Noda, R. Osaka J. Math. 4 (1967), 261–263

A NOTE ON MULTIPLY TRANSITIVE GROUPS

RYUZABURO NODA

(Received October 25, 1967)

The purpose of the present note is to prove the following theorem and to give some applications of it.

Theorem. Let H be a transitive group on $\Gamma = \{1, 2, \dots, n\}$ other than S_n and A_n , and assume H_1 , the stabilizer of a letter 1, leaves only one letter 1 invariant. If H can be successively extended to 2-, 3-, \dots , (t+1)-fold transitive groups, G^2 , G^3 , \dots , $G^{t+1}=G$, then the centralizer of H in G is trivial and the outer automorphism group of H contains a subgroup isomorphic to S_t , the symmetric group on t letters.

NOTATION. For a subgroup H of G, the normalizer (or centralizer) of H in G will be denoted by $N_G(H)$ (or $C_G(H)$). If G is a permutation group on Ω and a subset X of G fixes a subset Γ of Ω , then X induces a set of permutations on Γ , which is denoted by X^{Γ} .

To prove the theorem, we need the following

Lemma. Let G be a permutation group on Ω , and H a subgroup of G which is transitive on a subset Γ of Ω . Then $C_G(H)$ is semi-regular or identity on Γ .

Proof. Let c be an element of $C_G(H)$ and assume c fixes a letter α in Γ . Then $\alpha^h \in I(c)$ for every $h \in H$. Since H is transitive on Γ , $I(c) \supset \Gamma$. Namely $c^{\Gamma} = 1$.

Proof of Theorem. Let H satisfy the assumption of the theorem and G be a t-times successive transitive extension of H operating (t+1)-fold transitively on $\Omega = \Gamma \cup \Delta$, where Δ is the set of new letters $\{1', 2', \dots, t'\}$. We remark first that G does not contain an element whose degree is less than t+1. Here by the degree of an element x we mean the number of letters moved by x. In fact, if G contains such an element, G must contain the alternating group A^{α} by the *t*-fold transitivity of G.

Now let c be an element of $C_G(G_{1',2,\dots,t'})=C_G(H)$. Then $c^{\Gamma}=1$ or c^{Γ} is semi-regular by the above lemma. But since c centralizes H_{α} for $\alpha \in \Gamma$ and H_{α}^{Γ} fixes α only, c must fix α . Hence $c^{\Gamma}=1$. Then c=1 by the above remark.

R. NODA

The second part of the theorem is an easy consequence of the first part. By a lemma of Witt ([6], Th 9.4) we have $N_G(H)^{\Delta} \simeq N_G(H)/H \simeq S_t$.

On the other hand, $N_G(H)/C_G(H)H=N_G(H)/H$ is isomorphic to a subgroup of the outer automorphism group of H. Thus we have the assertion.

Now Nagao [4] proved that the stabilizer G_{1234} in a 4-fold transitive group G fixes exactly four letters unless G is S_5, A_6 or M_{11} . Hence we have

Corollary 1. Let G be a non trivial t-fold transitive group with $t \ge 4$. Then the outer automorphism group of the stabilizer $G_{1,2,\dots,t-1}$ contains S_{t-1} except the case $G=M_{11}$ with t=4 and $G=M_{12}$ with t=5.

By Burnside's theorem, a minimal normal subgroup of a doubly transitive group is primitive simple or elementary abelian ([2], §154). Suzuki [5] proved that a doubly transitive group whose minimal normal subgroup is elementary abelian does not admit a twice successive transitive extension unless it is S_2 , S_3 , A_4 , S_4 or M_9 . If a doubly transitive group H has a non trivial 2 core, then by the theorem of Feit-Thompson, H has a minimal normal subgroup which is elementary abelian. Therefore H does not admit a twice successive transitive extention unless $H=S_3$ or M_9 .

On the other hand, to 2 core free doubly transitive groups we can apply the following theorems of Brauer and Glauberman.

Theorem. (Brauer [1], Th. 5) If G is 2 core free and a Sylow 2 subgroup S of G is elementary abelian of order at most eight, then the outer automorphism group of G is solvable unless |G| = 8.

Theorem. (Glauberman [3], Th. 4) If G is 2 core free and a Sylow 2 subgroup S of G satisfies any of the following conditions, then the outer automorphism group of G is solvable.

- (a) Aut (S) is solvable.
- (b) S can be generated by two elements.
- (c) S can be generated by three elements and $N_G(S)/C_G(S)$ is not a 2 group. Thus by combining with our theorem we have

Corollary 2. If H is a non trivial doubly transitive group and a Sylow 2 subgroup of H satisfies one of the above conditions, then H does not admit a five times successive transitive extension.

REMARK. The author knows no simple group whose outer automorphism group contains S_4 . Therefore from Corollary 1 we have that any simple group known at present can not be a stabilizer of four letters in a 5-fold transitive group unless $H=A_n$.

OSAKA CITY UNIVERSITY

262

MULTIPLY TRANSITIVE GROUPS

References

- [1] R. Brauer: Investigation on groups of even order II, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 254–259.
- [2] W. Burnside: Theory of Groups of Finite Order, Cambridge Univ. Press, 1911.
- [3] G. Glauberman: On the automorphism group of a finite group having no nonidentity normal subgroup of odd order, Math. Z. 93 (1966), 154-160.
- [4] H. Nagao: On multiply transitive groups IV, Osaka J. Math. 2 (1965), 327-341.
- [5] M. Suzuki: Transitive extentions of a class of doubly transitive groups, Nagoya Math. J. 27 (1966), 159-169.
- [6] H. Wielandt: Finite Permutation Groups, Academic Press, New York, 1964.