* -* Nk+1. It follows from the
induction that / has a normal prebundle N over the barycentric subdivision of
K' such that N is a derived neighborhood of f(Kr) in L. By Corollary 4.2, we
may reduce the prebundle N over K' to over i£. This completes the proof of
Theorem 4.4.

An embedding / : M->W is called to be proper, if f(dM)(ZdW and
/ ( I n t M ) c I n t W. By Zeeman's unknotting theorem, every proper embedding
/ of M into W of codimension > 3 is always locally flat. Thus we have:

Corollary 4.5. Every proper embedding of codimension > 3 has a normal

prebundle.

The normal prebundle constructed by the above Propositions [k] for k<m
is called to be compatible with the dual cell structures of Kr and L.

Let M be an oriented manifold. For an oriented manifold W, an embedding
/: M-^W is called to be oriented. Two oriented embeddings /: M^W and
g: M->W are mίcroequίvalent if there are neighborhoods U and £/' of f(M)
and g(M) in IF and W respectively and a homeomorphism h: U—>U' such that
/* preserves orientations of U and U' induced from those of W and W respec-
tively and hf—g. The microequivalence relation of embeddings is clearly an
equivalence relation.

REMARK. The original concept of microequivalence of embeddings is
isoneighboring due to H. Noguchi, [10]. For locally flat embeddings of a sphere
by the uniqueness of regular neighborhoods the two concepts of microequivalence
and isoneighboring are equivalent.

Let βn(M) denote the set of all microequivalence classes of oriented locally
flat embeddings of M of codimension n. Let Sk denote the standard oriented
k sphere dAk+1.

Theorem 4.6. There is a set identification en(Sk)=πk.1(PRn).

Proof. By Theorems 4.1 and 4.4 every oriented locally flat embedding/
of Sk of codimension n has uniquely oriented normal prebundles N(f) over S&
with orientations induced from those of Sk and the ambient manifold.

Thus by the classification theorem of oriented prebundles over S^ (see §5,
Theorem 5.2), we may associate to each class {/} in £n(Sfc) the class {N(f)} in
πk-^PRn). We define a correspondence N: 8n{S^)->πk_1{PRt) by setting
N{f} = {N(f)}. If {E, Sk, Σ } is an oriented n prebundle over Sk with the
zero section /: Sk->E, then E is an oriented manifold having the orientation
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from which the orientation of the normal prebundle E(i)={Ey Sk> 2 } is induced.
Thus N is surjective. Conversely if N(f) and N(g) are isomorphic oriented
normal prebundles for / and g over Sfc respectively, then / and g are obviously
microequivalent. This completes the proof of Theorem 4.6.

The following notion of tubes is due to M.W. Hirsch [4]. Suppose that a
manifold pair (W, M) has an oriented normal cell bundle v. A tube for (W> M)
is the triple (W, M, v). A second tube (W, M, u) is isomorphic to (W, M, v) if
there is a homeomorphism h: W-> W called an isomorphism such that hjv is an
isomorphism onto u. The isomorphism relation of tubes is clearly an
equivalence relation. Let (Γ, S) denote the standard oriented (k-\-n, k) sphere
pair (9(ΔΛ+1 XJn), 3Δ^+1Xθ). Let τ(&, n) denote the set of all isomorphism
classes of tubes for (T, S).

Theorem 4.7. There is a set identification τ(ky ri)—πk{PRny ΠLM).

Proof. The proof of Theorem 4.3 ensures that every tube for (Γ, S) is

isomorphic to a tube (71, S, V) such that the underlying prebundle of v over S is

isomorphic to the product prebundle «Sx(/n, 0) by the identity isomorphism.

Thus we may associate to each tube a relative (PRn, ULn) bundle over (Ah+1,

dAk+1) which consists of the product n prebundle ΔΛ+1 Xjn over Ak+1 and the n

cell bundle v over 3Δjfe+1. (The concept of relative a. s. bundles are defined in

the same way as in [S], p.p. 43-44) It is clear by the join extension argument

that two tubes are isomorphic if and only if the associated relative bundles are

isomorphic. Since the set of all isomorphism classes of relative (PRn, TlLn)

bundles over (ΔΛ+1, 3Δfe+1) are one to one corresponding to elements of

πk(PRn, ΠLn), (see §5, Theorem 5.1), it follows that the required set identifica-

tion is obtained, completing the proof.

Observing the homotopy exact sequence for (PRn, ΠLM) together with the
above set identifications 4.6 and 4.7, we immediately obtain the following.

Theorem 4.8. (1) Every locally flat embedding of Sk of codimensίon n has

a normal cell bundle if and only if the homomorphism ik_1: 7ΓA_1(ΠLΛ)-*zr*_1(P./?n)

is surjective.

(2) Every normal cell bundle for the standard (k-\-n, k) sphere pair (T, S) is

trivial if and only if ik.1 is injective.

EXAMPLE 4.9 (M. W. Hirsch). In [4], I, Hirsch has found a tube t for

(k, Λ ) = ( 7 , 4) such that the class {*}φθ in π7(PR4y ΠL4), but d7{t}=0 in τr6(ΠL4).

Hence 97 has non trivial kernel. Therefore i7 has non trivial cokernel. It
follows that there is a locally flat embedding of S8 of codimension 4 having no
normal cell bundle, compare [4], II.

EXAMPLE 4.10 (N. H. Kuiper and R. K. Lashof). In [8], Kuiper and
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Lashof have proven that the homomorphism τrfe(04) —» πk(UL4) is injective for all

k, and deduced that there are non trivial normal 4 cell bundles for the (£+4, k)

sphere pair, provided that 7<k<9 and k=lί. It follows from Theorem 4.8

that ik: πk(UL4)-^πk(PR4) is not injective for 6<&<8 and &=10.

Corollary 4.11. The relative homotopy groups πk(PRny TlLn) consist of only

the trivial elements for k-{-2<n. That is, the homomorphisms ik: πk(Ώ.Ln)->

πk(PRn) are surjective for k-\-2<n and injective for k-\-3<n.

Prooof. By the Corollary 4.2 of [2], if k-\-2<ny then every embedding of
Sk+1 of codimension n has a normal cell bundle, and if k+3<n, then normal
cell bundles for the standard (k-\-l+n, k+1) sphere pair are unique, that is,
trivial. Thus the conclusion follows from Theorem 4.8. This completes the
proof of Corollary 4.11.

By the obstructuion theory we may deduce the following.

Corollary 4.12. Every n prebundle over a complex K has an n cell bundle
reduction, provided that dim. K-\-\<n.

Applying Theorem 4.4 and the above, we may sharpen the Corollary 4.2 in
[2] as follows.

Corollary 4.13. Letf: M^W be a proper embedding of an m manifold M
into an m-\-n manifold W. Let K and L be partitions of M and W respectively
such that f: K^>L is simplicial andf{K) is full in L.
Ifn>m-{-l and m>2, then there is a normal cell bundle for f which is compatible
with the dual cell structures of K and L.

Let PL denote the structural group of stable microbundles.
Since πk(PRn)^πk(ULn)^πk(PLn) for k+3<n, πk(PL)^πk(PLn) for

k+2<n, and πk(PRk+2)~7rk(PRk+s)y we may deduce the following.

Theorem 4.14. By the isomorphism πk(PLn)^πk(PRn) for k+2<ny the
Hίrsch-Mazur's exact sequence is rewritten as follows \

0 -> πk(0n) - πk(PRn) - Γk -> 0 for k+2<n .

5. Appendix

The classification theorem for relative (PRn, TlLn) bundles over (Ak+1, dAk+1).
Let ξ be an element of πk(PRn, U.Ln). Then ξ is represented by a k

simplex / of Z\PRn, ΠLW). Pasting AkXjn to Ak+1Xjn by the embedding
(do+1 xjn) f: AkxJn-^Ak+1 xjn, we have an n prebundle over Ak+1. Moreover,
since (do+1Xjn)fldAkXJn: dAkXjn->ddk^\Ak)xJn is an n cell bundle isomor-
phism, we have a (PRn, ULn) bundle p(f) over (Ak+iy dAk+1). If a second h
simplex £ of Z\PRny ULn) belongs to ξy we have a second (PRny ULn) bundle
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ρ(g) over (Ak+1, dAk+1). However,^"1/ is extendable to a k-\-\ simplex F of
Cfc+1(PRny ULn) such that dk

0

+1*F=g-lff dk

kt\*F belongs to ΠLΛ, and d*+1*F
=id., for i = l , ••• , k. This implies that F is an isomorphism between two
(PRni HLn) bundles p(f) and ρ(g) over (Δfe+1, dAk+1). Thus we obtain a
correspondence p*: πk(PRny ILLΛ)->{isomorphism classes of (PRn, ΠLn) bundles
over (Ak+ly dAk+1)} by p*(£)=the isomorphism class of p(/).

Theorem 5.1. The correspondence p* is bijective.

Proof. Let {E, Ak+iy Σ } t>e a n w prebundle over Δ^+1 such that
{£" I dAk+1, 9ΔΛ+1, Σ19ΔΛ+1} has a distinguished n cell bundle reduction. Let
h: (dAk+1—Ak)Xjn->E/(dAk+1—Ak) be an n cell bundle isomorphism, where
Ak=dk+1(Ak). Let #: Ak+1Xjn->E be a trivialization of the w prebundle.
Since g~xh\ (dAk+1—Ak)Xjn->(dAk+1—Ak)Xjn is an n prebundle isomorphism
and since PRn is a Kan group, we may extend g~xh to a β + 1 simplex/of Pi?M.
Replacing g by g/*, if necessary, we may assume that gl(dAk+1—Ak)Xjn=h.
Let h': AkXjn-^E/Ak be an n cell bundle isomorphism. Then g-'h'/dA^J"
is an n cell bundle isomorphism of the product n cell bundle dAkXjn. Since
ELL* is a Kan group, we may extendg~λhrj{dAk—Ak_^)Xjn to a & simplex / ' of
ΠLn, where Δjfe_1=^(ΔJfe_1). Replacing A' by h'tf'y1, if necessary, we may
assume that gj(dAk-Ak^) xjn=h'l{dAk-Ak^) Xjn.

Thus^"1/*': AkXjn->AkXjn belongs to Z\PRn, ΠLΛ), and p^" 1^') is just
isomorphic to the given relative (PRn, TlLn) bundle over (Ak+1, dAk+1). Hence
p* is surjective. Let / and g belong to Zk(PRn, ΠLM). Suppose that ρ(f) is
isomorphic to p(g). Then there is an n prebundle isomorphism h: Ak+1Xjn

->Ak+1Xjn such that (dk

0

+1*h)(fg), dk

t

+1% i= 1, •••, k+1 are k simplexes in

ΠLr t. Since/and g belong to Z\PRny ULn)f it follows that dfftd^fyfg-1)
=dfdo+1*h, for i^k. We have, therefore, a k+1 simplex hx of ULn such that
rf{+1*Ai=(rf{+1*A)fe"1f a n d <*i+1*Ai=«*t+1*A for ί=l,.. .,A. Put Aa=Af1A. Then
dko+1% = dk

o^hτ1dk

o

+1*h=gf-\dk

o

+n)-\dt1*h)=gf-\ rfr^2 = id., for ί =
1, .. , A, and rfJίl*A2=belongs to ULn. Hence g/""1 belongs to B\PRn, ΠLM).

Thus / and g belong to the same class in πk(PRn, ΠLΛ), completing the
proof. In the same way we may show the following:

Theorem 5.2 There is a one to one correspondence between the set of all
isomorphism classes of oriented n prebundles over dAk^ and the set πk(PRn).
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