ON THE DIFFERENTIABLE PINCHING PROBLEM

Yoshiniro SHIKATA

(Received August 31, 1967)

Introduction

Let M be a compact, connected, simply connected Riemannian manifold with a metric d and denote by K the sectional curvature of M. Then it is known that if K satisfies the following inequality:

$$
1 / 4<K \leqq 1
$$

there exists a homeomorphism h of M onto S^{n}, the standard unit n-sphere ([1, 4, 6, 8]).

On the other hand, we also know that there is defined a positive $\mathfrak{l}(h)(\geqq 1)$ for a homeomorphism h between two compact Riemannian manifolds, such that if $\mathfrak{l}(h)$ is sufficiently near to unity, that is, $(1 \leqq) \mathfrak{l}(h)<1+\varepsilon(n)(\varepsilon(n)$ is a positive depending on n), then h is approximated arbitrarily by diffeomorphisms ([5]).

Our main aim in the note is to investigate a relation between $\mathfrak{l}(h)$ and the sectional curvature K to obtain an evaluation of $\mathfrak{l}(h)$ as in the following Proposition,

Proposition 1. If K is δ-pinched, that is,

$$
\delta \leqq K \leqq 1
$$

then with a constant $\mathrm{c}, \mathfrak{l}(\mathrm{h})$ satisfies the following:

$$
(0 \leqq) \mathfrak{l}(h)-1 \leqq c \sqrt{1-\delta} .
$$

Therefore making $(1-\delta)$ so small as to satisfy

$$
c \sqrt{1-\delta}<\varepsilon
$$

we get a diffeomorphism between M and (the standard) S^{n}.
Theorem 1. If a compact, connected, simply connected Riemannian manifold M is δ-pinched with

$$
1-(\varepsilon / c)^{2}<\delta
$$

then M is diffeomorphic to the standard n-sphere.
Unfortunately, our evaluation itself is not as good as that of D. Gromoll [2], though our method might allow to generalize the pinching problem and make it possible to treat the problem from an interesting point of view.

1. Preliminary remarks

Lemma 1. Let h be a homeomorphism between complete Riemannian manifolds $M_{l}(l=1,2)$, with metrics $d_{l}(l=1,2)$ and let $\left\{U_{i}\right\}$ be an open covering of M_{1}. Then if h satisfies on each open set U_{i} the following inequality;

$$
d_{1}(x, y) / k \leqq d_{2}(h(x), h(y)) \leqq k d_{1}(x, y) \quad\left(x, y \in U_{i}\right),
$$

we have

$$
\mathfrak{l}(h) \leqq k .
$$

Proof. For two points $p, q \in M_{1}$, take the minimizing geodesic $g(t)$ from p to q. It is possible to choose $t_{j}(j=0, \cdots, N)$ such that the geodesic segment $g\left(\left[t_{j-1}, t_{j}\right]\right)$ lies completely in one of open sets U_{i}.
Therefore we have,

$$
\begin{aligned}
d_{2}(h(p), h(q)) & \leqq \sum_{j} d_{2}\left(h\left(g\left(t_{j-1}\right)\right), h\left(g\left(t_{j}\right)\right)\right) \\
& \leqq \sum_{j} k d_{1}\left(g\left(t_{j-1}\right), g\left(t_{j}\right)\right) \\
& \leqq k d_{1}(p, q) .
\end{aligned}
$$

Also we have in quite a similar way (just replacing h by h^{-1}) that

$$
d_{2}(h(p), h(q)) \geqq d_{1}(p, q) / k
$$

finishing the proof.
The condition that U_{i} is open may be replaced by an assurance that the subdivision of a geodesic segment by U_{i} consist only of finite segments. Therefore we get the following version of Lemma 1:

Corollary 1. Let $\left(K_{1}, f\right),\left(K_{2}, g\right)$ be differentiable triangulations of M_{1}, M_{2}, respectively, and assume that h satisfies the following 1), 2).

1) $d_{2}(h(p), h(q)) \leqq k d_{1}(p, q), \quad$ for any p, q of each n-simplex Δ_{1} of K_{1}.
2) $d_{1}\left(h^{-1}(p), h^{-1}(q)\right) \leqq k d_{2}(p, q), \quad$ for any p, q of each n-simplex Δ_{2} of K_{2}. Then we have

$$
\mathfrak{l}(h) \leqq k .
$$

Lemma 2. Suppose that there exist coordinate systems $\left\{U_{i}, f_{i}\right\},\left\{U_{i}, g_{i}\right\}$ on M_{1}, M_{2}, having the same Euclidean open sets U_{i} as local parameter systems, and
that the homeomorphism h is given by $g_{i} \cdot f_{i}^{-1}$ on each open set $f_{i}\left(U_{1}\right)$. Then if the line elements $d s_{1}, d s_{2}$ (written in the parameter system of U_{i}) satisfy that

$$
d s_{1} / k \leqq d s_{2} \leqq k d s_{1},
$$

we also have

$$
\mathfrak{l}(h) \leqq k
$$

Corollary 2. If h is piecewise differentiable on differentiable triangulations $(K, f),(K, g)$ of M_{1}, M_{2}, then Lemma 2 holds when h is given by $g . f^{-1}$ on each n-simplex Δ of K and the line elements $d s_{1}, d s_{2}$ (written in the coordinate of Δ) satisfy

$$
d s_{1} / k \leqq d s_{2} \leqq k d s_{1} \quad \text { on each } \Delta \in K
$$

2. The computation of $\mathfrak{l}(h)$

For a $1 / 4$-pinched compact simply connected Riemannian manifold, the following facts i), ii) are known in $[1,4,6,8]$.
i) There are points $p, q \in M$ and a positive a, satisfying $\pi / 2 \sqrt{\delta} \leqq a \leqq \pi$ with $\delta=\min K$ such that

1) The open sets $U, V \subset M$ defined by

$$
U=\{x \in M / d(x, p)<a\}, \quad V=\{y \in M / d(y, q)<a\}
$$

cover M, that is, $U \cup V=M$.
2) The exponential maps defined at $p, q \in M$ send the open balls $\left\{X \in T_{p}(M) /|X|<a\right\},\left\{Y \in T_{q}(M) /|Y|<a\right\}$ diffeomorphically onto U and V, respectively.
ii) Let N be a point set defined by

$$
N=\{x \in M / d(x, p)=d(x, q)\}
$$

then N possesses the following properties:

1) $\quad N$ is a differentiable submanifold of M and lies in $U \cap V$.
2) For every $x \in N$ there are a unique minimizing geodesic from p to x and a unique minimizing geodesic from q to x, we denote the initial directions of these geodesics by $g_{+}(x) \in T_{p}(M), g_{-}(x) \in T_{q}(M)$, respectively.
3) Every geodesic segment of length a starting at p of initial direction X cuts N exactly at one point which we denote by $f_{+}(X)$. Also every geodesic segment of length a starting at q of initial direction Y cuts N exactly at one point which we denote by $f_{-}(Y)$.

Using the facts i), ii), a homeomorphism h of the standard unit n-sphere S^{n} onto M is constructed through following steps a)-e):
a) Let P, Q be the north pole and the south pole of S^{n} and express a point
x of the northern hemi-sphere E_{+}by the standard polar coordinate system at P :

$$
x=\left(G_{+}(x), R_{+}(x)\right), G_{+}(x) \in T_{P}\left(S^{n}\right), 0 \leqq R_{+}(x) \leqq \pi / 2 .
$$

Also write a point y in the southern hemi-sphere E_{-}by the polar coordinate system at Q :

$$
y=\left(G_{-}(y), R_{-}(y)\right), G_{-}(y) \in T_{Q}\left(S^{n}\right), 0 \leqq R_{-}(y) \leqq \pi / 2 .
$$

b) For a direction $X \in T_{p}\left(S^{n}\right)$, denote by $F_{+}(X)$ the point in the equator E at which the geodesic segment of initial direction X crosses E :

$$
F_{+}(X)=(X, \pi / 2)
$$

Also define $F_{-}(Y)\left(Y \in T_{Q}\left(S^{n}\right)\right)$ to be the point in E at which the geodesic segment of initial direction y cuts E :

$$
F_{-}(Y)=(Y, \pi / 2) .
$$

c) Take a linear isometry α of $T_{P}\left(S^{n}\right)$ onto $T_{P}(M)$ and define an one to one map β of $T_{Q}\left(S^{n}\right)$ onto $T_{q}(M)$ by

$$
\beta(Y)=\left\{\begin{array}{l}
g_{-} \circ f_{+} \circ \alpha \circ G_{+} \circ F_{-}(Y), \quad \text { if } \quad|Y|=1 \\
|Y| \beta(Y| | Y \mid) \quad \text { otherwise. }
\end{array}\right.
$$

d) Define an one to one map γ_{+}of $T_{p}(M)$ onto itself by

$$
\gamma_{+}(X)=2 \operatorname{dist}\left(p, f_{+}(X /|X|)\right) \mathrm{X} / \pi .
$$

also define $\gamma_{-}(Y)$ on $T_{q}(M)$ by

$$
\gamma_{-}(Y)=2 \operatorname{dist}\left(p, f_{-}(Y /|Y|)\right) Y / \pi
$$

e) Now the homeomorphism h of S^{n} onto M is given by

$$
h(x)= \begin{cases}\exp (p) \circ \gamma_{+} \circ \alpha \circ \exp (P)^{-1}(x), & \text { if } x \in E_{+} \\ \exp (q) \circ \gamma_{-} \circ \beta \circ \exp (Q)^{-1}(x), & \text { if } x \in E_{-} .\end{cases}
$$

In order to prove that h is approximated by diffeomorphisms if the sectional curvature K of M is sufficiently pinched, we evaluate $\mathfrak{l}(h)$ relative to the standard metric on S^{n} and the given Riemannian metric on M. The evaluation is done through the three steps: first we evaluate $\mathfrak{l}\left(\exp (p) \circ \alpha \circ \exp (P)^{-1}\right)$, next $\mathfrak{l}\left(\exp (p) \circ \gamma_{+} \circ \exp (p)^{-1}\right)$ and $\mathfrak{l}\left(\exp (q) \circ \gamma_{-} \circ \exp (q)^{-1}\right)$, and finally we evaluate $\mathfrak{l}\left(\exp (q) \circ \beta \circ \exp (Q)^{-1}\right)$. Since in general we know that

$$
\mathfrak{l}(A \circ B) \leqq \mathfrak{l}(A) \mathfrak{l}(B)
$$

for any maps A, B, these three steps complete our evaluation.

2.1 First step, on $\mathfrak{l}\left(\exp (p) \circ \alpha \circ \exp (P)^{-1}\right)^{*}$.

Take orthogonal directions $X, Y \in T_{p}(M)$, then because of i) 2), we may apply Rauch's comparison theorem to the arc $c(\theta)=r(X \cos \theta+Y \sin \theta)\left(t_{1} \leqq \theta\right.$ $\leqq t_{2}, 0 \leqq r \leqq \pi / 2$) and to S^{n}, M, α. We get that

$$
L\left(\exp (P) \circ \alpha^{-1} \circ c\right) \leqq L(\exp (p) \circ c),
$$

where $L(\varphi)$ denotes the length of the $\operatorname{arc} \varphi$.
Let $S^{n}(\delta)$ be the sphere of constant curvature $\delta(\delta$ is the positive pinching of the sectional curvature K of M from below; $\delta \leqq K \leqq 1$), then we also can apply Rauch's theorem to $c(\theta), M, S^{n}(\delta)$ and a linear isometry α^{\prime} of $T_{P}\left(S^{n}(\delta)\right)$ onto $T_{p}(M)$, to get that

$$
L(\exp (p) \circ c) \leqq L\left(\exp (P) \circ \alpha^{\prime-1} \circ c\right)
$$

Since it is elementary to show that

$$
\begin{aligned}
& L\left(\exp (P) \circ \alpha^{-1} \circ c\right)=\left(t_{2}-t_{1}\right) \sin r \\
& L\left(\exp (P) \circ \alpha^{\prime-1} \circ c\right)=\frac{\left(t_{2}-t_{1}\right)}{\sqrt{\delta}} \sin \sqrt{\delta} r
\end{aligned}
$$

we deduce that

$$
\sin r \leqq \frac{L(\exp (p) \circ c)}{t_{2}-t_{1}} \leqq \frac{1}{\sqrt{\delta}} \sin \sqrt{\delta} r .
$$

In order to have an evaluation of the ratio of the line elements on S^{n} and M, consider the submanifold $M(X, Y)$ of M consisting of elements of the form $\exp (p)(r X \cos \theta+r Y \sin \theta)$ and parametrize the plane of X, Y by (r, θ). The line element of M restricted on $M(X, Y)$, then, is written in the form $d r^{2}+\mu^{2}$ $(r, \theta) d \theta^{2}$. Since the function $\mu(r, \theta)$ is nothing but the limit of $L(\exp (p) \circ c) / t_{1}-\theta$ when $t_{1} \rightarrow \theta$, the above inequality yields that

$$
d r^{2}+\sin ^{2} r d \theta^{2} \leqq d r^{2}+\mu^{2}(r, \theta) d \theta^{2} \leqq d r^{2}+\frac{1}{\delta} \sin ^{2} \sqrt{\delta} r d \theta^{2}
$$

Therefore we get that for any $X, Y \in T_{p}(M)$ it holds that

$$
d r^{2}+\sin ^{2} r d \theta^{2} \leqq d r^{2}+\mu^{2}(r, \theta) d \theta^{2} \leqq \frac{1}{\delta}\left(d r^{2}+\sin ^{2} r d \theta^{2}\right),
$$

on $M(X, Y)$. Thus we may conclude that

$$
\mathfrak{l}\left(\exp (p) \circ \alpha \circ \exp (P)^{-1}\right) \leqq 1 / \sqrt{\delta}
$$

by virtue of Lemma 2.

[^0]2.2 Second step, on $\mathfrak{l}\left(\exp (q) \circ \gamma_{+} \circ \exp (q)^{-1}\right)$

The following fact iii) also is known for a compact connected δ-pinched simply connected manifold $M(\delta>1 / 4)$,
iii) 1) $\pi \leqq \operatorname{diam}(M) \leqq \pi / \sqrt{\delta}$
2) Let p, q be the points in i) 2), then for any $x \in M$, $d(p, x) \leqq \pi / 2 \sqrt{\delta} \quad$ or $\quad d(q, x) \leqq \pi / 2 \sqrt{\delta}$.

In order to evaluate $\mathfrak{l}\left(\exp (q) \circ \gamma_{+} \circ \exp (q)^{-1}\right)$, we first consider the differential in X of the function λ defined by

$$
\lambda(X)=\left|\gamma_{+}(X)\right| /|X|
$$

Take $x, y \in N$ and let $\triangle P A B, \triangle Q A^{\prime} B^{\prime}$ be triangles in euclidean space such that

$$
\begin{array}{lll}
d(p, x)=d(P, A), & d(p, y)=d(P, B), & d(x, y)=d(A, B) \\
d(q, x)=d\left(Q, A^{\prime}\right), & d(q, y)=d\left(Q, B^{\prime}\right), & d(x, y)=d\left(A^{\prime}, B^{\prime}\right)
\end{array}
$$

Suppose $\angle A^{\prime} \leqq \angle B^{\prime}$ for instance, in $\triangle Q A^{\prime} B^{\prime}$, we then have by Toponogov's comparison theorem that

$$
\pi-\angle Q=\angle A^{\prime}+\angle B^{\prime} \leqq 2 \angle B^{\prime} \leqq 2 \angle q y x
$$

Since, in general, it holds that

$$
\angle q y x+\angle x y p+\angle p y q \leqq 2 \pi,
$$

we get that

$$
\pi / 2-\angle P / 2 \leqq \angle P B A \leqq \angle p y x \leqq \pi / 2+\angle P / 2+(\pi-\angle p y q),
$$

hence we see that in $\triangle P B A$

$$
\pi / 2-3 \angle P / 2-(\pi-\angle p y q) \leqq \angle P A B=\angle Q A^{\prime} B^{\prime} \leqq \pi / 2-\angle P / 2
$$

Therefore we have that

$$
\begin{aligned}
|d(p, x)-d(p, y)| & =|d(P, A)-d(P, B)| \\
& \leqq d(P, A)\left|\frac{2 \sin \angle P / 2 \sin (\angle P A B / 2-\angle P B A / 2)}{\sin \angle P B A}\right| \\
& \leqq \pi|\sin \angle P / 2 \tan (\angle P+(\pi-\angle p y q))| / \sqrt{\delta}
\end{aligned}
$$

Let now $x=f_{+}(X), y=f_{+}(X+d X)$, then the inequality above yields that

$$
\left|\gamma^{\prime}(X)\right| \leqq \tan \angle p y q / \sqrt{\delta}
$$

On the other hand, Toponogov's theorem applied to the geodesic triangle $\triangle p y q$, on which

$$
\pi \leqq d(p, q), \quad d(p, y)=d(q, y) \leqq \pi / 2 \sqrt{\delta},
$$

yields that

$$
\cos \angle p y q \leqq 1-d^{2}(p, q) / 2 d^{2}(p, y) \leqq 1-2 \delta
$$

Thus we get that

$$
\left|\gamma^{\prime}(X)\right| \leqq 4 \sqrt{1-\delta} .
$$

Since the homeomorphism $\exp (p) \circ \gamma_{+} \circ \exp (p)^{-1}$ leaves the submanifold $M(X, Y)$ of $(2,1)$ for orthogonal directions X, Y invariant, we may evaluate the effect of $\left(\exp (p) \circ \gamma_{+} \circ \exp (p)^{-1}\right)^{*}$ on the line element $d s$ of $M(X, Y)$, in order to get an evaluation of $\mathfrak{l}\left(\exp (p) \circ \gamma_{+} \circ \exp (p)^{-1}\right)$. We compare two quadratic forms $I(x, y), I_{0}(x, y)$ given by

$$
\begin{gathered}
\left.I(x, y)=(\lambda(\theta) x)^{2}+2 \lambda^{\prime}(\theta) \lambda(\theta) r x y+\left\{\mu^{2}(\theta, \lambda(\theta) r)+\left(\lambda^{\prime}(\theta) r\right)^{2}\right)\right\} y^{2} \\
I_{0}(x, y)=x^{2}+\mu^{2}(\theta, r) y
\end{gathered}
$$

to get the following; If a positive k satisfies that

1) $\lambda^{2}(\theta) \leqq k \leqq 4$
2) $4\left(\lambda^{\prime}(\theta) r\right)^{2} \leqq \mu^{2}(\theta, r)\left(k-\left(\frac{\mu(\theta, \lambda(\theta) r)}{\mu(\theta, r)}\right)^{2}\right)\left(k-\lambda^{2}\right)$,
then the quadratic form $k I_{0}(x, y)$ dominates $I(x, y)$, that is,

$$
I(x, y) \leqq k I_{0}(x, y) \quad \text { for any } x, y
$$

Since we have that

$$
\delta \sin r \leqq \mu(r, \theta) \leqq \frac{1}{\delta} \sin r, \quad 1 \leqq \lambda \leqq 1 / \sqrt{\delta}
$$

from (2.1) and from iii) 1), 2), we see that the condition 2) above is fulfilled with k such that

$$
k \geqq\left(1+4 \pi \delta^{2} \sqrt{1-\delta}\right) / \delta^{3}
$$

Thus we have that, if $\delta \geqq 99 / 100$ e.g., then with $k_{1}=\left(1+4 \pi \delta^{2} \sqrt{1-\delta}\right) / \delta^{3}$, it holds that

$$
\left.\left(\exp (p) \circ \gamma_{+} \circ \exp (p)\right)^{-1}\right)^{*} d s \leqq k_{1} d s
$$

Quite similarly, we also have that with $k_{2}=\delta(1-4 \pi \sqrt{1-\delta})$, it holds that

$$
\left(\exp (p) \circ \gamma_{+} \circ \exp (p)^{-1}\right)^{*} d s \geqq k_{2} d s
$$

Thus we may conclude that

$$
\mathfrak{l}\left(\exp (p) \circ \gamma_{+} \circ \exp (p)^{-1}\right) \leqq k_{0}
$$

where $k_{0}=\max \left(k_{1}, 1_{1}^{\prime} k_{2}\right)$.
As in the same way above, we get that

$$
\mathfrak{l}\left(\exp (q) \circ \gamma_{-} \circ \exp (q)^{-1}\right) \leqq k_{0}
$$

2.3 Third step, on $\mathfrak{l}\left(\exp (q) \circ \beta \circ \exp (Q)^{-1}\right)$.

We take two points x, y in E_{-}with polar coordinates $(X, r)(Y, r)(X, Y$ $\left.\in T_{Q}\left(S^{n}\right), 0 \leqq r \leqq \pi / 2\right)$. Apply the evaluation in 2.1 and 2.2 to points $F_{-}(X)$, $F_{-}(Y) \in E$, where two maps $h_{+}=\exp (p) \circ \gamma_{+} \circ \alpha \circ \exp (P)^{-1}$ and $h_{-}=\exp (q) \circ \gamma_{-} \circ \beta \circ$ $\exp (Q)^{-1}$ coincide, to get that

$$
\delta / k_{0} \leqq \frac{d\left(h_{-} \circ F_{-}(X), h_{-} \circ F_{-}(Y)\right)}{d\left(F_{-}(X), F_{-}(Y)\right)} \leqq k_{0} / \delta .
$$

On the other hand, Rauch's theorem applied to a linear isometry $\tilde{\beta}$ of $T_{Q}\left(S^{n}\right)$ onto $T_{q}(M)$ and to S^{n} (or $S^{n}(\delta)$), M yields that

$$
1 \leqq \frac{d\left(\exp (q) \circ \tilde{\beta} \circ \exp (Q)^{-1}(a), \exp (q) \circ \tilde{\beta} \circ \exp (Q)^{-1}(b)\right)}{d(a, b)} \leqq \frac{1}{\sqrt{\delta}}
$$

for $a, b \in E_{-}$. Let $\xi=\tilde{\beta}^{-1} \beta(X), \eta=\tilde{\beta}^{-1} \beta(Y)$, then we have that

$$
1 \leqq \frac{d(\tilde{h} \exp (Q)(s X), \exp \tilde{h}(Q)(s Y))}{d(\exp (Q)(s \xi), \exp (Q)(s \eta))} \leqq \frac{1}{\sqrt{\delta}}
$$

where $\tilde{h}=\exp (q) \circ \beta \circ \exp (Q)^{-1} . \quad$ Substitute s by $\pi / 2$ and by r in the inequality above to have that

$$
\sqrt{\delta} \leqq \frac{d(\exp (Q)(r \xi), \exp (Q)(r \eta))}{d\left(F_{-}(\xi), F_{-}(\eta)\right)} \cdot \frac{d\left(\tilde{h} \circ F_{-}(X), \tilde{h}_{\circ} F_{-}(Y)\right)}{d(\tilde{h}(x), \widetilde{h}(y))} \leqq \frac{1}{\sqrt{\delta}}
$$

Since the ratio

$$
\frac{d(\exp (Q)(r \xi), \exp (Q)(r(\xi+d \xi))}{d\left(F_{-}(\xi), F_{-}(\xi+d \xi)\right)}=\sin r
$$

depends only on r, we get that if Y is sufficiently near to X, then

$$
\frac{\delta}{k_{0}} \leqq \frac{d(\widetilde{h}(x), \hat{h}(y))}{d\left(\widetilde{h} \circ F_{-}(X), \tilde{h} \circ F_{-}(Y)\right)} \cdot \frac{d\left(H \circ \tilde{h} \circ F_{-}(X), H \circ \hat{h} \circ F_{-}(Y)\right)}{d(x, y)} \leqq \frac{k_{0}}{\delta},
$$

where $H=\exp (q) \circ \gamma_{-} \circ \exp (q)^{-1}$. Combining this with the result of 2.2, we have that

$$
\frac{\delta}{k_{0}{ }^{2}} \leqq \frac{d(\widetilde{h}(x), \tilde{h}(y))}{d(x, y)} \leqq \frac{k_{0}{ }^{2}}{\delta}
$$

Thus we conclude that

$$
\mathfrak{l}(\widetilde{h}) \leqq k_{0}^{2} / \delta
$$

because \tilde{h} preserves length along longitude.
Consequently we get that

$$
\mathfrak{l}\left(h_{-}\right) \leqq \mathfrak{l}(H) \cdot \mathfrak{l}(\widetilde{h}) \leqq k_{0}{ }^{3} / \delta
$$

Therefore we finally have that

$$
\mathfrak{l}(h) \leqq k_{0}{ }^{3} / \delta,
$$

from Corollary 1, finishing the proof of Proposition 1 at the beginning.
Osaka Univfrsity

References

[1] M. Berger: Les variétés riemannienne $1 / 4$ pincées, Ann. Scuola Norm. Sup. Pisa 14 (1960), 161-170.
[2] D. Gromoll: Differenzierbare Strukturen und Metriken positiver Krummung auf Sphären, Math. Ann. 164 (1966), 353-371.
[3] W. Klingenberg: Contributions to Riemannian geometry in the large, Ann. of Math. 69 (1959), 654-666.
[4] W. Klingenberg: Über Riemannsche Mannigfaltigkeiten mit positive Krimmung, Comm. Math. Helv. 35 (1961), 47-54.
[5] Y. Shikata: On a distance function on the set of differentiable structures, Osaka J. Math. 3 (1966), 65-79.
[6] V. A. Toponogov: Dependence between curvature and topological structure of Riemannian spaces of even dimensions, Dokl. Akad. Nauk SSSR 133 (1960), 10311033.
[7] V. A. Toponogov: Riemannian spaces which have their curvature bounded from below by a positive number, Uspehi Math. Nauk 14(1) (1959), 87-130.
[8] Y. Tsukamoto: On Riemannian manifolds with positive curvature, Mem. Fac. Sci. Kyushu Univ. 17 (1963), 168-175.

[^0]: * The description in section 2.1, is due to professor Y. Tsukamoto and improves the author's original (less complete) one.

