Sugano, K. Osaka J. Math. 4 (1967), 265–270

NOTE ON SEMISIMPLE EXTENSIONS AND SEPARABLE EXTENSIONS

Kozo SUGANO

(Received October 20, 1967)

1. H-separable extensions

K. Hirata introduced the notion of a type of the separable extension recently in [7], which we shall call H-separable extension in this paper.

Let $\Lambda \supseteq \Gamma$ be rings with the common identity element. Then we say that Λ is an H-separable extension of Γ if $\Lambda \otimes_{\Gamma} \Lambda$ is isomorphic to a direct summand of a finite direct sum of the copies of Λ as two sided Λ -module. Such an extnesion is necessarily a separable extension i.e., ${}_{\Lambda}\Lambda_{\Lambda} < \bigoplus_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda}$ by Th. 2.2 [7]. Let $\Lambda \supseteq \Gamma$ be an H-separable extension, $V_{\Lambda}(\Gamma) = \{\lambda \in \Lambda \mid \gamma \lambda = \lambda \gamma \text{ for all } \gamma \in \Gamma\}$, and C be the center of Λ . Then, $\Lambda \otimes_{\Gamma}\Lambda \cong \text{Hom } {}_{\mathcal{C}}(V_{\Lambda}(\Gamma), \Lambda)$ and $V_{\Lambda}(\Gamma)$ is a finitely generated projective generator as C-module (see § 2 [7]). Now we give some characterizations of H-separable extension and H-separable algebra. We assume all rings have units and all subrings have the same 1.

Theorem 1.1. Let $\Lambda \supseteq \Gamma$ be rings with the common 1. Then $\Lambda \supseteq \Gamma$ is an *H*-separable extension if and only if the map $\eta \colon \Lambda \otimes_{\Gamma} \Lambda \to Hom_{C}(\Delta, \Lambda)$ such that $\eta(x \otimes y)(d) = xdy$ is an isomorphism and Δ is a finitely generated projective *C*-module, where *C* is the center of Λ and $\Delta = V_{\Lambda}(\Gamma)$.

Proof. The 'only if' part have been proved in [7]. So we need only to prove the converse. Since Δ is a finitely generated projective *C*-module, the map $\varphi:\Delta\otimes_C \operatorname{Hom}_{\Lambda^e}(\Lambda, \Lambda\otimes_{\Gamma}\Lambda) \to \operatorname{Hom}_{\Lambda^e}(\operatorname{Hom}_C(\Delta, \Lambda), \Lambda\otimes_{\Gamma}\Lambda)$ such that $\varphi(d\otimes f)(h)=f(h(d))$ is an isomorphism. On the other hand, we see $\operatorname{Hom}_{\Lambda^e}(\Lambda\otimes\Lambda, \Lambda)\cong\Delta$ by the map $f\to f(1)$. Since the map $\eta:\Lambda\otimes_{\Gamma}\Lambda\to$ $\operatorname{Hom}_C(\Delta, \Lambda)$ is an isomorphism, the map

 ψ : Hom $_{\Lambda^{e}}(\Lambda \otimes_{\Gamma}\Lambda, \Lambda) \otimes_{C}$ Hom $_{\Lambda^{e}}(\Lambda, \Lambda \otimes_{\Gamma}\Lambda) \rightarrow$ Hom $_{\Lambda^{e}}(\Lambda \otimes_{\Gamma}\Lambda, \Lambda \otimes_{\Gamma}\Lambda)$

such that $\psi(f \otimes g) = g \circ f$ is an isomorphism. This means ${}_{\Lambda}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda} < \bigoplus$ ${}_{\Lambda}(\sum_{i=1}^{n} \oplus \Lambda)_{\Lambda}$. Hence Λ is an H-separable extension of Γ .

Proposition 1.1 Let Λ be an algebra over a commutative ring R and C its center. Then, Λ is an H-separable R-algebra if and only if Λ is separable over C

K. SUGANO

and $C \otimes_R C \cong C$ by the map φ such that $\varphi(x \otimes y) = xy$.

Proof. Let Λ be an H-separable *R*-algebra. Then, by Th. 2.1 and Th. 2.3 [3] Λ is separable over *C*, and the map $\eta_C : \Lambda \otimes_C \Lambda \to \operatorname{Hom}_C(\Lambda, \Lambda)$ such that $\eta_C(x \otimes y)(\lambda) = x \lambda y$ is an isomorphism. On the other hand, we have the isomorphism $\eta_R : \Lambda \otimes_R \Lambda \to \operatorname{Hom}_C(\Lambda, \Lambda)$ with $\eta_R(x \otimes y)(\lambda) = x \lambda y$ by Prop. 1.1. Therefore, $\Lambda \otimes_R \Lambda$ is isomorphic to $\Lambda \otimes_C \Lambda$ by the map $\eta_C^{-1} \circ \eta_R(x \otimes y) = (x \otimes y)$. Then, since *C* is a *C*-direct summand of Λ , it follows $C \otimes_R C \cong C$. Conversely, assume Λ is separable over *C* and $C \otimes_R C \cong C$. Then $\Lambda \otimes_R \Lambda \cong (\Lambda \otimes_C C) \otimes_R$ $(C \otimes_C \Lambda) \cong \Lambda \otimes_C (C \otimes_R C) \otimes_C \Lambda \cong \Lambda \otimes_C C \otimes_C \Lambda \cong \Lambda \otimes_C \Lambda$. On the other hand, since Λ is separable over *C*, $\Lambda = V_{\Lambda}(R)$ is a finitely generated projective *C*-module and $\operatorname{Hom}_C(V_{\Lambda}(R), \Lambda) = \operatorname{Hom}_C(\Lambda, \Lambda) \cong \Lambda \otimes_C \Lambda \cong \Lambda \otimes_R \Lambda$. Hence Λ is H-separable over *R* by Prop. 1.1.

EXAMPLE. Let R be a commutative ring and S a multiplicatively closed subset of R which does not contain 0. Then R_s , the ring of quatients of R with respect to S, enjoys the condition $R_S \otimes_R R_S \cong R_S$, since $r/s \otimes 1 = r/s \otimes s/s = s/s \otimes r/s$ $= 1 \otimes r/s$ for every $s \in S$ and $r \in R$. Therefore, every central separable R_s -algebra is an H-separable algebra over R but not a central separable R-algebra whenever S contains non unit elements.

Proposition 1.2. If Λ is an H-separable extension of Γ such that Γ is a left (or right) Γ -direct summand of Λ , then $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$.

Proof. Since Λ is H-separable over Γ , the map $\eta: \Lambda \otimes_{\Gamma} \Lambda \to \text{Hom }_{c}(\Delta, \Lambda)$ such that $\eta(x \otimes y)(d) = xdy$ is an isomorphism. Let $x \in V_{\Lambda}(V_{\Lambda}(\Gamma))$. Then $\eta(x \otimes 1)(d) = xd = dx = \eta(1 \otimes x)$ for all $d \in \Delta$. Hence $x \otimes 1 = 1 \otimes x$. Then it is easy to show that $x \in \Gamma$, since Γ is a left (or right) Γ -direct summand of Λ .

Corollary 1.1. An R-algebra Λ is central separable over R if and only if Λ is H-separable over R and R is an R-direct summand of Λ .

Proposition 1.3. Let Λ be an H-separable extension of Γ and B a subring of Λ which contains Γ and is a B- Γ -direct summand of Λ as left B and right Γ module. Then the map $\eta_B : B \otimes_{\Gamma} \Lambda \rightarrow Hom_D(\Delta, \Lambda)$, where $D = V_{\Lambda}(B)$ and $\Delta = V_{\Lambda}(\Gamma)$, such that $\eta_B(x \otimes y)(d) = xdy$ is an isomorphism and Δ is a finitely generated projective left D-module, and $V_{\Lambda}(V_{\Lambda}(B)) = B$.

Proof. ${}_{B}B_{\Gamma} < \bigoplus_{B}\Lambda_{\Gamma}$ implies ${}_{B}B \otimes_{\Gamma}\Lambda_{\Lambda} < \bigoplus_{B}\Lambda \otimes_{\Gamma}\Lambda_{\Lambda} < \bigoplus_{B}(\sum_{i=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{i=1}^{n}$

$$\begin{array}{ccc} B \otimes_{\Gamma} \Lambda & \xrightarrow{\eta_B} & \operatorname{Hom}_{D}(\Delta, \Lambda) \\ & & \downarrow \tau & & \downarrow \tau' \\ \Lambda \otimes_{\Gamma} \Lambda & \xrightarrow{\eta_{\Delta}} & \operatorname{Hom}_{C}(\Delta, \Lambda) \end{array}$$

where τ, τ' are monomorphisms and η_{Λ}, η_{B} are isomorphisms. Let $x \in V_{\Lambda}(V_{\Lambda}(B)) = V_{\Lambda}(D)$. Then $\eta_{\Lambda}(x \otimes 1)$ is a left *D*-homomorphism. Hence there exists $\sum b_{i} \otimes \lambda_{i} \in B \otimes_{\Gamma} \Lambda < \bigoplus \Lambda \otimes_{\Gamma} \Lambda$ such that $\eta_{\Lambda}(\sum b_{i} \otimes \lambda_{i}) = \eta_{\Lambda}(x \otimes 1)$, which implies $\sum b_{i} \otimes \lambda_{i} = x \otimes 1$. Since ${}_{B}B_{\Gamma} < \bigoplus_{B}\Lambda_{\Gamma}$ we see $x \in B$ by the map $\Lambda \otimes_{\Gamma} \Lambda \to \Lambda$: $x \otimes y \to xy$.

Proposition 1.4. Let Λ , Γ and B be as in Prop. 1.3. Assume furthermore that B is a separable extension of Γ . Then D is a direct summand of Δ as two sided D-module, and Λ is an H-separable extension of B.

Proof. Since B is separable over Γ , there exists $\sum x_i \otimes y_i \in B \otimes_{\Gamma} B$ such that $\sum x_i y_i = 1$ and $\sum bx_i \otimes y_i = \sum x_i \otimes y_i b$ for every $b \in B$. Then, the map $f: \Delta \rightarrow D$ such that $f(d) = \sum x_i dy_i \ (d \in \Delta)$ is a D-D-homomorphism such that $f \circ i = 1_D$, where *i* is the inclusion map. Hence, D is a D-D-direct summand of Δ . Let π be the projection of Δ onto D. Then we have a B- Γ -homomorphism φ' of ${}_{B}\Lambda_{\Gamma}$ into ${}_{B}\text{Hom}_{D}(\Delta, \Lambda)_{\Gamma}$ such that $\varphi'(\lambda) = \lambda^{r} \circ \pi$, where λ^{r} means right multiplication of λ . Thus we have a commutative diagram

$$\begin{array}{c|c} B \otimes_{\Gamma} \Lambda & \xrightarrow{\eta_B} & \text{Hom }_{D}(\Delta, \Lambda) \\ \eta_B & & & \uparrow \varphi' \\ \Lambda & & & & \Lambda \end{array}$$

where $\pi_B(b\otimes\lambda)=b\lambda$, $\varphi(h)=h(1)$ and η_B is an isomorphism, and all of them are right Λ and left *B*-maps. Since $\varphi' \circ \eta_B \circ \pi_B = 1$, π_B splits as *B*- Λ -map. Consequently, we have $\Lambda \otimes_B \Lambda < \oplus \Lambda \otimes_B (B \otimes_{\Gamma} \Lambda) \cong \Lambda \otimes_{\Gamma} \Lambda$. Then, since $\Lambda \otimes_{\Lambda} \Lambda < \oplus$

 $\sum_{k=1}^{n} \oplus \Lambda, \ _{\Lambda} \Lambda \otimes_{B} \Lambda_{\Lambda} < \oplus_{\Lambda} \sum_{k=1}^{n} \oplus \Lambda_{\Lambda}.$ This completes the proof.

Finally we shall give some formal properties of H-separable extensions.

Theorem 1.2. Let $\Lambda \supseteq \Gamma$ be a ring extension. Then the following statements are equivalent:

(a) Λ is an H-separable extension of Γ .

(b) The map $g: \Delta \otimes_{\mathbf{C}} (\Lambda \otimes_{\Gamma} \Lambda)^{\Lambda} \rightarrow (\Lambda \otimes_{\Gamma} \Lambda)^{\Gamma}$ such that $g(d \otimes \alpha) = d\alpha$ is an epimorphism.

(c) For every two sided Λ -module M, the map $g:\Delta \otimes_{\mathbf{C}} M^{\Lambda} \to M^{\Gamma}$ is an isomorphism, where $M^{\Omega} = \{m \in M \mid mx = xm \text{ for every } x \in \Omega\}$.

Proof. (a) \Rightarrow (c). Since Λ is H-separable over Γ , Δ is C-finitely generated projective. Therefore we have $\Delta \otimes_{c} M^{\Lambda} \cong \Delta \otimes_{c} \operatorname{Hom}_{\Lambda^{e}}(\Lambda, M) \cong \operatorname{Hom}_{\Lambda^{e}}(\operatorname{Hom}_{c}(\Delta, \Lambda), M) \cong \operatorname{Hom}_{\Lambda^{e}}(\Lambda \otimes \Lambda, M) \cong M^{\Gamma}$.

As (c) \Rightarrow (b) is trivial, we will prove (b) \Rightarrow (a).

(b) \Rightarrow (a). Since $\Delta \simeq \operatorname{Hom}_{\Lambda^{e}}(\Lambda \otimes_{\Gamma}\Lambda, \Lambda)$, we have $\Delta \otimes_{C}(\Lambda \otimes_{\Gamma}\Lambda)^{\Lambda} \simeq \operatorname{Hom}_{\Lambda^{e}}(\Lambda \otimes_{\Gamma}\Lambda, \Lambda) \otimes_{C} \operatorname{Hom}_{\Lambda^{e}}(\Lambda, \Lambda \otimes_{\Gamma}\Lambda) \simeq (\Lambda \otimes \Lambda)^{\Gamma} \simeq \operatorname{Hom}_{\Lambda^{e}}(\Lambda \otimes_{\Gamma}\Lambda, \Lambda \otimes_{\Gamma}\Lambda)$. Hence Λ is an H-separable extension of Γ (see Prop. 1.1[7]).

Proposition 1.5. Let f be a ring epimorphism from Λ_1 to Λ_2 , $f(\Gamma_1)=\Gamma_2$ for a subring Γ_1 of Λ_1 , C_i the center of Λ_i , and $\Delta_i=V_{\Lambda_i}(\Gamma_i)$ for i=1, 2. If Λ_1 is an H-separable extension of Γ_1 , then Λ_2 is an H-separable extension of Γ_2 and $\Delta \otimes_{C_i} C_2 \simeq \Delta_2$.

Proof. Let M be an arbitrary two sided Λ_2 -module. Then M becomes a two sided Λ_1 -module by f, and $M^{\Lambda_1} = M^{\Lambda_2}$ and $M^{\Gamma_1} = M^{\Gamma_2}$. Therefore we have $\Delta_1 \otimes_{C_1} M^{\Lambda_2} = M^{\Gamma_2}$ by Theorem 1.2. Taking $M = \Lambda_2$, we have $\Delta_1 \otimes_{C_1} C_2 = \Delta_2$. Then $\Delta_2 \otimes_{C_2} M^{\Lambda_2} = \Delta_1 \otimes_{C_1} C_2 \otimes_{C_2} M^{\Lambda_2} \cong \Delta_1 \otimes_{C_1} M^{\Lambda_1} = M^{\Gamma_1} = M^{\Gamma_2}$ for any two sided Λ_2 -module M, which means Λ_2 is an H-separable extension of Γ_2 .

Proposition 1.6. Let $\Omega \supseteq \Lambda \supseteq \Gamma$ be rings with the common 1. If both $\Omega \supseteq \Lambda$ and $\Lambda \supseteq \Gamma$ are H-separable extensions, $\Omega \supseteq \Gamma$ is also an H-separable extension. If furthermore $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$ and $V_{\Omega}(V_{\Omega}(\Lambda)) = \Lambda$, then $V_{\Omega}(V_{\Omega}(\Gamma)) = \Gamma$.

Proof. Let $\Lambda \otimes_{\Gamma} \Lambda < \oplus \sum^{m} \oplus \Lambda$ and $\Omega \otimes_{\Lambda} \Omega < \oplus \sum^{n} \Omega$. Then $\Omega \otimes_{\Gamma} \Omega \cong \Omega \otimes_{\Lambda} (\Lambda \otimes_{\Gamma} \Lambda) \otimes_{\Lambda} \Omega < \oplus \sum^{m} \Omega \otimes_{\Lambda} \Lambda \otimes_{\Lambda} \Omega \cong \sum^{m} \Omega \otimes_{\Lambda} \Omega < \oplus \sum^{m} \Omega$ as two sidedmodule. Hence Ω is H-separable over Γ . Assume $V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$ and $V_{\varrho}(V_{\varrho}(\Lambda)) = \Lambda$. Since $V_{\varrho}(\Gamma) = V_{\varrho}(\Lambda) \cdot V_{\Lambda}(\Gamma)$ by Theorem 1.2, $V_{\varrho}(V_{\varrho}(\Gamma)) = V_{\varrho}(V_{\varrho}(\Lambda)) \cap V_{\varrho}(V_{\Lambda}(\Gamma)) = \Lambda \cap V_{\varrho}(V_{\Lambda}(\Gamma)) = V_{\Lambda}(V_{\Lambda}(\Gamma)) = \Gamma$.

Proposition 1.7. Let Λ_i , Γ_i be algebras over a commutative ring R for i=1, 2. If Λ_i is an H-separable extension of Γ_i for $i=1, 2, \Lambda_1 \otimes_R \Lambda_2$ is an H-separable extension of Im $(\Gamma_1 \otimes_R \Gamma_2)$.

Proof. Since $(\Lambda_1 \otimes_R \Lambda_2) \otimes_{\Gamma_1 \otimes_R \Gamma_2} (\Lambda_1 \otimes_R \Lambda_2) \simeq (\Lambda_1 \otimes_{\Gamma_1} \Lambda_1) \otimes_R (\Lambda_2 \otimes_{\Gamma} \Lambda_2)$, if $\Lambda_1 \otimes_{\Gamma_1} \Lambda_1 < \bigoplus \sum^m \bigoplus \Lambda_1$ and $\Lambda_2 \otimes_{\Gamma_2} \Lambda_2 < \bigoplus \sum^m \bigoplus \Lambda_2$, $(\Lambda_1 \otimes_R \Lambda_2) \otimes_R (\Lambda_2 \otimes_R \Lambda_2) < \bigoplus \sum^m \bigoplus \Lambda_1 \otimes_R \Lambda_2$. This comptetes the proof.

2. Semisimple extensions

Again let $\Lambda \supseteq \Gamma$ be rings with common 1 in this section. We say that Λ is a left semisimple extension over Γ if every left Λ -module is (Λ, Γ) -projective, and that Λ is a weak left semisimple extension over Γ if every finitely generated Λ -module is (Λ, Γ) -projective. An algebra over a commutative ring R is said to be a left semisimple algebra over R if it is a weak left semisimple extension over $R \cdot 1$. In the previous paper [6] we showed.

268

Lemma 2.1. (Prop. 1.6 [6]). Let Λ be a left semisimple extension over Γ . If Λ is left Γ -projective or right Γ -flat, then l. gl. dim $\Lambda \leq l$. gl. dim Γ . If a weak left semisimple extension Λ of Γ is right Γ -flat, we have also l. gl. dim $\Lambda \leq l$. gl. dim Γ .

Lemma 2.2. If a ring Λ is left projective over its subring Γ , and if Γ is Γ - Γ -isomorphic to Γ' a two sided Γ -direct summand of Λ , l. gl. dim $\Lambda \ge l$. gl. dim Γ .

Proof. Let ${}_{\Gamma}\Lambda_{\Gamma}={}_{\Gamma}\Gamma_{\Gamma}'\oplus_{\Gamma}\Lambda_{\Gamma}'$ as two sided Γ -module and I be an arbitrary left ideal of Γ . Since $\Lambda I=\Gamma'I\oplus\Lambda'I\cong I\oplus\Lambda'I$ as left Γ -module, $\Lambda/\Lambda I\cong\Gamma/I\oplus$ $\Lambda'/\Lambda'I$ as left Γ -module. Suppose 1. gl. dim $\Lambda \leq n$. Then dim ${}_{\Lambda}\Lambda/\Lambda I \leq n$. As Λ is Γ -projective, dim ${}_{\Gamma}\Lambda/\Lambda I \leq \dim_{\Lambda}\Lambda/\Lambda I$. Since $\Lambda/\Lambda I\cong\Gamma/I\oplus\Lambda'/\Lambda'I$, dim ${}_{\Gamma}\Lambda/\Lambda I=\max(\dim_{\Gamma}\Gamma/I,\dim_{\Gamma}\Lambda'/\Lambda'I)\geq \dim_{\Gamma}\Gamma/I$. Thus we see 1. dim Γ/I $\leq n$ for every left ideal I of Γ . Since 1. gl. dim $\Gamma=\sup$ 1. dim ${}_{\Gamma}\Gamma/I$ where I runs over all left ideals of Γ , 1. gl. dim $\Gamma \leq n$. Hence 1. gl. dim $\Gamma \leq 1$. gl. dim Λ .

Combining Lemma 2.1 and Lemma 2.2, we have

Proposition 2.1. If $\Lambda \supseteq \Gamma$ be a left semisimple extension such that Γ is Γ - Γ -isomorphic to a two sided Γ -direct summand of Λ and Λ is left Γ -projective, then l. gl. dim $\Lambda = l$. gl. dim Γ .

Theorem 2.1. If an R-algebra Λ is a finitely generated R-projective and left semisimple R-algebra, l. gl. dim $\Lambda = l$. gl. dim R/α , where α is the annihilator of Λ in R. Consequently, when Λ is (two sided) semisimple over R, l. gl. dim Λ =r. gl. dim Λ .

Proof. If Λ is *R*-finitely generated projective, Λ is R/α -finitely generated projective, and Λ is an R/α -generator. Hence $R/\alpha < \bigoplus \Lambda$ as R/α -module. Since Λ is R/α -projective, it is R/α -flat. Therefore, the proof is straightforward by Lemma 2.1 and Lemma 2.2.

REMARK. Th. 2.1 shows that if Λ is a central separable *R*-algebra, l. gl. dim $\Lambda = r$. gl. dim $\Lambda = gl$. dim *R*. Th. 2.1 induces the well known fact that l. gl. dim $\Lambda = 0$ if and only if r. gl. dim $\Lambda = 0$ in case *R* is a field or a semisimple ring.

KOBE UNIVERSITY

References

- [1] M. Auslander: On the dimension of modules and algebras, III, Nagoya Math. J. 9 (1955), 67-77.
- [2] M. Auslander and O. Goldman: Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 1-24.

K. SUGANO

- [3] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
- [4] H. Bass: The Morita Theorems, Lecture notes, Summer Inst. on algebra, 1962, Univ. of Oregon.
- [5] A. Hattori: Semisimple algebras over a commutative ring, J. Math. Soc. Japan 15 (1963), 404–419.
- [6] K. Hirata and K. Sugano: On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan 18 (1966), 360-373.
- [7] K. Hirata: Some types of separable extension of a ring, to appear in J. Math. Soc. Japan.
- [8] T. Kanzaki: Special type of separable algebra over a commutative ring, Proc. Japan Acad. 40 (1964), 781-786.
- [9] B. Müller: Quasi-Frobenius-Erweiterungen, Math. Z. 85 (1964), 345-368.
- [10] -----: Quasi-Frobenius-Erweiterungen II, Math. Z. 88 (1965), 380-409.
- [11] T. Nakayama and A. Hattori: Homological Algebra (in Japanese), Kyoritsu Press, Tokyo, 1960.

Added in proof. K. Hirata kindly advised me that Proposition 1.1 can be stated in noncommutative case as follows.

Theorem 1.3'. Let $\Lambda \supseteq \Gamma$ be an H-separable extension. Then Λ is H-separable extension of $\Gamma' = V_{\Lambda}(V_{\Lambda}(\Gamma))$. If Γ' is left and right Γ' -direct summands of Λ , then Λ is H-separable over Γ if and only if Λ is H-separable over Γ' and $\Gamma' \otimes_{\Gamma} \Gamma' \simeq \Gamma'$.

Proof. If Λ is H-separable over Γ , we have a commutative diagram

where η is an isomorphism and $\varphi(x \otimes y) = x \otimes y$ is an epimorphism. Hence φ is an isomorphism, and Λ is an H-separable extension of Γ' . The rest of the proof is same as Theorem 1.1.

The next is a corollary to Theorem 1.1.

Corollary 1.2. Let Λ be a faithful R-algebra. Then Λ is a central separable R-algebra, if and only if Λ is H-separable over R and a finitely generated R-module.

Proof. The 'only if' part is clear, so we need only to prove the converse. Let C be the center of Λ . Since Λ is H-separable over R, $C < \oplus \Lambda$. Hence C is a finitely generated R-module, as Λ is R-finitely generated. Since $C \otimes_R C \cong C$ by Theorem 1.1, $C/mC \otimes_{R/m} C/mC \cong C/mC$ for every maximal ideal m of R. Therefore we have C/mC = R/m, and C = R + mC for every maximal ideal m of R. Hence C = R, and Λ is central separable over R.